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Planning maximum-manipulability cutting paths
T. Pardi, V. Ortenzi, C. Fairbairn, T. Pipe, A. M. Ghalamzan-E., and R. Stolkin

Abstract—This paper presents a method for constrained mo-
tion planning from vision, which enables a robot to move its
end-effector over an observed surface, given start and destination
points. The robot has no prior knowledge of the surface shape,
but observes it from a noisy point cloud. We consider the multi-
objective optimisation problem of finding robot trajectories which
maximise the robot’s manipulability throughout the motion, while
also minimising surface-distance travelled between the two points.
This work has application in industrial problems of rough robotic
cutting, e.g., demolition of legacy nuclear plant, where the cut
path needs not be precise as long as it achieves dismantling.
We show how detours in the path can be leveraged to increase
the manipulability of the robot at all points along the path.
This helps to avoid singularities, while maximising the robot’s
capability to make small deviations during task execution. We
show how a sampling-based planner can be projected onto
the Riemannian manifold of a curved surface, and extended
to include a term which maximises manipulability. We present
the results of empirical experiments, with both simulated and
real robots, which are tasked with moving over a variety of
different surface shapes. Our planner enables successful task
completion, while ensuring significantly greater manipulability
when compared against a conventional RRT* planner.

Index Terms—Motion and Path Planning, Kinematics,
Robotics in Hazardous Fields

I. INTRODUCTION

ROBOTIC cutting involves an interesting problem of path-
planning for a serial arm under semi-closed chain con-

straints. The end-effector cutting tool is constrained to touch
the cutting surface, thereby forming a closed chain at any given
time step. However, the cutting surface can be regarded as a
manifold upon which the end-effector has locally two or three
degrees of freedom to move, e.g., cutting with rotary tools.
The problem of our interest is rough cutting, e.g. in robotic
demolition in hazardous environments. In such applications,
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Fig. 1. Nuclear decommissioning worker wearing an air-fed plastic suit
underneath a heavy leather overcoat, and multiple layers of gloves, while
using power tools to cut legacy nuclear plant contaminated by alpha-radiation
emitting substances, such as plutonium dust. The leather coat protects the
plastic suit from being punctured by hot sparks during cutting. Maximum
2hrs work per day is possible, due to extreme discomfort and heat exhaustion
as the suit fogs and fills with sweat. Image courtesy of Sellafield Ltd.

the exact cutting path is not important, as long as the robot
successfully, e.g., cuts an object into two pieces, or cuts open
a container to inspect its contents. Here we therefore address
the cutting-path planning for a serial manipulator.

Rough cutting is a key element for using robots for cleanup
of legacy nuclear waste [1], [2]. This is an international
challenging problem in more than 30 countries with a nuclear
history. The UK alone contains an estimated 4.9 million tonnes
of legacy nuclear waste [3], dating back to the 1950s. The UK
legacy cleanup is expected to take 120 years, at a cost of order
$300billion. Numerous ageing and disused buildings contain
contaminated plant, vessels, pipework and “cell furniture”
which must be dismantled. All waste must be “size-reduced”
to fit the maximum waste into the minimum expensive storage
containers which must each be stored and monitored for
many years at great cost. It is also necessary to cut highly
contaminated material (e.g., a hot spot in a pipe) away from
more benign material - this saves filling extremely expensive
high-level waste containers with low hazard material. Without
significant advances in robotics, it is expected that the UK
cleanup will require one million entries of human workers,
wearing air-fed plastic suits, into hazardous zones, Fig. 1.
However, in many cases, radiation levels are too high to
permit any entry of humans, even with protective suits. Robotic
demolition methods will be essential in such cases.

A variety of tooling can be used for robotic cutting. Our
team previously worked closely with the UK nuclear industry
to achieve a world-first autonomous vision-guided robotic laser
cutting of contaminated metal inside a radioactive facility [4].
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Lasers, and other non-contact methods such as water jet or
plasma cutting, are convenient in that no contact forces are
exerted, although close geometric surface following (with a
few millimetres stand-off) must still be achieved.

In contrast, we are now considering the use of axial rotary
cutting tools (similar to a milling machine cutter). Kinematic
path-planning constraints for such tools are similar to those
for a laser: the cutter axis must be maintained normal to local
surface curvature, and rotations of the robot around the tool
axis are allowable. However, with the rotary cutter, forceful
interactions between the robot and cut materials of uncertain
properties, introduce significant perturbations. We would like
the robot to have sufficient manipulability to provide capacity
for responding compliantly to such perturbations, while fol-
lowing a cutting path between two points given by a human
operator. Maximising manipulability [5] also results in motion
plans which will not cause any joints of the robot to pass near
singularity configurations.

This paper shows how to plan serial manipulator cutting
paths, on smooth but otherwise arbitrarily shaped surfaces,
observed as a noisy Point Cloud (PC). We show how points
from the PC can be used to generate a net of possible path
nodes, by mapping them from Euclidean space onto a Rieman-
nian manifold in which sampling-based path-planning takes
place. We further show how a cost function can be constructed,
which considers kinematics and reachability constraints, while
evaluating manipulability of the robot throughout its motion
along any candidate path. The main contributions of this
paper are as follows: (1) we propose a procedure to project
observed points from the PC onto the Riemannian manifold of
the object; (2) we design a bi-objective cost function, which
maximises manipulability, while also reducing overall path
length during path optimisation; (3) we incorporate the cost
function into an RRT* planner; (4) we empirically evaluate
the planner with both real and simulated robots, on a variety
of surface shapes.

This paper is structured as follows. Section II explains
our work in the context of the robot path-planning literature.
We formulate the problem in Section III, describing the
manipulability index and Riemannian manifold. Section IV
shows how the concepts from Section III can be incorporated
into a modified RRT* algorithm, which computes a path on a
Riemannian surface observed as a noisy PC, while maximising
manipulability along the path. In Section V, we demonstrate
the effectiveness of our modified RRT* cut planner, in exper-
iments using simulated and real robots. Our proposed planner
yields cut paths with higher manipulability as compared to a
conventional RRT* approach.

II. RELATED WORK

There is comparatively little literature from the robotics
research community on cutting. Recent work on robotic tool
use includes e.g. [6], in which a co-bot learns to assist a human
with a backwards and forwards sawing motion. However, this
work does not consider actually planning a cutting path. There
is a large body of literature on path-planning for tool paths
in multi-axis CNC machining [7]. Such work is aimed at

precision manufacturing, where it is essential that the cutting
tool rigidly follows an exact path through the work-piece with
a known geometrical model.

In contrast, for rough cutting in e.g. nuclear decommission-
ing or disaster response, we are not concerned about following
exact cut paths. Instead, it is much more important for us to
consider safety of the manipulator’s kinematics throughout the
motion. We therefore modify the cutting path itself, to avoid
singularity configurations for the arm, and to improve robust-
ness to perturbations by maximising manipulability throughout
the motion [8], [9]. Furthermore, our applications involve
highly unstructured environments, Fig. 1. Thus, we must plan
cuts on arbitrary objects observed by noisy partial PC views.

There are well established robust methods for robot path-
planning with obstacle avoidance. Early work by Khatib
modelled obstacles as artificial potential fields, and optimised
collision-free paths by descending an energy gradient, [10].
More recent methods for path-planning by gradient descent
of cost functions, include the well-known CHOMP [11] and
STOMP [12]. However, the computation complexity makes
such approaches not suitable for close to real-time applica-
tions. On the other hand, it is now common to use sampling-
based methods, such as PRM [13], RRT [14], and RRT* [15],
[16], to generate a net of points which can be explored to
find collision-free paths faster than STOMP and CHOMP.
However, unmodified conventional path planning algorithms
are not immediately useful for computing a cutting path on
an object surface suitable for a robotic manipulator. An end-
effector (cutting tool) path computed with these approaches
may be out of the reachable workspace of the manipulator or
may pass through singular configurations of the robot.

Various authors have sought to augment the classical path-
planning approaches by incorporating modified cost functions,
based on additional information, to induce useful supplemen-
tary robotic behaviours. A cost-based optimisation approach
was proposed in [17], to enable an Autonomous Underwater
Vehicle to plan a path between specified start and destination
locations. The robot plans large deviations in its route, to
avoid adverse currents, while exploiting currents in useful
directions to minimise energy expenditure during the journey.
Related Unmanned Aerial Vehicle literature also considers
environmental factors, e.g. [18]; and planning on non-flat
surfaces with constraints is considered in legged locomotion
[19]. However, the constraints imposed by a manipulator’s
kinematics are different from those of mobile robots.

[20] generates paths on surfaces using a sample-based
approach. In contrast with our work, an a-priori mathematical
description of the surface is assumed. During cutting, a serial
arm is constrained to form a closed chain with the cut surface.
A smaller body of work involves planning of the end-effector
under constraints, [21], [22].

In [23] and [24], a transition-based RRT algorithm, driven
by a work-based cost, generates a collision-free path between
points. In [25], a heuristically biased RRT is proposed to guide
the search on the tree. Inverse kinematics guides an RRT-based
search [26], while the manipulability of the robot is exploited
to bias the sampling process in [27]. Our previous work [8],
[9] proposed a metric for evaluating manipulability throughout
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an entire trajectory, and showed how this could be applied
for grasp planning. Here we extend these ideas to cut-path
planning.

III. PROBLEM FORMULATION

We generate paths from point A to point B using RRT*.
To cope with noisy point clouds of objects, we incorporate
Riemannian manifold mapping to generate samples on a
smooth surface. We introduce a cost function, based on the
manipulability of the robot, into RRT* to address possible
kinematics issues throughout motions. These modifications to
the naive RRT* guarantee that the computed path (i) connects
the start point (A) and the endpoint (B) (possibly specified by
a user), (ii) lies on the object surface and (iii) is feasible for
the manipulator. We call our approach “RRT*-RMM” (RRT*
with Riemannian Manifold mapping and Manipulability cost).

Rapidly-exploring Random Tree*: Rapidly-exploring Ran-
dom Tree (RRT) is one of the most common sampling-based
path planners, [14]. The basic idea behind RRT is to sample
points within a space of interest, e.g. either in Cartesian or
configuration space, and add them in a tree structure based on
a distance metric. At every iteration, the algorithm generates
a new point taking into account constraints imposed by, e.g.,
the robot kinematics. Then, it connects that point to the closest
node in the tree. RRT* [15] is an extension to the classical
RRT, which allows the re-evaluation of nodes already in the
tree when a new point is available. This procedure is usually
referred to as rewiring. During the rewiring, the algorithm
selects the neighbourhood of a point (points in the tree within
a range distance to the point) and evaluates whether these
nodes improve their value passing through the new available
point. This process provides RRT with better convergence to
a solution and the solution converges to the shortest path as
the number of samples goes to infinity.

Manipulability: Let q ∈ Rn represent the robot configu-
ration where n is the number of degrees of freedom (dof) of
the robot. Given a specific q, position and orientation of every
point of the robot are uniquely defined (forward kinematics).
This mapping, fr, is commonly expressed as

r = fr(q), (1)

where r ∈ Rm is the position and/or the orientation of a
point of interest of the robot in the Cartesian space and m
is the dimension of this representation (e.g., m = 3 for 3D
position, r = [p]; or m = 6 for 3D position (p) and Euclidean
orientation (ψ), r = [p ψ]T )). Differential kinematics are
defined using the robot Jacobian J(q) as

ṙ = J(q)q̇ (2)

and relate velocities in the configuration space to velocities
in the Cartesian space1. If we constrain the norm of the
configuration velocities to be unitary, the configuration lies
on the unitary sphere S1

|q̇| = q̇T q̇ = ṙTJ†TJ†ṙ = ṙTΓ†ṙ = 1 (3)

1Since the Jacobian matrix always depends on the configuration q, we drop
the dependence on q, and in the following we write J(q) as J .

(a) (b)

Fig. 2. An experimental robotic cutting setup (Fig. 2(a)). A 3-D camera
(positioned in front of the robot at 2.8 [m] distance facing the robot) captures
the point cloud of the object surface. Our approach computes a cutting path
with given initial and end points. This path is suitable for the robot kinematics
as our algorithm accounts for a manipulability index. Fig. 2(b) shows the
manipulability of the robot: each point is coloured based on the manipulability
corresponding to the configuration the robot is in when its end effector touches
such point. Points with lower manipulability are shown in blue; points with
higher manipulability are represented in yellow and red.

where † is the inverse matrix whether J is square or the
pseudo-inverse matrix otherwise. Previous work leverages
manipulability to yield optimal manipulation movements for
planning a suitable grasping pose [9]. We would also like to
optimise the manipulation capability for robotic cutting. The
conventional measure of manipulability [28] is defined as

w(q) =
√
det(Γ) =

√
λ1λ2...λn, (4)

where λi are the eigenvalues of Γ. This index provides a
value that is proportional to the volume of the manipulability
ellipsoid, and it does not require a long computational time.

Riemannian Manifold: A manifold is an n-topological space
that approximates the Euclidean space in the neighboorhood
of its points [29]. A smooth manifold is a differentiable
manifold for which all the transition maps are smooth. That
is, derivatives of all orders exist; so it is a Ck-manifold for
all k.

A Riemannian manifold is a pair [M, z] where M is a
smooth manifold and z is an inner product of two vector spaces
on the manifold. The family of these inner products represents
the Riemannian metric.

In Fig. 3, a smooth manifoldM is shown using red colour,
and in blue the figure shows the tangent plane toM at a point,
p ∈M, namely TpM.

By definition of Riemannian manifold, given a point pT ∈
TpM and a manifoldM, as per Fig. 3, a function which maps
the point pT onto the manifold M exists [29]. Applying the
mapping to the point pT , we obtain a point pM ∈M, which is
the projection of pT ontoM. The red vector connecting p and
pM in Fig. 3 is unique, and it represents the shortest travelling
distance between the two points lying onto the manifold,
namely the geodesic distance. The map between points onto
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Fig. 3. Given a smooth manifold M, showed in red, the neighbourhood of
every point p onto the manifold can be approximated with a tangent plane
TpM, coloured in blue. The function φ uniquely maps every point p′ ∈
TpM onto the manifold M, namely p′′.

the plane TpM and points onto the manifold M is called
exponential map, φ : TpM 7→ M, and it is defined as per
eq. (5).

pM = φ(pT ) = expp(pT ). (5)

Conversely, the inverse mapping that projects point belong-
ing to the manifold,M, onto the tangent plane, TpM, is called
logaritmic map, φ−1 :M 7→ TpM.

pT = φ−1(pT ) = logp(pM) (6)

IV. PROPOSED METHOD RRT*-RMM

Given a Point Cloud of an object, which includes a set
of points, i.e., P = {p1P, ...,pmP }, where pP ∈ R3 and m
is the number of points in the set, we need to compute a
series of points representing a cutting path between a given
initial point pAP ∈ P, and a given terminal point pBP ∈ P.
We use standard inverse kinematics to obtain the joint space
configuration, qA, corresponding to pAP . We assume a PC
captured by a depth sensor is a noisy data of a smoothly
curved object, i.e., pP = p̂M + σ, where σ ∈ R3 is white
noise and p̂M is a point sampled from the manifold. We
assume the set of points p̂M to represent (discretely) a smooth
(Riemannian) manifold. We aim to build a tree structure whose
nodes represent a path suitable for a cutting task. Every node
of the tree η includes a robot’s end-effector (EE) pose suitable
for cutting, r = [pM, ψ]

T where pM and ψ denote the
corresponding position and orientation, and the corresponding
robot configuration q, i.e. η = {pM,ψ, q}. The desired tree
includes a series of points ξ = {p1M,p2M, ...,pnM}, where
piM ∈ M, and ξ connects the desired initial, p1M = pAP , and
terminal points, pnM = pBP . We assume the orientation of the
end-effector is determined by a cutting task, e.g., for cutting
with a knife, the EE must be normal to M and the the knife
needs to cut the object moving from pi−1M to piM.

At the j-th iteration of our algorithm, a point from the PC
is randomly selected, prandP ∈ P. Then, the algorithm finds
a tree’s vertex, ηj = {pnearestM ,ψ, q}, whose point, pnearestM ,
has the minimum distance to prandP . Because we do not have
a mathematical expression of the object surface, which can
be represented by M, we cannot compute a plane tangent to
M. However, we can approximate the tangent plane at point
pnearestM , namely TpM, by applying principal component
analysis (PCA) on the points in the close neighbourhood of

pnearestM . We now project the point prandP onto TpM, we
name the projected point as pT ∈ TpM. Then, we compute
the point pβT using the projected and nearest points as per
eq. 7 by choosing a very small value for the step size β.
This ensures the updated value on the tangent plane will be
correctly mapped onto the Riemannian manifold through the
exponential mapping in the next steps of the algorithm.

pβT = pnearestM + β(pT − pnearestM ). (7)

Fig. 4 summarises the steps for projecting points from the PC
to the manifold. This figure shows a sample PC, the underlying
smooth manifold in red, and the tangent plane to pnearestM ,
TpM, is shown with blue colour. In Fig. 4(b), pT is the
projection of prandP onto TpM. We choose β in eq. 7 to
be a positive definite value with β � 1, this assures us that
the projected point on the tangent plane, pβT , is very close to
pnearestM , Fig. 4 (c), which satisfies the underlying assumption
for exponential mapping from tangent plane to the Riemannian
manifold, M, [29]. Note that pnearestM , pβT , and pT lie on
the tangent plane, Fig. 4 (c). Finally, we obtain a new point,
pnewM ∈M using exponential mapping, as per eq. (5). In order
to account for the kinematic of the manipulator in our cutting
path planning, we introduce a modified cost to be used in our
RRT* algorithm. We use (1) a cost accounting for the distance,
denoted by Cd, and (2) a cost for manipulability, denoted by
CM .

As for Cd, we compute the sum of all segments over the
path to reach pnewM starting from the root of the tree, p1M.
That is the sum of Euclidean distances between consecutive
points in the tree {p̄1M, p̄2M, ..., p̄IM}, which is the sequence
of points from the root of the tree to the point pnewM , as per
eq. (8).

Cd(p
new
M ) = g(p̄IM,p

new
M ) +

I∑
i=1

g(p̄iM, p̄
i−1
M ) (8)

where I is the number of points visited in the tree before
reaching pnewM and g(.) is the geodesic distance between two
adjacent points in the path. Assuming adjacent points are
very close, this geodesic distance can be approximated by
g(pi,pi−1) = ‖pi − pi−1‖.

The manipulability cost is also computed over the path, as
per eq. (9).

CM (qnew) =
1

I + 1

(
1

w(qnew)
+

I∑
i=1

1

w(qi)

)
(9)

where qnew = qnearest + J†(rnew − rnearest) is the
corresponding configuration computed using the differential
kinematics to match the displacement between pnearestM and
pnewM , q1 = qA, and w is the manipulability index presented
in eq. (4). We use the inverse of w so that minimising the
manipulability cost is equivalent to maximising manipulability.

Eventually the cost is a weighted sum of CM and Cd, as
per eq. (10).

C(pnewM , qnew) = (1− α)Cd(pnewM ) + αCM (qnew) (10)

The coefficient α ∈ [0, 1] sets a trade-off between CM and
Cd. The proposed algorithm turns into the classical RRT*
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Fig. 4. This image shows the procedure to obtain a new point on the manifold from a point on the Point Cloud (PC). We sample a point from the PC, P, and
obtain prandP , Fig.4(a). We project prandP onto the tangent manifold TpM and obtain pT , Fig.4(b). Then, we take a step starting from pnearestM towards
pT using β, and obtain pβT , Fig.4(c). Finally, Fig.4(d) shows the mapping of the point pβT ∈ TpM to the manifold M using the map φ, thus obtaining
pnewM .

Algorithm 1 RRT*-Riemannian-mapping-manipulability
1: Param: η = {r, q}, is tree node,
2: r = [pM, ψ] is end-effector pose on M
3: tree.init(η1)
4: for k = 1 to K do
5: prandP ← getPointFromPntCloud()
6: rnearest, qnearest ← Nearest(prandP )
7: TpM← computeTangentP lane(pnearestM )
8: pT ← projectOnTangentP lane(prandP , TpM)

9: pβT ← takeAStep(pT ,p
nearest
M )

10: pnewM ← expRiemannianMap(pβT )
11: ψnew ← getTangentP laneNormal(TpM)
12: rnew ← [pnewM , ψnew]T

13: qnew ← qnearest + J†(qnearest)(rnew − rnearest)
14: if ObstacleFree(qnew) then
15: Rnear ← getSetofNearV ertices(rnew)
16: for h = 1 to H = |Rnear| do
17: Cd ← computeDistance(rnew,Rnear(h))
18: CM ← computeMan(rnew,Rnear(h))
19: C(h) = (1− α)Cd + αCM

20: rbest ← selectMinimumElement(C)
21: tree.addVertex(ηnew)
22: tree.addEdge(ηbest, ηnew)
23: tree.rewire(Rnear, ηnew)
24: return tree

when α → 0; while α → 1 means only the manipulability is
considered for planning the cutting path. This parameter must
be chosen based on the corresponding domain knowledge, e.g.,
we may need a different value of α for cutting with a knife
or for cutting with a rotatory tool.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We use a Panda robot manufactured by Franka EMIKA for
the real-world experiments2. We also provide some results

2Experimental results are reported in the attached video.

with Sawyer in V-REP3. Although, both Panda and Sawyer
are 7-DOF robotic arms equipped with a standard parallel jaw
gripper, they have different kinematic chain. This shows how
the proposed approach is readily transferable across different
manipulator’s kinematics. An Orbbec Astra RGB-D camera
scans the area in front of the robot (Fig. 2), and we remove
points outside the robot’s workspace as preprocessing filtering
on the point cloud. The camera is calibrated with respect to the
robot base frame. As such, we can express the PC captured by
the camera in the robot base frame. Furthermore, we attach two
markers to each object, as shown in Fig. 5(a). These markers
represent the start point A and the end point B of the path and
allow a human operator to select the initial and end points of
the cut. The RGB-D camera takes the point cloud of the scene
in front of the robot as input, and our algorithm computes a
cutting path between point A and point B.

Fig. 2 shows the experimental setup with a cylindrical con-
tainer emulating a nuclear waste barrel. A heat map overlaid
on the surface of the object represents the manipulability cor-
responding to the configuration the robot is in when its EE is at
the point on the object. We use the standard inverse kinematics
(IK) of the robot to compute the joint configurations. We
developed a full ROS package to compute the optimal cutting
path. As the robot URDF can be loaded onto the parameter
server and used by the algorithm, we can easily repeat our
computation with any manipulator whose URDF is available.

We used four objects (Fig. 6) to illustrate the effectiveness of
our approach in generating a cutting path on different objects
surfaces. These objects are a barrel (cylindrical container), a
curved object (made of foam), a safety helmet and a flat object
(also made of foam). These objects represent typical objects
that are to be cut in a nuclear environment. Future work will
include the deployment of the proposed algorithm to cut real-
world object found in such environments.

Fig. 5 shows the helmet we used for our experiments along
with the markers attached to the object. The markers fix the
initial and end point of the cutting path. These points can be

3 Although the algorithm needs the robot kinematics, our ROS implementa-
tion takes the robot URDF directly from the ROS server parameter. Therefore,
we present some data collected with Panda and some others with Sawyer to
show the robustness of our approach to changes of the kinematic chains.
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Fig. 5. This image shows the path proposed by the two algorithms for a path connecting the two points indicated with the markers on a helmet in 5(a). The
helmet has 3 ridges on its shell. The top part of the helmet consists of smooth surfaces with large curvatures, whereas the shell and the ridges are connected
with very small curvature. 5(b) shows the point cloud of the helmet captured by the camera in V-REP and the path proposed by RRT* and our proposed
approach are shown in red and blue dotted lines, respectively. In 5(c), the manipulability of both paths is shown.

Fig. 6. Test objects used for testing our algorithm, (a) a barrel, (b) a curved
object, (c) a helmet and (d) a flat object. The pictures also show the position
of the markers.

provided by a human operator during real-world deployments.
Fig. 5(b) shows the point cloud of the helmet captured by
the camera and visualised in V-REP. The paths computed by
RRT* and our proposed approach, RRT*-RMM, are shown
with red and blue dotted lines, Fig. 5(b). These results show
that RRT* and RRT*-RMM effectively generate cutting path
on the object surface. Fig. 5(c) also shows the manipulability
corresponding to the paths obtained by RRT* and RRT*-RMM
with red and blue lines, respectively. This figure shows that
our algorithm finds a path that has a significantly improved
manipulability for the robot throughout the whole path.

We see that RRT* generates a path specific just to the shape
of the object. In contrast, RRT*-RMM computes paths not
only specific to the shape of the object, but also specific to (i)
the position of the object relative to the robot base frame and
(ii) the kinematic chain of the robot. If we change either object
position or the robotic arm, RRT*-RMM computes another
path which is best for that scenario. As such, our algorithm
always finds a path which is the best fit for the specific problem
setting.

We performed similar experiments with all four objects

shown in Fig. 6. Sample PC of 4 objects visualised in V-
REP are shown in Fig.7 along with the computed path by
RRT* and RRT*-RMM, red and blue respectively. In detail,
Fig. 7(d) shows that the robot faces singularity if it follows the
path obtained by RRT* for the flat object shown in Fig. 6. In
contrast, it does not experience this issue when using the path
obtained with RRT*-RMM because the approach is explicitly
designed to avoid such an issue. The paths visualised in V-
REP in Fig. 7 correspond to the markers positions shown in
Fig. 6. These figures show that slight differences in the path
obtained by RRT* and RRT*-RMM yield higher manipulation
capability for the manipulator.

Because the core of our planning algorithm is basically
random, we need a statistical evidence that our approach
performs better. Therefore, we repeated the experiments five
times, each time with a different endpoint for every object and
compute cutting path by RRT* and RRT*-RMM. We collected
the data of manipulability and the length of the computed paths
by RRT* and RRT*-RMM and the corresponding box plots
are shown in Figs. 8 and 9. The object surfaces we used are
largely dissimilar, e.g. we have objects with different geometry
such as a flat surface and a helmet with sphere-like geometry.
Fig. 8 shows the box plots of obtained manipulability for
objects shown in Fig. 7. The mean and variation of the
data summarised in the box plots in Fig. 8 suggest the that
RRT*-RMM yields paths with generally higher manipulability.
Although the path computed by our algorithm and RRT*
differs at each repetition due to (1) the randomness of node
generation and (2) the chosen goal point, Fig. 8 shows our
approach yields bigger manipulability values in a mean sense.
RRT*-RMM also yields smaller variation of manipulability
which is another desired characteristic of our algorithm. As
we expected, the path length is increased with respect to the
RRT* baseline since it is leveraged for a higher manipulability
throughout the path. Nonetheless, this increment is not very
high as it is shown in Fig. 9. The increased path length is
∼10% for the barrel, the curved object and the safety helmet,
and ∼50% for the flat object.

In this paper, we do not address the lower-level dynamics
and control issues of the forceful contact between robot and cut
material, while a cutting path is being followed. A forthcoming
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(a) (b) (c) (d)

Fig. 7. Paths proposed by RRT* and RRT*-RMM for the four objects, using initial and target positions shown in Fig. 6 using the markers. Fig. 7(d) shows
how RRT* proposes a path close a singularity for the robot (orange path) instead, the RRT*-RMM does a semicircle route to avoid it. In our experiments,
we empirically selected α = 0.7 to trade off path’s length and manipulability.

Fig. 8. Box plot of the manipulability values obtained by RRT* and RRT*-
RMM for all four objects. The order of these figures corresponds to the order
of object figures shown in Fig. 6, a) the barrel, (b) the curved object, and (d)
the flat object.

paper will show how this can be addressed using hybrid
force-position control, building on our previous work [30].
In contrast, this paper focuses on the higher-level problem
of planning a safe cutting path for the manipulator, on a
surface obtained by a vision system. In our experiments, we
inflated the Point Cloud, i.e., we modified PC to surround the
object surface with 0.02 [m] off-set. Therefore, our algorithm
computes a path safe for our real robot demonstrations, i.e.,
the robot could move along the obtained path while keeping
a 0.02 [m] distance to the object’s surface to avoid forceful
interaction with the object.

Our cost function may be applied as the objective function
of any kind of numerical optimiser. However for proof of
principle, here we demonstrate how to incorporate it into
RRT*, and it can be readily extended to other common path
planners, e.g., RRT, PRM. We showed our approach can
successfully yield the cutting paths using two different 7
dof arms. Nonetheless, it can be easily applied to any dof
manipulators.

Fig. 9. This figure shows the path length found for the same objects. Every
object has been tested using five goal positions, and the plots include the data
for all the trials. The order of these figures corresponds to the order of object
figures shown in Fig. 6, a) the barrel, (b) the curved object, and (d) the flat
object.

In this paper, we consider only the surfaces with different
shapes, which are smooth (Riemannian) manifolds. Although
object with discontinuities or non-smooth objects cannot be di-
rectly tackled by our approach, we can address these problems
by considering a sequence of sub-problems over continuous
and smooth surfaces. The final cutting path can then be the
union of the solutions to the sub-problems. The choice of the
parameter α in eq. 10 allows us to weigh the manipulability
component of the algorithm based on the cutting task we
are performing, e.g. cutting with knife and rotating tool may
need different manipulation capabilities. Although a value
of α close to 1 might seems a reasonable option, it has
the shortcoming of resulting in non-desirable long and very
jerky cutting paths. In our experience, values below 0.85
lead to cutting paths with an acceptable length and increased
manipulability along the path.

This paper is accompanied by a video including experiments
using Sawyer robot in V-REP simulation and using real Panda
robot.
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VI. CONCLUSION

This paper addresses the problem of constrained motion
planning from vision, which enables a robot to move its
end-effector on an observed surface, given start and destina-
tion points. We find robot trajectories which maximise the
robot’s manipulability throughout the motion. This work has
application in industrial problems of robotic rough cutting.
Our approach uses a mapping between Euclidean space and
Riemannian manifold to project the random samples taken
from the Point Cloud onto the object surface. This mapping
step in our algorithm allows us to compute the path on an
object surface using only a Point Cloud, without the need of
a complete 3-D model. Moreover, we use a cost composed
of the sum of manipulability indices along the path and the
distance travelled between the initial and evaluated point. We
incorporated this cost into the RRT*. The manipulability index
added to the RRT* cost assures the generated paths to yield
higher manipulability values.

We presented a series of experiments with a Panda robot
and a Sawyer robot. The experiments include computing the
cutting paths on 4 different objects. Since the core of RRT*
and RRT*-RMM is random sample generation, we perfomed
a statistical study that shows how RRT*-RMM improves the
manipulability index while trading off the length of the cutting
path, i.e., RRT*-RMM obtains an increased manipulation ca-
pability (avoiding robot-related issues) at the cost of increased
path length.

Future work includes the extension of this algorithm to non-
Riemannian surfaces as this would allow the application of
this algorithm to objects with sharp edges and discontinuities.
Moreover, we are studying a suitable control architecture to
include the proposed algorithm in a force control framework,
to enable an effective implementation of forceful cutting
operations.
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