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RUNNING HEAD: The effects of waiting in inter-temporal choice 

Waiting in inter-temporal choice tasks affects discounting and subjective time perception1 

Ping Xu 
Shenzhen University 

Benjamin T. Vincent 
University of Dundee 

Claudia Gonzalez-Vallejo 
Ohio University 

Abstract 

The literature on human delay discounting behavior is dominated by experimental 

paradigms which do not impose actual delays. Given that waiting may be aversive even on 

short timescales, we present a novel delay discounting paradigm to study differences in delay 

discounting behavior either when real waiting is involved, or not. This paradigm retains the 

fundamental trade-off between rewards received versus their immediacy. We used 

hierarchical Bayesian modelling to decompose and test models that separate discounting and 

subjective time perception mechanisms. We report two experiments which also explore the 

magnitude effect and gain-loss asymmetry. In both experiments, we found greater discounting 

and non-linear (convex) time perception in the online waiting task, which required waiting 

after each choice, compared to a control condition where waiting was deferred until the end of 

the experiment. Discounting was also measured by a parameter of a hyperbolic-type model 

and related to reversals of preference between initial desire to wait and then not doing so. 

These results from our novel paradigm support the emerging view that subjective time 

perception plays an important role in inter-temporal choice in addition to discounting 

tendencies. 

1 Data and analysis code is available at https://osf.io/pz5e3/ 
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published in the APA journal. Please do not copy or cite without author's permission. The final article is available, upon publication, at: 
https://doi.apa.org/doi/10.1037/xge0000771
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Introduction 

A large body of research demonstrates that humans, as well as non-human animals, 

discount future rewards, such that sooner rewards are preferred unless a delayed reward is 

large enough to overcome this discounting. The extent to which individuals discount is 

connected to important life consequences (Chabris, Laibson, Morris, Schuldt, & Taubinsky, 

2008; Mischel, Shoda, & Rodriguez, 1989; Mischel et al., 2011; Shoda, Mischel, & Peake, 

1990). 

In the typical delay discounting task, participants make a series of choices between an 

immediate reward and a larger later one. The purpose is to find points of subjective 

indifference between present and future values at various reward delays. The majority of the 

studies in this domain have used a paradigm that describes the choice options to participants. 

That is to say, individuals receive information about rewards and delays, but they do not 

experience the delays or receive the rewards. An exception is behavioral economic 

experiments that generally give participants real monetary payoffs, but there is evidence that 

choice behavior is similar for either hypothetical versus real monetary rewards (Johnson & 

Bickel, 2002). It is less common to make participants wait in inter-temporal choice tasks 

presumably out of practicality. The notable exceptions are studies with children, such as the 

seminal Stanford marshmallow study by Mischel and colleagues (e.g., Mischel et al., 1989; 

Mischel & Ebbesen, 1970; Mischel, Ebbesen, & Raskoff Zeiss, 1972; also see review by 

Staubitz, Lloyd, & Reed, 2018), studies with non-human animals (Hayden, 2016; Vanderveldt 

et al., 2016), and studies that have used real consumptions, working effort, and noise as 

choice of non-monetary outcomes (Augenblick et al., 2015; McClure et al., 2007; Solnick et 

al., 1980). A goal of the present work is to focus on understanding delay discounting behavior 

when participants experience the waiting. 

The literature has identified many possible reasons behind the tendency to discount 

future payoffs, including but not limited to uncertainties associated with receiving the 
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promised reward in the future; in�ation; expectations of changing wealth and tastes; valuation 

processes, time perception, impulsivity (Frederick, Loewenstein, & O’donoghue, 2002), and 

imperfect information about the future (Gabaix & Laibson, 2017). Among them, time 

perception processing has recently attracted substantial attention. Studies have demonstrated 

that time perception is a concave function of objective time, and thus can play a critical role 

in generating time discounting behavior (Han & Takahashi, 2012; Takahashi et al., 2008; 

Zauberman et al., 2009). Other studies found that perception of future time depends on 

properties of the outcomes such as their magnitude. Future time is perceived as shorter for 

losses than for gains (Bilgin & Leboeuf, 2010), for larger reward magnitudes (Wang et al., 

2015), and when outcomes are associated with more intense emotions (Van Boven et al., 

2010). Time perception is also easily manipulated. For example, Zauberman et al. found that 

subjective time estimates increased as more attention was given to duration (Zauberman et al., 

2009). Ebert and Prelec ( 2007) also showed that sensitivity to future time was influenced by 

factors such as attention focus, time pressure, and visual cues. 

Studies on time perception also document that temporal judgments are easily 

manipulated (Eagleman, 2008). Time perception studies, unlike inter-temporal choice 

experiment, do include the passage of time as an experience. These studies have found that 

duration is dilated by motion or sequence complexity (Brown, 1931; brown, 1995; Schiffman 

& Bobko, 1974), by the magnitude of the stimulus (Xuan et al., 2007), by the unpredictability 

of the events (Pariyadath & Eagleman, 2007), and its estimation depends on the specific 

emotion an individual is experiencing (Droit-Volet & Gil, 2009). However, these findings 

have rarely been taken into consideration in the decision-making literature. The two areas 

work in silos, with decision making research mainly focusing on “future” or “described” 

delays as a way to understand time-monetary trade-offs, whereas the focus of the time 

perception studies is on defining the connection between experienced time (with a known 

underlying objective value to the researcher) and the perceived time. Even though both areas 
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have revealed that time perception is easily malleable, their similarities and differences in 

subjective perception and subsequent impacts in decision making have been mostly ignored. 

With these considerations, we propose that experiencing waiting might greatly change time 

perception and choice trade-offs compared to trade-offs carried out when time is only 

described. We aim to reveal how differences in subjective time perception might lead to 

different time discounting behavior. 

In everyday modern environments the significance of understanding waiting cannot be 

overestimated. A slow website may cost a business an online sale, and companies spend much 

effort in ameliorating the aversion of waiting (Larson & Pinker, 2000). The present study 

focuses on understanding differences in time discounting behavior between two tasks, one in 

which the waiting follows a choice in an online waiting paradigm, and a traditional task in 

which the delayed is described and experienced only at the end (i.e., deferred waiting). We 

hope to elucidate the psychological mechanisms differentiating discounting behavior in the 

tasks via modeling. Furthermore, we study the impact of online versus deferred waiting on 

well-known effects: the magnitude effect (Experiment 1), which refers to higher discounting 

when amounts are smaller, and the gain-loss asymmetry (Experiment 2), which is greater 

discounting for gains than losses. In addition, the two experiments show a novel 

phenomenon: preference reversals while waiting, and differences in inter-temporal choice 

behavior between online and deferred delay tasks. 

We first review the inter-temporal choice literature and models. We then describe 

prior research that used experienced delays, noting shortcomings that the new experimental 

paradigm overcomes. We then describe a new discounting paradigm. 

Discounted utility model 

The most famous time discounting property is that valuation of a future reward can be 

traced by a curve that declines quickly at the start of a delay and flattens out with time 

(Ainslie, 1975; Chung, 1965; Green, Fry, & Myerson, 1994; Rachlin, Raineri, & Cross, 1991; 
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Wolfe, 1934). This property is frequently represented by the basic hyperbolic model: V = R / 

(1+kD), where V is the subjective value of a delayed reward, R is the amount of the delayed 

reward, D is the length of the delay, and k stands for the rate of time discounting. 

This basic hyperbolic model is widely accepted for its accountability of preference time 

inconsistency, and its parameter k has been often regarded as a measure of impulsivity, with a 

higher k indicating greater impulsivity. Congruent with this, studies have shown that people 

who demonstrate impulsive behaviors, such as opiate dependent drug abusers (Cheng et al., 

2012; Madden et al., 1997), chronic cigarette smokers (Bickel et al., 1999), and addictive 

gamblers (Petry & Casarella, 1999) have higher values of k. However, k cannot be taken as a 

pure measure of a person’s impatience given the multitude of factors that can influence 

discounting behavior. Indeed, studies frequently use parameter k to track changes in 

discounting as a function of task characteristics (Cheng & González-Vallejo, 2014). 

In order to distinguish the roles of temporal discounting and subjective time perception, 

Rachlin (2006) used a parameter s to represent subjective time in V = R/(1+kDs). However, 

Vincent and Stewart (2019) demonstrated that this model still suffered from interpretability of 

its parameters�. We therefore conducted our behavioral modelling using the modified Rachlin 

discount function proposed by Vincent and Stewart (2019) in order to more clearly separate 

discounting and subjective time perception contributions without losing the basic functional-

form of the hyperbolic model. This modified Rachlin discount function is�

! = # ∙
%

(%'(())+)
	         (1) 

 

2 According to the authors, the units of k are mathematically contaminated by s. If D 
is measured in units of days, then the term Ds is measured in units of dayss. This 
mathematically demands that k is in units of 1/dayss. This is highly problematic as the k 
values obtained from participants with different s values are measured in different units. This 
means that it is mathematically invalid to compare the k values from the Rachlin discount 
function across participants (or groups) unless all participants have identical s values, which 
is highly unlikely. 
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where V is the subjective value of a reward R (in cents in our study) at a delay D (in 

seconds in the current work). The s parameter is unitless and we assume s > 0; the k 

parameter is also assumed positive, and its units are 1/seconds (as D is in seconds in our 

study). The modified Rachlin discount function also retains the interpretability of k as the 

inverse half-life. That is, the present subjective value of a reward halves in 1/k seconds (Yoon 

& Higgins, 2008). 

Because we focus on both subjective time and temporal discounting processes, it is 

important to exercise care in how we interpret model parameters. Mathematically, the k 

parameter is meant to capture the overall impact of objective time on value discounting, and 

affects all delays by the same constant. On the other hand, the exponent parameter s impacts 

delays differentially. That is, the parameter s controls the extent to which different levels of 

time are perceived as larger as or smaller than the objective units. At s = 1, then (k D)s = k D 

equating to linear subjective time perception; for 0 < s < 1 then (k D)s is concave with 

marginally decreasing subjective time as D increases. For s > 1 then (k D)s is convex with 

subjective time positively accelerating as D increases. We note that the determinants of k are 

usually assumed to be driven by self-control mechanisms. However, Cheng and González-

Vallejo (2014) noted the ambiguity of interpreting k in data from several studies (using the 

traditional Rachlin’s and other related models). We defer discussion of these different 

interpretations to the General Discussion, but advance that our experiments give support that 

k in Equation 1 is a measure of self-control as validated by additional behavioral measures. 

Inter-temporal choice tasks with experienced waiting in the literature 

Intertemporal choice tasks that involved waiting were common in non-human animal 

studies with subjects waiting in order to receive the selected reward (Ainslie, 1975; Chung, 

1965; Wolfe, 1934). In these studies, the waiting lasted from several seconds to at most 

several minutes; and the rewards were usually real food. In the 1980s and 1990s, some 

researchers began to study inter-temporal choice in humans using tasks similar to those used 
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with non-human animals. These studies adopted similar time frames, used points instead of 

food, and included an inter-trial interval (ITI) (Flora & Pavlik, 1992; Hyten et al., 1994). For 

example, the study conducted by Flora and Pavlik (1992) asked human participants to choose 

between an immediate small set of points (which were eventually exchanged for money) and 

a larger set that required waiting for 15-60 seconds. In addition, a post-reinforcement delay 

was included after each trial to make sure that the interval between two trials would be 75 

seconds regardless of which option the participant chose. In other words, participants had to 

wait the same period of time regardless of whether they chose an immediate option or not. 

Unsurprisingly, these studies found that participants exclusively selected the larger option. 

More recently, new experience tasks without ITIs were developed (Johnson, 2012; 

Reynolds & Schiffbauer, 2004). For example, the experiential discounting task (EDT) 

(Reynolds & Schiffbauer 2004) included five blocks with each block designed to measure an 

indifferent point (an equivalent amount for a delayed reward) for a delay that ranged from 5-

60 seconds. The number of trials within each block could vary from one another depending 

on participants’ responses. As in Hyten et al.’s (Hyten et al., 1994) study, participants were 

required to actually wait when they selected the standard, delayed option. However, instead of 

including an ITI, the EDT task included an inter-block-interval to make sure that the total 

time spent in each block did not depend on a participant’s responses. Hence, whether or not 

participants chose the immediate option, the total time they waited in each block (instead of 

trial) was constant. To make sure participants would not choose the larger, delayed option 

exclusively (thus fixing the issue in the Flora and Pavlik (1992) study), the larger, delayed 

option was made such that there was only a 35% chance that the larger reward would be 

delivered after waiting. The effect of probability was removed by a data normalization 

process in which the indifference point for each delay was divided by the indifference point of 

an additional block which involves probability only (i.e. the delay of the standard option is 0). 



8 

The quick discounting operant task (QDOT) also imposed a waiting period between 

blocks to prevent participants from ending quickly by choosing the immediate reward in all 

trials (Johnson, 2012). However, the QDOT task fixed the number of trials for each block 

using 4 trials to obtain an indifference point for each delay. 

Both the EDT and QDOT tasks have been used to detect variations in time 

discounting due to physiological state changes. Using EDT, studies found that participants 

had a higher discounting rate when they were in a sleep-deprived state, or when they had 

ingested high levels of alcohol compared to when they were in a normal state (Reynolds & 

Schiffbauer, 2004; Reynolds, Ortengren, Richards, & de Wit, 2006). Johnson (2012) also 

reported that both the QDOT and EDT showed that cocaine-dependent individuals exhibited 

greater time discounting than matched controls. However, both tasks have been challenged 

methodologically. For example, the QDOT task includes only 4 trials (compared to more than 

10 trials in most studies) to find an indifference point for each delay. In addition, since it 

includes an inter-block interval, the majority of normal participants tend to exclusively select 

the large option. On the other hand, the EDT is criticized for its inclusion of a probability 

dimension which confounds the effects of time and probability in valuations. In addition, 

Smits et al. (Smits et al., 2013) criticized that a lack of ITIs in the EDT task enables a subject 

to select and obtain several smaller-sooner rewards during the time of waiting for a single 

large-delayed reward. Hence, selecting the smaller-sooner options does not necessarily reflect 

myopic behavior if doing so maximizes the total reward. 

In sum, one major concern about experience time discounting tasks is the inclusion of 

ITIs. Including ITIs means that the overall waiting time for selecting an immediate option is 

the same as that of selecting a delayed-large reward, and thus there is no benefit to choosing a 

small reward, which motivates participants to exclusively choose the larger option. On the 

other hand, if ITIs are not included as in the EDT, participants could maximize the overall 

payoff by selecting many small-sooner options during a single waiting period of a large 
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reward. One way to overcome this dilemma is to exclude ITIs but fix the number of available 

trials. This means that choosing the smaller-sooner reward would lead to less waiting time, 

but at the same time lead to less reward overall. We describe a new task that excludes ITIs 

and makes waiting realistic without leading to ceiling or floor effects of always selecting the 

larger or the smaller payoffs. 

A new experience intertemporal choice paradigm: The online and deferred waiting 

tasks 

We describe two variations of our new intertemporal choice paradigm: the online 

waiting task has waiting occurring after making each choice, and the deferred waiting task 

has all the accumulated delays experienced at the end of the experiment. Both tasks offer a 

fixed number of choices and require actual waiting for periods of time as described by the 

selected options, hence participants need to make trade-offs between reward and waiting. 

Figure 1a shows the choices at the start of a trial in the online task. Each choice option 

is represented by a coin with its size matching the amount described in the labeled button with 

a labeled delay next to each coin. The smaller option is immediate, so the delay is labeled as 0 

seconds (s). In addition, there is a bag positioned in the south-east corner of the screen. 
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(a) 

(b) 

Figure 1. Online waiting intertemporal choice experiment. Rewards and delays are described 

in labels at the start of a trial (a). After a choice is made by clicking on one of the buttons the 

immediate reward appears at the bottom of the screen whilst the delayed reward falls slowly 

to the bottom of the screen (b). Either reward is available for pickup when it is at the bottom 

of the screen, allowing participants the possibility of a preference reversal during the waiting 

process. 

Participants can take as much time as they like to select one of the two options by 

pressing one of the two buttons. Once an option is selected, they cannot select the option 
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again, but instead they can collect the coin that is ready for pick up. That can be the small 

coin, which is immediately available, or the large coin, which can be picked up if the 

participant waits for it. That is, even if a participant selects an immediate option, she/he can 

still take the large coin if she/he decides to wait for it. In such cases, once the large coin 

arrives at the bottom, a second pick-up button appears near the large coin. However, a 

participant could only take a single coin in each trial. A new trial began after collection. The 

larger coin always falls with a constant speed matching its length of delay (see Figure 1b). 

Note, that the coin trajectory to the bag was shown to participants, the accumulated amount 

was not displayed. 

In sum, in each trial, participants first selected an option and then picked up a coin. 

While waiting for the coin to fall, participants could reverse their choices. Thus, the current 

paradigm is analogous to the marshmallow task in which participants could first decide to 

wait, but then reverse their choice by eating the reward at hand, and such change could be 

used as an index of delay of gratification (Mischel et al., 1989; Mischel & Ebbesen, 1970; 

Shoda et al., 1990). But the opposite was also true, a participant could first select the 

immediate coin but then decide to wait for the larger coin instead. 

The online task has four dependent variables: the option participants selected (the first 

choice), the coin participants picked up (the second choice), the number of trials in which 

participants reversed between first selection and picked coin (preference reversals), and the 

time participants took to switch their preference from the delayed to the immediate option. In 

the present study, we focus on the coin a participant picked up as his/her �nal decision. We 

also count preference reversals for each participant. 

The deferred waiting task is identical to the traditional inter-temporal choice task 

except that participants are to experience waiting, equal to the total accumulated delay 

duration (based on their selections), at the end of the study. To keep the two tasks as similar 

as possible, each trial in the deferred task is displayed in a separate screen with a bag in the 
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south-east corner. After a participant selects a coin, the next trial is displayed in a new screen 

immediately without waiting. The bag is not active in the deferred waiting task. Participants 

are instructed that they would experience the choices they made for each trial at the end of the 

experiment. 

Given the nature of the online waiting task, the time was restricted to delays of several 

seconds to 2 minutes. Compared to longer delays of days to years, tasks with short delays are 

unlikely to produce discounting based on factors such as risk perceptions, in�ation, and 

expectation of changing utility. Thus, this new inter-temporal choice task has the potential to 

clarify the role of more basic cognitive processing such as time perception and self-control in 

discounting behavior. 

Goals of the study 

The present study aims to better understand the psychological mechanisms of time 

discounting, and subjective time perception when rewards and delays are small, and when 

delays are experienced online versus when they are deferred. As earlier stated, Experiment 1 

explored differences in inter-temporal choice behavior across the online vs. deferred waiting 

tasks, and across low vs. high reward magnitudes. Experiment 2 aimed to replicate the 

findings of Experiment 1 and also assessed differences in discounting behavior between gains 

and losses. Self-reported impulsivity was measured in both experiments as well as preference 

reversals in the online waiting task. These two variables were further used to validate the 

interpretation of the parameter k in Equation 1. 

Experiment 1 

Experiment 1 investigated behavioral inter-temporal choice differences regarding task 

and magnitude, as well as how these differences (if any) could be traced to specific 

parameters in Equation 1. 
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To investigate which parameter(s) governs the differences associated with task and/or 

magnitude, collected data were fit to Equation 1 using a Bayesian hierarchical approach 

described below. Estimated parameters at the individual level were then compared across the 

four conditions. The aim was to elucidate whether delay of gratification, subjective time 

perception (as represented by parameters k, and s respectively) vary across tasks and 

magnitudes. 

We also present descriptive statistics for preference reversals. A correlation analysis 

was further conducted to explore relations among preference reversal, self-reported 

impulsivity, and parameters derived from the behavioral task. The aim is thus one of validity 

analysis, such that convergence of measures is expected if the same construct is tapped by the 

different measures (Campbell & Fiske, 1959). 

Method 

Participants 

Participants were 190 undergraduate students at a Midwest university in the USA. 

They were recruited through a psychology pool, for which they received academic credit for 

participation. Participants’ ages ranged from 18-22 years. All experiments were approved by 

the Institution Review Board of the university and follow ethical guidelines. 

Measures 

The Baratt Impulsiveness Scale (Patton & Stanford, 1995)(BIS-II) was used to 

measure self-reported impulsivity. The scale can be found in Appendix A. The BIS-II is a 30-

item scale with items such as: “I plan tasks carefully” and “I do things without thinking.” The 

response format is a 4-point rating scale with respondents indicating at what level they agree 

with each item. The total score of the BIS-II ranges from 30 to 120 with higher scores 

indicating higher impulsiveness. The overall score can be further classified into 6 factors: 
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attention, motor, self-control, cognitive complexity, perseverance, and cognitive instability. 

Cronbach’s alpha for the scale in this study was .83. 

Stimuli and design 

The study is a 2 (task: online vs. deferred) × 2 (magnitude: small vs. larger amounts) 

between-subjects design. Both the deferred and online waiting tasks were completed on a 

computer, and they used the same stimuli as described below. 

The task consisted of a series of choices, employing a staircase procedure, in order to 

derive indifference points for a series of delays. The design consisted of five delays, and the 

choices were between a large, delayed amount that was constant, and a smaller immediate 

payoff that varied with fixed size increments. 

The delays were 7, 15, 29, 56, and 101 (in seconds) with 10 trials for each delay. To 

reduce the possibility of comparison between blocks, the delays are nearly but not exactly two 

times each other. Table 1 displays the stimuli for 10 trials in one block for the small amount 

condition for which the larger, delayed amounts were fixed to 30 cents (30¢); while the 

smaller amounts were adjusted from 3 to 30 cents. The smaller, adjusted amounts were used 

for the other 4 blocks (i.e., for delays of 15, 29, 56, 101). For the large amount conditions, the 

fixed amount was 60 cents, while the adjusted amounts for the immediate option were two 

times larger than those in the small conditions. That is: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 

cents for each trial. 

Table 1 

Stimuli for one block in small and large magnitude conditions (Experiment 1). 

Small Magnitude condition Large magnitude condition 

Fixed Amount a Delay b Adjust. Amount Fixed Amount a Delay b Adjust. Amount 

30 7 3 60 7 6 

30 7 6 60 7 12 
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30 7 9 60 7 18 

30 7 12 60 7 24 

30 7 15 60 7 30 

30 7 18 60 7 36 

30 7 21 60 7 42 

30 7 24 60 7 48 

30 7 27 60 7 54 

30 7 30 60 7 60 

Note. a amount units were cents; b time units were seconds 

The blocks were presented using a Latin Square counterbalance technique such that 

any single delay follows any other delays twice. The design is shown in Table 2 in which the 

set of delays (7, 15, 29, 56, and 101) occurs in different positions. For example, order type D 

in Table 2 shows the sequence (4 5 3 1 2) describing that the smallest delay, 7 seconds, 

appeared in the fourth position, the second delay of 15 seconds, appeared in the fifth position, 

the delay of 29 seconds appeared in the third position, and delays of 56 and 101 seconds 

appeared in the first and second positions, respectively. 

 

Table 2 

Balanced Latin Square design for 5 delay blocks. 

Order type Sequences  Order Type Sequences 

A 1 2 4 5 3  F 5 4 2 1 3 

B 3 1 2 4 5  G 3 5 4 2 1 

C 5 3 1 2 4  H 1 3 5 4 2 

D 4 5 3 1 2  I 2 1 3 5 4 

E 2 4 5 3 1  L 4 2 1 3 5 
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Within each block, half of the participants had an increasing adjusting amount from 

trial to trial, while the other half had a decreasing adjusting amount from trial to trial. For the 

same participants, the same adjusting order was used across various delays. That is, if the 

adjusting amount was increasing for the first block, it was increasing for the other blocks. The 

ten delay orders as defined by the Latin Square designs were randomly assigned with the 

constraint that each of the ten orders was used at least four times. 

Procedures 

Instructions. Before the start of the experiment, participants were asked to leave their 

belongings and watches, and were assigned to an individual room. Participants were then 

randomly assigned to one of four groups: deferred small, deferred large, online small and 

online large. After they completed the BIS-II questionnaire participants were shown screens 

from the corresponding task and directions on how to complete the task. 

For the online waiting task, directions clearly stated that in each trial participants 

could either pick up the smaller coin or wait to pick up the larger coin. For the delayed 

deferred task, participants were told: “After you complete all 50 trials, you will actually 

experience all the choices you’ve made.”, and given an example (exact instruction can be 

found in Appendix B). Directions for each group then emphasized that participants would 

receive real money for 10% of randomly selected trials at the end of the study. 

The task instructions for all the four groups were kept as similar as possible. For each 

group, participants were told that people often face situations in which they must decide 

between two options according to each option’s characteristics. They were also provided a 

real-life decision example: waiting for a long time at a sit-down restaurant to eat a more 

desirable meal vs. waiting for a short time at a fast-food restaurant to eat a less desirable 

meal. They were then told the following task involves playing a coin-machine game in which 

one machine gives out larger-valued coins slowly, while the other machine gives out smaller-

valued coins quickly. 
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Participants made two choices in each trial: choosing a coin and picking up a coin. 

There was no time limit for each choice. Responses for both choices and response time for the 

first choice were recorded. In addition, the time elapsed between participants making the first 

choice and picking up a coin was recorded. For the deferred waiting tasks, a participant’s 

response for each trial and its corresponding response time were recorded. 

In the online waiting task, the final screen of the choice task showed participants the 

amount of money they had collected (based on the 10% of trials randomly selected by the 

program). They were paid the collected amount and debriefed. In the deferred task, the final 

screen of the choice task showed the participants the amount of money they had collected 

(based on the 10% of trials randomly selected by the program) and the accumulated time they 

needed to wait (based on all of trials). Participants were paid and debriefed after waiting. 

Bayesian parameter estimation and model comparison 

We conducted a hierarchical Bayesian analysis for model fitting and comparisons in 

both experiments. The methods used were based upon those established by Vincent (2016). 

Briefly stated, the hierarchical Bayesian estimation approach conducts parameter estimation 

based upon a generative model of the choice data which explicitly models the data at the 

group, participant, and trial levels. This hierarchical (also known as multi-level modelling) 

approach has a desirable and principled shrinkage effect (Lee, 2011) where individual level 

parameters are shrunk towards the group mean – thus balancing what the stochastic choice 

data tells us about a participant’s parameters and what we know about participants being 

drawn from a population. Simply put, this method produces more reliable parameter estimates 

when dealing with noisy behavioral responses. A further advantage of the hierarchical 

Bayesian estimation is that it produces posterior distributions of parameters and this allows 

for judging the level of uncertainty in the estimates from credible intervals. In the current 

analysis we used a Python-based implementation of Vincent (2016)’s work, PyMC3 
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(Salvatier et al., 2016) to conduct Markov Chain Monte Carlo (MCMC) sampling of the 

posterior distribution of parameters given the data. 

Model comparison. To verify the necessity of including the time perception 

parameter s in the model, we conducted a model comparison between the two-parameter 

modified Rachlin model and the traditional one-parameter Hyperbolic models. We found that 

the modified Rachlin model outperformed the Hyperbolic models even controlling for model 

complexity. Therefore, we have good justification for proceeding with the modified Rachlin 

model. Details of this analysis can be found in Appendix C. 

Parameter transformations. In order to increase the efficiency of MCMC sampling, 

we reparametrized the parameters k, and s (also known as ‘change of variables’). Namely the 

MCMC sampling process operates on ln(k) and ln(s), where ln refers to the natural logarithm. 

These ln scaled variables are transformed back into their original variables for operation 

within the value function. 

Hierarchical modelling approach. We split the data into 4 cells representing the 2×2 

design: high vs. low reward magnitude, and deferred vs. online waiting task in Experiment 1; 

and of gains vs. loss, deferred vs. online waiting task in Experiment 2. We treated participants 

within each of the 4 cells as being a random sample from a group level distribution of 

parameters .	(Lee, 2011). Therefore, hierarchical analysis was carried out on all data within a 

given cell – analysis of data across different cells was separate and independent from one 

another. Participant level parameters are denoted /0, for participant p, where /0 =

{ln4506 , ln	(80)} are treated as being samples from a group level distribution specified by the 

hyperparameters .	(see	below). 

The Probabilistic Model. We constructed a probabilistic model to account for all 

choice data (not estimated indifference points) for all participants. An excellent introduction 

to these methods in the context of cognitive modelling is provided by Lee & Wagenmakers 

(2013), and this work builds upon the hierarchical estimation methods applied to delay 
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discounting data by Vincent (2016). The probabilistic model (based on Equation 1) is given in 

the set of equations below. Note that the normal distributions are parameterized by mean and 

standard deviation, and the subscripts represent truncation bounds on the normal distributions. 

The equations below are defined for each person p responding in trial t. 

?@A(~Normal Gln G
%

HI
J , 2J  (2) 

L@A(
M ~Exponential(10)  (3) 

?@AU~Normal(0,0.5)  (4) 

L@AU
M ~Exponential(20)  (5) 

ln(5[Y])~	Normal(?@A(, L@A(
M )  (6) 

ln(8[Y])~Normal(?@AU, L@AU
M )  (7) 

[[Y]~Normal'(1.7,3)  (8) 

!̂ [Y, _] = #^[Y, _] ∙
%

%'4(`∙)a[0,b]6
+`  (9) 

!c[Y, _] = #c[Y, _] ∙
%

%'4(`∙)d[0,b]6
+`  (10) 

e[Y, _] = !c[Y, _] − !̂ [Y, _]  (11) 

g[Y, _] = 	ϵ+(1-2ϵ) ∙
%

%'klm(no[0]∙p[0,b])
  (12) 

q[Y, _]~Bernoulli(g[Y, _])  (13) 

By way of example, Equation 2 means a Normal distribution, with a mean of ln(1/30), 

equating to a mean half-life of 30 seconds; and a standard deviation of 2. 

Explaining the model from bottom to top, we start with the likelihood function 

(Equation 13). Each choice response q[Y, _] for participant p on trial t is modelled as the 

outcome of a Bernoulli trial (a coin toss) with probability of choosing the later reward (choice 

B) equal to g[Y, _]. Equation 13 defines a decision variable x, which is simply the difference 

between present subjective values of the delayed and immediate choices – x=0 corresponds to 

indifference between the two choices. This decision variable is mapped onto a response 
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probability using a simple logistic choice function (Equation 12) which incorporates a 

response error rate of 1% (t = 0.01). The use of the logistic function was arbitrary – a 

number of other similar psychometric functions, such as the cumulative Gaussian could have 

been used. The slope of the logistic function is determined by the α parameter for each 

participant – this essentially determines the degree of response stochasticity around the point 

of indifference where x=0. Present subjective values are given by Equations 9 and 10 based 

on Equation 1. These are the core equations which translate choice A (its reward value #^ 

and delay û ), and same for choice B, into present subjective values. This function is 

influenced by the participant-level parameters (Equations 6-8). These participant-level 

parameters are in turn assumed to be sampled from group-level priors (or a set of 

hyperparameters; Equations 2-7). The hyperparameters are Ψ = {?@A(, L@A(
M , ?@AU, L@AU

M } which 

generate participant level parameters /[Y] = {ln(5[Y]) , ln(8[Y])}. The information for each 

participant for each trial contains the following elements {#^, û , #c, uc, q}, these determine 

the present subjective values of choice A (immediate) and B (delayed) and thus the 

probability g[Y, _]	that a participant selects the delayed larger amount option in a given trial 

and therefore the likelihood of the observed response q[Y, _]. 

In sum, the goal of our cognitive modelling was to arrive at a posterior distribution of 

parameter values, given the observed data, g(/|xy_y). This approach further allows for 

comparisons of conditions in terms of estimated parameters. 

Approach with specifying prior beliefs. Specification of prior beliefs can impact the 

parameter estimation procedure and study conclusions, and therefore need careful thought and 

justification (see Appendix D). Our prior beliefs are specified at the hyperparameter level 

(Equations 2-5) which determine our participant level priors. Our hyperpriors were chosen so 

that priors over participant level ln(k) and ln(s) spanned a broad but reasonable range, and can 

be seen in Figure D1(a, b). Our priors were broad which allows the data to have a strong role 

in the final posterior distribution of parameters. This resulted in a very wide range of 
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discounting behaviors being plausible a priori (see Figure D1 c). We proceeded by making 

the reasonable assumption that parameters were independent, but the posterior distribution 

would capture any dependencies on the participant level. 

Approximating the posterior distribution with MCMC. We implemented the 

above model (Equation 1) by adapting the procedure outlined by Vincent (2016) for our 

present purposes. In order to check the samples were reasonable approximations to 

g(/|xy_y), we ran 4 MCMC chains, checked these visually, as well as confirmed that the #z 

statistic was below the 1.01 threshold (Gelman & Rubin, 1992). A burn-in period of 2,000 

samples was used, with a total of 5,000 retained samples over the 4 chains. 

The raw output of the parameter estimation procedure was a set of MCMC samples 

over all latent variables at the participant, and the group levels. These were also used as the 

basis for a very large number of visualizations in order to help confirm meaningful estimation 

of the posterior and to explore model ‘fits’ to data. We also conducted posterior prediction in 

order to evaluate model goodness of fit. We confirmed the model was a good account of the 

data by examining a number of metrics including Log Loss and proportion of responses 

correctly accounted for. These are reported below. 

The parameter estimation results, for each of the cells in the design, were exported to 

a .csv file where the posterior distributions were condensed into a point estimate, namely 

the posterior mean. It was this data which was used as the basis for later statistical analyses 

comparing parameters across the experimental conditions in both experiments. 

Parameter recovery. When estimating model parameters based upon experimental 

data, it is important to have some degree of faith that our inferred parameters are accurate and 

meaningful. While it is impossible to prove that this is true, the traditional method (parameter 

recovery) is to estimate parameters based on data for which we have the true data generating 

parameters. If we can successfully recover known parameters based upon simulated data 

generated using those parameters, then we can have some faith that estimated parameters 
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based upon real data are accurate. The details of this parameter recovery procedure and results 

are found in Appendix E, demonstrating support for our modelling approach. 

 

Results 

Model-free analysis 

We included all participants in this model-free analysis. Among them, there were 5 

participants in the online small group who always chose the smaller coin, and 1 participant in 

the online large group who always chose the larger coin. For each participant, we counted the 

number of trials choosing the larger coin for each delay. Descriptive statistics appear in Table 

3. 

Table 3 

Group mean frequencies of choosing the larger coin for each delay (Experiment 1) 

Delays Deferred small 

(n = 50) 

Deferred large 

(n = 50) 

Online small 

(n = 46) 

Online large 

(n = 44) 

7s 7.920(2.029) 7.720(1.852) 5.935(3.235) 6.273(3.083) 

15s 6.760(2.503) 7.140(1.980) 5.261(3.574) 5.477(3.188) 

29s 6.080(2.538) 6.220(2.735) 4.413(3.550) 4.545(3.136) 

56s 5.380(2.754) 5.260(2.805) 3.478(3.443) 2.818(3.208) 

101s 4.840(2.691) 4.560(2.757) 2.761(3.308) 2.023(3.267) 

Note. M(SD). Total 10 trials for each delay. 

A repeated measure ANOVA with delay as a within-subjects factor and magnitude 

(small/large) and task(deferred/online) as between-subjects factors revealed that there was a 

significant main effect of delay, F (4, 744) = 119.673, p < .001, {M = .386, and a significant 

main effect of task, F (1,186) = 28.190, p < .001, {M = .132. Participants were more likely to 

choose the larger coin at smaller delays, and this was also the case in the deferred task than in 



23 

the online task. There was no main effect of magnitude, F (1,186) = .049, p = .824. No 

interaction was detected. 

Parameter estimation results3 

Before making inferences about changes in latent cognitive mechanisms through 

parameter fits to participant data, it is sensible to check whether the model can in fact account 

for behavioral data better than chance. To confirm that Equation 1 was in fact a good 

description of participant behaviors, we calculated the percent of correctly predicted 

responses for each participant (see Figure 2a for a distribution of values). The model did a 

very good job of accounting for participant responses, with a median of 90% of responses 

correctly accounted for. We also evaluated the ability of the model to fit the data using the 

Logarithmic Loss4 metric (see Figure 2b). This is the appropriate metric for modelling inter-

temporal choice tasks at the individual trial level, i.e. a classification task in which our model 

produces a probability that the participant will choose the immediate, or the delayed reward 

on each trial. A model with perfect prediction would have a Log Loss of zero, whereas a non-

informative model predicting choices at 50% would have a Log Loss of 1. Again, we see 

good model performance, with a median Log Loss of 0.27 for Experiment 1. 

 

3 We note that a side-effect of the Bayesian hierarchical approach is that participants 
who respond with near 100% consistency, either for the immediate or the delayed option, 
would have an apparently acceptable posterior distribution. Even though the Bayesian 
approach provides a reasonable posterior given our prior beliefs, we decided to exclude 
participants who responded with >90% consistency to either the immediate or delayed option. 
This resulted in 12 exclusions in the deferred waiting task (7 in the low reward condition, 5 in 
the high reward condition) and 20 in the online waiting task (12 in the low reward condition, 
8 in the high reward condition). 

4 The Log Loss (also known as binary cross entropy) is given by 
−

%

|
∑ ∑ q[Y, _] ln(g[Y, _])~

b�% + (1 − q[Y, _]) ln(1 − g[Y, _])|
A�% , where N is the number of 

participants and T is the number of trials, q[Y, _] is the response by participant p on trial t, 
and g[Y, _] is the model’s predicted response probability for participant p on trial t. 
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Figure 2. Goodness of fit of the model (Equation 2) to responses made in the inter-temporal 

choice tasks. Each point represents a participant. Left panel (a) shows that the median percent 

of responses predicted was 90% for Experiment 1 and 90% for Experiment 2. Right panel (b) 

shows that the median Log Loss was 0.27 for Experiment 1 and 0.27 for Experiment 2. It is 

possible to have models that have poor Log Loss scores but still predict responses well - if a 

small number of responses are unpredicted by the model. So, the few participants with poor 

Log Loss scores are likely due to a few errant responses. 

 

We also confirmed satisfactory parameter estimation by plotting posterior predicted 

indifference functions alongside behavioral data. Figure 3 shows examples from 3 randomly 

chosen participants (columns) from each of the 4 experiment conditions (rows). We see that 

the posterior predicted indifference functions do a good job of separating the immediate 

(white points) and delayed reward choices (black points). 
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Figure 3. Example data and model fits for Experiment 1. Each panel shows data (points) and 

fits for an individual participant. Thick solid lines represent the discount function 

corresponding to the mean of the posterior parameter values, thin lines are random samples 

from the posterior and so the degree of precision in the parameter estimates. Each row 

corresponds to a condition, and each panel represents a participant randomly chosen from that 

condition. Empty points represent immediate choices, filled points represent delayed choices. 

 

Descriptive statistics of estimated parameters appear in Table 4. The parameter 

estimates were back-transformed mean ln(k) and ln(s) to k and s. 

 



RUNNING HEAD: The effects of waiting in inter-temporal choice 

 

Table 4 

Group means of estimated parameters (Experiment 1). Individual participant parameter estimates were taken as the mean of the posterior 

distribution over parameters. 

 N k ln(k) s ln(s) ! 

Deferred small 43 .041(.076) -4.083(1.289) .912(.335) -.159(0.371) 1.298(1.346) 

Deferred large 44 .025(.027) -4.231(1.138) 1.191(.892) -.055(0.679) 1.194(1.351) 

Online small 34 .071(.085) -3.445(1.463) 1.728 (.810) .449(0.446) .982(1.194) 

Online large 36 .065(.084) -3.490(1.385) 2.278(1.949) .577(0.672) 1.028(1.198) 

Note. M (SD). 



RUNNING HEAD: The effects of waiting in inter-temporal choice 

 

Figure 4 shows combined parameter ln(k) and s across 4 conditions. We explored any 

differences in estimated parameters (posterior means for each participant) in a series of 

Bayesian 2×2 ANOVA’s using JASP (JASP Team, 2018) with reward magnitude (low/high) 

and task (deferred/online) as fixed factors. We report Bayes Factors (BF10), which is the ratio 

of the likelihood of the data fitting under the alternative model (H1) and the likelihood of the 

data fitting under a null model (H0). This latter null hypothesis model amounts to a single 

intercept only model with no main effects or interactions. According to (Jeffreys, 1961), a 

value of 1 means the probability of the data having been generated by the model and the null 

model are equal, values above 3 represent substantial evidence, above 10 represent strong 

evidence, above ~30 is very strong evidence, and above 100 is considered decisive evidence. 

For interested readers, we also provided a test on the Area Under Curve metric, a combined 

measure of discounting and subjective time, in Appendix F. 
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Figure 4. The 95% credible intervals of our posterior beliefs, shown as a contour plot, about 

group level ln(k) and s parameters for each of the 4 conditions in Experiment 1. The regions 

define the 95% credible interval for parameter combinations. The horizontal line at s=1 

corresponds to linear subjective time perception. 

Changes in k. We find very strong evidence for a main effect of task on ln(k), with a 

BF10 of 22.64, compared to an intercept only model. Values of ln(k) were larger in the online 

than in the deferred waiting task (see Table 4). In contrast, we found moderate evidence 

against a main effect of reward magnitude (BF10 = 0.189, i.e. BF01 = 5.293), therefore we have 

evidence of a lack of a magnitude effect in terms of the k parameter. 
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Changes in s. We find decisive evidence for a main effect of task on ln(s), with a 

BF10 of 6.99E+7, compared to an intercept-only model. Parameter s was higher in the online 

than in the deferred waiting task (see Table 4). We conducted Bayesian one sample t-tests to 

see if ln(s) was equal to zero (i.e. s = 1, linear subjective time perception) for each task. We 

found no compelling evidence for non-linear time perception in the deferred task (BF10 = 

0.56). We found decisive evidence for non-linear time perception in the online waiting task 

(BF10 = 6.59E+7). In combination, the linearity of subjective time perception is different 

across the online and deferred waiting tasks. 

Slope parameter a. We found no evidence of any effect of task and magnitude upon 

parameter !. 

Preference reversals 

In the online waiting task, there were two types of preference reversals possible: 

choosing the larger coin in the first choice, but picking up the small coin in the second choice 

(LS), and choosing the small coin in the first choice, but picking up the large coin in the 

second choice (SL). The former may be regarded as an indication of impulsivity, or lack of 

self-control, similar to the conceptualization in Mischel & colleagues’ (1970) study where 

participants could begin by not taking the one marshmallow (exerting self-control by waiting) 

but then, giving into temptation, eating the one marshmallow in the hand before the larger 

option was available. The mean number of preference reversal trials across participants are 

shown in Table 5. On average, among a total of 50 trials, there were around 3.4 trials in which 

participants switched from a large coin to a small coin (LS) and .6 trials in which participants 

switched from a small coin to a large coin (SL). 

Table 5 

Descriptive statistics for preference reversals (Experiment 1). 

 Online Small Online Large 
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LS 3.640 (4.133) 3.120 (6.765) 

SL .821 (1.819) .333 (.612) 

Note. M (SD). LS: switch from the later choice to the sooner choice; SL: switch from the 

sooner choice to the later choice. 

To study how these preference reversals were distributed across delays, frequencies, 

and rates of these two types of switches were calculated. As shown in Table 6, the rate of LS 

increased with the length of delay, whereas SL rate decreased with the length of delay. This 

pattern was the same for both small and large magnitude conditions. In addition, compared to 

the large condition, the proportion of LS was larger in the small condition, meaning that as 

the amount of reward increased, participants were less likely to succumb to the immediate 

option. 

 

Table 6 

Frequency and rate of preference reversals in all conditions of Experiments 1 and 2 by delay 

size 

 Experiment 1 Experiment 2 

 Online small Online large Online gain Online loss 

Delay LS SL LS SL LS SL LS SL 

7s 41(.136) 12(.076) 21(.072) 7(.047) 32(.116) 10(.055) 21(.057) 13(.101) 

15s 45(.162) 9(.049) 29(.108) 2(.012) 23(.108) 6(.024) 18(.054) 10(.059) 

29s 52(.208) 5(.024) 23(.105) 3(.014) 30(.140) 7(.029) 22(.077) 7(.033) 

56s 62(.283) 3(.012) 27(.180) 1(.003) 40(.253) 4(.013) 37(.159) 4(.015) 

101s 54(.303) 3(.011) 31(.261) 1(.003) 42(.362) 3(.008) 51(.252) 3(.010) 

 

Self-reported impulsivity and its relation to other measures 
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Correlational analysis among the following transformed variables was conducted: 

self-report impulsivity as measured by the BIS-II questionnaire; estimated parameters; and 

rate of LS as a direct measure of people’s lack of self-control5. This latter measure was only 

available in the online waiting task. Pearson’s correlation was computed within each task 

pooling participants from the small and large magnitude conditions. The correlation 

coefficients appear in Table 7. 

 

5 We also calculated the scores of six sub-scales of BIS-II and their correlations with 
other measures. We found no meaningful correlation with regard to the present topic. 
Interested readers can find the two expanded correlation tables (both for Experiment 1 and 
Experiment 2) in the OSF data center of the present work.   



RUNNING HEAD: The effects of waiting in inter-temporal choice 

 

Table 7 

Pearson Correlations for Deferred and Online Tasks in Experiment 1. 

Deferred task 

 ln(k) ln(s) ! BIS 

ln(s) .061    

! -.336* .233   

BIS .009 -.167 -.112  

Online task 

ln(s) .070     

! -.353* .112   

BIS .343* .121 -.090  

LS .626* .007 -.269 .189 

Note. * are correlations of which BF10 > 3. BIS = the overall score of self-reported 

impulsivity. LS = rate of switch from a large coin to a small coin. 
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As shown in Table 7, there was no correlation among ln(k), and ln(s) for both online 

and deferred waiting tasks, indicating the parameters can be interpreted as indexing 

discounting vs time perception mechanisms respectively. There was substantial evidence 

showing that self-reported impulsivity, as measured by the BIS, was positively correlated 

with parameter k in the online tasks, but not in the deferred tasks. However, BIS did not 

correlate with preference reversals. 

We observed a strong correlation (r = 0.626) between ln(k) and LS, the rate of 

reversals from a large coin to a small coin (BF10 = 2.026E+6), meaning preference reversals 

were more common in participants who had greater discounting as measured by k. In 

combination, these results show convergence of measures for parameter k, and preference 

reversals, suggesting that parameter k represents trial by trial discounting tendencies that BIS, 

in contrast, is not able to capture. 

Discussion of Experiment 1 

One of the core results we found was that discounting behavior, as shown in the mean 

number of selections of delayed amounts, was lower in the online waiting task compared to 

the deferred waiting task. That is, participants preferred smaller but more immediate rewards 

more so in the online than the deferred waiting tasks. A second core result was that subjective 

time perception was best characterized by a convex function in the online task. That is, a unit 

of physical time was perceived longer as the waiting proceeded. These are compelling initial 

findings in our new inter-temporal choice paradigm. 

We also found that preference reversals, as defined in the online waiting condition, 

were strongly related to the k parameter. In addition, parameters k and s showed little 

relationship. Thus, the current results provide evidence for k as a measure of impulsivity, 

separate from parameter s--a measure of time perception. 
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We found no magnitude effect (i.e., the effect that a larger reward is associated with a 

smaller discounting rate in traditional discounting tasks). That is, participants’ intertemporal 

preferences were similar in the large and small magnitude conditions. This is presumably 

attributable to the choice of reward magnitudes – despite the high magnitude rewards being 

double the low magnitude rewards, they were both in the same order of magnitude (small and 

in cents). 

Experiment 2 

The gain-loss asymmetry in utility shows that people value losses more than gains 

(Kahneman & Tversky, 1979; Loewenstein & Prelec, 1992). This asymmetry is expressed as 

the sign effect in time discounting, referring to the observation that gains are discounted more 

than losses (Frederick et al., 2002; Hardisty & Weber, 2009; Loewenstein, 1988; Thaler, 

1981). In the study conducted by Lowenstein (1988), participants were indifferent between 

receiving $10 immediately and $21 in one year; but in losses, they were indifferent between 

paying $10 immediately and $15 in one year (indicating that they preferred to pay $10 

immediately rather than to pay $21 in one year), which is indicative of a smaller discounting 

rate. 

Employing the same tasks and same analytical approach as that of Experiment 1, 

Experiment 2 investigate the gain-loss asymmetry regarding differences between the deferred 

and online waiting tasks. Because a loss has a greater value than a gain, we expected 

participants to be more willing to wait in the loss condition than in the gain condition if 

waiting offered them a reduced loss. Therefore, Experiment 2 was set such that waiting would 

lead to a higher revenue in both conditions (i.e., a larger gain or a reduced loss). That is, 

choices in the loss condition were between an immediate but larger loss versus a delayed but 
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smaller loss.6 The experiment had task (deferred vs. online) and domain (gain vs. loss) as 

conditions in a between-subjects design. Similar to Experiment 1, Equation 2 was used to 

conduct parameter estimation to reveal mechanisms underlying response differences across 

conditions. Preference reversals in the online waiting task, and correlation between self-

reported impulsivity and variables derived from the behavioral tasks were also analyzed. 

Method 

Participants 

Participants were 190 undergraduate students at a Midwest university. They were 

recruited through a psychology pool, for which they received academic credit for 

participation. Participants’ ages ranged from 18-22 years. 

Measures 

As in Experiment 1, the Barratt Impulsiveness Scale (BIS-II) was used to measure 

self-reported impulsivity. Cronbach’s alpha for this study was .823. 

Stimuli and design 

The experiment was a 2×2 with task (deferred vs. online) and type of outcome (gains 

vs. loss) as between-subjects design. The loss conditions used stimuli identical to that of the 

gain conditions, except the values were negative. 

For the gain conditions, the same stimuli from Experiment 1 was used. That is, the 

amount of the larger option was fixed to 30 cents with delays in seconds varying from 7 to 

101 seconds (7, 15, 29, 56, and 101). The immediate amount was adjusted from 3 cents to 30 

cents across 10 intervals. For the loss conditions, the immediate amount was fixed to -30 

cents while the delayed amount was adjusted from -30 cents to -3 cents across 10 intervals. 

 

6 In traditional intertemporal choice studies using losses, the design offers an 
immediate smaller loss versus a delayed larger one. 
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Note that in the loss condition, the delayed and immediate amounts were reversed compared 

to the gain condition. Table 8 displays the stimuli for 10 trials in one block for the gain and 

loss conditions. 

As in Experiment 1, the blocks were counterbalanced using the Latin Square 

counterbalance order as shown in Table 2. Within each block, half of the participants had an 

increasing adjusted amount from trial to trial, while the other half had a decreasing adjusted 

amount from trial to trial. The order of adjusted amount (either increasing or decreasing) was 

fixed across blocks. 

Table 8 

Stimuli for one block in gain and loss conditions (Experiment 2). 

Gain condition Loss condition 

Fixed Amount a Delay b Adjust. Amount Fixed Amount a Delay b Adjust. Amount 

30 7 3 -30 7 -30 

30 7 6 -30 7 -27 

30 7 9 -30 7 -24 

30 7 12 -30 7 -21 

30 7 15 -30 7 -18 

30 7 18 -30 7 -15 

30 7 21 -30 7 -12 

30 7 24 -30 7 -9 

30 7 27 -30 7 -6 

30 7 30 -30 7 -3 

Note. a amount units were cents; b time units were seconds 

 

Procedures 
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Incentives. In all tasks, participants were paid for 10 % of trials randomly selected at 

the end of the experiment. For the loss condition, participants were first given a savings 

account with an amount equal to $2.35 to make sure participants would receive exactly the 

same maximum amount of money as in the gain condition if they had decided to always 

choose the waiting option. 

Instructions. Participants were randomly assigned to one of the four study conditions. 

For both the deferred and online waiting tasks, participants were told they would complete a 

questionnaire and a choice task. In the choice task, they would make a total of 50 choices 

during the study, and the incentive structure of the task was described. 

In addition, participants were asked to read instructions after they completed the 

questionnaire. The directions for all the four groups were kept as similar as possible. The 

general instructions for the choice task stated that people often face situations in which they 

must decide between two choices according to each choice’s characteristics. Both gain and 

loss examples were presented. They were all told that the following task was designed to 

study these types of decisions and the task involved playing a coin-machine game in which 

one machine gives out larger-valued coins slowly (or makes you pay them quickly); the other 

machine gives out smaller-valued coins quickly (or makes you pay them slowly). 

Participants were then shown screens from the corresponding task and given 

directions on how to complete the task. For the online waiting task, the instructions clearly 

stated that in each trial participants could either pick up the smaller coin (large coin for loss 

condition) or wait to pick up the larger coin (small coin for loss condition). For the deferred 

waiting tasks, after showing the screens, participants were told: “After you complete all 50 

trials, you will actually experience all the choices you’ve made”. 

Participants in each group were then reminded of the study incentives. That is, they 

would receive (or lose) real money for 10 % of randomly selected trials depending on gain 

/loss condition. As in Experiment 1, participants in the deferred waiting task were further 
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asked to wait the amount of time defined by their selections in all trials at the end of the study 

in order to receive the payments. 

Results 

Model-free analysis 

We included all participants in this model-free analysis. Among them, there were 5 

participants in the online gain group and 3 in the online loss group who always chose the 

smaller coin, and 1 participant in the online loss group who always chose the larger coin. For 

each participant, we counted the number of trials choosing the larger coin for each delay. 

Descriptive statistics appear in Table 9. 

Table 9 

Group mean frequencies of choosing the larger coin for each delay (Experiment 2) 

Delays Deferred gain 

(n = 48) 

Deferred loss 

(n = 46) 

Online gain 

(n = 46) 

Online loss 

(n = 50) 

7s 7.458(1.675) 7.870(1.809) 5.543(3.291) 7.260(2.717) 

15s 6.729(1.876) 7.478(1.941) 4.261(3.666) 6.460(3.045) 

29s 5.396(2.656) 6.783(2.564) 4.174(3.536) 4.400(3.188) 

56s 4.750(2.855) 6.152(2.538) 2.652(3.078) 4.000(3.417) 

101s 4.208(2.931) 5.609(2.840) 1.674(2.600) 3.080(3.212) 

Note. M(SD). 

An ANOVA with delay as a within-subjects factor and domain (gain/loss) and 

task(deferred/online) as two between-subjects factors revealed that there was a significant 

main effect of delay, F (4, 744) = 102.306, p < .001, #$ = .347, a significant main effect of 

domain, F (1,186) = 15.844, p < .001, #$ = .068, and a significant main effect of task, F 

(1,186) = 29.029, p < .001, #$ = .125. Participants were more likely to choose the larger coin 

for the shorter delays (compared to the longer delays), in the deferred task (compared to the 
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online task) and in the loss domain (compared to the gain domain). There was no interaction 

between domain and task, F (1,186) = .585, p = .445 

Parameter estimation results7 

We found again that the model (Equation 1) was able to accurately predict participant 

responses well, with a median of 90% responses predicted and a low Log Loss score of 0.34 

(see Figures 2a and 2b). This is also reflected in posterior predictive checks (see Figure 5) 

which compares our posterior beliefs about indifference curves to the observed behavioral 

data for a randomly selected group of participants. 

 

 

7 The same participant exclusion criteria from Experiment 1 was used. This resulted 
in 11 exclusions in the deferred waiting task (9 in the loss condition, 2 in the gain condition), 
and 19 in the online waiting task (6 in the loss condition, 13 in the gain condition). 
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Figure 5. Example data and model fits for Experiment 2. Explanation as in Figure 3. 

 

Descriptive statistics of estimated parameters appears in Table 10. As in Experiment 

1, mean ln(k) and ln(s) were back-transformed to k and s for reading simplicity. Mean 

parameter values for k are smaller in the deferred than in the online waiting condition, and 

this is also true for the s parameter. 



RUNNING HEAD: The effects of waiting in inter-temporal choice 

 

Table 10 

Group means of estimated parameters (Experiment 2). Individual participant parameter estimates were taken as the mean of the posterior 

distribution over parameters. 

 N k Ln(k) s Ln(s) ! 

Deferred gain 46 .038(.057) -4.321(1.595) 1.036 (.905) -.145(.568) 1.481(1.194) 

Deferred loss 37 .011 (.016) -5.004(.974) 1.310(1.312) -.009(.697) .961(1.234) 

Online gain 33 .066 (.052) -3.081(.944) 2.232 (1.766) .596(.616) .930(1.207) 

Online loss 44 .032 (.041) -3.976(1.017) 3.099 (2.837) .781(.847) 1.298(1.406) 

Note. M (SD). 



RUNNING HEAD: The effects of waiting in inter-temporal choice 

 
Estimated values of ln(k) and s are shown in Figure 6. Bayesian 2×2 ANOVAs 

elucidated the differences among groups and findings are discussed below. Again, the result 

of a test on the overall discounting as measured by AUC can be found in Appendix F. 

 

Figure 6. The 95% credible intervals of our posterior beliefs about group level ln(k) and s 

parameters for each of the 4 conditions in Experiment 2. The horizontal line at s=1 

corresponds to linear subjective time perception. 

 

Changes in k. We find decisive evidence (BF10 = 7.87E+6, compared to a control 

intercept-only model) for main effects of task and domain. ln(k) was larger in the online 

waiting than in the deferred task, and higher in the gain than in the loss condition. That is, 



43 

preference for smaller but immediate rewards was stronger for gains and stronger when 

waiting occurs online. 

Changes in s. We find decisive evidence for a main effect of task (BF10 = 2.65E+8, 

compared to a control intercept-only model). Again, we find that time is subjectively 

perceived as near linear in the deferred waiting condition and non-linear in the online waiting 

condition. A one sample (2-tailed) t test revealed decisive evidence that ln(s) values 

(collapsed over gain and loss domains) was greater than 0 in the online waiting task (BF10 = 

1.36E+9). There was strong evidence against non-linear time perception in the deferred 

waiting task (BF10 = 0.25). 

Slope parameter a. As in Experiment 1, we found no evidence of any effect of task 

and domain upon parameter !. 

Preference reversals 

The mean number of trials in which participants switched from a large option to a 

small option (LS) and switched from a small option to a large option (SL) are displayed in 

Table 11. On average, out of 50 trials, participants switched from a large coin to a small coin 

in 2.6 trials, and in 1.5 trials from a small to a large coin. 

Table 11 

Descriptive statistics for preference reversals in gain and loss conditions (Experiment 2) 

 Online Gain Online Loss 

LS 2.880 (3.777) 2.420 (2.607) 

SL 1.500 (3.442) 1.467 (2.873) 

Note. M (SD) 

 

The number of preference reversal cases for each delay was also counted. The fre-

quency and rates of LS and SL trials are shown in Table 6. Congruent with Experiment 1, the 

proportion of trials that participants switched from a large coin to a small coin increased with 
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the length of delay, while the proportion of trials participants switched from a small coin to a 

large coin decreased with the length of delay. This pattern was the same for both gain and loss 

conditions. In addition, the pattern indicated the tendency that participants were less likely to 

succumb to the immediate option in the loss compared to gain condition. 

Self-reported impulsivity and its relation to other measures 

Pearson’s correlation analysis was conducted among impulsivity, estimated 

parameters, and rate of LS. Statistics are shown in Table 12. 



RUNNING HEAD: The effects of waiting in inter-temporal choice 

Table 12 

Pearson Correlations Among Measures in Experiment 28. 

Deferred task 

 ln(k) ln(s) ! BIS 

ln(s) .257    

! -.008 .231   

BIS .173 -.081 -.119  

Online task 

ln(s) .028    

! -.128 .343*   

BIS .114 .006 .106  

LS .515* .098 -.044 .057 

Note. * are correlations of which BF10 > 3. BIS = the overall score of self-reported 

impulsivity. LS = rate of switch from a large coin to a small coin. 

 

8 As in Experiment 1, we detected no meaningful correlation between sub-scales of 
BIS-II with other measures. An expanded table including sub-scales of BIS-II can be found in 
the OSF data center of the present study.  



RUNNING HEAD: The effects of waiting in inter-temporal choice 

 
There was weak evidence showing that estimated parameter ln(k) is positively 

correlated with ln(s) in the deferred task (BF10 = 2.044), but not in the online task (BF10 = 

0.146). Impulsivity as measured by the BIS showed no correlation with k in both tasks. Rate 

of LS preference reversals were positively correlated with ln(k) just as in Experiment 1, with 

BF10 of 1.098E+4 (decisive evidence). 

Discussion of Experiment 2 

Experiment 2 replicated the findings of Experiment 1 where they overlap in design. 

Namely, we see a greater preference for smaller immediate rewards in the online waiting task 

and this was again associated with higher ln(k) values. Subjective time perception for gains in 

the deferred waiting task is near linear, but this becomes convex in the online waiting task. 

This consensus between experiments is edifying both in terms of the reliability of the 

Bayesian parameter estimation procedures and the consistency of the results across different 

groups of participants. 

Experiment 2 also expands our understanding of how people behave in deferred 

versus online waiting tasks in inter-temporal choice. Framing rewards as reduced losses 

increased preference of waiting, as predicted by the gain-loss asymmetry. Losses are 

associated with lower ln(k) values, as compared to the gain domain. 

Similar to Experiment 1, the analysis on preference reversals showed a significant 

agreement between the rates of preference reversals and parameter k. Table 6 shows that as 

the length of the delay increased, the likelihood of participants succumbing to the immediate 

option also increased. In addition, participants were less likely to show this type of preference 

reversals in the loss compared to the gain condition. In terms of BIS, self-reported impulsivity 

was not correlated with impulsivity measures derived from the behavioral task. 

General Discussion 
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According to a 1980 statement by the company FedEx, “Waiting is frustrating, 

demoralizing, agonizing, aggravating, annoying, time consuming and incredibly expensive." 

(Fortune, 28 July 1980, p. 10, as cited by Maister, 1984). The experience of the passage of 

time can be taxing as described by Maister, and thus companies in the service sectors spend 

significant efforts in managing customers’ satisfaction as a function of waiting. A well-known 

case is Disney’s creation of the FASTPASS which allows customers to essentially wait by 

doing something else. Customers can purchase a FASTPASS and return to an attraction at a 

later designated time without further wait. The system has been successful at maintaining 

customers’ satisfaction and also managing waits to rides (Cope et al., 2011). A separate 

literature has demonstrated that individuals as well as non-human animals tend to prefer 

sooner, smaller rewards to delayed, larger ones. This inter-temporal choice literature thus 

converges on the notion that waiting is essentially undesirable. 

However, few experimental studies have tested actual waiting between a selection and 

the receipt of a payoff. And few have also examined the extent to which a hyperbolic type of 

mathematical description is applicable to describing the psychological processes underlying 

making trade-offs with very small amounts of payoffs (in cents) and time units (in seconds). 

Given the relevance of these units in our current experiences with technology, for example 

the time it takes for a browser to display a web-page, our experiments are innovative and 

advance knowledge about impulsivity and time perception in discounting behavior in the 

“small”. 

Two experiments advanced interesting results pertaining to the experience of waiting 

in the context of making trade-offs between time and money. Results across the experiments 

indicated that the online experience of time paradigm resulted in stronger preference of 

immediate options than those based on deferred waiting. In addition, we analyzed our inter-

temporal choice data using a model (Equation 1), which allowed us to explore effects of 
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discount rates and subjective time perception. We discuss findings in more detail in what 

follows. 

Waiting over short durations 

Given that delay discounting studies typically examine (hypothetical) delays of days 

to years or decades, one might initially think that discounting processes over the timescale of 

seconds may be negligible. However, our everyday experiences suggest that time versus 

reward trade-offs are common with small time units, and thus, such trade-offs may be 

important to understand. Idleness and waiting even for very short durations can be highly 

aversive (Hsee et al., 2010) – people pay for faster internet connections or the latest mobile 

phone in order to save mere seconds of waiting time. Indeed, the classic marshmallow studies 

involved online waiting on the timescales of minutes (Mischel et al., 1989). 

For the timescales of seconds to minutes, we found substantial changes in inter-

temporal choice behavior between our online experienced waiting task and the deferred 

waiting task. This demonstrates the degree to which even small amounts of time can affect 

behavior when the waiting is experienced. Calculating from Tables 4 and 10 (half-life = 1/k 

based on Equation 1, meaning the amount of time it takes for a reward to half in present 

subjective value) shows group mean half-lives (for any reward of size A) varied between ~10 

seconds to ~1 minute. The online waiting conditions demonstrated the greatest reductions of 

reward A (half-lives between 10 and 30 seconds). We note that these results are similar to 

those from the experiential discounting tasks described in the introduction (Reynolds & 

Schiffbauer, 2004). Using delays up to 60 seconds and rewards of cents to a few dollars, they 

found sleep deprived individuals had half-lives of around 140 seconds compared to non-sleep 

deprived controls of around 170 seconds. 

Task differences 
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There is a growing number of studies proposing that subjective time perception 

contributes to the hyperbolic pattern of time discounting (Han & Takahashi, 2012; Takahashi 

et al., 2008; Zauberman et al., 2009), and time discounting effects such as the sign effect and 

magnitude effect (Bilgin & Leboeuf, 2010; Wang et al., 2015). These studies showed that 

decreasing time discounting is related to the effect that distant future time intervals are 

perceived as shorter than proximate time intervals of the same objective durations (Han & 

Takahashi, 2012; Takahashi et al., 2008; Zauberman et al., 2009). The sign effect and 

magnitude effect might be due to the fact that time is perceived as shorter when its outcomes 

are losses (vs. gains) and of larger magnitude (Bilgin & Leboeuf, 2010; Wang et al., 2015). 

While all these studies showed how perception of future time could be changed, and hence 

influence time discounting, the present study demonstrated that “experiencing” time differs 

from “imagining” future time, in subjective time perception related to discounting behavior. 

Consistent with the previous finding that time perception is easily influenced by factors such 

as attention focus, visual cues (Ebert & Prelec, 2007; Zauberman et al., 2009), the present 

study found that “experiencing” time made individuals perceive time as more convex 

compared to described time. This change from linear to convex subjective time function 

mapped to the heavier discounting in the online waiting task in two separate experiments. 

The result that k was larger in the online waiting than the deferred waiting task means 

that overall waiting, regardless of its length of duration, resulted in greater discounting in the 

online waiting than in the deferred task. However, we are careful to point out that the 

psychological meaning of k can be ambiguous (as it modifies delays suggesting a time 

perception role); thus, the interpretation of k needs external validation with other behavioral 

markers. In our experiments, we were able to observe reversals in preference that overtly 

showed switches from the desire to wait and the inability to do so. Although the extent to 

which the reversals occurred was low, only parameter k related to this type of impulsivity in 

both experiments. Therefore, the larger value of parameter k might imply that the online 
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waiting is more aversive than deferred waiting, as indicated by a shorter half-life (smaller 1/k) 

in the former than the latter. However, preference reversals can result from other factors; thus, 

we discuss the role of k in greater detail in what follows. 

Parameter k, preference reversals, and self-reported impulsivity 

The psychological meaning attributed to models’ parameters depends on the 

nomological network that they are embedded in (Cronbach & Meehl, 1955). The process of 

construct validation of measures entails a variety of methods, including but not limited to 

model fit. With regard to the parameter k, past research with hyperbolic models (e.g., 

Myerson & Green, 1995; Rachlin et al., 1991; Rachlin, 2006) have used k as an index of 

impulsivity or lack of self-control because of the models’ accountability of preference 

reversal (Ainslie, 1975). However, empirical evidence of the relation between parameter k 

and preference reversals is indirect, and mainly come from the finding that k is larger for 

people who are considered impulsive (e.g., drug abusers, chronic cigarette smokers) than for 

controls (Bickel, Odum, & Madden, 1999; Cheng, Lu, Han, González-Vallejo, & Sui, 2012; 

Madden, Petry, Badger, & Bickel, 1997). The present work was able to address the meaning 

of parameter k estimated from the modified Rachlin model by relating it to observed 

preference reversal, and self-report impulsivity. 

Notably, the observed preference reversal as measured by intra-trial switches and the 

possible preference reversal as implied by parameter k in the online task correspond to two 

different constructs in the literature. The former maps the delay-of-gratification (DG) 

paradigms (Walter Mischel et al., 1972) in which a decision maker encounters choices 

between a later-larger (LL) reward and a sooner-smaller (SS) reward that is always 

immediately available. It captures more about an individual’s ability in resisting immediate 

temptation. The second corresponds to the time-inconsistency construct as reflected by a 

hyperbolic discounting curve, which describes the effect that the subjective value of a future 

reward is acceleratingly increasing as it draws near. The hyperbolic discounting implies the 
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possibility of preference reversal in which a decision maker initially prefers an LL reward 

over an SS reward, but reverse their choice because the subjective value of the SS increased 

more quickly than that of the LL. More directly, time-inconsistency preference is evidenced 

by preference reversals observed from studies adopting either cross-sectional designs or 

longitudinal designs (Sayman & Öncüler, 2009). As pointed out by McGuire & Kable (2013), 

an important difference between the two is that in the delayed gratification paradigm, the 

subjective value of the sooner reward never changes. Therefore, even though both are 

frequently referred to as a measure of impulsivity or delay of gratification, the two constructs 

do not completely overlap. Compared to previous experienced time discounting tasks (e.g., 

EDT task as developed by Reynolds & Schiffbauer, 2004), an advantage of the online task in 

the present study is being able to measure intra-trial switches, the type of preference reversal 

mapping with the delayed gratification paradigm, in addition to the modelling approach. 

Therefore, a positive correlation between parameter k and the observed preference reversal 

suggests the two constructs are measuring something in common. 

While both studies revealed that parameter k in Equation 1 was positively correlated 

with observed preference reversals, we are cautious in interpreting the meaning of this 

correlation. Previous studies showed that preference reversal may be attributed to causes 

other than depletion of self-control resources (Baumeister & Heatherton, 1996; Cohen et al., 

2016), including affective interference (George Loewenstein, 1996), imperfect information 

about future events (Gabiax & Laibson 2017), change of time predictions about uncertain 

delays (McGuire & Kable, 2013), and even choice stochasticity (Rieskamp, 2008; Bhatia & 

Loomes, 2017). A particularly relevant concern for the present study is whether the observed 

intra-trial reversal was due to choice noise resulting from computational mistakes, and/or 

inattention to some elements of the decision (Rieskamp, 2008; Bhatia & Loomes, 2017). 

While it is difficult to differentiate observed reversals caused by choice errors from those 

caused by other reasons, using parameter ⍺ in the psychometric function to estimate choice 
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stochasticity, we found no substantial evidence of correlation between parameter ⍺ and 

observed preference reversal in both experiments. 

Likewise, other motives underlying preference reversal are difficult to distinguish 

from each other. Gabiax and Laibson (2017) illustrated that a decision maker can reverse his 

choice when vague information about future outcomes becomes more accurate as time passes. 

McGuire and Kable (2013) showed that people might reverse their choice because as waiting 

proceeds, their prediction of the remaining length of the uncertainty waiting might increase. 

Both theories interpret preference reversals as a result of a rational cost-benefit tradeoff. As 

explained by Gabiax and Laibson (2017), such accounts do not predict the choice of 

commitment devices, in contrast to interpretations based on affective interference, depletion 

of self-control strength. However, in the present study, both outcomes and waiting time were 

certain and fully informed to participants, hence observed preference reversal might mainly 

be due to factors such as affective fluctuations, depletion of self-control, and weak decision 

strength. Therefore, we interpreted the positive correlation between parameter k and 

preference reversals to mean that an individual with a higher k might also be more likely to 

reverse their choices because they experienced more affective fluctuations during the waiting 

procedure, or he was less certain about his original choices, or he might possess less self-

control resources. Given that impulsivity is a multidimensional construct (Duckworth & 

Kern, 2011; Evenden, 1999), this correlation between k and observed preference reversal 

serves to validate that parameter k captures some aspects of self-control or impulsivity. 

However, future studies are needed to give parameter k a more precise interpretation. 

In contrast, the self-reported impulsivity as measured by BIS-II was correlated with k 

only for the online task in Experiment 1. No correlation was detected in the deferred tasks or 

the tasks in Experiment 2. In addition, self-reported impulsivity and its sub-scales were not 

correlated with any other variables derived from the behavioral tasks. Given the varieties of 

impulsivity, this result is not surprising. In agreement with the present result, in a study using 
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an EDT task, Reynolds et al. (Reynolds, Penfold, & Patak, 2008) found no correlation 

between BIS and responses in the EDT tasks. More generally, a great number of previous 

studies found no correlation, or a very small correlation between self-reported impulsivity and 

behaviorally measured impulsivity (Cyders & Coskunpinar, 2011; Duckworth & Kern, 2011; 

Malesza & Ostaszewski, 2016). For studies which found correlations, the correlation was 

typically between some specific subscales and a specific behavioral task. For example, Lange 

and Eggert (2015) used BIS, GO/No-Go task, and delay discounting choice task (DD) to 

measure participants’ impulsivity. They found that DD did not correlate with any components 

of BIS, but the Go/No-Go task correlated with attention impulsivity and motor impulsivity. 

Even though the number of trials in which participants reversed their choices was too 

small to be studied at the individual level, the results showed interesting patterns that agree 

with general findings in the time discounting literature. That is, participants were less likely to 

reverse their waiting in the larger (compared to the smaller) magnitude condition and in the 

loss (compared to the gains) domain. Preference reversals occurred more for longer delays – 

when the length of delay was 101 seconds and the probability of switching to the immediate 

option ranged from 25%-36% across the four online waiting conditions. 

Gain-loss asymmetry and magnitude effect 

We found a strong gain-loss asymmetry (Frederick, Loewenstein, & O’Donoghue, 

2002; Hardisty & Weber, 2009) – choices of waiting were more frequent in the loss domain. 

Regarding subjective time perception, previous studies found that subjective time was 

perceived as shorter in the loss domain than in the gain domain (Han & Takahashi, 2012). In 

the present study, we found no substantial evidence for this. In addition, the trend is that the 

subjective time perception function was more convex in the loss condition than in the gain 

domain. We speculated that this contradiction might be related to the large difference of 

timescales the two studies used (delays were of weeks, months, and years in Han et al.’s 

study). Nevertheless, time perception of small periods might differ from that of long intervals. 
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For short periods of time, studies in time perception literature generally show that negative 

emotion is associated with slower perceived time (Droit-Volet & Gil, 2009; Langer et al., 

1961; Noulhiane et al., 2007). Hence, future studies are needed to test the effect of outcomes 

(gain versus loss) in time perception at varying time scales. We also found that the k 

parameter decreased in the loss condition, hence capturing the reduction in discounting when 

compared to the gain domain. 

Our unexpected failure to find a magnitude effect, normally a robust phenomenon, 

could be the result of two main methodological factors. First, while the relative difference of 

the magnitudes was large (double), the absolute difference in the magnitudes was small 

compared to previous studies (e.g., Green, Myerson & McFadden, 1997; Cheng & González-

Vallejo, 2014). Second, the lack of a magnitude effect is actually a common observation in 

non-human studies of inter-temporal choice (Freeman et al., 2009; Green et al., 2004). In such 

studies the reward magnitudes differ by a factor of about 1.5-2 and involved short (< 16 

seconds) delays. Further work is required to more firmly establish the boundary conditions of 

the magnitude effect. 

Future studies 

Based on the findings from the present work, we outlined that there are at least three 

research aspects future work should address: 1) Further replicate the present findings with 

expansion to other time units for both the online and deferred waiting tasks. Even though the 

present work showed similar overall pattern of discounting behaviors as traditional tasks 

involving long delay units (both are well described by hyperbolic models), there might be 

some qualitative differences in aspects such as time perception. 2) Advance our 

understanding of psychological meaning of related constructs (e.g., self-control, impulsivity), 

model parameters (e.g., k), and their relations with behavioral expressions (e.g., observed 

preference reversal, discounting behavior). 3) Validate model fitting results with results from 

empirical studies. For example, the present work showed time perception differs between 
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online and deferred waiting tasks. This result however requires validations from experimental 

measures of subjective time perception. 

Conclusion 

In summary, we outline the development of a new experimental paradigm to study 

inter-temporal choice preferences. We overcome some methodological limitations from 

previous studies, and further explore how the latent factors of delay discounting, and 

subjective time perception, vary across deferred vs. online waiting delays; high vs. low 

rewards; and gains vs. losses. We provided initial but compelling evidence that a model, 

Equation 1, based on adjustments to the hyperbolic forms found in previous works, captured 

the behavioral data well and provided meaningful parameter values that advanced our 

understanding of the cognitive processes underlying discounting behavior. There is an 

emerging view that subjective time perception should be taken more seriously in the study of 

inter-temporal choice (Kim & Zauberman, 2009; Zauberman et al., 2009), and the present 

work demonstrates that inter-temporal choice tasks with online waiting are particularly useful 

in further elucidating the role of subjective time perception and discounting mechanisms. 

 



56 

Appendix A 

The Barratt Impulsiveness Scale (BIS-II) 
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Appendix B 

Exact instruction of waiting procedure for the deferred task 

 

 

• After you complete all 50 trials, you will actually experience all the 
choices you’ve made. 

• For example, if you’ve chosen Machine 1 for bellow trial:
Machine 1                   Machine 2: 
30 ¢ 101s 18 ¢ 0 s

then you will need to wait 101 seconds to get 30 ¢. If you’ve chosen 
Machine 2, then you do not need to wait but you will only get 18¢.
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Appendix C 

In order to check that use of the two-parameter modified Rachlin discount functions 

was warranted, above and beyond the traditional Hyperbolic discount functions, we 

conducted model comparison, for both experiments. We found that the modified Rachlin was 

the best model for both experiments, even when accounting for model complexity using the 

Widely-applicable Information Criterion (WIAC; Watanabe, 2013) metric (see Figure C1). 

There are many methods of model comparison, with no agreed upon ‘best’ method – we 

chose to use the WAIC because it is ‘fully Bayesian’ and built into the PyMC3 software we 

used to conduct our Bayesian analyses with (Salvatier et al., 2016). We therefore have good 

justification for proceeding with the modified Rachlin discount function. 
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(a) 

 
(b) 

 

Figure C1. Results of the model comparison between the modified Rachlin and the 

Hyperbolic discount functions for Experiment 1 (a) and Experiment 2 (b). For both 

experiments, we see the modified Rachlin model has the best (lowest) WAIC values (see 

vertical dashed lines). The WAIC values for the hyperbolic models were worse (see 

triangles). Empty circles represent the WAIC, along with standard deviations. The dashed 

vertical line marks the model with the lowest (best) WAIC score. Filled circles represent the 

in-sample deviance and can be seen as a measure of goodness of fit (lower values are better) 

not taking model complexity into account. Grey triangles show the difference between the 

two models and the associated standard deviation, which is most important for determining if 

a model is meaningfully worse than the best model. 
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Appendix D 

We chose priors which were informative but also relatively broad, such that the 

posterior over parameters is largely influenced by the data available. Figure D1 visualizes the 

priors at the participant level, before any data has been observed. 

 

Figure D1. Demonstration of priors over parameters for both experiments. Prior distributions 

over ln(k) and ln(s) are shown in panels a-b. Panel c shows 500 discount functions with (k, s) 
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parameters sampled from these priors. Our broad priors over the relevant range of parameter 

values correspond to a broad spread of possible discount functions, indicating that our priors 

will not unduly influence our final posterior parameter estimates. 
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Appendix E 

In order to ensure that our parameter estimates are meaningful, we conducted a 

parameter recovery simulation. We ran 200 simulated delay discounting experiments 

adhering exactly to the protocol we used with real participants, as laid out in the Methods 

sections. Each simulated experiment has a simulated participant with true parameter values 

randomly sampled from -5 < ln(k) < -0.5 and ln(0.5) < ln(s) < ln(3). We simulated the 

responses using the generative model as described by Equations 2-11. More specifically, after 

having obtained the probability of choosing the delayed reward we generated a response as a 

biased coin flip (Bernoulli trial). 

For each simulated experiment, we used our Bayesian inference procedure as outlined 

in the Methods. What we want to know from the parameter recovery is – for a given 

simulated participant with known true parameters, can we recover those parameters 

accurately using our inference procedure? Therefore, the only modification to the inference 

procedure described in the Methods was to use an individual participant level model. 

Figure D1 shows the results of the parameter recovery. We can see that parameter 

recovery for ln(k) is very good in that we have low/no bias, recovered parameters are tightly 

correlated with their true values, and we have good precision in our posterior estimates. 

Parameter recovery is also good for ln(s) and does not contain any systematic bias, although 

the estimates have slightly higher variability around the true parameter values. We can gain 

further confidence by comparing our parameter estimates with posterior predictions and 

directly compare those to see if they are consistent with the behavioral data. Examples of such 

plots are seen in Figures 4 and 5. Given our exclusion criteria, removing participants with 

high proportions of choosing delayed or immediate choices, and checking of posterior 



63 

prediction plots against behavioral data, we have confidence that our inference procedure is 

capable of accurately recovering parameter values given our set of discounting questions. 

 

Figure E1. Results of the parameter recovery simulations. Points and error bars represent the 

mean and 95% credible interval of the posterior, respectively. 

We also tested our ability to recover correlations in log(k) and log(s) parameters in 

groups of simulated participants. To do this we simulated 30 separate groups of 40 

participants whose log(k) and log(s) parameters were sampled from the bivariate normal 

distribution 

$%&'()*(,), '()*(/)0, 1
2()*(,)3 4 ∙ 2()*	(,) ∙ 2()*	(/)

4 ∙ 2()*	(,) ∙ 2()*	(/) 2()*(/)3 78 
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where r varied in 30 uniform steps between -0.8 and +0.8. We set '()*(,) = log	(1/50), 

2()*(,)3 = 1, '()*(/) = 0, 2()*(/)3 = 0.2. For each group, our Bayesian parameter recovery 

procedure was applied to all simulated participants and the recovered group correlation 

coefficient was calculated. Figure E2 shows that over a broad range of true correlation 

coefficients between log(k) and log(s), we are able to recover the true underlying correlation 

coefficient with reasonable precision. 
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Figure E2. Results of the parameter recovery simulations. Points and error bars represent the 

mean and 95% credible interval of the posterior, respectively.
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Appendix F 

Calculation of AUC measure. We calculated the Area Under Curve metric (AUC, 

Myerson, Green, & Warusawitharana, 2001) for the discount fraction f as a function of delay 

C(D, E, F) = 1/(1 + (ED)/)) which captures the combined effects of discounting and 

subjective time. Note that this is a model-based approach (Gilroy & Hantula, 2018) as 

opposed to the originally proposed point-based method by (Myerson et al. 2001). 

Because we have many MCMC samples representing a distribution over k and s, this function 

was evaluated for all MCMC samples, giving rise to a distribution of AUC values for each 

participant. As with other variables, we took the posterior mean as our point estimate. The 

function was evaluated for many values, in 1-second increments, and trapezoidal integration 

was used to calculate the AUC. The AUC was appropriately normalized by rescaling delays 

between 0-1 such that someone who does not discount would have AUC=1. 

AUC analysis for Experiment 1. We found decisive evidence (BF10 = 78.70) for a 

main effect of task. That is, the data is 78.70 times more consistent with there being a main 

effect of task, compared to an intercept-only model. The AUC was lower in the online waiting 

task, showing strong evidence for increased discounting in the online waiting task as 

compared to the deferred waiting task. 

AUC analysis for Experiment 2. We find decisive evidence for main effects of both 

domain (gain/loss) and task (BF10 = 6.59×105, compared to a control intercept-only model). 

AUC is lower for the online waiting task compared to the deferred waiting task (i.e. present 

bias is stronger in the online waiting task), in line with Experiment 1’s finding. Additionally, 

AUC is lower in the gain condition than in the loss condition, which is consistent with the 

sign effect. 
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