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Abstract: Hollow nanofibers are largely gaining interest from the scientific community for diverse
applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive
surface area that increases the possibilities of engineering, their larger accessible active area, their porosity,
and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge
modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length
(e.g., for an enhanced charging–discharging rate). In this review, we discuss and introduce the latest
developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly,
electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be
reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures
have been mainly suggested for energy and environmental remediation. Despite the various advantages
of such one dimensional (1D) nanostructures, their fabrication strategies need to be improved to increase
their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings
and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard
to their composition and dimensions could be one of such challenges. Moreover, their poor scalability
hinders their wide applicability for commercialization and industrial use.

Keywords: core-sheath nanofibers; hollow nanofibers; electrospinning; ceramic

1. Introduction

Nowadays, one-dimensional (1D) nanostructures, including nanofibers, nanotubes, nanorods,
nanowires, and nanobelts have drawn immense attention from various scientific communities. This
attraction stems from their unique properties, such as size effects, surface effects, and superparamagnetism,
leading to their intriguing applications in many advanced areas including sensors, solar cells,
nanoresonators, etc. [1]. Among these 1D nanostructures, nanofibers, with large length/diameter ratios,
extensive surface area per unit mass, and small diameters (tens to hundreds of nanometers) have been
widely spotlighted. The mentioned structural features bring about flexibility in their applicability.

Up to now, techniques such as drawing, template synthesis, phase separation, self-assembly,
and electrospinning have been employed for the fabrication of nanofibers made of polymers, metals,
ceramics, glass, etc. These methods not only produce nanofibers, but also further assemble them into
two-dimensional (2D) and three-dimensional (3D) nanostructures for practical applications [1].

For the last two decades, an almost old technique, called electrospinning, has been underlined mainly
because of its extraordinary capabilities in the production of polymer nanofibers [2–4]. In this regard,
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basic electrospinning theories [5,6] have been thoroughly studied, and a diverse range of electrospun
nanofibers from various polymer (synthetic or natural) systems, such as neat, nanohybrid and biohybrid,
have been made [7–14]. Electrospinning is, in fact, a novel production technique of continuous ultrafine
fibers (with diameters from 10 µm to 10 nm) based on forcing a polymer melt or solution through a
spinneret with an electrical driving force [15,16]. The produced mats possess small fiber diameters
(as mentioned above), highly specific surface areas (tens to hundreds m2/g), high porosity, and small
pore sizes. Thus, they could be excellent candidates for a wide range of applications, including tissue
engineering, drug delivery, textiles, filtration, composite reinforcements, etc. [15,17].

The main advantages of electrospinnig are: its relatively easiness (easy to set up), high speed,
low cost, high versatility allowing control over the fibers’ diameters, microstructures and arrangements,
and the possibility of a vast selection of materials [15,18,19]. The latter advantage, that is the possibility
of fabrication of various nanofiber morphologies and arrangements, is of utmost importance for various
applications. By electrospinning, polymers and hybrids thereof can be processed into 1D nanofibers
with adjustable compositions, diameters, and porosities [20]. One specific instance is the fabrication of
1D hollow or tubular nanofibers made of ceramics, and, more specifically, of metal oxides, which have
been explored extensively for potential applications in catalysis, chemicals, gas sensors, etc. [21–23].

Hollow nanofibers are able to offer a very extensive surface area that could be highly beneficial
for surface-related applications, e.g., chemical sensors, photocatalysis, electromagnetic wave absorbing
materials, etc. [24,25]. It is reported that the surface area of the hollow nanofibers is around two
times larger than that of the conventional nanofibers [26,27]. In addition to an enhanced surface area,
the tubular shape of hollow nanofibers brings about more optimum physicochemical properties for specific
applications. For instance, as Choi et al. [28] state, zinc oxide (ZnO) hollow nanofibers show higher
electronic transport properties compared to their thin film counterparts. Also, hollow nanofibers are
able to provide promising photocatalytic activity [21,29], increased crystallinity [30] and porosity [31,32],
optimized electrochemical [33], magnetic, optical and luminescence properties [34,35], as well as high
energy storage capacity [36].

In this review, we aim to present a comprehensive overview of the latest development of
ceramic hollow nanofiber materials in terms of synthesis approaches, material types, and applications.
The emphasis will be on electrospinning for the production of hollow nanofibers, while, with respect
to nanofiber materials, we will consider the most common ceramic (metal oxide) materials that have
been particularly studied in relevance with energy and environmental remediation applications.

2. Electrospinning-Based Fabrication Methods of Ceramic Hollow Nanofibers

The most widely applied process for the fabrication of hollow nanofibers is electrospinning.
Unlike the template synthesis and self-assembly methods relying on complex manipulations of
molecules to form the desired structure, electrospinning is an efficient and straightforward method to
produce hollow nanofibers from either inorganic or organic components [37].

Electrospinning is an effective, adaptable method to form nanofibers with various structures
such as, for example, beads on a string, ribbon, cylindrical, grooved, porous, multichannel, core-shell,
side by side, helical, hierarchical, and hollow [38–40]. Electrospun nanofibers are gaining extensive
and growing interest because of their flexibility in terms of size, porosity, surface area, morphology,
and surface functionality [41,42].

A simple electrospinning apparatus comprises a Direct Current (DC) high voltage source with
positive and negative electrodes connected to a spinning solution container with a nozzle (or spinneret)
and a collector, respectively. During the process, an electric field is formed between the spinneret
and the collector as a result of their opposite charges. Induced by this electric field, a conical shaped
droplet, called “Taylor cone”, is pulled out from the nozzle. Once the electric force dominates the
surface tension of the spinning solution, a charged jet is expelled, the solvent gradually evaporates,
and the nanofibers are deposited on the collector [43]. Since 2010, various electrospinning procedures
and apparatus have been designed for the fabrication of ceramic hollow nanofibers. These approaches
include single nozzle, coaxial, microfluidic, triaxial, and emulsion electrospinning (Table 1).
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Table 1. Various electrospinning methods for the production of ceramic hollow nanofibers, examples, and detailed operational parameters (studies performed after
2010 were mainly considered).

Method Precursors Parameters Ensuing Hollow Nanofibers Reference

Single-spinneret
electrospinning Zn(AC)2·2H2O in water/Poly(vinylpyrrolidon)(PVP) in DMF Voltage = 17 kV Distance = 20 cm ZnO [44]

Coaxial
electrospinning

Fe3O4 nanoparticles/DMF/Chloroform (CHCl3)/PVP/Eu(BA)3phen
powders

Voltage = 11 kV Distance = 12 cm
Flow rate = 1 mL·h−1 Fe3O4/Eu(BA)3phen/PVP [45]

Coaxial
electrospinning

PVP/Tb4O7, BA, phen/FeCl3·6H2O/FeSO4·7H2O/NH4NO3,
polyethyleneglycol (PEG)/ammonia/oleic acid (OA)/aniline (ANI),
(IS)-(+)-camphor-10 sulfonic acid (CSA)/ammonium persulfate
(APS)/ethanol (CHCl3)/DMF/nitric acid/water

Voltage = 13 Kv
Flow rate = 0.0167 mL·min−1

Tb(BA)3phen/PANI/Fe3O4/PVP
(BA = benzoic acid,
phen = phenanthroline,
PANI = polyaniline,
PVP = polyvinylpyrrolidone)

[46]

Coaxial
electrospinning Titanium butoxide (TBT, Ti(OBu)4)/PVP Voltage = 4–30 kV

Distance = 50 cm TiO2 [47]

Microfluidic approach
electrospinning

PVP/tetrabutyl
titanate (Ti(OC4H9)4/ethanol/paraffin oil

Voltage = 20–30 kV
Distance = 15–25 cm
Flow rates of inner jet (paraffin oil) = 1.0 mL·h−1

Flow rates of outer jet (PVP/Ti(OiPr)4) = 6–12 mL·h−1

TiO2 [48]

Triaxial
electrospinning

tetraethyl orthosilicate (TEOS)/ethanol/water/HCl (shell and
innermost layers)+poly(styrene-b-isoprene)(middle layer)

Voltage = 20 kV
Distance = 11.5 cm
Flow rates of inner jet = 0.02 mL·min−1

Flow rates of outer jet = 0.03 mL·min−1

SiO2/PS-b-PI/SiO2 [49]

Emulsion
electrospinning PVP/VO(acac)2/HAuCl4·3H2O-DMF solution and PS-DMF solution Voltage = 5–30 kV Distance = 7 cm

Flow rate = 2 mL·h−1 Au/V2O5 [50]

Emulsion
electrospinning

tetrabutyl titanate (C16H36O4Ti)/ethanol/acetic acid +
PVP/AgNO3/DMF/ethanol + mechanical pump oil

Voltage = 16 kV Distance = 15 cm
Flow rate = 2 mL·h−1 Ag/TiO2 [51]
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2.1. Electrospinning with a Single Spinneret

The single-spinneret, or single-nozzle, electrospinning is the simplest electrospinning procedure to
form hollow nanofibers from either one component or multiple components [44,52–55]. The schematic
of this process is illustrated in Figure 1. In the case of multicomponents electrospinning, polymers
with high and low viscosity move to the inner and outer layers, respectively [56]. The rheological
parameters, the solubility of the constituents, and the phase separation of the employed blends
influence the homogeneity of their respective solutions [57]. The main challenge in this technique
is its low throughput, varying between 1 and 5 mL/h depending on the flow rate of 0.1 to 1 g/h
(that is based on the fiber weight), and depending on the operating factors as well as on the solution
properties [58,59]. Generally, decreasing the amount of solid materials in the spinning solution as well
as the flow rate, declines the nanofibers diameter and the throughput [60]. Despite the simplicity of
this process in the lab scale, a high production rate is necessary for industrial and commercial purposes.
Moreover, there is a limited number of common solvents to prepare a blend polymer solution, and it
is also challenging to find optimum electrospinning conditions for different polymers in a blend
solution [20,61].
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Royal Society of Chemistry, 2017).

2.2. Coaxial Electrospinning with a Two-Capillary Spinneret

Among the derivative techniques of electrospinning, coaxial electrospinning is indeed the most
widely employed for the production of hollow nanofibers of polymers [46,63,64], ceramics [47,65],
metals [26,45,47,66], and carbon [67–69]. In this technique, two different solutions are first
fed into a spinneret comprised of two coaxial capillaries, to form a core (inner layer)-sheath
(outer layer)-nanofiber structure. Subsequently, by removal of the core via calcination, solvent
extraction, or washing, hollow nanofibers are produced [26,46,69,70]. Figure 2a shows schematically
the preparation process of core-sheath TiO2 nanofibers using a coaxial electrospinning set-up [47].
By removal of the core, hollow TiO2 nanofibers are made. Scanning Electron Microscopy (SEM) images
of the produced core-sheath, then TiO2 hollow nanofibers are shown in Figure 2b–d.
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Figure 2. (a) A schematic of the coaxial electrospinning process for the fabrication of core-sheath
TiO2 nanofibers; SEM images of the core-sheath, then hollow TiO2 nanofibers (TiO2/PVP composite
nanofibers were coaxially electrospun with a PVP core solution and a titanium precursor as the
shell solution, then calcined at 550 ◦C for 3 h); (b) a low magnification image of the as-synthesized
hollow TiO2 nanofibrous mat; (c) a high magnification image of the TiO2 nanofibers; and (d) a high
magnification image of the cross section of the hollow TiO2 nanofiber (Reproduced with permission
from [47]. Elsevier, 2017).

Since the sheath and core solutions meet at the end of the nozzle, two physical phenomena
take place simultaneously: the wrapping of the sheath solution around the core solution and the
formation of the Taylor cone by the sheath solution to equilibrate the charge effect and the fluid surface
tension [71]. Hence, for a successful electrospinning, two important relevant issues should be taken into
account. Firstly, the core and the sheath solutions should be immiscible [70,72]. The incompatibility
between the core and the sheath solutions governs a gelled interface wherein, by coagulation of both
solutions, the hollow nanofibers are produced [73]. Secondly, the sheath solution should be spinnable
to impose a shear stress on the core solution while pulling the blended droplet. The core solution can
be spinnable or not [47,74]. The flow and diffusion rates, the viscosity, and the miscibility are critical
parameters in the coaxial electrospinning process [56]. In contrast to the single-nozzle electrospinning,
the key advantage of this method is the possibility of fabrication of hollow nanofibers from a wide
variety of materials, even non-electrospinnable solutions [69]. However, Wei et al. [75] have reported
the following limitations for this approach:

• The sheath layer must be strong enough to retain the hollow structure, otherwise the produced
hollow nanofibers will collapse.

• Despite the easiness of this method, continuous and perfect hollow nanofibers are hardly made
because of the post-treatment processes applied to remove the core.

• Complete elimination of the core is challenging.
• The hollow nanofibers prepared by this method can consist of only one layer wall.

Additionally, the limited number of suitable inner solvents and the lack of control over the
electrospinning parameters are other problems that can hinder the applicability of the coaxial
electrospinning for some systems [76].

2.3. Microfluidic Electrospinning

If the inner needle of the coaxial electrospinning possesses two or more channels, multichannel
hollow nanofibers can be made [48,77,78]. In this procedure, called microfluidic or multifluidic coaxial
electrospinning, the apparatus consists of several inner capillaries with an outer nozzle. The outer and
inner solutions are separately fed into the capillaries and form a compound Taylor cone that is stretched
under an applied electric field and solidified to multichannel nanofibers [48]. Figure 3a illustrates the
schematic of a microfluidic electrospinning set-up that is able to fabricate a nanowire-in-microtube
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structure. This interesting structure is visualized by SEM and Transmission Electron Microscopy (TEM)
images (Figure 3b). Compared to the traditional coaxial electrospinning, the microfluidic approach
reduces the interaction of the sheath and core fluids, which could be highly miscible or undergo rapid
phase separation, by introducing an extra middle fluid as a separator. Thus, a wider range of fluid
pairs can be regarded [77]. In addition, the form, size and composition of nanofibers can be properly
controlled, as it is desired in the textile and biomedical fields [79]. Other advantages of this process are:
simplicity, controllable channel size, rapid prototyping, and parallel spinnability of multiple fibers via
arrays of single microchannels [80–82]. However, since the inner fluid is surrounded by the middle
one, the evaporation of the respective solvents during the process is limited. Thus, this method suffers
from a difficulty in the solvent recovery [82].

Nanomaterials 2017, 7, 383  6 of 32 

 

the microfluidic approach reduces the interaction of the sheath and core fluids, which could be highly 
miscible or undergo rapid phase separation, by introducing an extra middle fluid as a separator. 
Thus, a wider range of fluid pairs can be regarded [77]. In addition, the form, size and composition 
of nanofibers can be properly controlled, as it is desired in the textile and biomedical fields [79]. Other 
advantages of this process are: simplicity, controllable channel size, rapid prototyping, and parallel 
spinnability of multiple fibers via arrays of single microchannels [80–82]. However, since the inner 
fluid is surrounded by the middle one, the evaporation of the respective solvents during the process 
is limited. Thus, this method suffers from a difficulty in the solvent recovery [82]. 

 
Figure 3. (a) The schematic shows the configuration of the microfluidic electrospinning set-up 
employed to produce hollow TiO2 fibers with a nanowire-in-microtube structure. The main spinneret 
consists of three coaxial capillaries, whereby three fluids are fed to form a compound jet when a high 
electric field is applied. Among the fluids, the middle one acts as a spacer and separates the inner and 
outer fluids. (b) SEM (left) and TEM (right) images represent the developed nanowire-in-microtube 
structure (Reproduced with permission from [77]. American Chemical Society, 2017). 

2.4. Triaxial Electrospinning 

Triaxial electrospinning employs a spinneret with three concentric needles (Figure 4a). As seen 
in Figure 4b, three different solutions are pumped into and then meet at the tip of the spinneret. 
Similar to other electrospinning approaches, the compound solution deforms into a Taylor cone 
under an electrostatic field. The surface tension of the solution dominates upon the electrostatic force 
and, thus, a triaxial jet emerges that then experiences bending instability, whipping motion, and 
solvent evaporation, and eventually it is deposited on the collector as dry fibers [83,84]. This 
procedure produces three-layered nanofibers including inner (core), intermediate, and outer (sheath) 
layers. The intermediate layer acts as a barrier between the sheath and the core regions [85]. 

 

Figure 4. Triaxial electrospinning process: (a) triaxial spinneret; (b) basic mechanism (Reproduced 
with permission from [85]. American Chemical Society, 2017). 

Figure 3. (a) The schematic shows the configuration of the microfluidic electrospinning set-up
employed to produce hollow TiO2 fibers with a nanowire-in-microtube structure. The main spinneret
consists of three coaxial capillaries, whereby three fluids are fed to form a compound jet when a high
electric field is applied. Among the fluids, the middle one acts as a spacer and separates the inner and
outer fluids. (b) SEM (left) and TEM (right) images represent the developed nanowire-in-microtube
structure (Reproduced with permission from [77]. American Chemical Society, 2017).

2.4. Triaxial Electrospinning

Triaxial electrospinning employs a spinneret with three concentric needles (Figure 4a). As seen in
Figure 4b, three different solutions are pumped into and then meet at the tip of the spinneret. Similar
to other electrospinning approaches, the compound solution deforms into a Taylor cone under an
electrostatic field. The surface tension of the solution dominates upon the electrostatic force and,
thus, a triaxial jet emerges that then experiences bending instability, whipping motion, and solvent
evaporation, and eventually it is deposited on the collector as dry fibers [83,84]. This procedure
produces three-layered nanofibers including inner (core), intermediate, and outer (sheath) layers.
The intermediate layer acts as a barrier between the sheath and the core regions [85].

To successfully perform the triaxial electrospinning, a compound Taylor cone must be formed,
and the three involved fluids should be held concentrically together during the procedure [84].
Moreover, it is crucial to select an appropriate solvent for each component, with a boiling point
that prevents the solvent from rapidly evaporating, which would damage the structure of the formed
nanofibers [86]. The boiling point of the outer layer should be lower than that of the inner layer.
Also, the molecular weight of the inner layer should be comparable, or even lower than that of the
outer layer.

Triaxial electrospinning has been applied to fabricate hollow nanofibers from a wide variety of
materials [87,88]. For instance, Joo et al. [49] fabricated triaxial electrospun fibers with silica as the
shell and core layers, and with a self-assembling polymeric material as the intermediate layer. Also,
Chen et al. [77] produced nanowire-in-microtube structured nanofibers through triaxial electrospinning.
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The main advantage of this technique is the possibility of formation of nanofibers with a higher
surface area enabling the sustained release of important agents [86]. For instance, multidrug delivery
vehicles with various release times that are able to sustainably release drugs and improve the healing
process can be produced by triaxial electrospinning [85]. Moreover, triaxial electrospinning enables the
production of nanofibers from non-electrospinnable components. However, problems such as needle
blocking and configuration complexity of this system are challenging [59,89,90].

2.5. Emulsion Electrospinning

Emulsion electrospinning, which is the electrospinning of a blend of two immiscible liquid
phases, is principally similar to solution electrospinning, but different in chemistry [91,92]. Through
this method, discontinuous core-sheath nanofibers are formed by stretching and collapsing of an
emulsion [57,93]. Chemically, two dissimilar polymers are dissolved in a solvent, mixed, and settled
to produce an emulsion in which the core and sheath segments form from dispersed drops and the
continuous phase, respectively [56,91,94,95]. To maintain the stability of the emulsion before and
during the jet formation, an emulsifier is usually used. In addition to the stability of the emulsion,
the viscosity of the drop phase should be optimum for deformation [56,94,95].

There are two types of emulsion for the electrospinning process: water in oil (W/O) and oil in
water (O/W) [95,96]. In a W/O system, the viscosity of the water phase is lower than that of the oily
one. Hence, the tendency of the oily phase to form the sheath as a result of its higher viscosity is
larger [56,94]. For an O/W system, the situation is the opposite.

Emulsion electrospinning does not require complex spinnerets compared to the coaxial
electrospinning, and it could simply provide good concentric core-sheath nanofibers [97,98]. Another
advantage of this method is its eco-friendliness since it employs water rather than organic solvents, and,
because of its large dielectric constant, small nanofibers form quickly [95,99]. However, this method
suffers from some difficulties in the preparation of a proper emulsion, the elimination of the core,
the removal of the emulsifier, which may raise biocompatibility concerns, and a low continuity of the
formed hollow nanofibers [52,93].

Among the studies on the preparation of core-sheath nanofibers through emulsion electrospinning,
Wang et al. [51] made TiO2 nanotubes via emulsion electrospinning of a W/O system. As shown in
Figure 5a (I), they electrospun a homogenous solution containing PVP and a TiO2 precursor (tetrabutyl
titanate), wherein a mechanical pump oil was dispersed. During the electrospinning, as shown in
Figure 5a (II), the solvent immediately evaporated, leading to the formation of PVP/tetrabutyl titanate
nanofibers. The nanofibers also contained oil drops that were insoluble in the precursor solution.
As seen in Figure 5a (III), upon drying the electrospun nanofibers at 60 ◦C for 6 h, the dispersed



Nanomaterials 2017, 7, 383 8 of 32

microdrops of oils coalesce and form larger oil phases. Eventually, when the nanofibers are annealed
at 500 ◦C for 2 h, the oil readily evaporates, and TiO2 nanotubes are created (Figure 5a (IV)).Nanomaterials 2017, 7, 383  8 of 32 
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Figure 5. (a) The schematic illustrates the formation mechanism of TiO2 nanotubes by emulsion
electrospinning; SEM images of (b) neat TiO2 nanotubes (the inset image verifies the nanotubular
morphology and rough surface of the formed nanotubes) and (c) Ag/TiO2 nanotubes (1.5%)
(Reproduced with permission from [51]. Elsevier, 2017).

3. Most Studied Ceramic Hollow Nanofibers and Their Applications

With respect to hollow nanofiber materials, ceramic—particularly metal oxide—hollow nanofibers
have attracted a wide research interest because of their special morphologies, compositions,
and chemical and physical properties (e.g., adsorptivity, conductivity etc.) [100]. More specifically,
they confer unique electrical, electrochemical, and catalytic properties that are associated with
their high surface/volume ratio. Also, in some instances, they offer extraordinary transport
properties induced by confinement effects, 1D transport phenomena, or the transport in fractal
dimensions [28]. These unique, optimized properties have motivated researchers to employ metal
oxide hollow nanofibers as ideal building blocks for a wide range of applications. For instance,
they have been evaluated as conductive electrodes for optoelectronic devices (e.g., solar cells [101]),
dye adsorbents [102], gas sensors [103,104], chemical sensors [28], etc. In the following table (Table 2),
a list of the metal oxide hollow nanofibers developed since 2010 is presented. Afterwards, the most
well-known examples of metal oxide hollow nanofibers with their respective applications will
be introduced.
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Table 2. Various metal oxide hollow nanofibers and their detailed electrospinning parameters.

Hollow Nanofiber Precursors Electrospinning
Conditions Annealing Conditions Reference

TiO2

PVP/Tetra-butyl titanate (TBT)/ethanol/acetic acid V = 30 kV
D = 15 cm

T = 500 ◦C
t = 4 h

HR = 2 ◦C·min−1
[105]

PVP/tetrabutyl titanate (Ti(OC4H9)4)/ethanol/paraffin oil

V = 20–30 kV
D = 15–25 cm

FR (outer) = 6–12 mL·h−1

FR (inner) = 1 mL·h−1

T = 500 ◦C
t = 8 h [48]

Titanium isopropoxide/PVP/acetic acid/ethanol
V = 30 kV
D = 20 cm

FR = 0.1 mL·h−1

T = 600 ◦C
t = 2 h [66]

SnO2/TiO2 Titanium isopropoxide/PVP/acetic acid/ethanol
V = 5 kV

FR (outer) = 1 mL·h−1

FR (inner) = 0.1 mL·h−1

T = 500 ◦C
t = 2 h [106]

TiO2

Titaniumisopropoxide(TiP)/poly (methylmethacrylate)(PMMA)/hexadecyl
trimethylammoniumbromide/paraffin oil/methylene chloride/ethanol/acetic acid

V = 18 kV
D = 15 cm

FR = 100 µL·min−1
T = 500 ◦C [97]

Titanium butoxide (TBT, I(OBu)4)/PVP/ethylene glycol (EG)/ethanol/acetic acid
V = 0–50 kV
D = 50 cm

FR = 100 µL·min−1

T = 550 ◦C
t = 3 h

HR = 2 ◦C·min−1
[47]

Titanium (IV) N-butoxide (TNBT)/PVP/ethanol/paraffin oil
V = 15 kV

FR (outer) = 0.8 mL·h−1

FR (inner) = 0.6 mL·h−1

T = 500 ◦C
t = 6 h [107]

polyacrylonitrile (PAN)/PVP/dimethylformamide (DMF)/tetrabutyl titanate
(Ti(OC4H9)4)

T = 500 ◦C
t = 5 h [108]

BaTiO3 Barium acetate/acetic acid/Titanium (IV)-isopropoxide/PVP/ethanol
V = 12 kV
D = 15 cm

FR = 0.3 µL·s−1

T = 500, 700, 950 ◦C
t = 1 h

HR = 2.5 ◦C·min−1
[109]

Carbon nanotube (CNT)-TiO2
PAN/Multiwalled CNTs (MWCNTs)/DMF/titanium tetra-isopropoxide

(TTIP)/isopropyl alcohol

V = 18 kV
D = 10 cm

FR = 1 mL·h−1

T = 550 ◦C
t = 1 h [110]
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Table 2. Cont.

Hollow Nanofiber Precursors Electrospinning
Conditions Annealing Conditions Reference

TiO2

Butyl titanate (TBOT)/diiso-propyl azodiformate (DIPA)/paraffin oil/ethyl alcohol/acetic
acid/deionized water

V = 18 kV
D = 20 cm

FR = 1 mL·h−1

T = 500 ◦C
t = 3 h

HR = 1 ◦C·min−1
[55]

Polyvinyl acetate (PVAc)/titanium isopropoxide (TIP)/DMF/calcium carbonate
(CaCO3)/hydrochloric acid (HCl)

V = 17 kV
D = 18 cm

FR = 1 mL·h−1

T = 500 ◦C
t = 3 h [111]

Pt/TiO2
Tetrabutyl titanate (Ti(OC4H9)4,TBOT)/ethanol/hexachloro-platinic acid

(H2PtCl6·6H2O)/PVP/Nitric acid(HNO3)

V = 25 kV
D = 25 cm

FR = 1.3 ± 0.02 mL·h−1

T = 350–500 ◦C
t = 4 h [112]

CoFe2O4 PVP/Fe(NO3)3·9H2O/Co(NO3)2·6H2O/ethanol/water
V = 30 kV
D = 15 cm

FR = 1.3 ± 0.02 mL·h−1

T = 500–600–700 ◦C
t= 4 h

HR = 3 ◦C·min−1
[113]

CuFe2O4 PVP/Fe(NO3)3·9H2O/Cu(NO3)2·3H2O/ethanol/water V = 15 kV
D = 15 cm

T = 500 ◦C
t = 2 h

HR = 0.5 ◦C·min−1
[114]

CoFe2O4–PANI Cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O/iron(III) nitrate enneahydrate
(Fe(NO3)3/ethanol/PVP/ammonium peroxodisulfate

V = 20 kV
D = 17 cm

FR = 0.5 mL·h−1

T = 550 ◦C
t = 2 h

HR = 5 ◦C·min−1
[115]

SrFe12O19
Strontium nitrate (Sr(NO3)2)/Ferric nitrate

(Fe(NO3)3·9H2O)/PVP/DMF

V = 15 kV
D = 15 cm

FR = 0.5 mL·h−1

T = 600–650–700–750 ◦C
t = 3 h

HR = 1 ◦C·min−1
[26]

Fe2O3 PVP/Fe(NO3)3·9H2O/water/ethanol V = 30 kV
D = 15 cm

T = 500 ◦C
t = 4 h

HR = 1–7 ◦C·min−1
[116]

MnO2-doped Fe2O3 Citric acid/ferric citrate/deionized water/manganese acetate V = 15 kV
D = 10 cm

T = 400 ◦C
t = 4 h

HR = 0.5 ◦C·min−1
[117]

Fe3O4/Eu (BA)3phen/PVP Fe3O4 nanoparticles/DMF/CHCl3/PVP/Eu (BA)3phen powders V = 11 kV
D = 12 cm [45]

Tb(BA)3phen/PANI/Fe3O4/PVP Benzoic acid (BA)/phenan-throline (phen)/polyaniline (PANI)/PVP/sulfonic
acid/ammonium persulfate/ethanol/CHCl3/DMF/nitric acid/deionized water/Tb4O7

V = 13 kV
D = 14 cm

FR = 0.0167 mL·min−1
[46]
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Table 2. Cont.

Hollow Nanofiber Precursors Electrospinning
Conditions Annealing Conditions Reference

Carbon-coated LiFePO4
Lithium dihydrogen phosphate (LiH2PO4)/iron nitrate

9-hydrate ((Fe(NO3)3·9H2O)/ferrous sulfate 7-hydrate (FeSO4·7H2O)/DMF/PMMA

V = 16 kV
D = 15 cm

FR (outer) = 0.2 mL·h−1

FR (inner) = 0.4 mL·h−1

T = 750 ◦C
t = 3 h

HR = 2 ◦C·min−1
[118]

CuO PVP/copper acetate (Cu(CH3COO)2)/ethanol
V = 10 kV
D = 13 cm

FR = 0.02 mL·min−1

T = 500 ◦C
t = 2 h

HR = 6.7 ◦C·min−1
[119]

CuO Copper (II) sulfate pentahydrate
(CuSO4·5H2O)/PVP/water

V = 16.8 kV
FR = 6 µL·min−1

T = 673 and 873 K
t = 5 h [120]

SnO2-ZnO Zn(AC)2·2H2O/SnCl2·2H2O/PVP/DMF/ethanol/ethyl acetate
V = 19 kV
D = 20 cm

FR = 0.7 mL·h−1

T = 600 ◦C
t = 3 h [121]

SnO2 Stannic chloride pentahydrate (SnCl4·5H2O)/ethanol/DMF/PVP
Electric field = 1.25 kV/cm

D = 18 cm
FR = 0.2 mL·h−1

T = 550–650◦C
t = 4 h [122]

Mn-Doped SnO2 SnCl2·2H2O/DMF/ethanol/PVP/Mn(CH3COO)2·4H2O
V = 25 kV
D = 18 cm

FR = 1mL·h−1

T = 600 ◦C
t = 3 h [123]

Cerium-doped SnO2 SnCl2·2H2O/DMF/ethanol/PVP/Ce(NO3)3·6H2O V = 25 kV
D = 18 cm

T = 600 ◦C
t = 5 h

HR = 5 ◦C·min−1
[34]

Al2O3 Aluminum nitrate (Al(NO3)3)/PAN/DMF
V = 20 kV
D = 20 cm

FR = 1 mL·h−1

T = 500–1000–1300 ◦C
HR = 5 ◦C·min−1 [54]

γ-Al2O3 Aluminum nitrate (Al(NO3)3)/PAN/DMF
V = 20 kV
D = 20 cm

FR = 1 mL·h−1

T = 800 ◦C
t = 2 h

HR = 5 ◦C·min−1
[124]

Au/V2O5
Vanadyl acetylacetonate (VO(acac)2)/gold(III) chloride trihydrate

(HAuCl4·3H2O)/PVP/polystyrene (PS)

V = 20 kV
D = 20 cm

FR = 2 mL·h−1

T1 = 330 ◦C
t1 = 2 h

HR1 =5 ◦C·min−1

T2 = 330–430 ◦C
t2 = 30 min

HR2 = 2◦C·min−1

[50]
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Table 2. Cont.

Hollow Nanofiber Precursors Electrospinning
Conditions Annealing Conditions Reference

Vanadium nitride (VN) Oxalic acid dihydrate (C2H2O4·2H2O)/ethanol/PVP/ammonium
metavanadate (NH4VO3)

V = 15 kV
D = 15 cm

T = 400–600–800 ◦C
t = 1 h

HR = 2 ◦C·min−1
[125]

CNTs/InVO4 Multi-walled carbon nanotubes/In(NO3)3·4.5H2O/C10H14O5V/PVP/ethanol V = 21 kV
D = 15 cm

T = 550 ◦C
t = 2 h [126]

Te Ni acetate/PVP/HTeO2+ [127]

LiFePO4/C/Ag Fe(NO3)3·9H2O/AgNO3/H3PO4/LiOH·H2O/DMF/PVP V = 13 kV
D = 16 cm

T = 700 ◦C
t = 10 h

HR = 1 ◦C·min−1
[128]

Chromium-doped spinel Zn(NO3)2·6H2O/Mg(NO3)2·6H2O/Al(NO3)3·9H2O/Cr(NO3)3·9H2O/ethanol/
deionized water/PVP

V = 20 kV
D = 12 cm

FR = 1.5 mL·h−1

T = 1000–1100–1200 ◦C
t = 5 h

HR = 200 ◦C·h−1
[129]

YF3:Eu3+ Yttrium oxide (Y2O3)/europium oxide (Eu2O3)/DMF/ammonium hydrogen
fluoride (NH4HF2)/Nitric acid (HNO3)/ethyl alcohol

V = 13 kV
D = 16 cm

T1 = 700 ◦C
t1 = 8 h

HR1 = 1 ◦C·min−1

T2 = 200 ◦C
HR2 = 1 ◦C·min−1

[130]

YF3:Yb3+/Er3+ Yttrium oxide (Y2O3)/erbium oxide (Er2O3)/PVP/DMF/ammonium hydrogen
fluoride (NH4HF2)/Nitric acid (HNO3)/

V = 16 kV
D = 18 cm

T1 = 700 ◦C
t1 = 8 h

HR1 = 1 ◦C·min−1

T2 = 200 ◦C
HR2 = 1 ◦C·min−1

[35]

V = voltage, D = distance between nozzle to collector, FR = flow rate, T = temperature, t = time, HR = heating rate.
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3.1. Titanium Dioxide (TiO2) Hollow Nanofibers for Photodecomposition of Organic Pollutants

TiO2 is a semiconducting material with promising characteristics, such as a long-standing stability
against chemical and photo corrosion. It is environmentally friendly and shows great photo-reactivity,
robust oxidizing activity, and good optical transparency. Moreover, optimum dielectric properties and
electrical conductivity, a large refractive index of about 2.52 for anatase and 2.49 for rutile, as well
as a large band gap of 3–3.5 eV are other interesting features of TiO2 [131]. Thanks to such unique
properties, it has been considered for a wide range of applications including solar cells, environmental
protection and cleaning, sensors, photocatalysis, photoelectronics, etc. [9,131–134].

As a result of the wide band gap, TiO2 absorbs Ultraviolet (UV) light and shows optimum
photocatalytic activity. This ability is enhanced on large surface areas, e.g., hollow nanostructures,
and brings about an efficient degradation of inorganic and organic molecules [135]. In fact, a large
surface size leads to a rapid charging–discharging rate because of the small diffusion length and high
surface area [136]. In this regard, Zhao et al. [48] introduced nanosized interior hollow channels into
TiO2 microfibers. The multichannel structured fibers were synthesized by a multifluidic compound-jet
electrospinning method (Figure 6a). The optimized photocatalytic activity of the fibers was employed
for the degradation of acetaldehyde gas. The authors concluded that the multichannel structure
of hollow TiO2 fibers (Figure 6b) causes two effects: a multiple reflection of the incident light,
and an inner entrapment of the gaseous molecules. As shown in Figure 6c, the photocatalytic
degradation of acetaldehyde by TiO2 is done via a reaction with first-order kinetics. This fact is
confirmed by the linear plot of ln(C0/Ct) versus the photocatalytic reaction time t. While C0 is the
initial concentration of acetaldehyde, Ct is the concentration of acetaldehyde after the photocatalytic
reaction for t in hours. This Figure implies that the initial rate constant (k) for acetaldehyde degradation
increases proportionally to the channel number from solid fibers (k0CF ≈ 0.37 h−1), one-channel fibers
(k1CF ≈ 0.40 h−1), two-channel fibers (k2CF ≈ 0.47 h−1), to three-channel fibers (k3CF ≈ 0.83 h−1).
Hollow TiO2 nanofibers with a promising photocatalytic effect for the decomposition of the methylene
blue (MB) dye have also been synthesized by Chang et al. [47] via coaxial electrospinning. For this,
they used titanium sol (a mixture of ethanol, acetic acid, PVP, and titanium butoxide (TBT)) and
a titanium precursor (a mixture of TBT and ethylene glycol) for the shell, to produce two types of
hollow crystalline TiO2 nanofibers. The core fluid was solely a PVP/ethanol/deionized water solution.
Both types of nanofibers showed a similar tubular structure. Yet, they were different in terms of
surface morphology and shell thickness. When titanium sol was used, a small amount of water in
the core hampered the diffusion of the core and shell solutions. Since the titanium precursor is not
spinnable, PVP nanofibers were used as core and shell templates during the coaxial electrospinning
process. Both hollow TiO2 nanofibers were superior to their solid counterparts in terms of MB dye
degradation efficiency. In this context, Jung et al. [110] also produced multiwalled carbon nanotube
(MWCNT)-embedded TiO2 hollow nanofibers that could efficiently photodegrade MB. They stated
that the improved degradation efficiency is due to electrons transfer between TiO2 and MWCNT
and to the MWCNT adsorption ability. The maximum MB decomposition rate of 62% was obtained
after 70 min. Regarding another composite hollow nanofiber system, Peng et al. [106] reported that
the photocatalytic activity of hollow SnO2/TiO2 nanofibers prepared by coaxial electrospinning is
greater than that of the commercial TiO2 photocatalysts. This could be due to their one-dimensional
hollow structure and to a continuous hetero-junction between TiO2 and SnO2. The SnO2/TiO2 hollow
nanofibers could decompose Rhodamine-B (RhB) dye faster than solid TiO2 nanofibers and TiO2

nanoparticles did.
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gas (Reproduced with permission from [48]. Royal Society of Chemistry, 2017). 
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Figure 6. (a) The schematic illustration of a multifluidic compound-jet electrospinning method wherein
the set-up consists of an outer nozzle and three inner capillaries; (b) SEM images of TiO2 fibers with
0, 1, 2, and 3 channels (from left to right). The scale bar is 1 µm; (c) The multichannel structure of the
hollow TiO2 fibers enhances the kinetics of the degradation process of acetaldehyde gas (Reproduced
with permission from [48]. Royal Society of Chemistry, 2017).

In another research, Hou et al. [55] produced mesoporous walled TiO2 hollow nanofibers whose
composition consisted of rutile (5.4%) and anatase (94.6%). To confer mesoporosity to the nanofibers,
a foaming agent was added to the mixed-phase composition. Accordingly, the hollow structure and
the mesoporous walls of the nanofibers could cooperatively bring about an excellent photocatalytic
efficiency and stability. The as-synthesized nanofibers, whose inner diameter and wall thickness were
215 and 100 nm, respectively, were able to decompose RhB efficiently (99.5%) in 60 min.

To shorten the band gap of TiO2 in order to extend its photocatalytic applicability to visible light,
Yang et al. [112] loaded hollow TiO2 nanofibers with Pt nanoparticles. The schematic of the entire
process, including electrospinning, calcination, and Pt loading of the nanofibers, is demonstrated in
Figure 7a. Moreover, the morphology of the as-synthesized Pt/TiO2 hollow nanofiber is depicted
in Figure 7b. The nanofibers were made of an anatase–rutile (70:30) mixed phase. By inclusion of
Pt (2 wt. %), the band gap of the hollow nanofibers declined from 3.09 to 2.77 eV. This modification
resulted in the possibility of a photocatalytic process under visible light. Such a system was studied in
terms of degradation of the azo dye orange II. The results represented in Figure 7c imply that such
a doped hollow nanofiber is able to degrade the dye molecules with a pseudo-first-rate constant of
0.0069 min−1, which was 11.5 and 3.63 times larger than that for the unloaded hollow nanofibers
and Pt/P25 (TiO2 nanoparticles), respectively. The factors affecting this performance included the Pt
loading amount, the calcination temperature of the TiO2 hollow nanofibers, the pH of the primary
solution, and the light source. The results demonstrated that by addition of 2 wt. % Pt, calcination of
the nanofibers at 350 ◦C, and application of the nanofibers in acidic condition and under solar light,
the best photocatalytic activity can be achieved. The main decomposition mechanism of Orange II was
attributed to the oxidation by H+ and O2

− radicals, as shown in Figure 7d.
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3.2. Ferrite Hollow Nanofibers for Electromagnetic and Photocatalytic Devices 

Ferrites are natural, abundant, inexpensive, and sustainably permanent magnets. They are 
known for their spinel shape and the common formula of MFe2O4, in which M stands for Fe, Co, Ni, 
or Mn. They show interesting magneto-optical, magnetic, electrical, and magnetoresistive 
characteristics [137,138]. Such features suggest them as promising candidates for electronic devices 
(e.g., antenna rod, computer components, and memory devices) [139], batteries, sensors, magnetic 
recording media, magnetic drug delivery, and catalysis [140].  

Among various ferrites, the one based on cobalt (Co) has received considerable attention 
especially for magnetic recording applications because of its anisotropy, optimum chemical stability, 
mechanical hardness, saturation magnetization, and high coercivity [141,142]. The magnetic 
properties of this kind of ferrites are influenced by purity, size, and shape of the material, and hence 
by the manufacturing method [143]. Therefore, it is assumed that a hollow nanostructured ferrite 
could bring about promising magnetic property. In this regard, Cheng et al. [113] produced CoFe2O4 
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Elsevier, 2017).

3.2. Ferrite Hollow Nanofibers for Electromagnetic and Photocatalytic Devices

Ferrites are natural, abundant, inexpensive, and sustainably permanent magnets. They are known
for their spinel shape and the common formula of MFe2O4, in which M stands for Fe, Co, Ni, or Mn.
They show interesting magneto-optical, magnetic, electrical, and magnetoresistive characteristics [137,138].
Such features suggest them as promising candidates for electronic devices (e.g., antenna rod, computer
components, and memory devices) [139], batteries, sensors, magnetic recording media, magnetic drug
delivery, and catalysis [140].

Among various ferrites, the one based on cobalt (Co) has received considerable attention especially
for magnetic recording applications because of its anisotropy, optimum chemical stability, mechanical
hardness, saturation magnetization, and high coercivity [141,142]. The magnetic properties of
this kind of ferrites are influenced by purity, size, and shape of the material, and hence by the
manufacturing method [143]. Therefore, it is assumed that a hollow nanostructured ferrite could
bring about promising magnetic property. In this regard, Cheng et al. [113] produced CoFe2O4

hollow nanofibers via electrospinning of a PVP/nitrate salts solution and subsequent calcination.
The as-synthesized nanofibers were characterized in terms of crystalline structure, morphology,
magnetic properties, etc. The results of X-ray diffraction analysis (XRD), SEM and TEM confirmed the
cubic spinel structure, one-dimensional texture, and the existence of many nanoparticles in the wall of
the hollow fibers, respectively.

In solution, the carbonyl and tertiary amine groups of PVP can coordinate with Fe3+ and
Co2+, thereby forming a metal–organic framework structure. During the electrospinning process,
by evaporation of the solvent (here ethanol/water) the composite fibers are created and can then act
as a self-sacrificial template for the CoFe2O4 hollow nanofibers. Subsequently, the composite fibers
are converted to the hollow nanofibers. The mechanism of formation of the hollow nanofibers could
be related to the diffusion of the gas product of the PVP decomposition, driving the nanoparticles
constituting the fibers from the inside to the outside of the composite fibers.

As shown in this study, the CoFe2O4 hollow fibers show a typical ferromagnetic (FM) behavior.
As a definition, saturation magnetization (Ms) is the highest induced magnetic moment that a material
can get in a magnetic field. As the authors report, the Ms value of the CoFe2O4 hollow fibers
increases with increasing annealing temperatures. The hollow fibers synthesized in this study are
made of many nanoparticles, whose interactions and properties determine the magnetic behavior



Nanomaterials 2017, 7, 383 16 of 32

of the CoFe2O4 hollow fibers. For small CoFe2O4 nanoparticles, the inner sides of the nanoparticles
are in the usual spin arrangement, whereas the arrangement of their surface atomic moments is
disordered. This discrepancy could break their surface exchange bond and change their surface cations
coordination, thus decreasing the Ms of the CoFe2O4 nanoparticles. As a fact, the higher the calcination
temperature is, the larger the particle size will be. Thus, the surface shell contribution to the Ms

would decline when the nanoparticles' size increases. This means that the Ms would increase at higher
annealing temperatures. As shown in this study, at the higher calcination temperature of 700 ◦C,
Ms for the CoFe2O4 hollow fibers is 34.71 emu·g−1 at 300 K, and 36.82 emu·g−1 at 2 K, respectively.
This difference can be attributed to the surface spin-canting effect and to the existence of a magnetic
dead layer on the surface. When the temperature is low, the surface spins will be frozen along, and thus
the local surface anisotropy will be higher. However, at high applied fields, the surface anisotropy once
again decreases, and the surface spins are arranged along the field direction, leading to a higher Ms

magnitude. In general, the magnetic measurements verified that the CoFe2O4 hollow nanofibers are
able to offer novel magnetic properties that are promising for electromagnetic and spintronic devices.

Other than their electromagnetic properties, CoFe2O4 hollow nanofibers could also be employed
in connection with photocatalytic applications. In this regard, Kim et al. [115] produced hollow
core-double-sheath nanofibers with a CoFe2O4 internal sheath and a PANI external sheath through
electrospinning, annealing, and in situ chemical oxidative polymerization. The mechanism of
formation of such nanofibers is demonstrated in Figure 8a. The hollow nanofibers were mesoporous,
with improved electrical conductivity and optical properties. The hetero-junction made between
CoFe2O4 and PANI enhanced visible light photocatalysis. The authors concluded that the hollow
CoFe2O4-PANI nanofibers harvest visible light, make the quantum confinement impact, assist the
electron and mass transfer, and support the charge separation. Thanks to the unique core-shell
mesoporous structure of the CoFe2O4-PANI nanofibers, the pseudo-first-order kinetic constant of the
photocatalytic degradation of the methyl orange (MO) dye under visible light was 80 times larger
than that for the CoFe2O4 nanofibers. This finding, along with the photodegradation efficiency of
the mentioned nanofibers, is presented in Figure 8b. As shown in Figure 8c, the notably improved
photocatalytic activity of the CoFe2O4-PANI nanofibers is because of the interaction and synergistic
effects of CoFe2O4 and PANI, optimally inducing the separation of electron–hole in the CoFe2O4 and
PANI coupling system.
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Figure 8. (a) Schematic illustration of the formation process of CoFe2O4 hollow nanofibers; (b) (I) visible
light photodegradation and (II) kinetic linear simulation curves of the methyl orange (MO) dye for
CoFe2O4 and CoFe2O4–PANI hollow nanofibers; (c) (I) schematic diagram and (II) mechanism of
the photodegradation process by CoFe2O4-PANI hollow nanofiber when subjected to visible light
(Reproduced with permission from [115]. Elsevier, 2017).
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3.3. Iron Compound-Based Hollow Nanofibers for Ferromagnetic Devices

Among the eight known types of iron oxides and different transition metal oxides, magnetite
(Fe3O4), hematite (α-Fe2O3), and maghemite (γ-Fe2O3) are widely applied because of their catalytic,
biomedical, and magnetic properties. Moreover, their abundance, low-cost processing, lack of toxicity,
great theoretical capacity (≈1000 mA·h·g−1), and corrosion resistance are promising for a diverse
range of applications [144–146].

In comparison with other iron oxide polymorphs, α-Fe2O3 has been widely utilized in batteries,
sensors, electrodes, magnetic resonance imaging, transistors, and supercapacitors [147]. To induce a
high ferromagnetic property, Cheng et al. [116] synthesized Fe2O3 hollow nanofibers by calcination
of electrospun PVP/Fe(NO3)3 nanofibers at 500 ◦C for 4 h, with the heating rate of 1–7 ◦C·min−1.
By changing the production conditions, the morphology of Fe2O3 changes from solid belt to hollow
belts and hollow fibers. They found that the key parameter for the hollow nanostructure formation
is the PVP decomposition rate, which can be controlled by tuning the heating rate and the rigidity
of the surface gel layer. The latter can be changed by the solvent composition as well as by the PVP
and Fe(NO3)3·9H2O content. The authors also investigated the magnetic properties of hollow fibers
at room temperature, with the field sweeping from −15 to +15 kOe. The hollow fibers remnant
magnetization (Mr) and coercivity (Hc) are 0.13 emu·g−1 and 177.4 Oe, respectively. These values
imply that the hollow fibers show ferromagnetic behaviors at room temperature. Compared to the
urchin-like, rod-like, and rhombohedral Fe2O3 counterparts, the reported values of Mr and Hc of the
hollow fibers are higher (4.678 × 10−3, 2.754 × 10−3, and 1.043 × 10−3 emu·g−1 for Mr, 92.235, 46.94,
and 77.75 Oe for Hc, respectively). The reason should be sought in the sensitivity of the magnetization
of the ferromagnetic materials to the morphology and structure of the samples made thereof. Here,
the assembly of the nanoparticles into the hollow fibers can convert a single domain to a multidomain,
thus increasing the Mr and Hc values.

Fe3O4 shows the strongest magnetism among the transition metal oxides. Also, it offers optimum
biocompatibility and low level of cytotoxicity in living cells [144]. The preparation of multifunctional
hollow nanofibers including a Fe3O4 component via one-pot coaxial electrospinning without a core
solution (using air only), as shown in Figure 9a, has been frequently studied [45,46,148]. For instance,
Yu et al. [45] fabricated bifunctional, magnetic luminescent Fe3O4/Eu(BA)3phen/PVP hollow
nanofibers. In another work, Liu et al. [148] constructed trifunctional luminescent–electrical–magnetic
Eu(BA)3phen/PANI/Fe3O4/PVP hollow nanofibers (Figure 9b,c). The electrical conductivity of
10−3 S·cm−1 was reported for these hollow nanofibers. The fluorescence emission peaks of Eu3+

were detected in the hollow nanofibers and attributed to the 5D0 → 7F0 (580 nm), 5D0 → 7F1

(592 nm), and 5D0 → 7F2 (616 nm) energy level transitions of Eu3+ ions. The latter hypersensitive
transition induces the strongest emission peak. Interestingly, the luminescent intensity, electrical
conductivity, and magnetic properties of the hollow nanofibers were proportional to the amount
of Eu(BA)3phen, PANI and Fe3O4 nanoparticles, respectively, and could be adjusted. The
photoluminescent–electrical–magnetic trifunctional flexible hollow nanofibers can be proposed for
diverse applications, such as electromagnetic interference shielding, microwave absorption, molecular
electronics, and biomedicine.
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Figure 9. (a) The schematic shows details of the one-pot coaxial electrospinning process and set-up;
(b) the schematic of the as-synthesized hollow nanofibers containing the europium complex, PANI,
and Fe3O4 nanoparticles; (c) TEM image of the Eu(BA)3phen/PANI/Fe3O4/PVP hollow nanofibers
(Reproduced with permission from [148]. Royal Society of Chemistry, 2017).

3.4. Zinc Oxide Hollow Nanofibers for Gas Sensing

Zinc oxide (ZnO) is a semiconductor with the band gap energy of 3.37 eV, a large exciton binding
energy of 60 meV, excellent chemical and thermal stabilities, and high transparency. Such features
enable its use for a wide variety of applications, such as solar cells, sensors, photodetectors, transistors,
etc. [149–151]. Additionally, ZnO provides a high adsorption capacity for the removal of heavy
metals [152], as well as a long life span and great ultraviolet absorption [153]. Electrospun ZnO
nanofibers exhibit notable optoelectronic, catalytic, humidity sensing, and piezoelectric properties,
as well as a great sensitivity to different gases (e.g., NO2, H2, CO, C2H5OH, H2S, and NH3) [154].
A much larger surface area induced by a hollow structure can notably enhance such promising
features. For example, Zhang et al. [20] developed ZnO hollow nanofibers via single-spinneret
electrospinning of a precursor solution composed of PAN, PVP, and zinc acetate. The composite
nanofibers subsequently underwent thermal decomposition to eliminate the polymers and to fabricate
ZnO hollow nanofibers. This process is schematically shown in Figure 10a. During the electrospinning
process, a phase separation occurs so that the precursor nanofibers of PAN, PVP, and zinc acetate
composite show a core–shell structure consisting of a PAN core and a PVP/zinc acetate composite
shell. The as-synthesized ZnO hollow nanofibers can offer remarkable sensing properties against
ethanol because of their special one-dimensional hollow nanostructure with an extensive surface
area. The sensitivity (S) of the sensor follows the equation S = Ra/Rg, where Ra and Rg are the sensor
resistance in atmospheric air and in ethanol–air mixed gas, respectively. The response and recovery
time are the times spent by the sensor to achieve 90% of the total resistance change in the case of
adsorption and desorption, respectively.
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Figure 10. (a) The schematic demonstration of various steps of the formation process of ZnO hollow
nanofibers; (b) ethanol sensitivity of the ZnO hollow nanofibers at different operating temperatures
(the inset shows the response–recovery curve of the nanofibers exposed to 1000 ppm of ethanol);
(c) dynamic response of the sensor to ethanol, whose concentration varies from 10 to 100 ppm (the inset
image shows, schematically, the ZnO hollow nanofibers sensor connected to the electrodes); (d) the
sensor sensitivity versus ethanol concentration (the inset graph implies a linear relationship between
sensitivity and ethanol concentration) (Reproduced with permission from [20]. American Chemical
Society, 2017).

In the ethanol sensing process by the ZnO hollow nanofibers, oxygen sorption adversely
contributes to the electrical transport properties of the nanofibers. When oxygen is adsorbed by
the nanofibers, the ZnO conduction electrons are stolen, and thus conductance declines. In the case of
the ZnO hollow nanofibers, reactive oxygen species (O2

−, O2−, and O−) are adsorbed on the inner
and outer surfaces of the hollow nanofibers at high temperatures. While at low temperatures, O2

−

is commonly chemisorbed, at high temperatures, O− and O2− are mainly chemisorbed, and O2
−

vanishes immediately. Thus, the reaction kinematics could be represented as: O2 (gas)↔ O2 (absorbed)
+ e− ↔ O2

− + e− ↔ 2O−.
By exposure of the ZnO hollow nanofibers to ethanol, and thus its reaction with ionic oxygen

species, the concentration of the oxygen species decreases, and the electron concentration, and thereby
the conductance of the ZnO hollow nanofibers, increases. This fact can be demonstrated by the
following reaction: CH3CH2OH (absorbed) + 6O− (absorbed)→ 2CO2 + 3H2O + 6e−. The optimum
ethanol sensing ability of the ZnO hollow nanofibers could be attributed to their 1D hollow nanofiber
structure (with a large length/diameter ratio from the nanofiber structure, and a high surface/volume
ratio for the inner and outer surface of the hollow structure). This interesting nanostructure facilitates
fast mass transfer of ethanol molecules to and from the interaction region. In addition, it rises the rate
for charge carriers to traverse the barriers induced by molecular recognition along the nanofibers.

Figure 10b shows the sensitivity of the ZnO hollow nanofibers when the operating temperature
varies. The ethanol concentration used was 1000 ppm. The highest sensitivity (Ra/Rg = 51) was
measured at the temperature of 270 ◦C. As shown in the inset image, the rapid response and recovery
time of the the ZnO hollow nanofiber sensors were around 3 and 5 s, respectively. Figure 10c implies
the dynamic response of the sensor when subjected to 10, 20, 50, and 100 ppm of ethanol at 270 ◦C.
The measured sensitivity values were about 2.8, 3.9, 7.2, and 9.4 Ra/Rg respectively. The response
and recovery time were also around 3 and 5 s, respectively. In addition, as shown in Figure 10d
reporting the dependence of the sensor sensitivity to the ethanol concentration, the sensor sensitivity
increases rapidly with increasing ethanol concentrations, when they are below 2000 ppm. Beyond
this concentration, the rate of the response to the ethanol concentration decreases, implying that the
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sensor becomes more or less saturated. Eventually, at 5000 ppm ethanol, the sensor sensitivity reaches
a plateau and a saturation state. The inset graph, showing a linear dependence curve in the range of
10–1000 ppm, further stresses the high ethanol sensing ability of the ZnO hollow nanofibers.

In addition to ethanol, the gas sensing ability of the hollow ZnO nanofibers for formaldehyde [155]
and acetone [44] has also been proved. As a composite, Wei et al. [121] synthesized hollow SnO2-ZnO
nanofibers via single-spinneret electrospinning. These hollow nanofibers showed optimum stability
and remarkable sensitivity against toluene at 190 ◦C, thanks to their hollow structure and the
SnO2–ZnO hetero-junction. By themselves, SnO2 hollow nanofibers have also been considered for
magneto-optoelectronic devices, as will be introduced in the next section.

3.5. Tin Oxide Hollow Nanofibers for Magneto-Optoelectronic Devices

Among the metal oxides, SnO2 has shown an amazing potential as a host lattice for the
dilute magnetic semiconductors (DMSs), thanks to its wide band gap, native oxygen vacancies,
and high carrier density [34]. DMSs are vastly demanded in modern device applications because
they offer ferromagnetism (FM) and semiconducting properties simultaneously. Possessing room
temperature FM and high optical transparency, SnO2 is one of the most widely studied materials
for magneto-opto-electronic devices, as well. By reducing the size of SnO2 to nanoscale, the surface
area of the ensuing materials increases, which, for instance, is important to improve their magnetic
properties [156]. Moreover, quantum confinement effects are extraordinary in 1D structures, resulting
in the unusual but beneficial variation of their electronic properties [34]. One of the extensively
applied methods for the preparation of SnO2 in 1D nanostructures is electrospinning [157–159]. In this
regard, Xia et al. [37] developed hollow SnO2 nanofibers by single-spinneret electrospinning. In this
study, the Kirkendall effect, as a result of the concentration gradient between Sn precursors and
SnO2, was responsible for the formation of hollow SnO2 nanofibers. Moreover, the lattice and surface
diffusion were found to be the driving forces for the growth of nanograins on the surface of the
SnO2 nanofibers.

Doping of SnO2 confers new properties to the ensuing hollow nanofibers. For instance,
Mohanapriya et al. [123] prepared Mn-doped SnO2 hollow electrospun nanofibers. The authors
observed a reasonable FM transition at 10 K that was attributed to the precipitated impurity phases.
In another relevant work, Mohanapriya et al. [34] reported that by doping Cerium (Ce) in SnO2,
the optical band gap of SnO2 hollow nanofibers declined. This confirms the direct energy transfer
between f-electrons of Ce ions and the SnO2 conduction or valence band.

As shown in Figure 11a, the UV absorption edge seen at ~250 nm is correlated with the
photo-exciton of charges from the conduction band to the valence band. When the Ce concentration
increases, the absorption edge shifts to a higher wavelength corresponding to a smaller crystallite size.
This shift is caused by the charge transfer between SnO2 valence or the conduction band and the 4f
electrons of the Ce ions. The Ce concentration-dependent red shift of the absorption edge witnesses
the applicability of the Ce-doped SnO2 hollow nanofibers for narrow band-gap optoelectronic devices.
The Tauc plots shown in Figure 11b were employed to extract the optical band gap (Eg) for undoped
and Ce-doped SnO2 hollow nanofibers through the following equation:

αhv = A
(
hv− Eg

)n (1)

where α is the absorption coefficient, hv is photon energy, A is constant, n = 1/2 for a direct band-gap
semiconductor. The Eg values are obtained via extrapolation at the linear portion of the Tauc plot
at α = 0. These values for the undoped and doped SnO2 nanofibers are 3.65 and 3.4 eV, respectively.
Figure 11c shows the photoluminescence (PL) spectra of the doped and undoped hollow nanofibers.
In these graphs, a strong emission band is seen at 240 nm, which is in relevance with the UV excitation.
Also, the violet PL emission at 390 nm corresponds to an energy of 3.2 eV, which is lower than that of
bulk SnO2 (3.6 eV). This discrepancy could be correlated to the direct electronic transition between
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the donor level and the valence band. As shown in the inset Figure, the Ce-doped SnO2 hollow fibers
also exhibit an evident blue emission with an additional peak around 420 nm that is induced by
presence of the Ce ions. The peaks at 467 nm are attributed to the electron transition between the
new unoccupied states of Ce3+ 5d, the excited states near the conduction band of SnO2, and the 4f
states. As demonstrated in Figure 11d,e, the undoped hollow nanofibers can offer only diamagnetism,
while the doped ones (containing 3 and 6 mol. % of Ce) show room temperature FM resulting in the
FM coupling between s- and f-electrons of the SnO2 and Ce ions, respectively. When the doping level
reaches 6 mol. %, a room temperature FM property with 19 × 10−5 emu·g−1 saturation magnetization
could be obtained. In general, this study implies the applicability of the Ce-doped SnO2 hollow
nanofibers for magneto-optoelectronic devices.
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3.6. Aluminium Oxide Hollow Nanofibers for Dye Adsorption

Alumina (Al2O3) is a bio-inert ceramic that possesses unique properties, such as high abrasion
resistance, biocompatibility, and chemical inertness [160]. Hollow alumina nanofibers prepared via
single-spinneret electrospinning and sintering have been studied by Peng et al. [124]. They synthesized
γ-Al2O3 hollow nanofibers, as schematically shown in Figure 12a. The formation mechanism of the
hollow nanofibers was based on the Kirkendall effect. The N2 adsorption–desorption isotherm was
employed to extract the specific surface area of 67.17 m2·g−1 and the mean pore size of 17.3 nm.
The authors proposed that the diameter and pore size of the hollow nanofibers can be controlled
through altering the ratio of Al(NO3)3·9H2O to PAN. The hollow nanofibers showed excellent dye
adsorption efficiency for three different dyes (i.e., congo red (CR), methylene blue (MB), and acid
fuchsine (AF)).
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γ-Al2O3 nanofibers; (b–d) UV–vis spectra of congo red (CR) (b) methylene blue (MB) (c), and acid
fuchsine (AF) (d) in proximity of the porous hollow γ-Al2O3 nanofibers after 0, 5, 10, 20, 30, 45,
and 60 min, respectively. (e) Camera images of the dye solutions after exposure to the adsorbent at the
mentioned time intervals (Reproduced with permission from [124]. Elsevier, 2017).

UV-vis adsorption spectroscopy was implemented to determine the dye removal efficiency of the
adsorbent. As seen in Figure 12b–d, the notable loss of absorbance proves the high adsorption capacity
of the γ-Al2O3 nanofibers. The camera images shown in Figure 12e further confirm such an ability of
the hollow nanofibers versus time.

In the UV-vis spectra, the absorbance at the corresponding wavelengths of CR, MB, and AF
(i.e., 500, 600, and 544 nm, respectively) was the basis to characterize the adsorption performance.
As reported by the authors, with respect to CR, the adsorption process proceeds in two stages. First,
the adsorption mainly occurred within a short time, so that about 75.28% of CR in the solution
was adsorbed in only 5 min. Subsequently, between 5 and 60 min, the adsorption rate decreased.
After 60 min, the CR removal efficiency was about 96.52%. The adsorption process for MB proceeded
in the same manner. The MB removal efficiency was 72.68% and 92.38% after 5 and 60 min, respectively.
On the contrary, for AF, the primary removal after 5 min was not so notable, being only about 32.44%.
However, after 60 min, about 91.70% of AF was removed. Thus, in the case of AF, the adsorption was
done gradually.

Considering the hydroxylated surface of the γ-Al2O3 nanofibers, various interactions between
γ-Al2O3 and CR (or MB) could be imagined: (1) likely hydrogen bonding between –OH on the surface
of γ-Al2O3 and the N atom in the dye molecules, (2) electrostatic interactions resulting from excess Al3+

ions available on the surface of γ-Al2O3 nanofibers that can adsorb the dye molecules electrostatically,
(3) with a lesser significance, Van Der Waals force that can play a role in the adsorption of the dye onto
the surface of the porous adsorbent.
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3.7. Vanadium Oxide Hollow Nanofibers for Gas Sensing

Vanadium pentoxide (V2O5) is a functional ceramic currently stimulating immense research
interest for its employment in optical switching devices, catalysis, solar cell, sensors, etc. [10,161].
To maximize the specific surface area, many researchers have attempted to synthesize hollow nanofibers
of V2O5. For instance, Zeng et al. [50] used emulsion electrospinning and then an annealing process
to fabricate hollow V2O5 and Au/V2O5 nanofibers. Both the hollow nanofibers indicated a quick
response–recovery and an outstanding sensitivity against ethanol. As shown in Figure 13a, the hollow
nanofibers act optimally at the operating temperatures of 200 and 220 ◦C, respectively. The Au/V2O5

show an enhanced performance due to the catalytic effect of Au nanoparticles that improve surface
reactions. The response/recovery time of V2O5 is 5 s/5 s, and the sensing response is ~2.6 s, while such
parameters for Au/V2O5 are 7 and 5 s, and ~2.7, respectively, as shown in Figure 13b. Figure 13c,d,
shows the dynamic ethanol sensing transients of two sensors when ethanol concentration varies
from 200 to 500 ppm. The response of the sensors depends on the ethanol gas concentration, and a
higher sensitivity is always seen for the composite sensor. The sensing mechanism is illustrated in
Figure 13e,f, which shows that when the Au/V2O5 sensor is exposed to air, electrons on the V2O5

surface move towards the Au nanoparticles mainly because of the Schottky contacts between the
Au and the V2O5 nanoparticles. Concurrently, the embedded Au nanoparticles induce a spill-over
effect that contributes to the catalytic activation of oxygen dissociation, enhancing the molecule–ion
conversion level, and dissociating oxygen into oxygen species Ox− (O2

−, O− and O2−). These species
are then transported and distributed onto both the outer and inner surfaces of the nanotubes. As soon
as ethanol is released, thanks to the catalytic effect, the sensing reaction between the surface Ox− and
the ethanol molecules is facilitated by the Au nanoparticles. This process leads to the transfer of the
trapped electrons back to V2O5, through the following reactions:

O2 + 2SAu → 2O-SAu (2)

O-SM + xevo
− + Svo → Ox− Svo + SM (3)

Ox− Svo + C2H5OH→ 3H2O + 2CO2 + 6xevo
− + Svo (4)

where SAu (Svo) is an adsorption site on the Au (V2O5), and evo
− is an electron from V2O5.
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ethanol sensing transients of (c) V2O5 and (d) Au/V2O5 sensors when ethanol concentration changes
from 200 to 500 ppm. The optimal operating temperature was regarded for the measurements.
The schematic presentation of the sensing mechanism of (e) V2O5 nanotubes and (f) Au/V2O5

nanotubes (Reproduced with permission from [50]. Elsevier, 2017).
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4. Summary and Remarks on Future Challenges

Hollow nanofibers are a fascinating class of nanomaterials that have gained extensive research
interests for advanced applications in energy, environment remediation and biomedicine. This considerable
attention stems from their size effects, surface effects, superparamagnetism, large length to diameter
ratios, extensive surface area per unit mass, and small diameters. Such amazing features make them
eligible for a diverse range of advanced applications in relevance with chemical sensors, photocatalysis,
electromagnetic wave absorbing materials, etc.

In this review, we have focused on ceramic hollow nanofibers, and surveyed different synthesis
approaches based on electrospinning, as well as their most studied types in terms of composition
(i.e., metal oxide types). Among the derivative techniques of electrospinning, coaxial electrospinning
is indeed the most widely employed method for the production of ceramic hollow nanofibers.
With respect to the ceramic hollow nanofiber material, metal oxides have been extensively investigated
for the production of hollow nanofibers for electrodes, photocatalytic adsorbents, sensors etc. For this
reason, they were precisely introduced in this review, and their promising features were thoroughly
discussed according to the literature. As we mentioned, metal oxide hollow nanofibers are able to
develop an extensive surface area that, depending on the employed metal oxide, offers various amazing
functionalities. For instance, ZnO and V2O5 hollow nanofibers provide quick response–recovery and
outstanding sensitivity against various gases. As shown for γ-Al2O3, this feature enables an efficient
adsorption-based removal of organics, e.g., dyes, from wastewater streams, electrostatically. In addition,
hollow nanofibers of magnetic metal oxides such as SnO2, ferrites, and iron oxides induce superior
magnetic properties. In addition, the quantum confinement effects are also notable in these 1D
structures resulting in the unusual but beneficial variation of their electronic properties. With respect
to photocatalytic metal oxides, e.g., TiO2, the photocatalytic activity is enhanced in large surface areas
of the hollow nanofibers, bringing about the efficient degradation of inorganic and organic molecules.
In fact, a large surface area leads to a rapid charging–discharging rate because of the small diffusion
length and the high surface area.

Despite highly remarkable properties and potentials for future cutting-edge applications, there are
several challenges with regard to the production of ceramic hollow nanofibers. Such difficulties must
be addressed and circumvented for the sake of industrialization and upscaling. One of the greatest
challenges in this regard is the lack of consistency of the core-shell morphology throughout the length
of the fiber. Although what is presented in the literature about the core-shell and hollow fibers often
implies a homogenous structure, this is not convincing when a much wider scope, rather than a selected
TEM image, is considered. It is noteworthy that a continuous and consistent core-shell morphology
necessitates a stable and steady injection of the core and the shell solution during electrospinning.
However, this is not possible without any disruption to the core solution feed during the entire spinning
process. Also, due to the post-treatment processes applied to remove the core, continuous and perfect
hollow nanofibers are hardly made. In fact, the complete elimination of the core is challenging.
The sheath layer should be strong enough to retain the hollow structure, otherwise the produced
hollow nanofibers will collapse. Additionally, the limited number of suitable inner solvents and the
lack of control over electrospinning parameters are other problems that can hinder the applicability
of the coaxial electrospinning for some systems. Despite such challenges, the need of a uniform
hollow (or core-shell) structure at a large scale depends on the envisaged application. For instance,
for the sake of drug delivery, a non-continuous core-shell structure does not affect adversely the drug
delivery capability. However, for other applications wherein such a structure is of utmost importance,
this requirement should be investigated. As Na et al. [73] suggested, the capillary action of the hollow
fiber could be tested to prove the continuity of the hollow fiber structure. For this reason, one end
of the hollow fiber is dipped in a fluid, such as silicone oil, while the other end is left open in the
air. Under such a circumstance, if the silicone oil permeates throughout the hollow fiber, the fiber is
demonstrated to possess a continuous hollow core.
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The other significant challenge is related to the scalability of the technique. In general, along with
the rapid progress of nanotechnology, nanofibers and their products are more demanded now than
ever, but the throughput of the conventional electrospinning is not high enough to satisfy such needs.
Therefore, methods able to increase the yields of the electrospun nanofibers are necessary and should
be developed.
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