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ABSTRACT  

  
The aim of this study is to evaluate marginal field petrophysical and geomechanical 

parameters and to develop a model for analysis of geomechanical problems to mitigate stress 

related issues in drilling, development and reservoir management for Wabi field, onshore Niger 

Delta.  

The increase in oil and gas demand globally has necessitated the re-evaluation of mature depleted 

and marginal fields for enhancement of hydrocarbon recovery and development in the Niger delta province. 

These oil and gas fields are situated in the young sedimentary rocks known as shaly-sand formation basin 

called Tertiary Niger delta. Tertiary Niger Delta is an unconsolidated formation which depositional 

environment had led to production and development difficulties due to related geomechanical issue 

possibilities such as weak reservoir rocks, low pressure (depleted reservoir), stack or multiple reservoirs 

with thick net pay and high porosity. The methodology leverage on integrated approach (seismic, 

core, wireline logs and DST in-situ stress measurements), for continuous and static measurements 

along the borehole record of mechanical properties of the rock penetrated for petrophysical and 

geomechanical characterization of Wabi field. 

To understand the current condition of this field of study, identification of stress state and 

mechanical rock properties was investigated for reservoir development and management. Therefore, this 

research focuses on geomechanical characterisation for development of geomechanical model for 

predicting fault reactivation, fractures and sand production which leads to compaction and subsidence.   

In summary, the followings conclusions are made: Wabi field has pockets of potential hydrocarbon 

reserves at different intervals with good reservoir qualities to enhance its development for production. Also, 

rock strength estimation in this field shows that the reservoir is stable; however, production of hydrocarbon 

from these zones may lead to subsidence. To mitigate for this futuristic event reservoir pressure 

maintenance should be plan for. If injection will be anticipated the appropriate pressure should be used not 

to fracture or cause fault reactivation in the wells. The results of this study show the estimation of 

hydrocarbon reserve and help to avoid and predict geomechanical related problems and devise a mitigating 

strategy for sanding management. Finally, the results should be beneficial to marginal field’s operators who 

may venture into acquisition of marginal fields with limited resources and needs to maximize profits.  
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CHAPTER  1 

INTRODUCTION 

1.1 Research context  

Interestingly, we are in a dispensation of hydrocarbon prospecting which marks the gradual end 

of the era of readily available hydrocarbon discovery with decline in extractable oil from existing 

reserves (Tunio et al., 2011). This coupled with the increase in energy demand worldwide, 

prompted the government, multinational and indigenous oil industries to look inward for 

hydrocarbon production from undeveloped discovery herein referred to as marginal or depleted 

mature field, for the reassessment of upside potential of the field. Again, some hydrocarbon 

discoveries that are unsuccessful to go with the preferred or conventional production pace may 

underline set of reasons for reservoir issues (i.e. geomechanical problems) which need to be 

carefully and critically examined (Hugo and Ian, 2014).   

In Petroleum prospecting surveys, exploration geophysics is conducted in a sequential order of 

relative cost, starting with magnetic, gravity and seismic to find commercial hydrocarbon 

accumulation. Less expensive methods are utilized first to narrow down the prospect to be 

explored by more expense methods. In geophysical prospecting the physical properties measured 

are density, electrical conductivity, magnetism, radioactivity and elasticity. Interpretation involves 

much inferential reasoning to provide information about the structure and distribution of rock 

types (Martey, 2000). 

Authors such as, Adetoba (2008) and Offia (2011) cited previous studies conducted in the prolific 

Niger Delta region by the Department of Petroleum Resources (1999) which shows that there are 

about 116 marginal fields identified to be lying redundant and unproductive, which transverse the 

southern part of Nigeria called the Tertiary Niger delta basin. According to the research work by 

Newcross Petroleum (2010), the vast hydrocarbon deposits in such fields account for about 1.3 

Billion barrels, (Ajayi, 2017). 

 Marginal field identifies a prospect with questionable overall economic viability. These marginal 

fields mean diverse things to different operating companies worldwide (e.g. what international Oil 

Company sees as marginal would not be considered by indigenous companies as marginal). In 
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other words, multinational oil companies focus on the development of their large reserves against 

smaller ones (Fee and O’Dea, 1986).  

Furthermore, Kulasinga et al (2014) defined Marginal field as hydrocarbon discoveries that may 

or may not possess the technical characteristics of a   conventional oil field discovered by 

multinational oil and gas companies and have not developed it for over a decade.   

As the high energy demand grows worldwide, it is undeniably accompanied by the increasing rate 

of oil production, prompting prospecting for oil and gas activities in frontier harsher environmental 

degradation, where there are geomechanical stress related challenges facing reservoir during oil 

and gas exploration and production.   

Ajayi (2017) reported that to achieve the desired daily crude oil production rate to meet the world 

energy demand and boast the country’s economy, farm out of undeveloped or marginal fields was 

circulated for their allocation to home-grown oil companies in Nigeria. In addition, Adamu et al. 

(2013) emphasized on the strategic importance of developing marginal fields in the prolific Niger 

Delta by the Federal Government of Nigeria as may serve as a drive towards improving reserve 

and production capacity enrichment.  

According to Nouri et al. (2003), over 70% of developed hydrocarbon fields globally are found in 

sediments that are unconsolidated (e.g. sandstone and carbonate formations). Therefore, they are 

evidently very prone to unwanted sand production (Udebhulu and Ogbe, 2015). Regions of the 

world with continual sand production problems have been recognized in young sediments such as 

in: Nigeria, Venezuela, Canada-Tar sands, Indonesia, California and US Gulf coast. These 

sediments serve as reservoirs for the world’s hydrocarbon reserves (Osisanya, 2010).  

 The Tertiary Niger Delta formation is an unconsolidated formation of which sand control is of 

major geomechanical problem, especially in geologically complex or difficult areas where some 

oil reservoirs and marginal fields are found (Schlumberger, 1985). In their submission, Oluyemi 

(2007) and notably, Otti and Woods (2005) has it that the typical characteristics of these 

formations/fields include strong degree of unconsolidation, high porous formation with thick net 

pay, high rock instability and high depletion rate. Economides and Nolte (2000) opined that the 

existence of any two of the characteristics mentioned above, may eventually subject the formation 



 

 

3  

 

to structural failure because reservoirs that are located underneath the earth crust suffer tectonic 

stresses. Several geological activities may have been responsible from the inception of the original 

deposition.    

Besides, due to scarcity of reliable relevant data from operating oil and gas companies in the Niger 

delta, stress pattern of the region is not well understood. However, Tingay et al (2005) illustrated 

that the result of world stress map (WSM) conducted so far correlate with global and regional 

stress patterns. This WSM is quite helpful when working in areas with none or trivial pre-existing 

knowledge particularly, in attempting to comprehend the relative stress orientation and magnitude 

from a known area to unknown area. Hence, information of present-day tectonic stress is necessary 

for several applications in oil and gas industry (Tingay et al., 2005). 

In rock formation, three basic internal stresses are identified Tiab and Donaldson (2012), these are 

compressive, shear, and tensile. Reservoir formations are affected by the collective load of the 

overlying strata which causes vertical compressive stress, together with lateral (horizontal) 

stresses thereby creating imbalance upon the extraction of hydrocarbon (Rasouli et al., 2011). 

Hence, anisotropy (variations of stress in materials) occurs as the in-situ principal stresses are 

united vertically and horizontally (Zimmerman, 2006; Jamshidian et al., 2017). Principal stresses 

are defined as those normal components of stress that act on planes that have shear stress 

components with zero magnitude. Stress states in a formation are not always hydrostatic that is, 

being equal in all directions, because of the balanced system of the stresses which could be 

influence by either tension or compression stresses (Wilson and Cosgrove, 1982). Hence, these 

in-situ stresses are aligned into three most important stresses. These three states of stresses exist 

in subsurface formation and are described in descending order of magnitude as: vertical or 

overburden, sigma 1 ( ), maximum or intermediate horizontal, sigma 2 ( ) and minimum or least 

horizontal, sigma 3 ( ). The directions and magnitudes of these formation stresses are used to 

characterize reservoir conditions for various geomechanical applications (Sinha et al., 2008).  For 

instant, the bearing and size of these stresses are requisite for forecasting geomechanical issues 

such as borehole stability, hydraulic fracturing for enhanced production and for discerning 

intervals of perforation for sand management (Sinha et al., 2008). Hence, they play important roles 

in petroleum prospecting for oil and gas and reservoir development (Sinha et al., 2008).   
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Langhi (2014) succinctly affirmed that stresses and deformations have potential to adversely 

impact on exploration activities, field development and production operations. Therefore, 

evaluating these stresses is critical to comprehending the mechanical performance of a reservoir 

rock to make optimal decision throughout the field’s lifespan. Archer and Rasouli (2012) assert 

that precise estimation of the state of stresses will necessarily aid proper understanding of the 

formation to avoid risk.  

To achieve optimum development results and produce reasonable quantities of these hydrocarbons 

from marginal or mature fields, these formations/fields will require detailed and comprehensive 

assessment or reassessment of the  reservoir petrophysical and geomechanical/mechanical 

properties of the field such as; the rock strength, present day/in situ stress, and elastic moduli for 

development of reservoir geomechanical model for predicting fault reactivation, wellbore 

instability, compaction that leads to subsidence and sand production meant to be used for 

development plan strategy. Geomechanical characterization of hydrocarbon reservoir rock gives 

the description of mechanical parameters based on the physical and chemical composition 

(Dusseault, 2011) of rock mass of the geologic formation.  

This research will furnish and address geomechanical stress related problems and recommend 

mitigating strategy for well completion design and infill drilling in Wabi, in the study area. It shall 

employ both quantitative and qualitative approaches/methods that are in accordance with best 

industry practices and adopt existing empirical correlations, using seismic and wire line logs 

parameters as an input data depending on the initiate stage in the life cycle of the field with the 

aim of developing a geomechanical model. Geomechanical model is meant for characterising stress 

at depth as well as for solving wide range of geomechanical in-situ stress related to development 

problems in the field of study such as fractures, fault reactivation, compaction, sand production 

prediction and wellbore instability (Herwanger and Koutsabeloulis, 2011). It can also be used to 

devise or design a mitigating strategy for longevity of the field. The integration of Petrophysics 

and Geomechanics characterization is paramount for assessment of stresses in the reservoir, 

prediction of sand failure, failure in seal, fault reactivation, recommendation for perforation 

location and casing for reservoir management. The results obtained from detailed geomechanical 
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analysis shall enhance longevity of well management and ultimately add value to or increase the 

daily hydrocarbon production.  

 

1.2 Motivation of the study /Statement of problem  

Many researchers have studied  new discovery, brownfield (mature depleted reservoirs), 

undeveloped discoveries and  marginal fields in the Niger Delta based on their upside potentials, 

economic viability, wax deposition, water coning, high gas/oil ratio with little or no emphasis on 

rock geomechanics properties for well engineering; that is, the original in-situ stress state and the 

alteration this stress state may have on the reservoir, whether it is close to failure envelope of the 

reservoir rocks (Herwanger and Koutsabeloulis, 2011). The Tertiary Niger Delta is an 

unconsolidated formation faced with naturally fractured petroleum reservoirs, this creates 

geomechanics challenges which affected well development, drilling and completion, production 

and enhancement of recovery. 

 

The unconsolidated nature of the Niger Delta depositional environment has led to production and 

development difficulties due to weak reservoir rocks, stack or multiple reservoirs with thick net 

pay, highly porous and low pressure due to depleted reservoir (Schlumberger, 1985).   

 

The occurrence of these phenomena at the same time compounds the overall stress-related 

geomechanics problems which is damaging to production and development. Hence, identifying the 

consequence of initial stress state and what its changes may impact on the reservoir strength during 

development and production is vital for reservoir engineering management (Herwanger and 

Koutsabeloulis, 2011).  This research focuses on geomechanical and petrophysical characterization 

of hydrocarbon reservoir rock for optimal development and production of oil and gas. This is vital 

for forecasting sand production occurrence for well completion design.   

  

1.3 Research Aim   

 The aim of this research is to characterize marginal field petrophysical and geomechanical 

parameters and develop 3D Mohr Circle geomechanical model for analysis of geomechanical 

problems in Wabi, onshore Niger Delta.  
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1.4 Objectives:  

The objectives of this research are as follows:  

1. To investigate and estimate the field’s mechanical behavior and mechanical properties of the 

formation rocks.   

2. To carry out Petrophysical interpretation to ascertain Wabi field reservoirs quality.   

3. To investigate and model stress (pressure/depth) gradient in the field.  

4. To estimate and model the elastic properties, rock strength, and in-situ stress field that exist in 

Wabi field from geophysical logs  

5. To develop 3D Mohr Circle Geomechanical model to predict rock strength, fault reactivation, 

wellbore instability, sand production fractures, wellbore instability and sand failure during 

production.  

 

1.5. Contributions to knowledge and justification of the study  

This research contributes to knowledge as follows: Geomechanics as at today had not been fully 

implemented in most fields in the Niger Delta, especially, it is lacking in field development plan 

(FDP) submission by operators to Government regulating agency. Sequel to the above, the author 

has carried out petrophysical and geomechanical evaluation known as reservoir geomechanics and 

wellbore stability investigations of Wabi field using an integrated approach with data sets 

comprising of seismic data, petrophysical logs and core x-ray computerized tomography (CT scan) 

to guide and assure stable wellbore, choice of completion intervals and prediction of onset sand 

production. This research finding predicted in-situ rock stresses, Poisson’s ratio, modulus of 

elasticity, porosity, pay zones (reservoirs with hydrocarbons), volume of shale, hydrocarbon 

saturation and rock strength for proper characterization of Wabi reservoirs, these are the claimed 

contributions by the author in Wabi field. The applications of the findings are relevant in well 

intervention programs, infill drilling and injectivity for enhancement of hydrocarbon recovery to 

profer better engineering design to reduce risks associated with oil and gas development for 

production optimization. This is very helpful to marginal field’s operators who may venture into 
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acquisition of marginal fields for optimum profitability and high investment returns as financial 

resources is a barrier to their operation.  

 

1.6 Thesis layout   

Chapter 1: This introductory chapter gives an insight into the background of this study and 

explained the general overview of mechanical behavior of reservoir bearing formation and related 

stress states that exist beneath the earth crust including their effects on oil and gas production. It 

goes forward to highlight the reasons and significance of this study.  

Chapter 2: This section is dedicated to related studies and introduces the concept of rock 

mechanics, in situ stress state, geology of Niger delta, sand production, fault reactivation leading 

to compaction and fracture of reservoirs. This review identifies the missing gap to be investigated 

for mitigation strategy for optimization of hydrocarbon.  

 Chapter 3: This chapter highlights the theories of rock failure, field approach of evaluating 

petrophysical and geomechanical parameters of the hydrocarbon reservoir of interest and presents 

the data set and materials required for the actualization of the objectives of this research.  

Chapter 4: Presents the results of this research findings and discussion of the hydrocarbon potential 

including related geomechanical characteristics issues in the field.  

Chapter 5: The conclusions of the research studies are presented in this chapter followed by the 

remarks and recommendation for further studies.  
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CHAPTER 2 

LITERATURE REVIEW  

The aim of the present literature review is not to consolidate the entire research, but to pick a 

handful of articles that are either closely related to the research or which, if studied might lead to 

a conclusion that might help in further justifying the necessity and validity of the research. This 

includes literatures concerning geomechanics and petrophysical characterization as appeared in 

several publications. This is based on conceptual framework, theoretical framework and empirical 

review to identify the gap to be addressed particularly in Wabi field, Niger Delta, Nigeria.  

 

2.1 Rock and rock mechanics  

Rock mechanics generally concentrate on the theoretical and applied mechanical behavior of rock; 

where rocks responses due to stress field are studied within its surrounding environment for 

engineering and geological purposes (Sorough, 2013). Rock is a natural substance known not to 

be a continuum rather a regulated discontinuum Figure 2.1. They are composed of discontinuity 

(separation in the rock continues having effectively zero tensile strength) and intact matrix 

(Norouzi, Baghbanan and Khani, 2013). Xie and Gao (2014) stated that the existence of various 

defects (i.e. pores, crystal boundaries, fissures, dislocations secondary phases, twin crystallites, 

inclusions and precipitate made rock to be complex. These defects caused the discontinuous, 

inhomogeneous, nonlinear and anisotropic in mechanical behavior and properties of rocks due to 

irregularity of scale and cracks distribution. Therefore, decrease in physical and mechanical 

properties occurs (Xie and Gao, 2014). The priority of rock mechanics is to understand the 

mechanical behavior and mechanical properties of a given rock about its deformation, strength and 

failure when subjected to external force (Xie and Gao, 2014).  

The structural and textural characteristics, minerals composition including fracturing, porosity, 

mineral strength constituents and degree of cement bond are some of the factors upon which rock 

strength determination are based (Sygala, Bukowski and Janoszek, 2014).  
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The uppermost crust is an inhomogeneous material in nature that is filled with flaws, fractures and 

pre-existing cracks (Duan, Kwok and Tham, 2014; Hazzard, Young and Maxwell, 2000).  

 

 

Figure 2.1 Rock contact and terminology (Baker Huge, 1999). 

These are the characteristics that cause brittle material (e.g. rock) to deviate from being a pure 

elastic medium. The term brittle rock described the property of fracturing or rupturing with slight 

or no plastics flow occurrence within the earth upper crust (Hucka and Das, 1974). Therefore, 

understanding the rock geometry and the size of these cracks and their effect on the mechanical 

behavior and rock properties are essential for engineering operations and geological processes 

(Hazzard, Young and Maxwell, 2000). The strength of brittle rock undergoing compression 

depends on the formation existing cracks, growth and the interaction of flaws including how they 

propagate into bigger shear faults (Duan, Kwok and Tham, 2014).  

The distinction between macro-mechanical and micro-mechanical properties of rock can be 

defined as follows: macro-mechanical properties of a formation are the rock macro-scale properties 
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such as Young modulus, Poisson’s ratio and peak strength whereas the micromechanical properties 

are the rock micro-scale properties such as pores, cracks, fissures and flaws (Jumiski, 1983). The 

knowledge of mechanisms of ruptures (fracture) and populates of deformation in micro and macro 

mechanical properties of rocks have practical and theoretical significant (Xie and Gao, 1999).  

Initiation and propagation of fracture/deformation are caused by micro cracks in the formation; 

this can be illustrated by a sample that is loaded to a peak stress, cracks are visible as the sample 

attained peak stress and at the edge of the sample a small process zone of crack is form. This is 

followed by propagation of macro shear fault in the brecciate zone through the mechanisms of 

kinking or buckling (Hazzard, Young and Maxwell, 2000). As rock density increases it cause 

dislocations which depend on the increased in applied load resulting in to micro-cracks formation 

(Hazzard, Young and Maxwell, 2000). Again, micro-cracks are form during the convergence of 

two groups of dislocations, secondary phase particles or crystal boundary resulted to a local zone 

that is concentrated with high stress (Xie and Gao, 1999). Pores in both high and weak stressed 

region extent and converge respectively to form macro fracture (Xie and Gao, 1999). Cracks in 

brittle rocks are known to be predominantly tensile and orientate sub parallel to compressive stress 

direction (Duan, Kwok and Tham, 2014).  

Initiation in rock failure and deformation was conducted by Nolen-Hoesema who reported that 

rock process of propagation of cracks increases with applied force/load in a marble (Xie and Gao, 

1999). Wu and Chudnovsky (1993) cited in Xie and Gao (1999) attributed the influence of micro-

cracks distribution on the macro cracks to stress factor in the rock formation.  

Petroleum exploration is conducted within the upper crust (brittle material) which ranges from 10 

 5km, this depth is of a particular interest for petroleum prospecting and other activities such as 

storage of waste or carbon sequestrations and earthquakes studies (Allmendinger, 2015). At this 

depth, the application of Mohr Coulomb failure criteria can determine rock failure.   

2.2 Sand Production Management  

Herwanger and Koutsabeloulis (2011) explained that rock failure leads to sand production, 

compaction and subsidence in a reservoir. Economides et al. (2013) defined sand production as 

the production of solid particles especially, rock grains with oil, gas, and water from the reservoir. 
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The occurrence of this observable fact in an unconsolidated and sometimes from consolidated 

formation is unwanted. Gholami et al. (2016) credited sand production failure to shear stress and 

fluid flow forces. Over the years, several methods have been established to forecast sand 

production and to avoid it by altering drilling or production strategies. This has been a setback 

associated with petroleum industry worldwide. This problem is more severe in loose young 

sedimentary formations for instant Tertiary Niger Delta.  
 

Isehunwa and Farotade (2010), described sand production as a progression that develops in three 

scenarios, that is , in the formation, cavity and wellbore Figure 2.3. Balarabe and Isehunwa (2017) 

identified the collapse of surrounding rock formations in perforated wells from which liberated 

grains are generated due to changes in stress, sand grains dislodgment from failed rocks and fluid 

flow transportation of these grains into the well bore and up to the surface facility, as notable causes 

of sanding occurrence. Hence, sand production is the production of rock particles along with oil, 

gas and water (Economides et al., 2013). Figure 2.2 explained geomechanical related issues 

associated with exploration, appraisal, development, production and abandonment of oil field.  

(Zoback, 2016; Hugo and Ian, 2014).    

  

Figure 2.2. Geomechanics through the life of a field (Zoback, 2016) 
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This has been a major problem faced during hydrocarbon exploration and production because any 

invasion of sand may cause wellbore instability and blockage in flow line respectively (Economics 

et al., 2000). Numerous oil and gas fields are been affected by its occurrence, wherever it is found 

especially in young sedimentary basins around the world. Sand production has the capability to 

damage both producing formation and the production equipment (Zhang, Rai and Sondergeld, 

2000).   

According to Tiab and Donaldson (2012), the prerequisite data needed for evaluation of sand 

production in any reservoir are; uniaxial compressive strength, production history, and formation 

fluid pressure. Therefore, predicting its occurrence beforehand is the best practice embraced by 

virtually most producing companies. This implies that accurate and comprehensive formation’s 

mechanical strength, rock failure criterion and in situ stresses need to be investigated. These 

geomechanical parameters of a reservoir formation are the most essential information desired for 

the prediction of sand production and advice for sand control completion (Zhang, Rai and 

Sondergeld, 2000).   

Almisned (1995) explained that one pathway to controlling sand production problem is the ability 

to successfully predict its occurrence before the well is completed.  Sand production management 

refers to well engineering planning designs to monitor, control and prevention of sand production 

from occurring during exploration and production activities. It also involves the provision of 

proactive strategies to manage its existence in a well. Petroleum geomechanics discipline is well 

known for handling rock associated problems such as sand production, fault reactivation, 

compaction, subsidence, wellbore instability etc.  
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Figure 2.3. Sand productions (‘Halliburton ‘Amos, 2012). 

  

Geomechanics is essential to give description of rock deformations due to in situ stress, pore 

pressure and formation temperature changes ensuing from hydrocarbon production and fluid 

injection pressure (Gutierrez, 1998).  

Cerveny et al. (2004) submitted that when rock layers are subjected to tectonic stress, it may lead 

to contraction or extension induced shear failure, in this case, the rock is fractured or faulted. A 

fault is defined as a shear fracture or surface failure in a geological rock caused by relative 

displacement of a fracture plane (Jaeger and Cook, 1979). Thus, hydrocarbon reserve accumulated 

in this faulted siliciclastic (clayey) reservoir may become difficult to develop and produce as the 

properties of rock developed within these faulted zones affect the fault’s potential to seal. The 

analyses of fault seal improve the prediction of fault behavior in the subsurface and lessen the 

uncertainty in exploiting faulted siliciclastic.  
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2.2.1 Fault and fracture of rocks  

In their well-articulated work, Sorkhabi and Tsuji (2005) posited that the current approaches used 

for fault seal analysis mostly proffer solution to normal fault in classic reservoirs where the 

integration of fault seal and in situ stress analyses had been proven as an innovative technology 

breakthrough in the petroleum industry. Thus, fault investigation becomes necessary as petroleum 

traps have developed along two separate and successive lines of deliberation such as fault rock seal 

and fault closures. This approach is basically concerned with structural geology development 

applications, utilizing quantitative fault analysis methods for kinematic and geometric 

investigation of sedimentary basins, which concluded that plate tectonics presented an integrated 

tool to show a relationship between faults and basins been dependent on the far field (i.e. plate 

boundary produce stress) (Sorkhabi and Tsuji, 2005).  

The importance of the geometric diagnoses is obvious from identification of various sealing 

processes in fault zones, architectures and quantitative appraisal of petrophysical properties. 

Generally, faulted rock has been being detrimental for exploration of fault traps because of their 

high-capillarity and low permeability features in sedimentary basins. However, recent studies 

conducted have changed the previous polarized observation of faults as either seals or leaks into 

rationale of more complex fault fluid flow behavior (Sorkabi and Tsuji, 2005). 

Ferrill et al. (1999) suggested an algorithm known as Slip tendency ( ) and dilation tendency ( ) 

to evaluate the relative strength or weakness of fault seal under in-situ stress conditions. They 

described slip tendency as a shear failure, defined as the ratio of shear stress to normal stress. It is 

expressed mathematically as:  

                                                                                                                (2.1)  

Similarly, Dilation tendency (i.e. failure by extension fracturing) is given by:  

                                                                                                                    (2.2)  

where,    is the slip tendency,  is the dilation tendency,  is shear stress,  is normal stress, 

and  is the overburden or vertical stress,  is the intermediate stress and  is the minimum 



 

 

15  

 

horizontal stress acting on the fault surface. The values of  and  can be calculated from 

equation as follows:  

                                                                                               (2.3)  

                                                                                                         (2.4)  

where,  , is the vertical stress;  is the horizontal stress and  is the angle between  and the 

fault or fracture plane.   

From stress regimes description of faults, in normal faults,   vertical stress or the maximum 

principal stress ( ) exerted overlying weight/ overburden thickness and the horizontal stress ( ) 

was considered as the minimum principal stress ( ) (Kachi et al., 2005) which could be calculated 

as follows;  

                                                                                                                     (2.5)  

where  is the coefficient of earth pressure at depth and it is a calibration factor 

Sims et al. (2005) explained the extensional fault system development and reservoir connectivity 

and concluded that it depends on whether fault transverse reservoir acts as conduits for flow in 

fracture carbonate reservoirs or as barrier to flow (in highly porous sandstone reservoir). They 

inferred from their study that fault system evolution or growth has effects on the extent to which 

rock coupled between and around faults and fault network connectivity. As fault system advances, 

rock mass connection decreases and network connectivity increase concurrently (Sims et al., 

2005).    

Yamada et al. (2005) postulated that regional scale stress has a major impact on fault expansion 

during the formation of geological structures. Also, faults created after stress conversion is affected 

by pre-existing faults; therefore, the consequential geometry of the faults is determined by the 

order of the stresses.   

Normal faulting field analysis demonstrated that synthetic layer dip related to normal faults is a 

familiar feature of extensional fault systems, developed where layers up thrown and down thrown 
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in the opposite direction (antithetic) or both sides of a normal fault dip toward the down thrown 

side of the fault (Ferrill et al., 2005).  

Aydin (1978) defined deformation bands in sedimentary rocks as thin (millimeter-wide) planar 

structures in faulted sandstones from study conducted in Utah. Deformation band transpire as 

single planar structures in host formation (e.g. sandstone) away from weak zones (Sorkhabi and 

Haasegawa, 2005). In the perspective of Sorkhabi and Hasegawa (2005), deformation bands 

increase noticeably in bulk and connectivity toward the fault plane, signifying that faulting 

develops from entity bands to a high- deformational zone described as anastomosing cataclastic 

slip bands (Fowles and Burley, 1994) and culminating/assembles in the slip fault plane. Thus, 

reactivation of bedding perpendicular due to shear faults caused major normal faults development.   

Davatzes and Aydin (2005) interned from their examination of the distribution of fault rock and 

rupture structures in shaly-sand formation that rupture zones are found along strike and dip. 

Consequently, these are caused by variations in the fault geometry, lithology, fault slip and fault 

mechanism.  

 

    

2.3   Review of the Niger Delta geology  

2.3.1   Tectonic setting of the Niger Delta  

The drifting apart of the continental crust of Africa and South America plates during the late 

Jurassic rift (Doust and Daukoru, 1990; Etu-Efeotor, 1997) marked the origin of tectonic setting 

in the Niger Delta and the entire Gulf coast of Guinea Figure 2.4. According to Tuttle, Brownfield 

and Charpentier (1999) the tectonic framework of the plate margin beside the coast of West Africa 

shield was controlled by mid-oceanic ridges and Cretaceous fracture zones articulated as trenches 

in the deep Atlantic, which subdivides the plate boundary into entity basins. These amount to the 

formation of triple junction or the rift-ridge system (i.e. RRR) during the Cretaceous era which 

arms are known as; the Atlantic arm, Gulf of Guinea transforms complex and the Abakaliki-Benue 

trough (Tuttle, Brownfield and Charpentier, 1999; Schlumberger, 1985). Two arms of this triple 

junction followed the Southeastern and southwestern coasts of Cameroun and Nigeria and 

developed into collapsed continental margins (Doust and Omatsola, 1990), while the third arm, 

failed and developed into the Abakaliki–Benue trough (Doust and Omatsola, 1990; Weber and 
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Daukoru, 1975) known to be the oldest sedimentary basin. Along the Nigerian coast, the Benue-

Abakaliki trough is seen up to West African shield (Tuttle, Brownfield and Charpentier, 1999). 

These three arms (RRR) known as the triple junction rift-ridge system opened at different rates 

and different times initiated the continental drift that separated Africa from South America (Weber 

and Daukoru, 1975; Doust and Omatsola, 1990). This rifting ceased totally in the late Cretaceous 

and gravity tectonism became the main deformation process in the Niger Delta complex (Tuttle, 

Brownfield and Charpentier, 1999). After the separation between Africa and the South Atlantic, 

the Gulf of Guinea was created now occupied by Niger delta basin. 

 

 In the mid Cretaceous (Albian) time, marine deposits or incursion took place in Anambra–Benue 

trough known as the fail arm of the triple junction ( Doust and Omatsola, 1990; Short and Stauble, 

1967) and this was recognized as the first sedimentary deposits in the Niger delta basin which end 

in the Santonian time known as Akata Formation. Subsequently, paralic clastics deposits sequences 

were deposited on top the older under compacted marine shale (clay) as the growth of the proto 

Niger delta in the late Cretaceous which ended during the transgression of Paleocene marine known 

as Agbada Formation. During the Eocene to recent the final phase of the depositional sequence 

was deposited which ended the deposit and manifested the present-day Niger delta progradation 

(Short and Stauble, 1967; Doust and Omatsola, 1990). The third phase was deposited, after the 

occurrence of gravity tectonism has ceased. The successions of the marine and paralic clastics 

thickness deposits were deposited in series of regressive and transgressive phases (Doust and 

Omatsola, 1990).  

The actual development of the present day Niger Delta commenced in late Paleocene/Eocene, as 

sediments built out afar the Benue-Abakaliki trough southward against the crust of the Atlantic 

Ocean, where it assume the current convex to sea morphology (Doust and Omatsola, 1990).This 

growth has been dependent between the rate of sedimentation and subsidence balance, caused by 

tectonics of the basement and structural configuration Figure 2.5. In general, the regressive classic 

sequence has the maximum thickness of about 30,000 to 40,000ft or 9,000 to 12,000 m (Evamy et 

al., 1978).  
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Weber and Daukoru (1989) asserted that the Niger Delta expansion is affected by basement 

faulting which in turn influences the thickening of the sediment distribution. The majorities of 

these faults affect different parts of the Agbada formation and flatten/even out into detachment 

plane adjacent to overpressure Akata Formation (Doust and Omatsola, 1990; Weber and Daukoru, 

1975). However, the associated faults in the basin act as stratigraphic traps to accumulate 

hydrocarbons and serve as hydrocarbon migration paths from Akata over pressured formation to 

Agbada sand (Weber and Daukoru, 1975). These associated growth faults are roll over anticline, 

close space flank faults, collapse growth fault crest, shale diapirs, back to back features and diapirs 

and abruptly (Evamy et al., 1978). Growth faults of the Niger delta signifies that their formation 

is active and allows faster sedimentation in normal faulting that is, in down thrown relative to 

reverse or upthrown (Weber and Daukoru, 1975, Weber, 1971).  
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Figure 2.4. Simplified geologic map of the Nigeria and surrounding areas showing main drainage into the 

Gulf of Guinea. The dash red and blue lines demarcate different depobelts (Whiteman, 1982; Allen, 1965).  
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Figure 2.5. Map of the Niger Delta showing faulting system (Evamy et al., 1978)  

 

2.3.2. Regional Geology of the Niger Delta 

The Tertiary Niger delta basin is located at the apex of Gulf of Guinea on the Western coastline of 

Africa (Doust and Omatsola, 1990) and it is well known as one of the prolific hydrocarbon deltaic 

province in the world today (Haack, 2000). The coordinates of this region are roughly situated 

between longitude 4o and 8oE and latitude 3o and 6oN (Zorasi et al., 2017). Three igneous and 

metamorphic rocks onshore constitute the basement complex of the Niger delta, and bounded by 

the Northern Nigerian massif, Western Africa massif and Eastern Nigeria massif. These basement 

complexes are dated Precambrian and early Paleocene (Schlumberger, 1985). The lower exposed 

Cretaceous (Albian) of the Abakaliki and Benue rift basins have the oldest dated sedimentary 
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rocks. Similarly, older sediments sequence may also exist in the offshore Miogeoclinal basins 

underneath the Niger Delta complex formed on the sea floor during the first opening of the Gulf 

of Guinea and resulted to the drifting apart of the continent (Schlumberger, 1985). 

The Niger Delta complex today, covers an area of about 100,000 sq.km, of which less than 20% 

is considered as prospective. 100% of the Nigerian hydrocarbon production is from this great 

petroliferous Delta complex. Niger Delta basin is located in the southern part of the country and 

the host of the vast known petroleum (hydrocarbon) potential of the country. These oil and gas 

reserves are found precisely underneath the onshore (inland) and shallow to deep water of the 

Niger Delta province especially, in the Agbada Formation (Short and Stauble, 1967; Weber and 

Daukoru, 1990). Three Formations are known in the Niger Delta. These are Akata, Agbada and 

Benin. Akata Formation is known as the source rock, Agbada Formation is a paralic clastics 

sequence, which consists of sand, siltstone; interbedded high energy deltaic sandstones with 

intercalation of shales generated in several offlap cycles (Short and Stauble, 1967). These features 

made the Agbada formation the objective target of most exploration activities in the region due to 

its reservoir quality with the beneath marine shales serving as the source rock /petroleum system 

(Tuttle et al.,1999). The Benin Formation is known as sandy and potable water formation. 

The vast quantities of sediments supplied to the Niger Delta complex were partly generated and 

eroded from the hinterland and especially from the thermal uplift blocks in Cameroun Mountain 

(Schlumberger, 1985) and by eustatic changes in sea level. Most of the Oil and Gas produced from 

the Niger Delta are in the Agbada sand reservoirs where the hydrocarbons are trapped in mostly 

rollover anticlines and other associated structures (Schlumberger, 1985). There are huge 

undiscovering that may exist in both the onshore and offshore Niger Delta. 

The commonly fault found in the Niger Delta is the synsedimentary fault or growth fault. They are 

initiated around local depocentres at the time of formation and grow faster during sedimentation. 

Growth fault offsets active surface of sedimentary deposition and flattening with depth are 

common (Weber and Daukoru, 1985). 
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2.3.3. Stratigraphy of the Niger Delta 

In the Niger delta three lithofacies have been identified by the oil and gas industry as Akata, 

Agbada and Benin Formations. These three depositional sequence are laid down from the 

subsurface basement complex to surface outcrop (Short and Stauble 1967; Avbovbo, 1978).The 

order of their deposition in an upward direction signifies the age of each formation from oldest to 

the youngest (i.e marine shale, transitional and continental environments).  

1) Akata Formation 

This formation age ranges from Eocene to recent. It is a basal unit of the Cenozoic Niger delta 

basin, composed of mainly marine shales deposited in the advanced delta into deep water or 

offshore (Weber and Daukoru, 1985).It is an under compacted clay with locally sandy, silty beds 

with some plant remains at the top, deposited as turbidities and continental slope channel fills 

(Schlumberger, 1985). Between the adjacent Agbada and top of Akata formations sandstone lenses 

occur, this development makes prospecting for oil and gas at the top of Akata formation viable due 

to the presence of planktonic foraminifera content that may account for over 50% of the rich micro 

fauna and the benthonic assemblages indicating that its deposition is on the shallow marine shelf 

environment and slope (Short and Stauble 1967; Avbovbo, 1978).Hence, it is referred to as the 

main source rock for the Niger delta complex. This formation thickness depends on the shale 

diapirism and or it subjection to permeability (flowage). Weber and Daukoru (1985) estimated its 

thickness to range from 600 to over 6000m. 

2) Agbada Formation 

The overlying paralic sequence, on top of the under compacted clays constitute the Agbada 

formation. It consists of alterations of sandstones, sands, shales and siltstones. The sandy upper 

unit of this formation is the hydrocarbon reservoir, while at the base significant sandstones’ unit 

is evidence which are very coarse to fine in grain size with intercalation of shales (Schlumberger, 

1985; Weber and Daukoru, 1985; Short and Stauble, 1967). It is slightly consolidated and have 

calcareous matrix (cementation), bulk of this formation is unconsolidated. This unconsolidated 

nature of the Agbada formation is what affect and caused most of the completion and production 

issues (geomechanical problems) seen in the Niger Delta till date (Schlumberger,1985). The 

sandstone are poorly sorted with variation in grain sizes ranging from fine to coarse. Shale content 
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increases downward as the formation passes or grades into Akata Shales. Lignite streaks, limonite, 

shell fragments and glauconites are present. The formation is built up of various offlap rhythms 

that cut across the entire subsurface of the Niger delta basin (Doust and Omatsola, 1990). The age 

is from Eocene to Oligocene. Weber and Daukoru (1985) estimated its thickness to range from 

300 to about 4500m. 

 

3) Benin Formation 

Among the three sedimentary deposits, Benin formation is the youngest and the uppermost unit of 

the Tertiary Niger delta basin. It is composed of gravels and nonmarine sand deposited in an 

alluvial or fluviatile environment (Weber and Daukoru, 1985; Doust and Omatsola, 1990). The 

formation is known for its high percentage of sand as it cut across the entire Niger delta. It has few 

minor streaks and lacks the presence of marine fauna and blackish water (Schlumberger, 1985). 

The sandstones and sands are coarse to fine, poorly sorted, sub-angular to well-rounded and has 

granular texture. Lignite streaks occurs and feldspars and Hematite are common (Schlumberger, 

1985). Its shale content consists of sandy to silty and has plant remains. Structural features 

associated with this formation are; Oxbow fills, channel fills, point bars and natural leaves back 

swamp. Its age is from Miocene to recent. According to Weber and Daukoru (1990), the thickness 

of this formation especially within the central Niger delta is 2100m.Till date only little oil and gas 

has been found in the Benin formation. Hence, it is known for its potable water bearing (Short and 

Stauble, 1967). 
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Figure 2.5b: Shows a section illustrating the depositional setting of the Niger Delta basin from 

Anambra in the far NNE to offshore Niger Delta at the SSW end (Merki, 1972, Weber and 

Daukoru, 1975; Whiteman, 1982). 
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2.3.4. Location of the study area  

This study area is located in the North central onshore Niger Delta with codename OML Wabi.  

Its coordinates are 5o 13’ 50.88’’N and 6o 39’56.88” E. The field is situated in the greater Ughelli 

depobelts. Figure 2.6 with sedimentary deposits sequence ranging from Oligocene to lower 

Miocene based on biostratigraphical study (Baulac, Grosdidier and Boutet, 1986). The first 

discovery was made in 1982 by Wabi 11 which encountered about 355.5m of gas (Scf.) and 11m 

of oil (bbl.) both gross pays were found in eleven distinct reservoirs. The well was tested at shallow 

and deeper levels. Therefore, the field has multiple reservoirs. A total of 5 well have been drilled 

into the Wabi structure which encountered different reservoirs between the depth of 2070 m and 

4400 m. One of the Wabi well was tested at four (4) gas/condensate reservoir levels, completed 

and suspended as gas and condensate producer. However, production in some intervals 

commenced. The Wabi structure (trapping) style confirmed the dominance of synthetic growth 

fault system with possible sequential down the basin trending style that is, NESW (Zorasi et al., 

2017). Fault plays impact in the structural trapping mechanism; hence faulted assisted closure 

resulted in the hydrocarbon accumulation within the field.  
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Figure 2.6. Map of the study area showing spatial well locations (Modified by Zorasi, 2017) 

2.4 Conceptual framework   

Zoback (2007) stated that to completely understand and resolve the state of stresses acting within 

or at some point in the subsurface called reservoir and to know its effect which could be positive or 

negative to operators, we need to understand stress as it relates to rock mechanics. The term stress 

is defined as the force acting over a given area. Sometimes, since stress is a tensor, stress tensor is 

used to depict the density of forces acting upon a surface in a continuum at a given point (Tingay, 

2009; Zoback, 2007). Rocks have both anisotropic and isotropic properties. For anisotropic or 

heterogenous rocks, the values of rock properties measured in all directions differ from one another 

while in isotopic or homogenous rocks the values of rock properties measured in all directions are 

equivalent. Jaeger et al. 2007 asserted that materials whose response is independent of the applied 
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stress is Isotropic materials. According to Hudson and Harrison (1997), continuum mechanics 

describes the stresses acting on a homogenous isotropic body as a second-rank tensor, having nine 

components. Three out of these nine stresses are normal while six are shear Figure 2.7 (Tiab and 

Donaldson, 2012) which completely define the state of stress acting on the cubic element at any 

point or given depth as shown in equation (2.6).  

                                  𝑆 = [

𝜎11 𝜏12 𝜏13

𝜏21 𝜎22 𝜏23

𝜏31 𝜏32 𝜎33

  ]                                                  (2.6) 

 where, the subscripts of the second order rank tensors denote the direction of force components 

and the surface it is acting. Hence stress components represent force acting in a precise direction 

on a unit area of given orientation. To completely depict the condition of stress at depth in the 

reservoir, one must describe these six shear stress magnitudes and the three normal stress 

magnitudes including their angles of orientations in 3D coordinate system (Zoback, 2007).  

 

  

Figure 2.7. a) The normal and shear stress components on an infinitesimal cube. b) The stress 

tensor, a second- order tensor (Hudson and Harrison, 1997). 

There are sets of axes along which all shear stresses become zero while the normal stresses are at 

their extreme values. These axes define the three mutually- perpendicular planes and the normal 

stresses acting on these planes are called principal stresses (Tiab and Donaldson, 2012). All states 

of stress help to understand the principal stresses. The principal stress tensor is represented as;  
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                     𝑆 =  [
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

]                                                                                (2.7)  

where 𝜎1 is the overburden, 𝜎2 is the intermediate horizontal and 𝜎3 is the minimum horizontal 

stress. 

Sorough (2013) explicitly explained that geomechanics engineers utilize theoretical and applied 

science for the evaluation of mechanical behavior of subsurface rocks within the force fields of 

their physical environment. In other words, it is the application of engineering principles to 

mechanics of rock design and construction of any kind either on or in the rock. The concept of 

geomechanics was originally developed to enhance mining activities as well as to aid in civil 

engineering design purposes. However, because of its efficacy it was implemented into the oil and 

gas industry over three decades ago for improvement of drilling, fault reactivation, stress evolution 

and hydraulic fracturing. Geomechanical characterization is executed both for well scale analysis 

for wellbore stability, sand production, hydraulic and field scale such as fault reactivation, 

subsidence or heave, cap rock integrity, and effect of reservoir flow or match (Schlumberger, 2017) 

The main rationale behind the practice of geomechanical analysis is to calculate approximately the 

rock properties and stresses acting on a wellbore.  

Moreover, Tingay et al. (2005) revealed that understanding of the present-day tectonic stress is 

crucial for various applications such as improving the stability of the wellbore to enhance 

hydrocarbon recovery through natural or induced fracture. The key insight into earth’s stress state 

is made possible by global stress map studies which uncover the controlled forces causing regional 

and local stress fields as tectonic activities at plate boundaries (Tingay et al., 2009) in particular 

mid-ocean ridges and continental converging zone. Hence, the knowledge of stress distribution 

and redistribution, rock distribution and deformation history are revealed from the present day 

stress field understanding, mostly in sedimentary basin (Tingay et al., 2005).Thus, local and 

regional scale stresses have significant implications on petroleum exploration and exploitation 

Figure 2.8 (a-b). 
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Figure 2.8a Generalized world stress Map (Zoback, 1992) 

 

 

Figure 2.8b: World stress map. Heidbah et al., 2008, showing stress direction, source and regimes. 
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2.4.1 Stress field pattern of the Niger Delta  

The concept of subsurface stress in the lithosphere has been reviewed and documented by (Zoback, 

1989; Tingay et al., 2005; Bell, 1996; Magnenet, Cornet and Fond, 2007). In the Niger delta, the 

issue of in situ stress is considered mostly as overpressure development which is very common in 

the west and central Niger delta fields due to numerous extensive growth faults and associated roll 

over anticline that concentrate in the Agbada formation (Ojo et al., 2017) which varies with depths. 

Far field stress or basement stress, regional and local stress are what contributes to stress pattern 

of any region globally (Tingay, 2009; Zoback, 2007). In other words, the summation of these 

stresses provides an insight into the Niger delta stress field pattern. The understanding of the state 

of stress beneath the earth’s crust can be made available through the world stress map (WSM) 

(Tingay, 2009) Figure 2.9. This is a map showing the relative magnitudes of horizontal principal 

stress and their orientations (Zoback, 2002). Tingay (2009) inferred from this map that forces 

exerted at mid-oceanic ridges, subduction zones and continental collision zones are the causes 

responsible for plate-scale stress and the reason for the sub parallel motion in regional stress 

orientation. Rifting and gravity tectonism played major roles for the formation of secondary 

structures in the Niger delta, that is, structures that are related to the tectonic rock’s deposition and 

regional stress field (Verner, 2007).  

Knowledge of this present day (in-situ stress) state facilitates good understanding of deep-seated 

geological processes that occur in the earth’s interior and it is vital for mining activities, 

understanding basin evolution due to plate tectonic motion, investigation of rock distribution and 

deformation history and petroleum exploration and exploitation (Tingay, 2009; Zoback, 2007; 

Rajabi, Tingay and Heidbach, 2016).  

 

i. Attached regimes  

In sedimentary basins the first deposits of young sedimentary Cretaceous rocks that overlain the 

basement complex mechanically and has low strength rocks intervals (e.g. evaporates, over 

pressured shale or mechanically weak spot) that can interfere and disrupt the original laid down 

sediment to cause mechanical detachment in the basin is referred to as Attached regimes (Bell, 

1996; Tingay, 2009). This regime has primary structure associated with the origin of rocks 



 

 

31  

 

deposition. The stress field, magnitudes and orientations in this region are influence by far field 

stresses (plate scale forces and intra-basins forces) acting from afar or within the basement complex 

(Tingay, 2009). The stress pattern displays in this attached region depict the underlying rock 

pattern and show regional consistency in their orientations (Bell, 1996; Tingay, 2009) which are 

predictable in the whole basin.  

Based on global comparison and correlation made, Bell (1996) and Zoback (2007) further state 

and confirm that attached stress regimes demonstrates uniformity in directional homogeneity of 

stress orientations with other similar studies conducted elsewhere in the world.  

ii. Detached regimes  

This is the mechanical separation of the basal unit from the overlying sedimentary sequence. 

Overpressure shale of the Niger delta basin forms a detachment folds, detachment zone for normal 

fault and thrust structures in a linked extensional contractional systems (Wiener et al., 2010). Doust 

and Omatsola (1990) Asserted that basin deposited with intervals of low strength rocks such as 

evaporites, over pressured, halite and ductile marine shales with slope instability are weak 

geomechanical zones which would trigger development of growth faults structures known as 

detached fault (Bell, 996; Tingay, 2009). Detachment fault is a low angle normal fault along which 

a basal strata shears at an inclined surface (Howard and John, 1987). 

 By deep mechanical detachment, far field stresses (acting in the basement) are partially and/or 

completely removed from the paralic clastic sequence overlying on the basal unit (Tingay, 2009). 

The stress patterns of this region are complicated or random because of the dominance of local 

(intra-basin) sources of stress mentioned above and exhibit vastly different and compound stress 

orientations. In other words, stresses in detached regimes are basically controlled by small or local 

sources of stress (Bell, 1996: Tingay, 2009). However, Bell and Babcock (1986) revealed that there 

is less orientation consistency found in other part of the world sediments.  

Consequently, there exist some variations in horizontal stresses which depend on the sedimentary 

basin of interest. Similarly, Becker et al. (1987) maintained that stress orientations can differ 

between thrust plates due to multi-level detachment, forming the surfaces of detachment. The most 

spectacular of detachment case is the appealing to conclude that stress regime which reflect 
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basement stresses of Mesozoic and Cenozoic sequences is attached base on the coincident of 

regional stress direction of the Scotian shelf and North American plate (Zoback and Zoback, 1991; 

Yassir and Bell, 1994).  

 

 

      Stress orientation in attached regime 

                    Stress orientation in detached regime 

 

 

Figure 2.9. Schematic diagram of Attached and detached Stress regime (Bell, 1996; Tingay, 2009). 

iii.   Anderson classification scheme  

Besides, Anderson (1951) and Cerveny et al. (2004) unanimously agreed that three stress regimes 

are identifiable if rock fails in shear. These stress regimes are associated with the three 

classifications of fault regimes by Anderson hypothesis of faulting is extensively used as a basis 

to describe the basics of fault failure and orientation. Stress state is defined by three principal 

stresses which are mutually perpendicular to each other (Twiss and Moores, 1992). Anderson did 

this description using a hypothesis which assumes that one of the principal stresses is the greatest, 

followed by intermediate and the least (i.e. 𝜎1  > 𝜎2>𝜎3 ) in descending order of magnitude. The 

lithostatic load is constantly vertical and should be identified first since the other two are 

orthogonal and horizontal Figure 2.10. This automatically defines the orientations of the two 

horizontal stresses (Cerveny et al., 2004; Economides and Nolte, 2000). Anderson’s theory of 

faulting predicts the type of developed fault at any given area to form in two conjugate planes 
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depending on any three of the principal stresses that becomes vertical with the other two being 

orthogonal (Twiss and Moores, 1992; Jaeger and Cook, 1979; Zoback, 2007) as follows:  

 

1) Faults are expected to form at +600 to the minimum horizontal stress  direction.  

2) Faults are expected to form at +300 to the vertical principal stress  direction.   

3) The line created by connection of conjugate fault planes will be parallel to  . 

Following the orientations of the stresses defined above, Anderson (1951) described the 

classification of fault in an area as Normal fault; when dip is 60o, Thrust fault; when dip is 30o and 

strike slip; when dip is an angle of 30o (Twiss and Moores, 1992). His theory assumes and 

characterize maximum principal stress (overburden) to be vertical in normal faulting, the minimum 

horizontal stress as vertical in the thrust faulting and intermediate horizontal stress as vertical in 

the strike slip faulting (Zoback, 2007).  

Moreover, the work of Bell (1996) reviewed the in situ stresses in sedimentary rocks for geological 

and petroleum geomechanical engineering applications and elaborated on the generally used 

measurements methods for determination of in situ stress in sedimentary rock especially in terms 

of the three principal stresses; vertical, intermediate and minor horizontal stresses (Bell, 1996). 

Consequently, he mentioned the sources where these three principal stresses, which are relative 

can be obtained from, as density log for vertical stress determination, leak off test or hydraulic 

fracture test for minor horizontal stress, core monitoring techniques for minor and intermediate 

stresses including micro and mini fracture data.  
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Figure 2.10. Andersonian’s classification scheme for types of faulting regimes (Zoback, 2016) 

  

2.4.2. Petroleum basin geomechanical characterization.  

Hudson and Harrison (1997) asserted that petroleum and geomechanics engineers evaluate rocks 

to ascertain the pre-existing state of stresses in the ground/rock for the purposes of design and 

completion applications. Hence, good grasp of the fundamental of stress tensor is vital for 

comprehension of stress magnitudes and orientations in the subsurface.  

Meanwhile, Bell (1993, 1996) disclosed that understanding of the stress state of a basin for its 

characterization requires measurements of in situ stress in the basin in terms of its overall 
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geomechanics, which incidentally includes the relationship between the sediments and the 

overlying rocks.   

In addition, Zoback (2007) submitted that sedimentary basins are found in stress regimes with 

normal strike-slip and reverse faulting environments. Thus, data gathered during drilling and 

hydrocarbon production, provide necessary information on stress orientations and magnitudes 

(Zoback, 2007). These data are required and acquired as a function of depth to address 

geomechanical stress related issues if the reservoir has geomechanical challenge (Dusseault, 2011). 

The understanding of stress magnitude and distribution in the earth interior can be combined with 

mechanical, thermal and rheological constraints to examine a broad range of geologic processes 

(Tingay et al., 2005).   

Zoback (2007) and Bell (1996) asserted that in some regions, consistent stress field exists all over 

the upper brittle crust as indicated by constant orientations observed in part of North Sea and 

western Canada. However, change in in-situ stress as a result of production, injection and drilling 

activities make it difficult for the existence of uniform present-day stress from the different 

measurement techniques sampling very different rock volumes and depth ranges (Zoback, 2007).  

In the account of Schneider (1985), Bell (1996) and Yale (2003) demonstrated that present day 

stress orientations are strongly influence by mechanical properties contrasts of rock unit present in 

the basin. In other words, geologic structures such as diapirs, folds and faults deflected the 

horizontal principal stress in an order of few meters to kilometers (Tingay, 2009) and are known 

to be the controlling factor in local stress field. Examples have been cited around the world where 

these local stress variations have been observed (Tingay, 2009; Bell, 1996), a weak fault or fracture 

zones cannot uphold shear stresses hence, act as a free surface. Hence, the stress field within this 

faulted or fracture zones are re-oriented locally so that Shmax is deflected to be sub- parallel to the 

faults or fracture, this suggests that the weak zones are soft relative to the surrounding rocks. 

Similarly, in a stiff structure Shmax is deflected to be perpendicular to the fault trace or igneous 

intrusive (Bell, 1996; Tingay, 2009).  These anomalous local stress orientations are the 

consequences of near geologic structures and/or mechanical properties contrasts of the rocks. How 

much horizontal principal stresses are deflected depends on the scale (i.e greater, larger and small) 

nature of the interface and the geomechanical property contrast (Zhang et al., 1994).  
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2.5. Estimation of in-situ stress  

The diagram below showed that rock is porous to some extent and the pore space are filled with 

in-situ fluids (water, oil, gas or rock melt) under pressure. These pore fluids may affect rock failure 

due to mechanical effect (tensile stress) of the pore pressure and due to chemical interactions 

between the rock and in-situ fluids (Jaeger et al., 2007). 

 

Figure 2.11. Show load sharing by pore pressure. Pore fluids support a portion of the total 

applied stress and only a portion of the total stress (effective stress) is carried by the rock. 

 

The first concept of effective stress was introduced in 1923 by Terzaghi with a mathematical 

relation as follow:  

                                                                                                    (2.8)  

where, 𝜎  is the total applied stress, 𝜎𝐼   is the effective stress governing consolidation of the 

material and P is the pore pressure.  Following the proposed equation by Terzaghi, Biot between 

1941 and 1956 came up with a consistent theory that accounts for the coupled 

distribution/deformation processes that are observed in elastic materials. He expressed this for 

poroelastic elastic materials as;  

                                                                                                     (2.9)  
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 where,  is the poroelastic (Biot) constant which varies between (0 and 1). Terzaghi (1923) 

effective stress equation governs rock deformation.  

Worldwide, oil and gas hydrocarbon reservoirs are found at various depths (shallow and deep 

reservoirs) below the earth’s surface, that is, within few hundred to several thousand meters/feet 

(Jones et al., 1992). As the depth to hydrocarbon discoveries increases, so the weight of the 

overlying rock column increases and acts as overburden stress on the reservoir. To estimate stress 

state generated, we assume that the rock is a semi – infinite isotropic medium subjected to 

gravitational loading where there is no horizontal strain. Vertical stress is generated by the weight 

of the overburden and it is referred to as maximum principal stress (Economides, 2000). 

𝜎𝑣 =  ∫ 𝜌(𝐻)𝑔 𝑑𝐻

𝐻

0

 

                                                                               or                                                      2.10 

𝜎𝑣 =  ∫ 𝜌𝑟𝑔 ℎ

ℎ

0

 

where,  is the overburden stress, g is the gravitational constant, H is the depth of burial and  is 

the rock density. The integration of density log gives us the vertical stress. In young sediment 

formation over burden gradient varies from about 0.8psi/ft to about 1.25psi/ft in high density 

formations.  

Sedimentary rocks are known for its porous nature which host fluid such as oil, water and gas in a 

formation. Considering a cross section of the hydrocarbon reservoir; generally, the whole rock 

columns on top of the hydrocarbon reservoir down to the reservoir ideally will also be saturated 

with (oil, condensate, brine or water) and/or gases (natural gas or air). These liquids, thus, form a 

continuous column from surface of the earth down to the reservoir interval and the load of this 

column is accountable for another stress component acting in the hydrocarbon reservoir this is 

known as the hydrostatic pressure or component of pore fluid pressure expressed by (Jones et al., 

1992) as:  
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𝑃𝑃 =  ∫ 𝜌𝑓𝑔 ℎ

ℎ

0

 

                                                                                                                      (2.11)  

Where,   is the pore pressure and   is the pore fluid pressure, g is the gravitational constant and 

h is depth. 

Tingay et al. (2005) explained that the present-day stress field is been controlled by the deflection 

caused by geologic structures such as faults and diapirs. Thus, the present-day stress pattern, 

geologic setting and type of rock in a basin also subject hydrocarbon reservoir to horizontal stresses 

(Jones et al., 1992).  

 

2.5.1 Description of principal stresses   

Economides and Nolte (2000) asserted that a complete account of the state of stress is of 

significance because hydraulic fractures promulgate perpendicular to the minimum principal 

stress. This aids hydraulic fracturing design as follows: if 𝜎3 is horizontal, a vertical fracture will 

be created (recommended for the reservoir). If 𝜎3 is vertical, a horizontal fracture will be created 

(recommended for the reservoir) and if  𝜎3 is inclined, an incline fracture normal to it will be 

created (recommended).   

  

2.6 Theoretical framework (mechanical behavior of rock)   

Rock deforms when subjected to load due to high stress level and more strain experience.  

Jones et al. (1992) posited that sedimentary rocks consist of porous media, grains and minerals that 

eventually cemented (bonded) these rock properties together. These sedimentary rocks are the hub 

for hydrocarbon generation, storage and transmissivity by their intrinsic nature. The theories of 

rock behavior that is, elastic, nonlinear or inelastic which determine the relationship between stress 

and strain provide the basis for interpretation of geomechanical parameters for well construction 

design. These theories are referred to as constitutive laws.   
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Rocks are not completely elastic they are brittle with negligible plasticity; the awareness of elastic 

parameters is of enormous importance for engineering applications. At low effective stresses rock 

samples subjected to load behave elastically while at high effective stresses rocks deform or rupture 

(Cerveny et al., 2004; Jones et al., 1992). When a rock sample or an element of the earth is 

submitted to load, it exhibits elastic behavior at low stresses but at high effective stresses, it 

deforms, yield or give way in service. Thus, rock behavior depends on the existing stress 

conditions. The description of the behavior of rock undergoing deforming force is governed by 

constitutes laws which determines the relationship between stress and strain and describes the 

deformation (Zoback, 2007). There are three types of these laws namely; Elasticity, plastic and 

Viscous (Serra, 1984)  

  

2.6.1 Linear elasticity  

For an ideal rock, it is assumed that rock behaves as an elastic material this gives it significant 

advantages (Serra, 1984). In elastic theory, it is assumed that there is a one-to-one association 

between stress and strain when subjected to an applied force and upon the removal of the force the 

rock behavior becomes reversible. This display linear elasticity behavior and Hooke’s law is 

obeyed, that is, it assumed a linear and unique relationship between stress and strain. Once more, 

taking into account the strength of the materials the deformation will be elastic until the point of 

failure is reached. Beyond the elastic limit, any small degree of inelastic deformation leads to 

failure of material (Tiab and Donaldson, 2012). This is valid for well cemented rocks but for weak 

and poorly cemented rocks the applicability of the above strength of material approach is more 

questionable (Zoback, 2007). This theory is applied to non-linear and anisotropy materials. As 

mentioned above, the rock returning to initial shape is not necessarily immediate and may take 

some time; this is known as Elastic-plastic (non-linear elastic). This defines rock behavior which 

responds elastically to the stress level at which it yields and then deforms plastically; without limit 

upon unloading of the applied force the rock would again behave elastically. In this case there is 

nonlinear relationship between stress and strain, but it recovers strain attained upon unloading. 

Anisotropic material has properties that differ in different directions and these properties can be 
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characterized by five young moduli, Poisson’s ratio, compressibility, bulk modulus and shear 

modulus (Economides and Nolte, 2000). 

2.6.2 Poroelasticity   

Poroelastic theory explains the deformation in a porous rock saturated with fluid where, the 

stiffness of a fluid saturated rock will depend on the rate (i.e. time dependent deformation) at which 

external force is applied. Therefore, the deformation of a poroelastic material is time dependent. It 

is a property shared with viscoelastic materials.  

  

2.6.3 Plasticity   

Soft rocks are usually weak and manifest larger deformation features (creep), creep is a time 

dependent deformation that occur in materials under constant stress, its originates from visco-

elastic effect and occur in both saturated or dry rocks, that is, they flow. Plasticity theory deals 

with the reaction of rock to load further than elastic limit. Rock deformation becomes permanent 

above a certain threshold (Serra, 1984). It behaves elastically prior to the point of threshold 

attainment and deformation occur because of inter-granular movements and recrystallization 

processes. The theory of plasticity deals with the complex rock behavior particularly in 

compression. Therefore, it is used for predicting stress concentration around a borehole and the 

behavior of soft materials in a depleted reservoir (Economides and Nolte, 2000).  

  

2.6.4 Visco-elasticity  

Visco-elastic theory is one in which the deformation of rock is in response to an applied stress or 

strain, it is time rate dependent. The deformational stress required to cause a certain amount of 

strain in the rock depends on the perceptible viscosity ƞ of the rock (Serra, 1984). Viscosity is the 

internal resistance offered against the free flow of fluid material. It is equal to the ratio of shear 

stress τ, to the rate of shear strain, γ. Viscous material can deform, and the strain is unrecoverable 

(Serra, 1984). A viscous material that exhibits permanent deformation after application of a load 

describes visco-plastic. The above theories describe the constitute behavior of rock in elastic, 

poroelastic, elastic-plastic and viscoelastic media (Zoback, 2007).  



 

 

41  

 

2.7. Rock strength   

The strength of a reservoir rock is the stress at which the rock fails (i.e losses its integrity) either 

in shear, compression and tension depending on load configuration, geometry and stress 

distribution. The strength of rock can be obtained from various laboratory test methods. These test 

methods are; triaxial compressive and extension, hydrostatic compressive, uniaxial compressive, 

uniaxial tension, and polyaxial or true triaxial. The general strength of rocks is a connection 

between the principal effectives stress mechanism as articulated by (Terzaghi, 1923; Economides 

and Nolte, 2000). Rock strength are dependent on the following factors: rock type and composition, 

rock weathering, rock density, rock grain size, rock porosity, confining stresses, rock anisotropy, 

rate of loading, rock geometry, shape and size, time, temperature, pore fluid pressure and fluid 

saturation (Amadei, 2007).  

 

2.7.1 Factors affecting rock strength  

The intrinsic properties of reservoir rocks (i.e. texture and mineralogy) coupled with the 

geomechanical behavior of rocks are controlled by the following factors:  

i. Influence of pore pressure  

Pore fluids in a formation provide some support to portion of the total applied stress, besides, a 

portion of the effective vertical stress is also supported by the rock matrix. The effective stress of 

a formation varies across the life span of the reservoir (Economides and Nolte, 2000). Furthermore, 

the fluid response is modified by the mechanical performance of the porous rock in two ways: an 

increase of pore pressure which reduces normal reservoir stress and induces rock dilation and 

compression of the rock which produces pore pressure increase causing a time dependent 

characteristic to the mechanical properties of the rock (Detournay and Cheng, 1993).  

  

ii. The effect of water  

Han and Dusseault (2005) reported that the increase of water saturation during production leads to 

sand failure. Formation water act in different ways to cause sand failure: by chemical deterioration 



 

 

42  

 

of cementing materials which weaken the strength of the crystal structure rock and; by pressure 

solution caused by dissolves soluble minerals deposited locally in low stress environment which 

are prone to complete flush out (Allmendinger, 2015). A sandstone will addition of water or fully 

saturated may typically lose its strength by 15% (Goodman, 1989). On the other hand, the 

consequence of fissure water and pore pressure influences the rock strength. 

iii. The effect of size on strength  

Rocks are composed of crystals and intact grain to grain, principally characterized by joints, cracks, 

fissures, shistosity, cavities and other possible discontinuity (Jumikis, 1983). To understand the 

components that influence rock strength, large samples are required for test, these samples suggest 

pre-existing cracks, but when the test specimen sample is small in size such that relatively, few 

cracks are present. This sample failure involves new crack growth. Therefore, rock strength is size 

dependent (Goodman, 1989). Rock strength decreases with the size of the test specimen and a finer 

size grain leads to high fracture (Amadei, 2007).   

iv.     Anisotropic rock  

Rock anisotropy describes the continuous directional variations of principal stresses and 

mechanical properties of compressive strength (Bidgoli and Jing, 2014; Goodman, 1989). It occurs 

in so many formations with interlayer mixtures components such as sandstones/shale intercalation, 

chert/shale alteration and banded gneisses. The characteristic of strong anisotropy is established in 

rocks with parallel arrangement of flat minerals like chlorite, mica and long mineral like 

hornblende or clay (Goodman, 1989). Deformation and rock strength anisotropy has significant 

role for well engineering design and assessment in geomechanics as rock exhibiting anisotropy 

may leads to strong strength anisotropy (Goodman, 1989).  

v.   Confining pressure  

All rocks deform slightly by some few percentages prior to their rupture or fracture at low confining 

pressure (Serra, 1986). This mean that at high confining pressure rock mechanical property 

behavior variation is observed. Hence, at reservoir depth confining pressure increases the rock 

strength (Amadei, 2007).  
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vi.  Time  

Rocks generally exhibit elastic behavior except in few cases where they have nonlinearity. When 

the rocks are subjected to very short time or duration stresses they behave elastically and become 

plastic when they are expose to stresses applied over long duration of time. Thus, time played a 

significant role in the behavior of rocks (Tiab and Donaldson, 2012)  

vii.  Temperature  

Elasticity limit of rock is observed to decrease as the formation temperature increases; therefore, 

when temperature increases less stress is required to produce deformation or strain in a reservoir. 

  

2.7.2 Rock failure and fracture mechanics  

Rock failure means the gross loss of reliability in a rock sample specimen to carry out its proposed 

function as regard to civil engineering context (Jumikis, 1983).  A rock fails as soon as the state of 

stress is such that the criterion is met along one plane, which is also the failure plane. For instance, 

in the case of Mohr circle this means that the state of stress at failure is represented by a Mohr 

circle that touches the failure envelop. To comprehend failure, certain compactable failure criterion 

needs to be employed because sand fails in shear, while clay fails as plastic, these have been 

documented as their respective failure mechanisms (Economides, Watters and Dun-Norman, 

1998). Other failure mechanisms are; tensile, cohesive, creeping and pore collapse. These 

criterions are used to generate envelopes which separate unstable from stable zones.  

The empirical relations for rock failure criteria are terminology of physical hypotheses derived 

from laboratory experiments, which indicate how temperature, time effects and in situ stress 

including other factors affect rock strength (Goodman, 1989). There are numerous rock failure 

criteria for different rock types.  

Thus, they are used to evaluate if a rock will fail or not for engineering design. These relationships 

are called the failure criterion, and its graphical representation is called the failure envelope. In this 

study because of the well-established background and simplicity of Mohr Coulomb’s and Mohr’s 

criteria, its use is therefore adopted Figure 2.12. The figure below explained Mohr diagram, shear 
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failure occurs if the stress state produces a shear stress that falls outside the stability envelop while 

tensile failure occurs if the stress state falls to the left shear stress axis and exceeds the tensile 

strength of the rock. 

 

Figure 2.12. Mohr Coulomb failure envelope. 

 

2.7.3 Basic rock failure model   

Models developed to predict rock failure can be divided into four categories namely; Empirical 

correlation model, analytical analysis model, numerical analysis model and probabilistic model.  

i. Empirical correlation models are developed based on exact field data. They describe the 

physical behavior of a reservoir rock failure based on field observations. They rely on 

establishing an empirical correlation with relationships between onset sand product, well 

data and field parameters which are responsible for causing sanding development in a 

hydrocarbon reservoir (Gholami et al., 2016).  

ii. Analytical models: are theoretical model applied for the prediction of rock failure which 

focuses on stress state analysis in the formation, wellbore and/or perforation intervals for 
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which critical condition has reached for the initiation of rock failure. These simplify the 

rock mechanic properties and geometry problem and are very realistic for screening 

purposes and are deployed over a broad range of circumstances (Oyeneyin, 2015). As the 

name implies analytical mathematical equations are used to estimate rock failure or 

sanding potential (Oyeneyin, 2015; Gholami et al., 2016). Thus, they are widely used for 

sand production evaluation in subsurface engineering, although suffer from assumptions 

used (Gholami et al., 2016).  

iii. Numerical analysis models: These are the best model to be employed in solving precise 

geomechanical problems because they proffer great details of rock failure development as 

a result of various combinations of input data used for their simulation analysis than their 

counterparts. The acquisition of all these parameters as input for reservoir simulation 

suffers some drawback because varied procedures are required, and their corrections must 

be affected accordingly (Gholami et al., 2016).  

iv. Probabilistic models: These statistical models developed which utilizes analytical models 

in conjunction with numerical models to evaluate and predict statistical variation 

underlying field parameters with reference to satisfactory range of uncertainty.  

 

2.8 Empirical analysis review  

Rock formation may become loose after shear volume or tensile failure. When rock fails by 

 shearing or in tensile it led to sand production. 

 

2.8.1 Rock Failure and Sand production  

Udebhulu and Ogbe (2015) asserted that the Niger Delta formation is a poorly consolidated and 

friable region which makes it prone to sand production. This necessitated the need for proper 

geomechanical analysis to be carried out to understand the in-situ stress, rock strength and elastic 

properties for field development.   

Osisanya (2010) confirmed that poor consolidation reservoirs have always proved difficult which 

warrants sand production issues to be expected when completing wells in these formations. The 
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reduction of in situ stress due to poor completion practices also results in consolidation rock failure 

in mature and brown fields globally. A lot of factors influence sand failure. They include fluid 

production rate, formation strength and changing in in-situ stresses; just to mention but a few. Sand 

production is one of foremost problems usually encountered by producing companies for several 

decades now (Osisanya, 2010).   

According to particles together Nouri et al. (2003), sand production is the phenomenon that is 

associated with the production of solid with reservoir fluid. The volumetric failure model which 

he puts forward argues that pore collapse is a significant source of sanding in a reservoir through 

induced disintegrated material exposure to the cavity’s face.  

Soroush (2013) and Majidi et al. (2015) confidently maintained that when the virgin state of stress 

is disturbed by different oil and gas exploration activities, pore fluid pressure in the reservoir is 

reduced. This reduction may eventually instigate a redistribution of stress in the reservoir and 

surrounding rocks; thereby leading to a variety of potential issues such as compaction, subsidence, 

fault reactivation and other forms of strain localization   

Oyeneyin (2015) stated and explained that reservoir management for sand production needs an 

accurate acquaintance of the likelihood of rock failure and the amount of sand it will produce. 

Conducting a geomechanical analysis is a vital step to assess and prevent costly problems during 

oil and gas exploration and production (Hoedeman and Hughes, 2015).  

Moreover, Jones et al. (1992) reiterated that in order to comprehend the mechanical behavior of 

hydrocarbon reservoir rocks, a sound knowledge of geomechanical properties is indispensable.  

The understanding of a reservoir rock may influence the well design strategy. Three approaches 

are used in geomechanics for its evaluation. They are theoretical, experimental and best industry 

practices. They emphasized that the productive capacity of a field is affected by the in-situ stress 

and deformation of rocks due to pressure drop in the reservoir.  

The key objectives of geomechanical assessment of reservoir rocks are essentially for economic 

development, better well engineering, evaluation of the probability of deformational problem 

occurring in the subsurface, estimation of cost and impact on environmental safety, prediction of 
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drilling and wellbore stability problems, design of effective well completions and the prompt 

provision of geomechanical data for mass balances of simulations (Jones et al., 1992).   

Pak and Chan (2008) and Hibbeler and Rac (2005) explained that petroleum reservoir having low 

permeability for the flow of fluid requires hydraulic fracturing to make it commercially feasible. 

The study justified real time sanding model with minimal input parameters from geophysical logs. 

Cartson et al. (1992) asserted that detailed understanding of reservoir formation, mechanical 

strength, rock failure mechanism and present-day stress state is necessary for predicting sanding 

potential for mitigation strategy.  

Benetatos et al. (2015) succinctly submitted that the notable sources of stress in the subsurface 

could be categorized as natural and anthropogenic processes. The former is, as a matter of fact, 

occasioned by tectonic loading, sediment compaction, sediment loading and post-glacial rebound. 

However, the latter process of stresses formation is basically triggered by man-made activities such 

as drilling operations, fluid exploitation and local hydrocarbon production.  

Abija and Tse (2016) explained the significance of in situ stress level and direction for oil and gas 

field development planning for optional well placement, especially, in deviated wells for safe and 

stable drilling to lessen nonproductive time.  

In addition, Hubert and Willis (1957) clearly established that the direction of propagation of 

hydraulic fracturing in a reservoir should be perpendicular to the minimum horizontal principal 

stress orientation. This was further revealed analytically through the work done to open an amount 

of a fracture when compared to the product of the stress acting vertically to the fracture plane 

and/or times the fracture opening amount.  

A well is said to be poorly planned or designed when there is inadequate geomechanical data or 

information about it. The required information about such well may include the elastic properties 

and the strength of the rock, in-situ stress and well bore stresses around the wellbore wall. 

Sometimes, production activities may lead to geomechanical problems such as wellbore collapse, 

kick, lost circulation, side tracking and even well abandonment particularly during an infill and 

extended wells drilling (Abija and Tse, 2016). The review behind the development of a 
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geomechanical model of a field is to sustain the lifetime of the reservoir (Hegazy and 

Lakshmikantha, 2014).   

2.8.2 Geomechanical methodologies (theories and methods)  

Considering the separate works of Chin and Ramos (2002) and; Udebhulu and Ogbe (2015) reveals 

that there is a wide variety of empirical, numerical and analytical models for sand production 

prediction because of the efforts that have been spent in developing these models for 

geomechanical prediction of sand failure over the years, to assist in several ways of field 

development and management.  

Udebhulu and Ogbe (2015) developed a general mechanistic model that incorporates the theory of 

dimensionless quantities related with sanding and concluded that nearly all reservoirs have 

distinctive sand production rate (SPR) relationship index which represents its susceptibility to 

produce sand or its sanding characteristics.   

Abdideh and Ahmadifar (2013) designed methodological workflow for geomechanical model with 

a primary aim to predict appropriate layers for hydraulic fracturing operation in hydrocarbon 

reservoir rock using geomechanical model. Their geomechanical model followed an outline which 

includes five main steps to estimate and calculate elastic properties of rock: in-situ stresses, design 

for safe mud window, selection of hydraulic suitable layers for fracturing and failure prediction 

from stress. They concluded that geomechanics provides the key understanding for the 

investigations and interpretation of the earth response against stresses, which may be natural and 

anthropogenic.  

As a step towards addressing related geomechanical problems for well stability, Darvisa et al. 

(2015) described hydraulic fracturing as a well stimulation treatment and/or enhancement of 

hydrocarbon production that requires desirable technical deployment. Geomechanical model 

established for a field enhances the detailed comprehension of the field development options to 

improve well liberation through an optimized and incorporated method (Xiao et al., 2016).  

Balarabe and Isehunwa (2017) developed a geomechanical model, whose purpose is to reliably 

estimate critical pressure below which sand production can occur in a reservoir.   
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McDermott and Kolditz (2006) put forward a geomechanical model which characterizes fracture 

closing as a function of effective stress and the variations in petrophysical reservoir parameters 

which include aperture, permeability and porosity. The changes in normal effective stress cause 

fracture closure and can be used to formulate an analytical elastic deformation solution to compute 

the buckle reaction to changes in effective stress (McDermott and Kolditz, 2006). Their model 

provides an imminent key process to determining the closing of a fracture and serve as a substance 

input function for numerical models involving the effects of the stress field disparity.   

Moreover, Zoback and Khaksar (2006) reiterated the existing empirical equations developed 

worldwide to estimate rock strength from geophysical logs. These equations have been proven to 

be very useful in the oil exploration and production industry for estimating and solving a wide 

range of geomechanical problems; especially, when direct strength information from core is not 

available. However, some of these equations work practically well for strength-porosity 

relationships in sandstone and shale formations. The variation of rock strength in individual 

physical property, shown that published or unpublished empirical correlations designed for 

estimation of rock strength at a particular region could not adequately fit another region.  

Meanwhile, Kang et al. (2009) brilliantly and reliably introduced a new approach based on 

grainscale discrete element to mimic the realistic rock condition. Their well-articulated and 

presented work revealed the limitations inherent in conventional models and the potential 

usefulness of a new approach based on a discrete element method (DEM).   

In his contribution Hoedeman (2015) compared the different geomechanical model such as 1D, 

3D, 4D finite element models for state of stress and asserted the model that gives a more precise 

and reliable present-day stress among its counterpart as 1D geomechanical models.   

Besides, Archer and Rasouli (2012) applied log derived methodology to estimate rock strength 

through the calculation of the elastic properties and in-situ stress magnitudes from vertical, major 

and minor horizontal stresses.  

Woehrl et al. (2010) presented meaningful comparison between the different methods used to 

obtain rock mechanical properties from petrophysical logs using empirical relations and 

algorithms. The petrophysical logs allow for computation of continuous presentation of 
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mechanical properties with depth. These log-derived petrophysical data were correlated with 

laboratory-derived rock mechanical properties for validation of result.   

In their work, Fidelis and Akaha (2016) further stated that geomechanical analysis and its modeling 

is a tool employed to generate data for well planning and reservoir engineering. These properties 

are the elastic constants such as bulk modulus, shear modulus, Young’s modulus and Poisson’s 

ratio including the in-situ stress. These geomechanical properties account for hydrocarbon 

reservoir stress profile which is critical to any reservoir development. Thus, they play a key role 

in the assessment and development of a field by predicting and mitigating the effects of stress and 

pressure changes for resultant strains on the reservoir, wellbore and completion design in the 

formation.   

 In an anticipation to get a better reservoir performance Zhou et al. (2005) applied two methods 

which are based on mapping and radial basis function to estimate rock strength from high-quality 

nuclear spectrometric tools, comprises of prompt gamma Neutron activation, natural gamma and 

conventional geophysical logs.  

Hudson and Harrison (2000) stated two approaches as direct and indirect for the determination of 

5hmin. The direct method as the name implies involves direct stress measurements using either of 

the tests methods: micro-frac, mini-frac, leak-off test and step rate tests (Zoback, 2007; Fang and 

Khaksar, 2011; Carnegie et al., 2002).   

Jamshidian et al. (2017) submitted in their studies that, various models have been anticipated for 

the indirect method of determining minimum horizontal stress (Shmin) parameter and listed these 

models to include: Newberry, Huang, Terzaghi, Anderson and horizontal poroelastic strain models 

(Jamshidian et al., 2017). Basically, this indirect method requires various data sets from wireline 

logs data, core, pore pressure, static Young’s modulus, Poisson’s ratio and shear sonic transit time 

(Jamshidian et al., 2017).  

Bieniawski (1974) also proposed two comprehensible and easy-to-use methods primarily designed 

for the prediction of the behavior of rock materials and the estimation of the strength of the rock 

(i.e uniaxial and triaxial). He validated his methods with some 700 representative specimens from 

five different rock types.   
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The deformations of porous rock have been reported by (Carbognin et al., 1978; Yin et al., 2006, 

2007; Taheri, 2015) as major concern in some reservoir that affects not only the surface facilities 

but also cause blockage in the tubing and reduced production rate.  

 In another contribution, Zoccarato et al. (2016) succinctly declared that the prediction of the 

subsurface compaction of producing oil and gas fields is an imperative issue for accurate reservoir 

management.   

According to Darvish et al. (2015), in order to effectively address stress associated issues of 

reservoir rocks, it is essential to carry out some vital rock mechanical test on different reservoir 

rock (core) samples for physical and mechanical properties information of the reservoir rock.   

Sengupta et al. (2011) highlighted on the importance of the extent to which seismic driven earth 

model can be incorporated into the domain of geomechanics and drilling. The impact of   formation 

parameters from seismic data on well design was duly emphasized. Mention was also made on the 

fact that seismic inversion parameters improve the resolution and quality of a 3D Mechanical earth 

model (MEM).  

To comprehend failure phenomenon, a specific and compatible criterion must be employed, while 

some materials such as sand, fail in shear, others, such as clay, may fail due to plastic deformation. 

Many empirical criteria have been developed to predict rock and formation failure (Aadnoy and 

Looyeh, 2011). Most of them consider only minimum (𝜎3) and maximum (𝜎1) principal stresses. 

(Konietzky et al., 2017). However, more advanced once include the intermediate principal stress 

(𝜎2). Below are some failure theories and UCS model adopted in rock mechanics. Table 2.1 Failure 

theories for ductile and brittle materials 
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Table 2.1: Failure theories for ductile and brittle materials 

 Equation/Model Name of Failure 

theories 

Comment 

1. 𝜏 =  𝑆𝑜 − 𝜎𝑛𝜇1 

𝜎1 =  𝐶𝑜 + 𝑞𝜎3 

  

Mohr Coulomb This criterion relates 

the shearing 

resistance to the 

contact forces and 

friction to the 

physical bonds that 

exist among the rock 

grains. 

2. 
𝜎 𝐼1 + √𝐽2 − 𝐵 = 0 

Drucker-Prager  This criterion allows 

evaluation of a given 

problem related to 

rock formation 

failure and its fits for 

high stress level.  

 3. √𝐽2 = 1

3
(𝜎1 −  𝜎3) Von Mises It is used to separate 

materials into regions 

i.e. safe and failed or 

stable and unstable 

region. 

4. (𝜎1 − 𝜎3)2 = 8𝜎𝑡(𝜎1 +  𝜎3) Griffith  This failure criterion 

is applicable to 

materials which 

break in tension due 

to presence of 

existing microcrack. 

5. 𝜎1 =  𝜎3 +  √𝐼𝑓𝜎𝑐  𝜎3 +  𝐼𝑖(𝜎𝑐 ∗ 𝜎𝑐 ) Hoek-Brown Failure 

Criterion 

This criterion is 

entirely empirical 

and usually applied to 

naturally fractured 

reservoir. 

6. 𝜎𝑜𝑐𝑡 =
1

3
(𝜎1 + 𝜎2 + 𝜎3) Mogi-Coulomb 

Criterion 

It utilizes the 

intermediate stress to 

give a best fit as 

against M.C. 
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 2.8.5 Previous work on Wabi field  

Adewole and Healy (2013) obtained the directions and magnitudes of two principal stresses namely 

maximum and minimum horizontal stress components in the Niger Delta from petroleum 

exploration data and recommended that the maximum horizontal stress is the intermediate 

principal stress in the basin. Also using two approaches which depict function of vertical stress 

and over pressure at depths they quantified the magnitude of horizontal. Hence, proposed the 

existence of inhomogeneous stress in the Northern Niger Delta and suggested different sources of 

stress field in the study basin base on analyses of 32 borehole breakouts recorded in six wells.  

 Abija et al. (2016) carried out investigation of in situ stress orientation and magnitude for 

determination of stress pattern in Wabi field Niger delta for well engineering particularly, for 

directional drilling trajectory optimization for actualization of safe drilling operation of infill wells 

in the field.   

Uzorchukwu (2016) conducted a critical evaluation of the different existing correlations employed 

for estimation and analysis of geomechanical parameters of rocks adopting three approaches; 

namely, ranking and cross plots to obtain the best correlation that fits the Niger Delta region and 

recommends the best correlation that can be applied to evaluate rock strength in the Niger Delta 

reservoir as the Sharma and Singh approach.  

Abija and Tse (2016) examined the geomechanical properties of an onshore field in the north 

central Niger Delta for geosteering, wellbore stability, hydraulic fracturing in directional wells for 

implementation in infill well using data from Oil and gas producing company.  

Salawu, Sanaee and Onabanjo (2017) determined the rock strength (unconfined compressive 

strength) of core samples collected from across the Niger Delta basin at different depths to obtain 

an empirical correlation equation for the region and compared the derived UCS  correlation 

equation with other best industry existing correlations to verify if any existing correlation correlate 

well in the Niger Delta region and concluded that known of the obtainable correlations built for 

other regions of the world fits the Niger Delta.  
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Besides, Zorasi et al (2017) also embarked on a detailed and comprehensive seismic, petrophysical, 

sequence/stratigraphic and geochemical evaluation of a mature onshore field (Wabi) in the Niger 

Delta for reservoir characterization and upside hydrocarbon potential determination using seismic, 

wire line logs, Drill stem test (DST), core and geochemical data, and identified bypassed pay zone 

deeper in the field for reservoir development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

55  

 

CHAPTER 3 

MATERIALS AND METHODS 

This chapter presents the materials, data sets and practical methodologies that were used or 

employed for the evaluation of Wabi field petrophysical and geomechanical parameters through 

oil and gas company best practices and empirical relations to understand the mechanical behaviour 

of rocks for mitigation strategy and development. The materials used in this study includes: (i) 

petrophysical logs such as gamma ray, resistivity, density, neutron and sonic logs, and (ii) 

processed seismic data acquired by serving company.   

 

3.1   Method of data collection and instrumentation  

Data sets from Brown Mature/Marginal field reservoirs were collected from an oil producing 

company in the Niger Delta with the assistance of the Department of Petroleum Resources (DPR). 

These data include:   

1. Digitize 3D seismic data (in Seg-Y data format).  

2. Digitize conventional logs: Gamma ray, sonic, density, neutron, resistivity in LAS format  

3. Repeat formation tester/ Drill stem test data for Pore pressure measurement.  

4. Core x-ray scan for Wabi 5.  

5. Check shots.  

The following software: Schlumberger Petrel, interactive petrophysics and MS Excel were 

employed for the analyses and interpretation of these data.  

 

3.2 Research design (workflow)  

The workflow designed for this study help to optimize both Wabi reservoir petrophysical and 

geomechanical characterisation Figure 3.1. The step by steps workflow includes: Seismic 

interpretation which gives lateral resolution of the subsurface, petrophysical evaluation gives 

vertical resolution of wellbores, sequence stratigraphy analysis depicts the depositional 

environment and geomechanics gives estimation of mechanical rock properties and the formation 

strength to support completion design.  
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                                               Figure 3.1. Workflow design 
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3.2.1 Procedures to carry out this analysis  

a) Seismic interpretation analysis.  

Detailed 3D seismic interpretation using the appropriate software (i.e. Schlumberger Petrel for 

comprehensive seismic interpretation workflow, both structural & stratigraphic) was employed. 

This includes: The loading of available data (seismic and logs) to the software, generation of 

synthetic seismogram to determine the horizons or picks of interest to be interpreted on the seismic 

profile, fault and horizon interpretation, calculation of heaves, creation of fault polygons and 

zapping/interpolation/smoothing of horizons, generation of depth converted contour maps, 

volumetric estimation and generation of geo-models, determination of fault trends, extent and 

direction as well as delineation of stratigraphy of the area using seismic stratigraphic approach.   

 

b) Petrophysical parameters valuation from well logs for reservoir characterization  

Detailed petrophysical evaluations of sediments of the Basin will be  carried out, such evaluations 

included: Estimation of sand thicknesses with a view to producing an isopach map and determine 

areas with good sand development, estimation of sand/shale percentages, estimation of total and 

effective porosities, estimation of water and hydrocarbon saturation, delineation of possible 

hydrocarbon-bearing sands and also water, oil and gas contacts, estimation and comparison of 

porosity, permeability, water saturation, hydrocarbon saturation in and across the well(s) using the 

available wireline logs, determination of the lithology and geometry of the sand units with a view 

to correlating them, estimation of shale volume content, bulk volume water, hydrocarbon pore 

volume/thicknesses, Net pay flag, cross plots of variable parameters, such as the different porosity 

logs to determine mineral/ lithologic compositions of the sand units, estimation of Gas Production 

Index (GPI) to determine intervals with good gas potential.  

 c) Lithology/Stratigraphic Evaluated from well logs for depositional environment.  

Detailed sequence stratigraphic/ sedimentological analysis includes: The correlation of sequences, 

systems tracts and parasequence from both seismic profiles and field studies, facies analysis and 

identification/description of lithofacies units, depositional environments and stratigraphic 

sequences, textural and compositional analyses of sandstone particles and microscopy to determine 

mineralogical composition, porosity, maturity, provenance and effect of diagenesis on the 
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sandstone, interpretation of faunal abundance and/or diversity and trends of parasequence 

thickening and thinning .  

 

d) Geomechanical parameters evaluation from well logs using poroelastic theory  

Detailed geomechanical evaluation of the reservoir parameters shall be carried out. This will 

include: Estimation of the elastic properties such as shear/rigidity modulus, elastic modulus, bulk 

and matrix moduli, bulk and grain compressibility, Poisson’s ratio and Biot’s coefficient from well 

logs, inelastic properties determination: fracture gradient, rock strength, (uniaxial compressive 

strengths) , tensile and cohesive strengths, and frictional angle, overburden (vertical stress) 

calculation and the magnitudes of minimum and maximum horizontal stresses estimation using 

poroelastic formulation, lithology delineation, pore pressure estimation, onset sand production 

prediction estimation and construction of a 3D Mohr diagram.  

  

 

3.3    Geomechanical properties estimation  

The principle of elasticity examines the relationship existing between the forces applied to a rock 

material and its responses to changes in shape and size (Timur, 1987). Upon the removal of the 

forces acting on rock sample, it returns to its original shape and size, in elastic, Isotropic, 

homogeneous solid. Therefore, the theory of elasticity assumes a linear relationship between stress 

and resulting strain, provided the force or load is not large enough to cause permanent deformation 

(Economides and Nolte, 2000). This implies that all strain recovers when the deforming force is 

removed. The coefficient of proportionality is called Young’s modulus. Subjecting a rock sample 

to a deforming force shortens or expands it (Timur, 1987).  

 3.3.1     Elastic property of rock and their definition  

The property of a rock that describes or defines its ability to resist permanent deformation or 

slightly deformed under the action of applied force is known as the elastic properties of that given 

rock. These properties include shear modulus, bulk modulus, young’s modulus and Poisson’s ratio 

(Serra, 1984). The reciprocal of bulk modulus is known as compressibility. Knowledge of these 

elastic properties is very crucial for well engineering development because their determination 
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helps to predict the behavior of rock with regards to the applied for as an approximation of the 

rock behavior (Economides and Nolte, 2000). Various established relationships exist between 

these elastic constants or coefficients. Timur (1987) defines and expressed these relations as 

follows;  

i. Young’s Modulus (E) defines the ratio of tensile or compressive stress to the resultant 

strain. It is a strength modulus, expressed as:                         

                           𝐸 =  
𝜎𝑥

𝜀𝑥
=  

𝐹 𝐴⁄

𝛥𝐿 𝐿⁄
                                                     (3.1) 

 Where 𝜎𝑥 is the applied stress, 𝜀𝑥 is the corresponding elongation, l is the original length, ΔL 

change in diameter. 𝐹 𝐴⁄   is the force per unit area.  

 

Bulk Modulus (K) describes or defines the response of an object to the change in volume under 

hydrostatic pressure or compression. In other words, it is the coefficient of proportionality 

between stress and volumetric strain during a hydrostatic test. It is a compressibility modulus, is 

expressed as:   

                                                                                    (3.2) 

 where, P is the pressure,  is the change in volume,  is the original volume.  

ii. Shear Modulus (G) It is a rigidity modulus defined as the ratio of shearing stress to 

shear strain, expressed mathematically as:  

         G =       
𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑎𝑖𝑛
  =   

𝜏

𝛾
                                       (3.3)                                          

iii. Poisson’s ratio (ν) describes the measure of the geometric change of shape or the ratio 

of the lateral change (contraction) to longitudinal dilation. It is a plastic modulus, 

expressed as:    

                                         ν =    
    ∆𝑑

𝑑⁄

∆𝑙
𝑙⁄

                                                (3.4)  
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where,  is the change in diameter,  is the original diameter of cylindrical core sample  

For isotropic linear elastic medium, there are four established elastic parameters which are not 

independent of one another, (Economides and Nolte, 2000; Timur, 1987) and anyone of these can 

be articulated in terms of two others. i.e. the shear modulus G and bulk modulus K then an 

expression can be written as a function of Young’s modulus, E and Poisson’s ratio, ν (Tiab and 

Donaldson, 2012; Timur, 1987; Serra, 1984) and so on and so forth. See example below;  

                                                     G = 
𝐸

2(1+𝑉)
                                      (3.5)  

 

                                                     K =                                                 (3.6)  

3.3.2 In-situ stress measurement of mechanical properties  

The frequently used indirect method for the determination of mechanical properties of rock is the 

sonic (acoustic) and bulk density log measurements through wireline tools (Jones et al., 1992). 

Acoustic waves propagate mechanical energy. This is the only petrophysical sonde (tool) that 

responds to mechanical (elastic) properties of a formation. This is because its records parameters 

linked with the transmission of sound waves in a given formation (Timur, 1987; Serra 1984). Two 

types of waves are utilized, they are: compressive and shear waves for estimation of elastic 

constants of a formation (Timur, 1987), thus measures the speed of propagation of compressive 

and shear waves in a wellbore as well as their characteristics (Economides and Nolte, 2000). 

Acoustic wave speed propagated in a formation can be estimated with the aid of the time it takes 

to travel through a certain thickness of the formation (Timur, 1987).  

Acoustic wave propagation in rocks depend on structural framework of grain, and pores, rock 

matrix composition, temperature, porosity pore pressure and overburden (Timur, 1987). The 

passage of compressive (P-wave) and shear (S-wave) characterized by particular kind of particle 

movement through the earth stresses the rock and induces a strain which is proportional to the 

applied stress. The P-wave caused the rock to change in volume while the S-wave caused the rock 

to change in shape (Domenico and Danbom, 1986).  Hence, the velocity of compressional and 

shear wave depends on elastic constant of rock. Compressive wave ( ) has a particle motion that 

is parallel to its direction of propagation sometimes called longitudinal wave. This wave travels 
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through liquid, gas and solid and has a constant velocity for a given material (Sheriff and Geldart, 

1995). Shear wave (Vs) has particle motion, which is perpendicular to the propagation of the wave, 

sometimes called transverse waves. It does not travel through fluid, i.e. gas and liquid but only 

solid because it lacks attractive forces between molecules (Timur, 1987). Precise measurements of 

compressional and shear wave velocities for mechanical properties description and analyses using 

established models predict the capability of sand or rock strength to withstand impose forces due 

to overburden weight or fast pressure depletion (Tixier, Loveless and Anderson, 1975).  

  

3.3.3 Geophysical tools for the determination of mechanical properties  

Acoustic log or sonic log is a continuous record versus depth of the specific time required for a 

compressed wave to traverse a given distance of formation adjacent to the borehole. The acoustic 

tool contains a transmitter and two receivers (Figure 3.2). When the transmitter is energized, at a 

rate of 10 to 20 Hertz, the sound wave enters the formation from the mud column, travels through 

the formation and backed to the receivers through the mud column. Formation velocity (travel 

time, t) is determined using the differences in arrival times at the two receivers. The system has 

circuits to compensate for hole size changes or any tilting of tool. The fundamental measurement 

recorded on the sonic log is interval travels time; this is the reciprocal of interval velocity (Asquith 

and Gibson, 1982). This parameter is recorded in microseconds per foot. Acoustic travel time can 

be expressed as:  

∆𝑡  = 
106

𝑉
  𝜇𝑠/𝑓𝑡   and 

v = 
1×0.348

∆𝑡×106
   m/s    (3.7)                                                                          

                                                                                 

where, v is velocity (m/s) and  is the sonic interval transit time in .  

Acoustic travel time normally fall between 40  and 200 , which corresponds to velocity 

readings of 5,000 to 25.000 ft/s as shown in Table 3.1.  
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Table 3.1. Sonic interval transit time and velocities for different matrices (lithologies)  

 
Common   Vma(ft/sec)   (μsec/ft) commonly used  

Sandstone  

Limestone  

Dolomite  

Anhydrite  

Salt  

Casing (Iron)  

18,000 to 19,500  

21,000 to 23,000 

23,000 to 26,000  

20,000  

15,000  

17,500  

55.5 to 51.0  

47.6 to 43.5  

43.5 to 38.5  

50.0  

66.7  

57.0  

55.5 to 51.0  

47.6  

43.5  

50.0  

67.0  

57.0  

                       (Schlumberger, 1972)  

 

  

Figure 3.2. The Sonic Logging Tool. (Martey, 2000).  

The acoustic travel time in a formation depends upon lithology (formation type) and porosity. In 

general terms, the denser or consolidated a formation is, the lower the travel time, ∆t. An increase 

in travel time indicates an increase in porosity.   
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a. Wyllie average equation for uncompacted sands is given by (Asquith and Gibson, 1982) 

as:  

       

                                      
pmafl

ma

sonic
C

I
X

tt

tt

−

−
=

log
                      (3.8) 

                                                          where  𝐶𝑝  =  
𝛥𝑡𝑠ℎ   ×𝐶

100
 

where: ∅sonic = sonic derived porosity, fraction,  ∆tlog = sonic log reading of formation, μs/ft  

 = Interval transit time of formation/matrix material, ∆tfl = interval transit time of fluid  

(189  corresponding to a fluid velocity of about 5300ft/s), CP    = empirical correction factor/ 

compaction factor, ∆tsh = transit time of adjacent-shale C = a constant which is normally 1.0 

(Asquith and Gibson, 1982).  

 

Density log: The density tool measures the number of electrons that is related to the true bulk 

density of the formation, using a pad mounted chemical source of gamma radiation which emits 

medium energy gamma rays of about 66 MeV (Geoservices, 2004; Asquith and Gibson, 1982). At 

each collision with formation electrons, some energy is lost. This is collision is (known as Compton 

scattering), thereby affecting the amount of gamma rays being detected at the receivers. The 

receivers are two shielded gamma ray detectors (known as Geiger counters which automatically 

compensate for mud cake and small borehole irregularities). Density response is based on rock 

matrix, porosity and pore fluids in their relative proportions (Figure 3.3).  

  



 

 

64  

 

 

Figure 3.3. Formation density tool (Martey, 2000). 

The petroleum industry assumes that electron density is equal to bulk density; therefore, the 

number of gamma rays counted at the detectors can be directly related to the bulk density of the 

formation. Since density is defined as the ratio of mass to volume with units in grams per cubic 

centimeter (gm/cc). Most gamma are counted in porous or low-density formation (Timur, 1987; 

Serra, 1984). As formation density increases (porosity decreases), fewer gamma rays are counted 

since most mineral densities are known Table 2.1, and the pore fluids densities are known as 1.1, 

1.0 and 0.7 g/cc for salt, fresh mud and gas respectively. Porosity can be computed from the given 

equation (Asquith and Gibson, 1982) as:  

         Ф D = 
fma

bma





−

−
            (3.9) 

 

where: Ф D = density derived porosity, 𝜌𝑏= density log reading (formation bulk density), 𝜌𝑓  = 

average density of the saturated fluid, and 𝜌𝑚𝑎𝑥 = density of the matrix material.   

Density log consists of RHOB and DRHO i.e formation bulk density (𝜌𝑏 ) and bulk density 

correction. DRHO is applied to RHOB due to the presence of mud cake and it is used as a log 

quality control.  
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3.3.4 Determination of elastic constants from Petrophysical logs 

In the absence of core samples for laboratory testing to obtain geomechanical parameters for 

solving related geomechanical problems associated with drilling, well design and production 

management. There are numerous empirical relations established which relate rock strength to 

measured parameters derived from petrophysical logs (Zoback, 2007). These relations are based 

on the fact that, many factors affecting rock strength also affect elastic moduli and other 

petrophysical parameters. Most established empirical relation for determination of rock strength 

from geophysical logs utilize P-wave and S-wave velocity and Young modulus (E) derived from 

𝑉𝑃and density data (Zoback, 2007). 

 

The determinations of elastic properties are possible from mechanical properties log (sonic) which 

in turn are used to estimate the formation strength for well engineering. The mechanical properties 

logs give a quantitative means for the identification of sedimentary rocks that are strong enough to 

produce hydrocarbon without producing sand (Tixier, Loveless and Anderson, 1975). The 

correction of dynamic elastic modulus calculated from sonic and density logs, necessitated the 

elastic properties of a formation to be categorized as static or dynamic modulus, depending on the 

way they were determined in the laboratory or in the field. The elastic properties derived from 

experiments conducted in the laboratory on core are called static constant; whereas, the elastic 

properties determined or estimated using acoustic log and sometimes ultrasonic wave velocities on 

core in the laboratory or indirect measurement through well logging techniques are called dynamic 

constant (Oluyemi, 2007).  

Well logging utilizes empirical relations for its derivative of elastic constants. Poor laboratory and 

inadequate process coupled with the parameters used for the calculations of elastic properties are 

the main reason for the difference observed between static and dynamic properties. Static and 

dynamic constants’ values in an ideal elastic material are constants and linearity concept is obeyed. 

However, in friable sand (unconsolidated sand), the reverse is the case, as the dynamic constant 

values are constantly higher than static constant values at low confining stress. Rocks at low 

confining stress have nonlinear stress-strain relationships (Serra, 1984) while at high confining 

stresses rock behavior is more linear or elastic hence, both static and dynamic constants have 
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correlation (Jones et al., 1992). Tixier, Loveless and Anderson (1975) concluded that in practice, 

dynamic constants from wire line logs when evaluating friable sand gives better results than static 

because the measurement are made under in situ conditions and fairly represent the confining stress 

in the formation of interest.  

For the determination of Young modulus and Poisson’s ratio, a good reliable measurement for 

density, compressional and shear wave velocity are desirable (Economides and Nolte, 2000). For 

intervals where the shear velocity is not present or missing, a synthetic model travel times can be 

used for the estimation of compressional and shear wave (Simm and Bacon, 2014). However, care 

should be taken. Gartner’s relation is handy in the transformation of sonic or density logs for the 

purposes of replacing missing sections. Because, in many rocks, compressional velocity and bulk 

density have a positive relationship, so that as velocity increases so density increases. Gartner et 

al. (1974) developed a copy (series of brine- saturated lithology dependent relation of the form;   

                                                                                                                      (3.10)  

where, ρ is the density, Vp is the P-wave velocity, d is a magnitude constant and f is the shape 

constant.  

Bai and Li (2012) demonstrated that because of the intense need for interpretation of mechanical 

properties of rock formation,  can also be derived from density using Gardner’s method as:   

                        

                                                                                                          (3.11)  

where 357.346 is Gardner coefficient. 

In addition, Castagna et al. (1985) demonstrated that in the absence of shear log in old wells, shear 

velocity needs to be predicted from log measurement since generally there is a strong lithology 

dependent, and basically pressure independent; optimistic correlation between compressional and 

shear velocity had been established from collection of data sets.   

Therefore, Greenberg and Castagna (1992) defined four empirical equations which give good 

trends for predicting Vs occurring in brine bearing lithologies as follows:  
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Sandstone  :    = 0.8042  - 0.8559                                            (3.12)  

Limestone  :   + 1.016𝑉𝑃 – 1.0305                        (3.13)  

Dolomite  :   = 0.58321  – 0.07775                                       (3.14)  

Shale    :   = 0.7697  – 0.86735                                         (3.15)  

where,  and 𝑉𝑝 are in km/s.  

However, due to the significant variation that can occur using empirical relations for Vs prediction 

in different sandstone lithologies Vs could be higher than that predicted by the sand line (Sim and 

Bacon, 2004; Smith, 2011) including clean quartz and glauconitic sands. Therefore, Murphy et al. 

(1993) developed an equation for clean sand prediction as      = 0.802  – 0.75.  

 

Young’s modulus   

The strength modulus was estimated from acoustic log reading of the travel time of compressional 

and shear waves using empirical relations for it computation expressed as;  

               Young’s modulus (E) =         unit in MPa                (3.16)  

where  , , and  have their usual meaning (Omar 2015)  

Shear modulus   

The rigidity modulus was estimated from bulk density  of the formation and acoustic shear 

velocity Vs through the empirical relation given by (Omar, 2015) as:  

                          Shear modulus (G) =          unit in Pascal               (3.17)  

Bulk Modulus   

Compressibility modulus can be calculated from the Young’s modulus and Poisson’s ratio 

coefficient through the empirical relation given by (Economides and Nolte, 2000; Timur, 1987) 

as:  
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                         K           unit in Pascal or MPa                                     (3.18)  

Poisson’s ratios   

The plastic modulus was computed from acoustic measurements of the compressional wave  and 

shear wave  velocities using the empirical equation by (Omar, 2015) expressed as:   

                       Poisson’s ratio (ν)      dimensionless   unit                              (3.19)  

 

3.4       In-situ stress estimation   

Understanding of the in-situ stress magnitudes and their directions existing at depth in the 

subsurface have lot of applications in petroleum geomechanics. This comprehension assists in 

predicting and solving geomechanical related issues such as sand production determination, 

estimation of fracture gradient, casing design, compaction, subsidence, fault reactivation, and rock 

failure investigations (Maleki et al. 2014; Addis and Yassir, 1996; Oyeneyin, 2015). This is 

because reservoir rocks/formations are under constant forces either from tectonic forces, 

gravitational, geological process resulting to fault or folds, diapirs and mechanical contracts 

(Oluyemi, 2007; Oyeneyin, 2015).  

Stress states are characterized by three principal in-situ stresses namely vertical or overburden 

stress, principal maximum horizontal stress and minimum horizontal stress (Economides and 

Nolte, 2000). The orientations of these stresses depend on the normal, thrust and strike-slip fault 

regimes (stress regimes). These stresses are estimated from geophysical logs in this study. It is 

beneficial to recognize these stresses to address geomechanical reservoir description for 

development.  

 

3.4.1    Vertical stress determination  

The vertical or overburden stress is the stress acting on the reservoir formation due to the load of 

the overlying beds in normal faulting regimes (Jones et al., 1992; Abdideh and Ahmadifar, 2013) 
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They act in downward direction. This stress is computed as an integral of the rock density to the 

depth of interest from density log using equation (2.9) expressed as (Jones et al., 1992). Vertical 

stress  

𝜎𝑣 =  ∫ 𝜌𝑔 ℎ

ℎ

0

 

For onshore, the vertical or overburden stress is calculated by the expression given by (Omar, 

2015) as:  

 or MPa. 

where is the vertical stress; ρ is the formation bulk density read off from density log, g is 

acceleration due to gravity and h is the depth of interest.  

 

 

3.4.2 Minimum horizontal stress determination (Shmin)  

Successive field development requires an accurate petroleum geomechanics evaluation for the 

understanding of the minimum horizontal stress which is essential for the assessment of   sand 

production, hydraulic fracturing, fault reactivation and wellbore stability (Jamshidian et al., 2017). 

The minimum horizontal stress can be estimated or measured from two techniques namely, indirect 

or direct methods from field data such as wireline logs through (viz) empirical correlations and 

well tests; leak of test (LOT) conducted in prior wells and from core data respectively (Jamshidian 

et al., 2017; Abdideh  and Ahmadifar, 2013). It is very important to note that, tectonic stress and 

pore pressure caused and controlled the variations in magnitudes and orientations of the minimum 

horizontal stress Shmin in sedimentary basins (Adewole and Healy, 2013). The study area has been 

reported to be over pressured, therefore, this inform the empirical relation to be applied. In this 

study the minimum horizontal stress was evaluated using the proposed Ahmed et al. (1991) 

equation given as:  

                            unit in MPa                    (3.20)  
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where: is the overburden stress, ν is the Poisson’s ratio,   is the pore pressure, α is the Biot’s 

constant and Shmin is the minimum horizontal stress.  

The Biot’s constant can be estimated from the (Schlumberger, 1985) expression given as:                                                                        

α =                                                                                    (3.21)  

where:  is the bulk modulus of the material,  𝐾𝑟  is the bulk of the rock constituents, 𝐶𝑟   is the 

matrix compressibility and   is the rock bulk compressibility. The computation of 

compressibility from  , ∆𝑡𝑐 and ∆𝑡𝑠 of bulk rock and matrix.   

The coefficient of earth pressure at rest Ko can be computed from the expression given by 

(Economides and Nolte, 2000) as:  

                                                                                                (3.22)                                       

It can also be written in terms of effective stress when two principal stresses are equal in horizontal 

plane as:  

                                                                                              (3.23)                                  

Where:  is the vertical effective stress,  is the minimum horizontal effective stress and  is 

the matrix or earth pressure coefficient at rest accounting for vertical stress at depth.  

  

3.4.3    Maximum horizontal stress determination (Shmax)  

 Among the three in situ principal stresses used to define the full stress tensors existing at depth 

explained in this study, the most difficult to estimate is the maximum horizontal stress (SHmax) 

tensors (Adewole and Healy, 2013; Maleki et al., 2014). Its determination depends on the 

comprehensive knowledge of the pore pressure, minimum horizontal stress, vertical stress, static  

Young’s modulus and Poisson’s ratio (Maleki et al., 2014; Jamshidian et al., 2017). There are 

numerous empirical relations that exist which can be used to estimate maximum and minimum 

stress (Zoback, 2007) but in this study the following relations equations 3.20-3.24 were used.  
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The estimation of the magnitudes of the major and minor principal stresses (i.e maximum and 

horizontal) were calculated from using (Ostadhassan et al., 2012; Holbrook et al., 1993) 

Poroelastic model expressed as:   

                          unit in MPa        (3.24)  

where: ν is Poisson’s ratio,  is the vertical or overburden stress, pore pressure, α is Biot 

constant,  is the static Young’s moduli, are strain at maximum and minimum 

horizontal stress directions (Maleki et al., 2014). The deformation (strain) in the maximum and 

minimum horizontal directions is given by (Kidambi and Kumar, 2016) equation as:   

                                                                                      (3.25)  

                                                                                       (3.26)  

To obtain the Young’s modulus static constant from the dynamic constant, the dynamic moduli 

must be converted using the relation established by (Seyed and Aghighi, 2015) expressed as:  

                                                  = 0.731   - 2.337                             (3.27)  

 where 0.731 and 2.337 are Seyed and Aghighi constants obtained from laboratory experiment on core  

and applied for static correction of elastic constant. 

 

 

3.4.4     Pore pressure Estimation  

According to Schlumberger glossary of terms (2018), the pressure exerted by a column of fluid or 

water in the pore spaces from earth surface or sea level through the formation’s depth is called 

pore pressure or formation pressure. When this pressure is at equilibrium that is it act equally in 

all direction with respect to the principal stresses the formation is said to have hydrostatic pressure. 

This is computed in this study using equation (2.8) expressed by Jones et al. (1992) and (Omar, 

2015) relation as follows:  

𝑃𝑃 =  ∫ 𝜌𝑓𝑔 ℎ

ℎ

0
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                                                                           or 

          (3.28)  

where, g is the acceleration due to gravity,   is the pore pressure, h is the depth.  

 

3.4.5 Stress (Pressure/depth) gradients     

i. Overburden gradient estimation  

Knowledge of overburden gradient is necessary in oil field operation and development. It is meant 

for the evaluation of formation pressure and for calculation of fracture gradient (Geoservices, 

2004; Addis and Yassir, 1996). In this study, the overburden gradient is computed by averaging 

density derived from wireline density log over the intervals or depth of interest using the expression 

of (Omar, 2015) relation as follows:  

       Overburden gradient (OVBG) =    
𝜎𝑣

ℎ
        Psi/ft                                      (3.29) 

 

 where,  is the vertical stress, h is the depth. 

 

 

ii      Fracture gradient estimation (FG)  

To avoid the unprecedented incident of formation fracturing and opening of pre-existed fault and 

fissures which result to very expensive and catastrophic lost circulation issue in a wellbore, 

accurate prediction of formation fracture gradient is required (Zhang and Yin, 2017; Tiab and 

Donaldson, 2012). It is very important to note that rocks Poisson’s ratio, overburden stress gradient 

and pore pressure are the main factors influencing fracture pressure gradient (Zhang and Yin, 2017; 

Tiab and Donaldson, 2012). The choice of methods to be used for the calculation of this fracture 

gradient differs in the oil and gas industry as there is no consensus method. Some pore pressure 

specialists adopt the use of minimum stress gradient for fracture estimation while others employed 
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fracture initiation pressure gradient or maximum leak off tests (Zhang and Yin, 2017). This can be 

estimated according to Tiab and Donaldson (2012) as:  

 

                                                       (3.30)  

where, FG is the fracture gradient, D is the depth,   is the pore pressure,  is the overburden 

pressure,  is the Poisson’s ratio and  is the Biot constant.  

iii   Pore pressure gradient estimation (PG)  

The pressure gradient is calculated by dividing the pore pressure at any given point in a formation 

by the corresponding depth.  

                           (3.31)  

  

3.5       Rock strength determination  

Rock strength defines the peak stress level at which rock sample fails. Rock strength depends on 

the strength of intact rock and strength of rock discontinuities. Therefore, understanding the stress 

distribution and redistribution is essential for well planning (Economides and Nolte, 2000; Jumikis, 

1983).  

3.5.1    Unconfined Compressive strength (USC)  

Rock strength can be measured by unconfined compressive strength (UCS), that is, the peak value 

of stress that can be withstood by rock before its failure (deformation) when subjected to 

compressive force with no radial stress or lateral constraint (Goodman, 1989). There are several 

types of tests conducted for UCS but the most widely used tests are uniaxial compressive and 

triaxial compressive tests. Prior understanding of the characteristic of failure model as applicable 

to rock strength requires certain and capable failure criterion to be applied. Knowledge of strength 

of rock is essential for construction and design of drilling, production and secondary recovery 
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program for reservoir development (Sylvester and Lader, 2015). It aids proper simulation of the 

reservoir based on the availability of geomechanical data. 

 Mechanical properties and behavior of rock strength depends on elastic moduli values at the 

interval of interest. The UCS of the study field can be estimated from geophysical logs through the 

empirical relations established for the Niger delta by Salawu, Sanaee and Onabanjo (2016). These 

correlations are between UCS and formation slowness, Poisson’s ratio, and Young’s modulus for 

upper Agbada formation. They are:  

UCS = 1  ∆                            (3.32)                                                           

UCS = 0.2017                                          (3.33)  

                                                UCS = 0.3966 E+1.1956                                       (3.34)  

 where E is the young modulus of Niger Delta, UCS is the unconfined compressive strength of 

rock in the Niger Delta, 𝜐 is the Poisson’s ratio in the Niger Delta and ∆𝑡 is the formation slowness 

or interval transit time in the Niger Delta. 

 

3.5.2     Cohesive strength   

Cohesion is not a measurable physical quantity although it expresses rock strength. Sometimes 

unconfined compressive strength is referred to as cohesive strength since it describes the linear 

model or failure envelope line demonstrated by Mohr criterion in terms of the intercept made with 

the ordinate axis, when the minimum principal stress is zero, i.e.  0 related to shear stress in 

soil mechanics (Jaeger, Cook and Zimmerman, 2007). As a result, the linearized failure line of 

Mohr can be expressed as   

                                                                                                     (3.35)                                 

   where;   is the shear stress,   is cohesive strength of soil,  is the coefficient of friction   and 

  is the effective normal stress (Zoback, 2007). 
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3.5.3     Tensile strength ( )  

Tensile strength reflects the punching or flexural failure of a thin bed of overlying weak material 

that is, it depicts failure under tension (where a weak bed underlies a layer of stiffer rock) (Willie, 

1999). Tensile testing is not usually conducted and rarely acceptable in the plan of structures 

because tensile strength of fractured rock is efficiently zero. However, direct testing in clean 

tension gives the most consistent results. The Brazilian test is also conducted for tensile strength 

determination (Oluyemi, 2007).   

Again, this not also used in geomechanics for failure analysis because of its magnitude being set 

at one-tenth of the  which is the average value. When comparing  to unconfined compressive 

strength its value is lower than to UCS (Serra, 1986). This makes its usefulness unimportant 

coupled with the fact that stress at depth is not tensile except caused by induce hydraulic tensile 

failure. Tensile failure occurs due to the application of biaxial stress (Tiab and Donaldson, 2012).  

In situ rock strength is expressed by (Schlumberger, 1985) as:  

                                                    and   12                               (3.36)  

where:   is the cohesive strength   =    (Abijah and Tse, 2016)     (3.37)  

 

3.6        Failure Mechanisms  

Knowledge of failure mechanism requires the application of well-matched failure criterion. Failure 

is caused by the stresses identified as effective stresses experienced by the rock structure. Failure 

mechanism describes the simplified models for which rock fails and depicts the real behavior of 

rocks under applied forces. These criteria utilize mathematical relations for observed behavior of 

rock deformation which is valid for Isotropic rock. Three main failure mechanisms mode have 

been reported and observed in uniaxial and triaxial test (Zoback, 2007; Fjaer et al., 2008). They 

are shear failure, tensile failure and pore collapse (Fjaer et al., 2008). Other mechanisms are creep, 

plastic failure and cohesive failure. During drilling phase, shear and tensile failure mechanisms are 

extensively used for wellbore stability analysis (Economides and Nolte, 2000).  
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3.6.1 Shear failure mechanism  

The existence of excessive shear stress along some planes in a rock sample or reservoir causes 

fracture and fault development (Fjaer et al., 2008) along the failure plane in which two sides of the 

plane are in relative motion due to one another in a frictional procedure. Frictional force at play 

depends on the attractive force acting to keep the bodies in motion together. Thus, failure occurs 

due to the actualization of the critical shear stress called  which depend on the normal stress 

acting over the failure plane (Fjaer et al., 2008) it can be expressed as:  

                                                                                                 (3.38)          

This equation in a  plane describes stable region from unstable region (Fjaer et al., 2008).  

The Tresca criterion for shear failure is expressed as:   

                                                                                          (3.39)  

The above equation (3.39) shows that rock yield when the critical shear stress is attained.  

3.6.2 Tensile failure mechanism  

This is caused by excessive tensile stress occurrence because of the effective tensile stress across 

some plane in the rock exceeding the tensile strength of the formation. It is a characteristic property 

of any given rock (Fjaer et al., 2008). Tensile strength of sedimentary formations is too low. It is 

localized and inhomogeneous due to its failure pattern which splits along few fault/fracture planes. 

Tensile failure criterion which specified conditions and identified failure surface in principal stress 

( ) space is written as:  

                                        = - To                                                           (3.40)  

But, for homogeneous rock, the conditions for tensile failure is fulfilled at the lowest principal 

stress . The tensile failure criterion becomes  

                                         = -To                                                           (3.41)  
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3.7        Failure criteria  

The empirical relation for rock failure criteria is the expressions of physical hypotheses. This 

implies that they are obtained from experiments conducted. These criteria identify how in situ 

stress, temperature, time and other factors influence strength of rock (Jumikis, 1983). We use 

failure criteria to determine if a rock will yield, flow, buckle, crush, crack or else give way in 

services (Goodman, 1989). All failure criteria are dependent on effective stresses.  

 3.7.1 Mohr Criterion  

To appraise rock failure or fracture (i.e. when there is a complete loss of cohesion), the mechanical 

conditions which ascertain its failure was first investigated by Coulomb and Navier (1960) whose 

study considered the state of failure as shear failure (Jumikis, 1983). In 1900 Mohr reviewed the 

work of Coulomb and Navier and incorporated the maximum shear theory as the basis of his failure 

criterion (Yona and Warkentin, 1975). The Mohr theory considered shear failure across a plane 

and provides a relationship between shear and normal stresses acting on the plane of failure 

(Goodman, 1989; Zoback, 2007; Pollard and Fletcher, 2005) as:  

 

  

where, τ is shearing stress along the plane of failure; and, σ is the normal stress transverse the 

plane. The following are the assumptions of the above relation (Amadei 2007):  

i. The tensile and compressive strengths of the rock are unequal.  

ii. Failure occurs when there is equalization between maximum shear stress  and shear 

strength of a given rock. In order words, failure takes place when the Mohr envelope is 

tangential to the Mohr circle and failure also depends on the major and minor applied 

principal stresses (Amadei, 2007).  

 

3.7.2 Mohr Coulomb Failure Criterion  

According to Fjaer (2008) Mohr Coulomb criterion is an expansion of the Mohr criterion. Mohr 

criterion assumes the reality of a shear curve envelope (Jumikis, 1983). The Mohr Coulomb 
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criterion is an empirical equation which relates the shear strength to normal stress. That is, the 

resistance of a rock to fail in shear to the contact forces and friction, to the cohesion that exist 

among grains (Jaeger and Cooke, 1979; Aadnoy and Looyeh, 2011). In other words, it states that 

the maximum shear stress  at which failure occur is equal to the sum of cohesion , normal 

stress and coefficient of friction ɸ acting on the failure plane. This criterion characterizes rock 

behavior in terms of  or  and internal friction.  

Mohr Coulomb theory seeks to predict the plane on which failure or sliding occurs. Thus, the M-

C criterion is a linear shear of Mohr failure line (Zoback, 2007; Aadnoy and Looyeh, 2011; 

Goodman, 1989) given as:  

  

where, τ is the shear stress, is the effective normal stress acting on the grains,  is the intrinsic 

shear strength of the rock, μ is the coefficient of internal friction (tan ɸ); where ɸ is the angle of 

surface sliding (Amadei, 2007; Aadnoy and Looyeh, 2011).   

Mohr Coulomb failure criterion describes rock behavior in the middle range of compressive stress 

where failure takes place along two conjugate planes at an angle theta     with respect to 

being parallel to , where is the angle between the normal to the failure plain or envelop and 

the direction of .  

Because of its well explained and established concepts in simple terms, using few parameters 

which can be obtained from laboratory experiment necessitated it wide usage as failure criterion 

within the industry (Oyeneyin, 2015; Oluyemi, 2007).  

  

3.8 Cost and Limitation of the study  

The technique used in this study can be deployed in the absence of core data to derive elastic 

constants. Coring is known to be expensive and cannot be acquired in every well drilled. 

Especially, in the Niger Delta only few wells had been cored. Hence, in the absence of core plugs, 

the use of dynamic elastic constants was estimated from geophysical logs since acoustic and 

density logs which are mechanical logs were run as part of the open-hole logging suite at a 
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reasonable cost (drilling cost). Therefore, wireline techniques could provide a practical, cost 

effective method to estimate geomechanical and petrophysical properties. Provided the 

calculations made from acoustic and density logs yield accurate estimate of in situ stress and 

petrophysical properties where proper adjustment due to drilling fluid is accounted for. The 

advantages of this method include; good representative of the confining stress in the reservoirs, 

dynamic measurements obtained from wireline logs provide continuous curves that reveal changes 

and trends throughout the well penetrated than cores retrieved from the reservoir provides discrete 

point properties. Core provide the ground truth and more direct method of determining rock 

strength than logging, but precautions are essential.  

The followings challenges were found in this study. They are:  

1) Fracture orientation data for Wabi field was not made available for construction of the 

Mohr circle model.  

2) Leak off test (LOT), a test conducted to know the formation integrity, mini and micro 

fracture data were not provided for comparing stress information obtained from well logs.  

3) The Niger delta basin lack necessary subsurface stress information.  

4) Did not have access to Schlumberger wellbore software for prediction of fracture 

properties (i.e. cohesion and fracture angle) in Wabi. 

5) Above all, core samples data from Wabi field was not given for laboratory testing of elastic 

constants and to validate information obtained from wireline logs. Hence, the results herein 

are obtained from wireline logs only. 
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CHAPTER 4  

                                Result presentation and discussion  

This section deals with the report of this study’s findings and discussion of the analyses of Wabi 

field data available from two wells named Wabi 5 and Wabi 11. These two wells were chosen 

because of the availability of mechanical elastic logs (i.e. sonic and density) logs in them. 

However, petrophysical analyses were made in all the wells in the study field. The assumption 

made in this study was that the reservoir rock is isotropic that is, the material exhibits a perfectly 

linear stress-strain relationship. 

 

4.1. Data sources (inventory)  

Wabi field data inventory was done to identify the availability of petrophysical tools recorded in 

each of the four wells which penetrated the formation of interest in the study area. These data 

availability check seeks to know the well with the complete sets of petrophysical tools run in them, 

for reservoir characterization and geomechanical parameters estimation, Table 4.1. This table 

shows data sources denoted as Y (Yes) and N (No) which signifies their availability or not. Logs 

suites available in this study are resistivity, density, neutron, gamma ray and sonic logs. Sequel to 

this inventory only Wabi 5 and Wabi 11 had the complete set of tools for geomechanical 

characterization. However, all the tools available in other Wabi wells are still of importance in use 

for petrophysical characterization. Among these data the most significant for this study are sonic 

and density logs because their combination gives an insight into the in-situ stress state and 

mechanical behavior of rocks especially rock strength (Tiab and Donaldson, 2012; Tixier, Lovely 

and Anderson, 1987).  

Apart from the tools listed above, other data such as DST/RFT, master logs, X-ray scan of core 

and seismic data) were provided or made available for this study based on the original aim and 

objectives conceived (i.e to characterize Wabi reservoirs for development). However, slight 

changes were made which alter the available data to suit this present study. Therefore, most of the 

analyses done in this study are based on empirical correlation through petrophysical techniques 

and tools.  
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4.1.1 Regional correlation  

To have the knowledge of the field of study, regional correlation was made. The logs used for this 

correlation were gamma ray and resistivity logs. The correlation was done along dip where strike 

(i.e. crossline captures reservoir variation in space. For the sake of analyses and comparisons, two 

reservoirs intervals of were chosen as ‘shallow’ denoted as (A) and ‘deep’ denoted as (B) 

reservoirs. Wabi field well log correlation provides detailed stratigraphic analyzing of hydrocarbon 

reservoir in the study area. Beside the lithology log (i.e. gamma ray), resistivity logs were used to 

identified constrained at the reservoir intervals.  

Table 4.1. Data inventory for this study (data sources).  

  

  

Chronostratigraphic surfaces typified by maximum flooding surfaces (MFS) and sequence 

boundary (SBs) were also used for regional correlation as shown in Figure 4.1. In the Niger Delta, 

the base of the youngest deposit (Benin Formation) is used as surface boundaries for correlation 

exercise (Rider, 1986). As a norm, the gamma ray (GR) is used to delineate lithology based on 

radioactive content of a formation with high counts indicating shale and low counts indicating 

sand/sandstone (Rider, 1986; Asquith and Gibson, 1982). The resistivity log was used as quality 

control. This correlation result shows that Wabi field reservoirs thickened from the North-East to 

South-West (NE-SW). This implies that Wabi reservoir pinches out in the North east direction this 
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gives rise to water injection well placement for enhancement of hydrocarbon recovery in Wabi 

field.  

  

  

          Figure 4.1. Regional correlation panel for Wabi field.  

 

4.1.2 Depositional environment  

From sequence stratigraphic analysis two depositional environments were identified in Wabi field 

as Channel and Tidal flat setting to deltaic plain environment. This confirms with the dominant 

depositional environments identified in the Niger Delta (Schlumberger, 1985).  

  

4.1.3 Reservoir delineation for sand production/failure  

The study field is a mature field in the onshore Niger Delta which needs to be upgraded for 

commercial production of hydrocarbon therein. This onshore field was investigated for the 
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common unconsolidated problem known as sand production found in most tertiary young 

formation (Otti and Woods, 2005). No drilling data report was provided to verify the likelihood of 

sanding. This drilling report would have partially identified geomechanical problems before hand 

to know the mechanical properties and strength of the formation penetrated. In this study, the 

identification of weak formations liable to have geomechanical issues was investigated and 

evaluated (Tixier, Lovely and Anderson, 1987). To evaluate the formation’s likelihood for 

geomechanical problems, several established failure criteria were employed. In this study three (3) 

failure criteria were used to recognize the existence of geomechanical related issues in Wabi field 

as follows:  

i) Rock harness is described by Brinell hardness number (BHN): This is the ratio of applied 

force on an indenter to the depth of indentation (Tiab and Donaldson, 2012). The delineation of 

the intervals of interest from Wabi 10 and 11 master log descriptions of lithology shows that the 

formation is loosely consolidated. The Wabi formation geologic age ranges from Oligocene to 

Miocene (Weber and Daukoru, 1985). Based on the BHN classification, this formation has some 

cementing materials and moderately cemented which resulted in weak unconfined compressive 

strength of the formation. When there is grain to grain stress increase coupled with erosion and 

changes in fluid saturation, the cement bond is broken and permits geomechanical issue occurrence 

(Oyeneyin, 2015), Appendix C and D.  

ii) Depth criterion: This criterion has been documented in several literatures on sand 

production prediction in the Niger delta region (Abiola et al., 2014) using depth range to define 

the compaction and strength of a formation. The established depth range is 10,000 ftss and well 

deeper than 10000ftss. The former indicated that wells drilled and completed within 10,000 ftss 

are prone to sand production, whereas the latter demonstrates that wells drilled and completed 

deeper than 10,000ftss have lesser sand production problem. Therefore, a trend can be shown for 

both cases that compaction increases onshore-ward (i.e. upward) implying that unconsolidation 

increases downward towards offshore where we have young depobelts (depocenters).  

iii) Sonic log criterion: Acoustic or slowness ( 𝐷𝑇𝑃 and 𝐷𝑇𝑆) profiles were used to differentiate 

consolidation from unconsolidated formation to identify formation that would produce sanding. 

This criterion used an established threshold to distinguish unconsolidated from consolidated 
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formation (Chang Zoback and Khaksar, 2006; Tixier Loveless and Anderson, 1975). Sonic transit 

time in sedimentary basin which measures the compressional wave greater than 110 s/ft and less 

than 90 s/ft were used as strength indicator for the characterization of the formation as 

unconsolidated and consolidated respectively Figures 4.2-4.6 as well as lithology identification 

using  ratio (Chang Zoback and Khaksar, 2006).  

In addition, interpretation of caliper log showed that Wabi field has related geomechanical 

problems to be addressed for safe hydrocarbon infill drilling and exploitation (Abdideh and 

Ahmadifar, 2013; Maleki et al., 2014). The description of X-ray scanned of core from Wabi 05 

confirmed that the reservoir has numerous fractures or induced fractures caused by moving core 

barrels to laboratory, indicated orientation of strike and dip on cores, showed that core plugs have 

been taken for further analysis such as special core analysis or routine core analysis Figure 4.7. 

The lithology of Wabi is seen as alternation of sand, sandstone and shale popularly known as shaly 

sand sequence. Its lithology description is as follows: White-rose, colorless, transparent – 

translucent, sub-angular-sub-rounded, fine-coarse, glauconites, calcareous- dolomites cement in 

sand and sandstone reservoirs while in shale it is grey-dark, indulated, silty, locally graded to 

siltstone and fissile Appendix C.  
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Figure 4.2. Slowness (𝐷𝑇𝑃 and 𝐷𝑇𝑆) profile for Wabi 5A reservoir. Where 𝐷𝑇𝑃 is the P-wave travel 

time and 𝐷𝑇𝑆 is the S-wave travel time 
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Figure 4.3. Slowness profile for Wabi 5B reservoir  

 

             Figure 4.4. 𝑉𝑃/𝑉𝑆 profile for lithology delineation of Wabi 5A reservoir.  

  

3900   

3950   

4000   

4050   

4100   

4150   

4200   

4250   

0   50   100   150   200   250   

Transit time    

DTP   
DTS   

  

3120   

3140   

3160   

3180   

3200   

3220   

3240   

3260   

3280   

3300   

0   0.5   1   1.5   2   2.5   

Vp/Vs Velocity   

𝑉𝑃/𝑉𝑆   

VP/VS   



 

 

87  

 

 

Figure 4.5. /  profile for lithology delineation Wabi 5B reservoir 

  

 

Figure 4.6. Interval transit time for lithology delineation in Wabi 11 Reservoir.  
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 Figure 4.7. X-ray computerized tomography scan of core showing cracks (or induce fractures) for 

Wabi 05 well.  

  

4.2 Petrophysical evaluation analysis  

The basic steps for evaluation is aided by well log data collected from Total Exploration and 

Production Nigeria in LAS file format. The log data was loaded into interactive petrophysics 

software 3.6,  QC/QA was carried out, identification of reservoirs of interest, picking reservoir top 

and base, pick hydrocarbon sand and determined fluid type, QC/QA interpretation, cross plot and 

histogram of reservoirs, calculates volume of shale/clay, porosity, water saturation, generate net 

to gross pay, summary  of parameters and reporting. 

 

The composite wireline log consists of gamma ray, density, resistivity, sonic, neutron and PEF 

acquired by oil servicing company (Schlumberger) during the drilling phase of the wells were 

analyzed. Petrophysical evaluation was done in this study to know the reservoir quality and 

hydrocarbon potential of Wabi field for completion and development design. Reservoir quality and 

petrophysical properties are essential for both hydrocarbon potential estimation and enhancement 

of recovery in depleted reservoir for selection of best layers for hydraulic fracturing (Abdideh and 

Ahmadifar, 2013; Woehrl et al., 2010). The summary of petrophysical analyses of Wabi field are 

shown in Tables 4.2-4.8. The petrophysical and geomechnical properties of the reservoir of 
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interest include: porosity, fluid saturation, lithology, bulk density, compressional and shear 

velocities, fluid contacts, net to gross, net pay, clay volume, pore pressure, overburden stress, 

maximum, minimum horizontal stress were all derived from geophysical wireline logs. These 

petrophysical properties may have influence on the mechanical properties (rock strength). The 

influence they may have depends on their intrinsic composition of the rock masses (Dusseault, 

2011). For consolidated formation, the composition increases the mechanical properties while for 

unconsolidated formations, the composition lowers the mechanical properties of the rock 

(Oluyemi, 2007). In other words, these compositions also show the capability of the rock to 

withstand stress (Economides and Nolte, 2000).  

 4.2.1 Reservoir delineation and petrophysical characterization  

Wabi field has stacked multiple reservoirs, although only two intervals were chosen for this study 

as shallow and deeper reservoir (Zorasi, 2017). These intervals were identified based on the 

following logs; gamma ray (GR) in track 3, resistivity in track 4, density (RHOB) in track 5, 

neutron (NPHI) log in track 5 and sonic log in track 6. This is known as basic qualitative 

interpretation shown in Figures 4.8-4.9. Combination of lithology and porosity logs (i.e Gamma 

ray and Neutron-density) were used for identification of oil and gas bearing zones. Gamma ray 

respond to radioactive content of Wabi which helps to differentiate shales from sand and 

carbonates that have low radioactive content. See section 3.2.1 and Figure 3.1 for the workflow 

that led to Figure 4.8. 
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Figure 4.8a. Wabi 5A reservoir delineation (The log suit consists of track1-6). 

  

Figure 4.8b. Wabi 5 B reservoir delineation.  
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Figure 4.9a. Wabi 11 A reservoir delineation.  

  

Figure 4.9b. Wabi 11B reservoir delineation.  
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4.2.2 Reservoir Analysis for hydrocarbon types and fluid contacts  

The predictable methods for fluid contact identification consist of interpretation of pressure 

gradients due to fluid density differences in the reservoir hydrostatic column Figures 4.10-4.11. 

The figures below show the various fluid type and contacts for WABI 05, 06, 07 and 11. The 

interpretation of wireline logs which involves the use of representative models to characterize logs 

responses due to formation parameters is known as qualitative characterization (Etu-Efeotor, 1997; 

Rider, 1990). This was employed for lithology delineation, hydrocarbon differential (i.e. oil or 

gas), fluid contact and well correlation (Asquith and Gibson, 1982). Meanwhile gamma ray, 

neutron and density logs were used to delineate reservoirs and hydrocarbons bearing zones in Wabi 

5, 6, 7 and 11. The summary of the fluid types and contact for WABI field are showed in Table 

4.2-4.8.  

  

Figure 4.10a. Wabi 5A fluid contact analysis.  
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Figure 4.10b. Wabi 5B fluid contact analysis.  

  

Figure 4.11a. Wabi 11 fluid contact analysis  
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Figure 4.11b.  Wabi 11B fluid contact analysis.  

4.2.3 Quantitative analysis  

The qualitative interpretation involves the use of models which represent the characteristic log 

responses to formation parameters while the quantitative interpretation involves the use of 

mathematical models and relations which give identical values of the log response to the formation 

parameters (Etu-Efeotor, 1997). The follows are the step by steps evaluation of petrophysical 

results.  

i) Neutron log  

The neutron tool response is primarily dominated by the "Hydrogen Index". The replacement of 

liquid by gas reduces the hydrogen index. Therefore, gas bearing reservoirs have low, apparent 

neutron porosities. Modeling and experimentation have shown that the effect of gas on neutron 

logs is greater than would be expected by considering only hydrogen index considerations. Also, 

shale, lithology and neutron absorbing trace elements all have influence on the neutron response. 

For these reasons, confident hydrocarbon differentiation, lithology and porosity determination 

were made when neutron data is used in combination with another log information (density).  
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ii) Density log  

In porous formations, the difference between the bulk density as measured by the tool in a water 

filled system compared to a water plus oil filled system is very small. However, if gas is present 

in the pore space, the measured bulk density can be significantly less than in a liquid filled system. 

This is the basis for hydrocarbon differentiation using the density tool and when used in 

combination with a neutron log usually provides reliable results in Wabi field. 

iii) Sonic log 

The gas effect on the acoustic velocities is a complex process; and surprisingly the most significant 

effect that occur in the low gas saturation range. In general, gas in the pore space results in a 

decrease in compressional velocity i.e. longer transit time and attenuation of the compressional 

wave. This commonly leads to cycle skipping in compressional velocity tools. The modern array 

devices do not, in general, suffer from this problem as compressional velocities are derived from 

the wave form correlations rather than arrival picks. Gas bearing zones can be identified by a 

tendency for the sonic to shift to the left due to the slowing of the compressional wave. Thus, in 

gas bearing intervals, the parting between the sonic and resistivity readings are greater than in oil 

bearing intervals (Zaki, 1994).    

iv) Porosity calculation  

The available porosity logs for Wabi Wells are Neutron, Density and Sonic. The density log was 

used to calculate porosities in the entire reservoirs. The matrix and fluid density used are 

respectively 2.648 g/cm and 1.1 g/cm, respectively. The calculated porosities are effective and 

total porosities of the reservoirs. Effective porosities are less than the total porosity in decimal. The 

ratio of interconnected pore volume to the bulk volume of a material defines the effective porosity. 

The interconnected pore volume or void space in a rock contributes to fluid flow or permeability 

in a reservoir Figures 4.12-4.13.  

v) Calculating net pay with cutoffs  

The thickness of rock that contributes to economically feasible production with today's technology 

describes the net pay. Net pay is obviously a moving target since technology, prices, and costs vary 
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almost daily (Zorasi, 2017). Hence, tight reservoirs or shaley zones that were bypassed in the past 

are now prospective pay zones due to new technology and continued demand for hydrocarbons. 

Net pay is determined by applying appropriate cutoffs values to reservoir properties so that 

unproductive or uneconomic layers are not counted (Zorasi, 2017).  Cumulative reservoir 

properties, after appropriate cut off are applied to provide information about the pore volume (PV), 

hydrocarbon pore volume (HPV) and flow capacity (KH) of a potential pay zone. These values are 

used to calculate hydrocarbon in place recoverable reserves and productivity of wells (Asquith and 

Gibson 1982). Cut – Off used for this interpretation are: Volume of shale (Vsh) = 0.4, Effective 

porosity (PHIE) = 0.15, Water saturation (SW=0.5). 

 

 vi) Fluid saturation calculation  

The fraction or percentage of pore space that is occupied by water called water saturation was 

calculated for the reservoirs of the WABI wells using the formula for hydrocarbon saturation as 

follows:  

 = 1 –  (decimal) or  = 100 –  (%)      (Asquith and Gibson, 1982).  

Where,  = Hydrocarbon Saturation; = Water Saturation,  =  or   where  is Oil 

Saturation and  is Gas Saturation.  

The formula used in calculating this water saturation parameter was Juhasz (1981) and Waxman 

Smith (1968):   
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where, 

∅𝑒          -        Effective porosity 

𝑅𝑡   - Resistivity of uninvaded zone or true resistivity. 



 

 

97  

 

𝑉𝑆ℎ   - Volume of shale 

n           -          Saturation exponent 

𝑅𝑊  - Resistivity of formation water 

𝑆𝑊  - Water saturation 

𝑅𝑆ℎ  - Resistivity of adjacent shale 
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Figure 4.12a. Wabi 5 A quantitative analysis.  

  

  

Figure 4.12b. Wabi quantitative analysis.   
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Figure 4.13a. Wabi 11A quantitative analysis.  

  

Figure 4.13b. Wabi 11B quantitative analysis.  
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vii) Volume of shale calculation  

The volume of shale was calculated for the reservoirs in four wells (WABI-05, 11, 06, and 07 

respectively). The method used in calculating the volume of shale was the one prescribed by 

Larionov (1969) for Tertiary rocks (unconsolidated formation). In interactive petrophysics (IP 3.6), 

it is called young rock. It gives accurate result of volume of shale in shaly sandstone. It is used 

more in wells explored for Niger Delta Basin Fields, in which our WABI Wells falls under such 

basin. The linear response is first calculated and then followed by the nonlinear response. The 

GRmin and GRmax are derived from the histogram plot of each of the reservoirs in the well drilled, 

while the GRlog is derived from the gamma ray log reading from the interval f interest, Figures 

4.8-4.9. Figures 4.16-4.17 show the cross plots which confirm the lithology of the chosen intervals 

as sandstone with slight intercalation of shale.  

 

   

 
Figure 4.14. Wabi 5 histogram.  
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Figure 4.15. Wabi 11 histogram.  

 

Viii) Cluster Analysis  

  

Cross plotting techniques are very robust for classification of lithology and fluid type using log 

responses. Cross plotting of rock properties from petrophysical logs is one of the convenient and 

proficient techniques to look at two rock properties and their attributes. Therefore, prove decisively 

which rock properties and their attributes will be supportive to differentiate gas in a particular 

reservoir. Crossplot analysis was carried out to establish Wabi rock properties / attributes that 

described and differentiates the reservoir and hydrocarbon content. The cross plot of Neutron log 

versus Density colour coded with gamma ray in Figure 4.16-4.17 discriminates the reservoirs into 

shale, brine sands, oil sands and gas sands. This was realized when cursor is moved on reservoir 

intervals on log section and the cross plot equally highlighted same for confirmation of similar 

result. Hence, cross plots were used to visually recognize or detect anomalies that may result to 

hydrocarbon presence or other fluids and lithologies.  

The tables 4.2-4.8 showed the summary of Petrophysical analyses results of Wabi field. 
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Figure 4.16a. Wabi 5A Lithology cross plot showing cluster interval of interest.  

  

Figure 4.16b. 5B lithology cross plot.  
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Figure 4.17. Wabi 11 Lithology cross plot. 

The petrophysical results of Wabi field based on interactive petrophysics software are  

are discussed in chapter 5. The discussion addresses the part of the Thesis objectives. 

 

 

 

 

 

 

 

 

 

 



 

 

104  

 

 

Table 4.2: Summary report on identification of reservoirs of interest in Wabi wells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WELL RESERVOIRS TOP MD (M) BOTTOM MD (M) 

WABI 05 RESERVOIR WABI A 3158.795 3228.899 

WABI 05 RESERVOIR WABI B 4000.043 4045.763 

WABI 11 RESERVOIR WABI A 2887.661 2962.185 

WABI 11 RESERVOIR WABI B 3513.263 3591.597 

WABI 06 RESERVOIR WABI A 3887.862 3997.286 

WABI 06 RESERVOIR WABI B 4053.216 

 

4078.972 
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Table  4. 3: Summary table for Wabi wells showing fluid type and the fluid contacts. 

 
WELL RESERVOIRS TOP MD 

(M) 

BOTTOM 

MD (M) 

HYDROCARBON 

FLUID TYPE 

FLUID 

CONTACT 

WABI 05 RESERVOIR 

WABI A 

3158.795 

3181.198 

3181.198 

3228.899 

GAS 

WATER 

GWC @ 

3181.198M 

 

WABI 05 RESERVOIR 

WABI B 

4000.043 

4009.492 

4030.066 

4009.492 

4030.066 

4045.763 

GAS 

OIL 

WATER 

GOC @ 

4009.492M 

OWC @ 

4030.066M 

WABI 11 RESERVOIR 

WABI A 

2887.661 

2917.379 

2917.379 

2962.185 

GAS 

WATER 

GWC @ 

2917.379M 

 

WABI 11 RESERVOIR 

WABI B 

3513.263 3591.597 GAS GDT 

 

OWC: Oil – Water Contact 

GDT:  Gas Down- To 

GWC: Gas – Water Contact 

GOC:  Gas – Oil Contact. 

 

 

Table 4.4: Summary table for Wabi wells showing fluid type and the fluid contacts. 

 
WELL RESERVOIRS TOP MD 

(M) 

BOTTOM 

MD (M) 

HYDROCARBON 

FLUID TYPE 

FLUID 

CONTACT 

WABI 06 RESERVOIR 

WABI A 

 

3887.862 3997.286 GAS GDT 

WABI 06 RESERVOIR 

WABI B 

4053.216 4078.972 GAS GDT 

WABI 07 RESERVOIR 

WABI A 

2915.26 

2931.9 

2931.9 

2984.144 

GAS 

WATER 

GWC @ 

2931.9M 

WABI 07 RESERVOIR 

WABI B 

3340.76 

3365.1 

3365.1 

3429.61 

GAS 

WATER 

GWC @ 

3364.078M 

 

         GWC: Gas – Water Contact,      GDT: Gas Down- To  
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Table 4.5: Average summary report on WABI 05 Well (Quantitative) 

 
WABI 05 RESERVOIRS RESERVOIR WABI A RESERVOIR WABI B 

SAND TOP  (M) 3158.795 4000.04 

SAND BOTTOM  (M) 3228.899 4045.763 

Thinnest Interval Thickness (M) 4.72 0.46 

Thickest Interval Thickness  (M) 36.73 33.22 

Gross Sand / Thickness   (M) 70.10 45.72 

Net Thickness      (M) 64.39 43.05 

Net to Gross (N / G) 0.918 0.942 

Hydrocarbon Type GAS / WATER GAS/OIL/WATER 

Fluid Contact GWC @ 3181.198M GOC @ 4009.492M; OWC @ 4030.066M 

Volume of Shale (Vshale) 0.055 0.068 

Total Porosity (PHIT) 0.358 0.288 

Effective Porosity (PHIE) 0.340 0.269 

Water Saturation (SW) 0.231 0.117 

Hydrocarbon Saturation (Sh) 0.769 0.883 

Water Saturation in the Invaded/Flushed zone (Sxo) 0.186 0.106 

Bulk Volume Water (BVW) 0.0686 0.0283 
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Table 4.6: Average summary report on WABI 11 well (Quantitative) 

 
WABI 05 RESERVOIRS RESERVOIR WABI A RESERVOIR WABI B 

SAND TOP (M) 2887.661 3513.263 

SAND BOTTOM (M) 2962.185 3591.597 

Thinnest Interval Thickness (M) 0.15 0.15 

Thickest Interval Thickness (M) 53.8 53.8 

Gross Sand / Thickness (M) 74.52 78.34 

Net Thickness (M) 58.60 64.47 

Net to Gross (N / G) 0.786 0.823 

Hydrocarbon Type GAS / WATER GAS 

Fluid Contact GWC @ 2917.379M GDT 

Volume of Shale (Vshale) 0.031 0.057 

Total Porosity (PHIT) 0.419 0.273 

Effective Porosity (PHIE) 0.2411 0.343 

Water Saturation (SW) 0.167 0.076 

Hydrocarbon Saturation (Sh) 0.833 0.924 

Water Saturation in the Invaded/Flushed zone (Sxo) 0.196 0.1737 

Bulk Volume Water (BVW) 0.0246 0.0247 
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             Table 4.7: Average summary report on WABI 06 Well (Quantitative) 
                  WABI 05 RESERVOIRS RESERVOIR WABI A RESERVOIR WABI B 

Sand top (m) 3887.862 4053.216 

Sand bottom (m) 3997.286 4078.972 

Thinnest Interval Thickness (M) 0.15 0.61 

Thickest Interval Thickness (M) 78.33 10.82 

Gross Sand / Thickness (M) 109.42 25.76 

Net Thickness (M) 103.86 20.19 

Net to Gross (N / G) 0.949 0.784 

Hydrocarbon Type GAS GAS 

Fluid Contact GDT GDT 

Volume of Shale (Vshale) 0.070 0.077 

Total Porosity (PHIT) 0.2226 02845 

Effective Porosity (PHIE) 0.2065 0.2723 

Water Saturation (SW) 0.0288 0.053 

Hydrocarbon Saturation (Sh) 0.9712 0.947 

Water Saturation in the Invaded/Flushed zone (Sxo) 0.0288 0.053 

Bulk Volume Water (BVW) 0.0056 0.014 
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Table 4.8: Average summary report on WABI 07 Well (Quantitative) 

 
WABI 05 RESERVOIRS RESERVOIR WABI A RESERVOIR WABI B 

SAND TOP (M) 2915.26 3340.76 

SAND BOTTOM (M) 2984.144 3429.61 

Thinnest Interval Thickness (M) 5.79 19.51 

Thickest Interval Thickness (M) 49.53 28.96 

Gross Sand / Thickness  (M) 68.88 88.85 

Net Thickness (M) 65.68 48.46 

Net to Gross (N / G) 0.954 0.545 

Hydrocarbon Type GAS / WATER GAS / WATER 

Fluid Contact GWC @ 2931.9M GWC @ 3365.1M 

Volume of Shale (Vshale) 0.0452 0.0698 

Total Porosity (PHIT) 0.4428 0.44 

Effective Porosity (PHIE) 0.4397 0.43 

Water Saturation (SW) 0.1661 0.1467 

Hydrocarbon Saturation (Sh) 0.8339 0.8533 

Water Saturation in the Invaded/Flushed zone (Sxo) 0.168 0.1491 

Bulk Volume Water (BVW) 0.0734 0.0639 
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4.3 Seismic interpretation of Wabi field.  

3D seismic vintage in Seg Y data format of this study area was among the data set collected from 

Total E&P Nigeria for review and interpretation. This seismic volume was QC/QA before It was 

loaded for detailed 3D seismic interpretations using the appropriate Geology and Geophysics 

(G&G) software, (i.e. Petrel) a ‘Schlumberger trademark’ for comprehensive seismic interpretation 

workflow, structural and stratigraphic interpretation. The generation of synthetic seismogram to 

determine the horizons or picks of interest to be interpreted on the seismic profile, fault and horizon 

interpretation, generation of depth converted contour maps and generation of structural model were 

carried out (Illo, 2015) as shown in Figure 4.18a. The 3D seismic interpretation of WABI field 

involved fault picking and correlation, which was done to establish the regional structural 

framework of the field. The seismic section is characterized by low to high amplitudes that 

continues and terminates at faulted zones. Two major faults and one minor fault were identified in 

Wabi as F1 and F2 Figure 4.18b.  One of the main aims for this interpretation was to identify the 

stress regime existing in Wabi field based on normal, strike-slip and reverse (Anderson, 1951; 

Zoback, 2007) to know the appropriate model to be used for the estimation of in situ stress 

magnitudes and directions.  

  

Figure 4.18a. Seismic section with Fault and Horizon interpretation on a scale of 1:25,000. 
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Figure 4.18b shows the structural fault system in the study area. These faults compartmentalized 

the reservoir into three blocks as block A, block B and block C. This block compartmentalization 

was also captured in time slice as shown in Figure 4.19. Block A does not have any well control 

and block C was not considered in this study because it is plagued with poor data quality. 

Therefore, the focus of this research is on block B which has four wells that has penetrated into it. 

The dominant structural trap style in Wabi field is the synthetic growth fault system (F1, F3, F4) 

with a subtle antithetic fault captured at down deep reservoir which localized within NE section of 

block B.  

  

Figure 4.18b. Fault system of the field.  
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Growth fault is initiated by the rapid sand deposition along the Delta edge on top of under 

compacted clay. This resulted in the development of large number of syn-sedimentary gravitational 

faults. Growth faults tend to envelop local depocenters at their time of formation. 

 

 

  

     Figure 4.19. Wabi field broken into 3 major blocks (map captured at 2.212 sec).  

 

4.3.1 Time structural Map   

Seed grid exercise was carried out for the chosen tops of the reservoir picked as shallow and deep. 

These picking was used to generate a seed grid. The grid is the outcome of pickings done in both 

inline and cross line at 10 inline and cross line intervals which forms grids used for time structured 

map of Wabi field Figure 4.20. This structured map can be converted from time to depth map as 

seen in structural framework of the field through velocity modeling. Velocity modeling in this 

study employs two methods: the polynomial and the instantaneous velocity vs depth (i.e VoK). 

But the method with the least residual value was chosen for the conversion from time-depth map 

(Zorasi, 2017).  
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      Figure 4.20. Time structural Maps for Shallow and Deep reservoir with interval of 10m  

 

4.3.2 Structural Analysis  

The structural interpretations done in this study were executed on 3D seismic volume where faults 

picked are intended to show the structural framework/pattern in Wabi field (Illo, 2015). Two major 

faults were picked, as shown in Figures 4.21-4.22. Structural modeling involves three operational 

phases. Static modeling entailed two approaches namely: structural and petrophysical modeling. 

The structural modeling entailed fault modeling, pillar gridding horizon layering and zonation. 

This is the first requirement for building a 3D model (Bessa, 2004). Fault modeling done in this 

research assured the compartmentalization of the reservoirs into two-unit blocks tagged as block 

A and blocks B, Figure 4.18b. The pillar gridding aided in the fragmentation of reservoir into unit 

cells denoted as (I J K) whose dimension are 50 m by 50 m by 0.6m Figure 4.21. This enables 

accurate scale sampling of the field. These three operations are integrated into one 3D model or 

grid which represents the structural framework (Figure 4.22) of the study intervals of interest upon 

which all other models could be built (Bessa, 2004).  
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Figure 4.21. Pillar gridding of Wabi field showing well trajectories.  

 

       Fi   

 

Figure 4.22. Structural framework.  
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4.4 Stress distribution from geologic map of seismic section  

The seismic section showing fault interpretation and structural map were used for the identification 

of stress regime in the Wabi field as normal faulting following the Andersonian classification of 

faults regime (Zoback, 2007). Therefore,   , this implies that the application of the 

Uniaxial Elastic –Strain Model for the field is valid. The type of growth fault found in Wabi field 

is known as antithetic growth which is associated with the detached stress regime (Bell, 1993). 

More importantly, stress regime may vary from bed to beds as reported by Warpinski (1989) 

whereas in some cases maximum and minimum horizontal stress measured in the same stress 

regime have shown approximately equal values (Avasthi et al., 1991). Rosepiller (1979) studies 

confirmed that maximum horizontal stress is closer to minimum horizontal stress than to 

overburden stress due to ambiguity in unknown tensile strength in Cotton Valley East Texas. This 

is the discrepancies that may result in estimating stress regimes in this study (Bell, 1996), Figure 

4.23. Therefore, it is advisable to use the geologic map of the study field to identify the appropriate 

regimes (Katahara, 1996). The tectonic setting, history and structural maps provided the insight of 

order of principal stresses.  

 [ 

4.4.1 Stress directions  

According to the work done by Abija and Tse (2016), using borehole breakout data and multiarm 

(4 and 6 arms) caliper logs from Wabi 10 and 11, shows the maximum horizontal stress is in the 

directions of ENE-WSW, NNW-SSW and NW-SE. These directions indicated the existence of 

multiple sources of stress in Wabi field. Adewole and Healy (2013) pointed out that Northern Niger 

delta is an inhomogeneous basin with different sources of stress. The direction of the maximum 

stress, ENE-WSW is orientated parallel to the fracture zone.  Fractures are caused by tectonic 

stresses. The existing strike of the fractures normally coincides with the orientation of the faults in 

a region (Schlumberger, 1989), while the NE –SW is orientated towards the basin fault, known as 

the major lines of weak spot separating the North from South (Abija and Tse, 2016; Eze et al., 

2011). Hence, principal stress orientations are controlled by geological forces and anisotropy of 

rocks.  
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4.4.2 Magnitudes of principal stresses  

The principal stress magnitudes were estimated from petrophysical logs in this study using the 

UES model equation 3.24-3.26. The following parameters were the inputs required for the 

determination of vertical, maximum and minimum horizontal stresses; they are elastic constants, 

bulk density, Biot constant and pore pressure. Other relevant data to obtain these stresses were not 

given. Hence, stress magnitudes are only estimated values using geophysical logs. The first 

approach here was to know the stress regimes which have been demonstrated in Section 4.3. This 

was followed by the assumption that in a homogeneous and tectonically relaxed basin which the 

Niger Delta is one, the two principal horizontal stresses should be equal that is 𝜎2 =  𝜎3 (Maleki 

et al., 2014; Abdideh and Ahmadifar, 2013). But the presence of an active fault or tectonic activity 

invalidates the above assumption. Hence, both horizontal stresses will not be equal, and the 

tectonic term is required to be added to the UES model. The estimated magnitudes of the three 

principal stresses: overburden or vertical, 𝑆𝑣 maximum or major 𝑆𝐻 and minimum or minor 𝑆ℎ are 

shown in Figures 4.23-4.24. In some intervals they conform to the normal stress regime 

classification while in other cases there is stress anisotropy found from bed to bed caused by 

tectonic or other sources. This gives the significant differences observed in maximum and 

minimum horizontal stresses (Katahara, 1996). In the presence of tectonic stresses, to have an 

accurate stress profile, tectonic term 𝜎𝑡𝑒𝑐𝑡 must be included or added to the conventional UES 

model (Song, 2012). The empirical relation for tectonic terms is given as:  

                                                                                (4.1)  

Where  is the measured minimum stress from closure pressure from testing analysis (Song,  

2012). The tectonic term called tectonic stress can be computed by subtracting the estimated stress 

from petrophysical log and from the measured minor horizontal stress value. The shift in stress 

profile to match with the direct measured value can be express by the relation given by (Song, 

2012) as follows:  

                                                                                (4.2)  
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However, no Leak off test (LOT) or other means of direct measured minimum stress was given. 

Therefore, tectonic term was not used in the estimation. In summary, in-situ stress state is a 

paramount property of a rock for fracture design because it determines the mechanical failures of 

a wellbore and its evaluation is essential for injection or infill well drilling design and planning.  

The maximum and minimum horizontal stresses are the intermediate and least stresses acting on 

the formation horizontally as confined stress/pressure. In other words, it defines the stiffness of the 

rock (Goodman, 1989). As the rock stiffness increases, horizontal stress reduces. Thus, it is known 

as a criterion of failure. In a normal faulting system, these stresses are orthogonal to each other 

(Economides and Nolte, 2000). The knowledge of these stresses is vital as they influence rock 

failure; especially, brittle materials fail due to the presence of stress.  

The stress profile estimated and their model (Figures 4.23-4.24) shows that the stress at the 

intervals of shallow reservoir depth (3140 m to 3280 m) signifies that the vertical stress is greater 

than the maximum horizontal stress while the maximum horizontal stress in turn is greater than 

the minimum horizontal stress ( ) (Zoback, 2007). This trend conforms with the 

normal fault regime described by Anderson 1951 and the deduction made from seismic 

interpretation also confirms the study area to be normal fault (Maleki et al., 2014). However, at 

some intervals between 3230m to 3260m and 3605m to 3605m, the maximum horizontal and 

vertical stresses are equal  and maximum horizontal stress is greater than vertical stress 

at down deep reservoir respectively due to mechanical  anomalies in elastic properties of 

rocks (Bell, 1996) obtained from analysis of principal stresses.  

The existence of wide variations in the present-day stress magnitudes and orientations at some 

intervals (beds) in Wabi field is as a result of the presence of anisotropy media (Kozloski et al., 

2011) caused by mechanical rock contrasts (Bell, 1996). Confining stresses (i.e. maximum and 

minimum horizontal) cause compression in a reservoir. This rock failure in tension or shear 

depends on the differential stress . Hence, low differential stress causes tensile 

failure while high differential stress causes shear failure (Wilson and Cosgrove, 1982).  
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It is obvious from the stress model that the stresses acting in Wabi field are not in equilibrium or 

hydrostatic state for example   the balance of these stresses are caused by tensional 

or compressional. Therefore, when these in situ stresses are great enough and exceed the formation 

strength, the rock which they are acting on rupture (Wilson and Cosgrove, 1982). Rock fails as a 

result of multiple deep-seated processes taking place and not dependent on only a single dynamic 

action.  

  

  

Figure 4.23a. Estimated stress profile model for Wabi 5 shallow reservoir.  

where overburden stress is the effective stress 𝜎𝑉, 𝑆ℎ𝑚𝑎𝑥 is maximum horizontal stress,𝑆ℎ𝑚𝑖𝑛 is 

minimum horizontal stress. The rock type in Wabi field is sand and shaly sand sequence. 
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Figure 4.23b. Estimated stress profile model for Wabi 5 deep reservoir.   
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Figure 4.24. Estimated stress profile model for Wabi 11 reservoir.  

where overburden stress is the effective stress  𝜎𝑉, 𝑆ℎ𝑚𝑎𝑥 is maximum horizontal stress,𝑆ℎ𝑚𝑖𝑛 is 

minimum horizontal stress 

  

4.4.3 Pore pressure and overburden gradient  

Fracture gradient, pore pressure and overburden stress gradient were computed using equations 

(3.29 -3.31). These are required parameters used for prediction of safe drilling mud weight window 

for well bore stability, completion and infill drilling operations (Zhang and Yin, 2017). Figures 

4.25-4.26 show the fracture gradient, pore pressure gradient and overburden gradient predicted for 

the study area. The equivalent mud weight used for drilling Wabi field as provided by oil servicing 

company tools Repeat formation tester RFT and drilling stem test DST ranges from 1.0516-

1.366648 g/cm3 and 1.04032-1.127057 g/cm3, respectively. Hence, the downhole mud weight must 
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be greater than the pore pressure gradient to avoid wellbore collapse, pressure kicks and fluid 

influx in the section of an open hole (Zhang and Yin, 2017). On the other hand, if the downhole 

mud weight is greater than the formation fracture gradient of the phase to be drilled, fracturing 

may occur, and this may lead to mud losses into the formation. The selection of downhole mud 

weight to be lower than a given threshold would result to shear failure and when it is higher than 

the higher threshold, tensile failure would occur (Zhang and Yin, 2017; Abdideh and Ahmadifar, 

2013).  

  

  

 

Figure 4.25a. Pore pressure gradient/stress gradient for Wabi 5 Shallow reservoir. 

where 𝑃𝑝 is the formation’s pore pressure 



 

 

122  

 

  

Figure 4.25b. Pore pressure gradient/stress gradient for Wabi 5 Deep reservoir.  

  

Figure 4.26. Pore pressure gradient/stress gradient for Wabi 11 reservoirs.  
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4.5 Mechanical properties estimation from well logs 

The Mechanical properties of Wabi field were derived from Petrophysical logs. These properties 

are: Elastic constants (i.e Young’s modulus, Shear modulus, Bulk modulus and Poisson’s ratio), 

rock strength, pore pressure and in situ stresses. Relevant poroelastic empirical correlations were 

used for the estimation of these geomechanical parameters for Wabi field characterization, and 

development of oil and gas resources therein. These geomechanical parameters are function of 

acoustic measured compressional and shear velocities and density measurements in the formation 

of interest which are in turn used to compute Young’s modulus and Poisson’s ratio using dynamic 

elastic poroelastic equation (Fjaer et al., 2008) for linear and quasi-elastic behavior of rock. These 

constants were then converted to static constant through the proposed relation by Seyed and 

Aghighi (2015).  

4.5.1 Young’s modulus of Wabi field  

The transverse acoustic waves in the formation enable the measurements of both fast rate strain 

and small amplitude deformation incident. The measured modulus is known as Young’s dynamic 

constant and it is measured in situ through the petrophysical tools under ambient temperature and 

pressure conditions. Figures 4.27-4.28 shows the various calculated Young’s modulus profile 

within the intervals of interest. In this study correlation proposed by Seyed Sajadi and Aghighi 

(2015) i.e  𝐸𝑆 = (0.73× 𝐸𝑑 - 2.2.337) and 𝐸𝑆2= 0.7 × 𝐸𝑑 were used to convert the dyanamic to 

static Young’s Modulus. Where 𝐸𝑠  is static elastic and 𝐸𝑆2  is second static elastic correction 

applied. A decrease in Young modulus is linked with deformation of the formation and an increase 

in the Young’s modulus shows high or strong UCS. A rock remains unbroken as far as the 

deviatoric stress in the formation remains below yield stress/strength of the formation. But the rock 

deformed as far as the deviatoric stress is higher than the yield strength. Strong grain to grain bond 

depends on type of cementation materials (Goodman, 1989; Wilson and Cosgrove, 1982). The 

presence of significant clay content also increases the unconfined compressive strength in a 

sandstone formation whereas an increased siltstone and sandstone reduces the formation strength 

(Oluyemi, 2007).  
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Figure 4.27a. UCS derived from Young’s modulus for Wabi 5 Shallow reservoir.  

                 

Figure 4.27b. UCS derived from Young’s modulus for Wabi 5 deep reservoir.  
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Figure 4.28a. UCS derived from Poisson’s ratio for Wabi 5 shallow reservoir.  

  

Figure 4.28b. UCS derived from Poisson’s ratio for Wabi 5 Deep reservoir.  
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4.5.2 Poisson’s ratio of Wabi field  

Acoustic logs are displayed as slowness (∆t) which is the reciprocal of velocity. Slowness of 

compressional is denoted as ∆𝑡𝑐  and Slowness of shear wave denoted as ∆𝑡𝑠 . The ratio of 

compressional and shear waves defines the Poisson’s ratio (ν) and this ratio provides additional 

information about the formation’s lithology. Poisson’s ratio describes the ability of the formation’s 

material to shorten parallel to overburden (vertical) stress with equivalent elongation in the 

minimum principal stress direction Figures 4.29a-4.29b. Poisson (ν) have values between  

0.00 and 0.5. This implies that (ν) value range of 0.05 signifies very hard and rigid rocks and 0.45 

for soft poorly consolidated rocks. Thus, high Poisson’s ratio shows that the material is subject to 

deformation which results into volume change. Consequent to the above analysis of Poisson’s 

ratio, the more ductile a material becomes the more its Poisson ratio will increase because of lateral 

expansion relative to longitudinal contractions and on the other hand, the more brittle a material 

becomes the less the Poisson ratio.  

  

Figure 4.29a. Poisson’s ratio in Wabi 5 for Shallow reservoir. 
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Figure 4.29b. Poisson’s ratio in Wabi 5 for Deep reservoir.  

For incompressible material, ν is 0.5. This means that the minimum value of Poisson’s ratio is 0.0 

and its theoretical maximum is 0.5. Most rocks have a Poisson’s ratio between 0.2-0.35 (Tiab and 

Donaldson, 2012; Jumikis, 1983). Thus, the reservoirs of interest have an average Poisson ratio 

between 0.18- 0.35 indicating moderate consolidation formation in the area of study. This result 

conforms with most sandstone formations in terms of Poisson’s ratio. 

 4.5.3 Unconfined compressional strength (UCS)  

The parameters used to obtain unconfined compressive strength (UCS) were derived from density 

and sonic log (i.e. compressional and shear wave velocities) using an empirical correlation for the 

computation of Poisson’s ratio and dynamic Young’s modulus (Najibi et al., 2017). The dynamic 

young’s modulus is converted to static constants to obtain a continuous UCS of Wabi field. Three 

empirical relations derived for the Niger delta basin which permits the use of Young’s modulus 

value, Poisson’s ratio and compressional transit time or velocity were adopted from the studies of 

Salawu, Sanaee and Onabanjo (2017) for the determination of UCS.  
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The application of the Young’s modulus values to estimate UCS gives a better estimate of the rock 

strength, because its dynamic values were converted to static value, Figures 4.27-4.28. The 

application of slowness (∆𝑡𝑐) with values greater than 100 𝜇s/ft or low velocities 𝑉𝑃 < 3000 𝑚/𝑠 

for the estimation of unconfined compressive strength gives a lower result meaning that it under 

predict the UCS. The above velocity is an indication of a poorly (weak) sedimentary rock (Chang, 

Zoback and Khaksar, 2006). Although, the transit time derived equation for the Niger delta values 

were not used in this study. Finally, the application of Poisson’s ratio for the estimation of UCS of 

Wabi field gives a relatively good UCS, Figure 4.29.  

  

4.5.4 Influence of rock strength   

Wabi formation of interest with high 𝐾𝑜 value that is, the coefficient of earth pressure at rest which 

varies with depth indicates stiff  layers with concentration of stress and low value indicates soft 

layers that have more strain (deformation).The use of  𝐾𝑜is applicable only when there is no lateral 

compliance/compaction (Jones et al., 1992).  

The porosity of Wabi field within the reservoir intervals are summarized in Tables 4.2-4.8. High 

porous formation with porosity values of 45-35% reduces the young’s modulus (Herwanger and 

Koutsabeloulis, 2011). Thus, intervals with high porosities are soft formation and are prone to 

reservoir compaction during the productive stage of the field’s life. In these intervals the ratio 

between dynamic to static elastic young’s modulus is high. Hence, sand control program should 

be designed to mitigate this geomechanical problem from cutting down only production which 

may eventually lead to loss of the wells (Herwanger and Koutsabeloulis, 2011). Pressure 

maintenance should be anticipated to reinstate reservoir compaction caused by depletion or 

pressure drawdown. For low porosity intervals, the observed difference between the dynamic to 

static elastic is negligible.   

  

4.5.5 Fracture and Fault stability Analysis  

Most formations in the crustal region of the vertical composition of the earth contain several 

structural imperfections and a number of planes of weaknesses known as rock defects (Jumikis, 

1983). Rock formations are therefore prevented from exhibiting perfect elasticity due to the 
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presence of these rock defects. Therefore, rocks are often characterized to be inelastic. According 

to the work of Morris, Ferrill and Henderson (2014) defined slip tendency as surface that may 

fault, fracture or rupture in a stress field and relate it to the ratio of shear stress to the normal stress 

including the orientation of the maximum determined shear stress. They summarized that slip 

occurs on pre-existing fracture and fault plane when the determined shear stress equals or exceeds 

the frictional resistance to sliding (i.e. shear strength).  

 [ 

4.5.6 3D Mohr Analytical diagram   

Accurate assessment of the orientation of faults, fracture and failure envelope of Wabi field 

depends on the magnitude of the in situ stress state for fault reactivation and possible breach of 

cap rock integrity (Adewole, 2013).This analysis involves the computation of the shear and normal 

stresses acting on an arbitrary oriented faults in 3D (Zoback, 2007).To address this geometrical  

problem, it should be noted that the directions of the three principal stresses are not aligned 

normally to our North-East down coordinate system (Schmitt, 2014; Allmendinger et al., 2012) 

where these stress state can be resolved into a vector acting on the plane of weakness. One of the 

simplest approaches to solving this problem is the utilization of 3D Mohr diagram, refer 

Appendices (A-B). The 3D Mohr diagram is valuable for representing fault stability in the 

subsurface formation (Zoback, 2007). In this study, the values of the average three principal 

stresses in descending order of magnitude,     ,    and        were used to determine the 3D Mohr 

circles (Zoback, 2007). Faults are represented by a point, situated in the space between 𝜎1 and 𝜎2 

and 𝜎2 and 𝜎3 of the smaller Mohr circle defined as the differential stress or deviatoric stress  ∆𝜎 

Appendix (A and B), and the greater Mohr circle is defined by the difference between 𝜎1 and 𝜎3. 

Also, from this 3D Mohr circle diagram, the shear stress can be determined. 

 

According to Bell (1996) and Schmitt (2014), dry rock fails according to the proposed Mohr 

Coulomb criterion equation. But in the subsurface our formation rock is porous in the reservoir 

intervals and contains pore fluids. Therefore, the failure criterion in this case differs from that of 

the dry rock. The Terzaghi equation for effective stress is very crucial in the explanation of pore 
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pressure and effective stress for the analysis of rock failure (Schmitt, 2014). The principal stresses 

must be replaced by effective stress (Twiss and Moores, 1992; Schmitt, 2014; Bell, 1996) as:   

  

where, the subscript i, is overburden stress, maximum horizontal (H) or Minimum horizontal stress 

(h), 𝜎𝑒𝑓𝑓  is the effective stress and 𝑃𝑝 is the pore fluid pressure.  

It is obvious that most formations in the crust are already wrecked and exhibit available plane of 

weakness that support slip and ruptures if the appropriate conditions are in place. Appendices (A-

B) show shallow and deep reservoirs of Wabi 05. Appendices (a) and (b) represent the undisturbed 

or virgin state of the effective stress before pore fluid pressure is agitated (Schmitt, 2014). The 3D 

Mohr diagram and its failure envelope represent the potential plane of weakness in differing 

orientations for the field of study. For convenience, we assume that cohesion C is approximately 

zero because as sliding occurs, it vanishes (Timmerman, 1982; Schmitt, 2014). Exploitation of 

hydrocarbon from Wabi field overtime would induce changes in the formation pore pressure which 

resulted in depletion of the reservoir pressure. This decrease reduces the impact of slip in the 

formation of interest. Thus, it caused the virgin stress state of the Mohr circle at hydrostatic state 

to be shifted to the right (i.e. away from the failure envelope) leading to reservoir compaction due 

to the consequences of large effective stress alternation (Schmitt, 2014; Nacht et al., 2010). It is 

important to note that this does not affect cohesion rather it affects only the rock frictional strength 

by reduction and subject the formation to be weaker (Zoback, 2007). The continuous modification 

of the stress state by decrease in pore fluid pressure keeps Wabi field formation stronger (Schmitt, 

2014).   

 

On the other hand, when enhancement recovery injection of fluid is done, hence, increasing the 

pore fluid pressure which decreases the effective normal stresses of the formation on the fault plane 

and resulted or culminated in shifting of the virgin state of the Mohr circle to the left (Bell, 1996; 

Schmitt, 2014). As the formation pore pressure keeps increasing due to injection of fluid and 

necessitates further shifting of the Mohr circle to the left till it intercept the failure envelope of the 

rock mass when slip or the rock fail under favorable conditions (i.e. fault reactivation on pre-

existing fault plane) (Schmitt, 2014; Nacht et al., 2010; Streit and Hillis, 2004; Bell, 1996). The 
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point at which the shifted Mohr circle touches the failure line, the shear strength and shear stress 

of the formation are equal (minimum). This point is known as the plane of maximum obliquity 

(Zoback, 2007). Thus, two zones are demarcated from the failure line as unstable and stable zone. 

If the combination of the effective normal and shear stresses falls under the failure line, then the 

formation is stable, and the shear strength of the formation is greater than the shear stress of the 

formation (Jaeger, Cook and Zimmerman, 2007). But when the plot of effective normal stresses 

and shear stresses exceeds the failure envelope, the shear strength of the rock is lesser than the 

shear stress and the rock mass fail or slip. This analysis is known as the slip tendency analysis 

(Morris, Ferill and Henderson, 2014; Streit and Hillis, 2004). The failure line properties (i.e 

cohesion C and frictional angle ϕ) when varied update all available display interactively on the 

Mohr circle (Twiss and Moores, 1992) and describe rock stability and instability.  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

                                                                  



 

 

132  

 

                                                                 CHAPTER 5  

                              Summary, Conclusion and Recommendations 

5.1 Summary of Research 

This chapter summarizes and concludes the entire investigations carried out and recommends areas 

for further studies to be executed to have good petrophysical and geomechanical representation of 

Wabi field. Also, some mitigation strategies are mentioned to avoid severe damage that could be 

caused by sand production in the future of the field.  

The Niger Delta is an unconsolidated formation with naturally fractured reservoirs cause by lose 

sands. These have posed major challenged for operators both multinational and indigenous 

companies in developing their reserves. This unconsolidation also affects drilling, completion, 

production and enhancement programmes. Therefore, the need to understand this naturally fracture 

reservoir is one of the reasons that necessitated this research to look out the geomechanical 

properties of Wabi field.  

The field of study is a mature brown onshore field located at North-West of Port Harcourt, Rivers 

State, Nigeria. The motivation for this study is sequel to the call by the Federal Government of 

Nigeria for release and allocation of Marginal fields to indigenous oil and gas Companies. The 

meanings of Marginal field and its characteristics have been detailed in previous chapter 1. The 

operator of this field concluded to farm into this block for hydrocarbon potential evaluation and 

to evaluate any possible geomechanical related issues the field may have for its upgrading and 

development. This anticipation was made to boost the Nigerian economy and increasing energy 

supply needed across the country.  

This study adopted empirical correlations and best company practices for the investigation of the 

study area. The following data set (i.e. Petrophysical wireline logs, Seismic data, DST/RFT, core 

picture from Wabi) were collected for the Petrophysical and Geomechanical analyses for risk 

assessment to enable mitigation strategy design for Wabi field. The elastic properties of reservoir 

rocks derived from log data were bulk modulus (Kb), shear modulus (G) and Poisson’s ratio (v). 

Young modulus (E) is subsequently, evaluated from shear modulus and Poisson’s ratio. The 
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strength of the reservoir rock was expressed in terms of Uniaxial compressive strength (UCS) 

through a calibration with core laboratory. 

Good knowledge of the mechanical properties of reservoir rocks is an important component of 

pre-production investigations for both reservoirs. This would facilitate the design and 

implementation of an economic development program for Wabi field. Consequently, this research 

provides an understanding of Wabi reservoir description for optimal development plan and 

management.  

The mechanical properties log provides a quantitative means for  identifying sands that are strong 

enough to produce oil and gas without  any form of sand control .The method is based on a 

correction of in situ strength with the dynamic elastic moduli computed from sonic and density 

logs. The assumption made in this study was that the reservoir rock is isotropic this implies that 

the material exhibits a perfectly linear stress-strain relationship. 

 

 5.2 Conclusion  

The  ultimate objective of this research was to have detailed Petrophysical and Geomechanical 

characterization of Wabi field in the Niger Delta province for hydrocarbon potential determination 

and geomechanical related problems which include in-situ rock stress, modulus of elasticity, 

formation porosity, leak off coefficient and Poisson’s ratio determination to ensure  that proper 

well planning/stable wellbore is achieved while we explore for more hydrocarbon reserves for 

commercial exploitation. This study helps to mitigate against reservoir reactivation for injection 

project and management of reservoir compaction and subsidence which could occur as we produce 

from the reservoirs.  

Table 4.2-4.8 shows the summary of Petrophysical analyses carried out in Wabi field. Table 4.2 

showed the identification of reservoirs intervals from Top to bottom known as the reservoir 

thickness. Tables 4.3-4.4 showed the type of hydrocarbon fluid identified and their contacts levels 

between gas and water (GWC), gas and oil contact (GOC) and oil water contacts. Table 4.5 showed 

various petrophysical properties these include reservoir thickness (net pay sand), net to gross, 
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hydrocarbon types, fluid contact, sand top and bottom, gross sand thickness, volume of shale, 

porosity, effective porosity, water saturation, hydrocarbon, bulk volume water. 

Wabi 5 well had average net sand thickness of 64.39m and 43.05m, effective porosity of 0.34 to 

0.269, water saturation 0.231 and 0.117 and hydrocarbon saturation of 0.769 and 0.883 for shallow 

and deeper reservoir. Low water saturation means that the reservoir has more hydrocarbon in place. 

The hydrocarbon present in Wabi 5 is Gas. Wabi 11 had average net sand thickness of 58.60m and 

64.47m for shallow and deeper reservoir, effective porosity of 0.2411 and 0.343, water saturation 

of 0.167 and 0.076 hydrocarbon saturation 0.833 and 0.924. Hydrocarbon type is Gas. Wabi 6 had 

average net thickness of 103.86m and 20.19m, effective porosity 0.2065 and 0.2723, water 

saturation 0.0288 and 0.053 and hydrocarbon saturation 0.9712 and 0.947. Wabi 7 had net sand 

thickness of 65.68m and 48.46m, effective porosity of 0.4397 and 0.43, water saturation of 

saturation 0.1661 and 0.1467 and hydrocarbon saturation as 0.8339 and 0.8533. Hydrocarbon type 

Gas. 

Consequently, Wabi field has good reservoir quality for oil and gas production. The field is 

identified as a gas field and production of gas from all wells could be harmonize to production 

manifold for subsequent transportation to various customers such as Nigeria Liquified Natural Gas 

(NLNG), Indorama, and Gas turbine stations) that need it for sale and power supply.  In terms of 

the first well to be produced, the asset manager would start with reservoirs with the highest reserves 

and has huge  thickness before producing from the reservoir with lower reserves (i.e Wabi 06,07,05 

and 11) respectively is the order of producing if commingling is not allowed by DPR. 

In order to address the aim and objectives of geomechanical characterization, two reservoir 

intervals were picked at each well and from a total of four wells drilled in Wabi field. These wells 

are: Wabi 5, Wabi 6, Wabi 7 and Wabi 11. The petrophysical analyses at the reservoir intervals 

ranges from top to bottom as follows: 3158.795 m - 3228,899 m, 4000.04 m - 4045.763 m, 

3887.862 m - 3997.286 m, 4053.216 m - 4078.972 m, 2915.26 m - 2984.144 m, 3340.76 m - 

3429.61 m, 288.661 m 2962.185 m, 3513.263 m – 3591.597 m, respectively. The reservoir 

qualities in terms of the total and effective porosity were as follows: 0.358-0.340 and 0.288- 0.269, 

0.2226 – 0.2065 and 0.2723- 0.053, 0.4428 -0.4397 and 0.44-0.43, and 0.419-0.2411 and 0.273-

0.343, respectively. These porosities are good for storage and transmissivity of hydrocarbon. Also, 
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the hydrocarbon saturation for the respective intervals are 0.769 and 0.883, 0.9712 and 0.947, 

0.8339 and 0.8533 and 0.833 and 0.924. These intervals are good for shallow reservoir 

development because of the significant volume of hydrocarbon estimated therein.  

Only two wells were used for the geomechanical properties investigation of Wabi field because of 

the availability of sonic log in them, these were Wabi 5 and Wabi 11). However, the sonic 𝑉𝑃 

modeled log for Wabi 11 showed errors within the intervals of interest, therefore only Wabi 5 and 

few sections of Wabi 11 results are displayed in this study. The intervals considered for 

Geomechanical rock properties of Wabi field ranges from 3160 m - 3230 m, 4000 m – 4050 m 

and 3510 m – 3650 m for Wabi 5 and 11, respectively.  

Young’s moduli (E) of the field are 23199.21 Psi, 33679.68 Psi, and 24.87 Psi while UCS ranging 

between 23153.00 Psi, 33053.69 Psi. UCS derived from Poisson’s ratio is 29.90 Psi, 28.650 Psi 

and 31.31.59 Psi. The UCS obtained with Young modulus parameter showed that the rock 

formation has the capacity to withstand external forces and shown high strength against rock 

failure. Poisson’s average ratio ranges between 0.2258, 0.21570 and 0.29935 meaning that, there 

is small variation in volume of rock. Hence, this study shows Poisson’s ratio of 0.18- 0.35 which 

indicates that the reservoir is stable. 

 The studied reservoirs show high porosity with poor cementation this signifies its vulnerability to 

deformation. Although, it is in the consolidated region in the Niger Delta. Therefore, the ratio of 

dynamic to elastic constant, that is, Young’s modulus constant is between 10 MPa to 20 MPa. It 

is obvious that, rock strength decreases with increasing porosity with variation in Co between 

porosity of 30-35%.  

For pore pressure prognosis in case of drilling further wells in Wabi field, the mud window for the 

field can be designed since the drilling equivalent mud weight ranges between 1.05163 g/cm3-

1.366642 g/cm3 and 1.010686 g/cm3-1.127057 g/cm3. Mud weight must be greater than the pore 

pressure gradient and less than the fracture gradient for the avoidance of wellbore instability, fluid 

influx and pressure kicks in an open hole drilled. 

From this study, the average in situ stress principal stresses are:  =3112.65 Psi,  =2356.63 Psi, 

 = 1607.80 Psi in shallow reservoir and in deep reservoir;   = 4409.29 Psi,  = 4115.27 Psi, 
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 =2639.04 for Wabi 5. While for Wabi 11 they are;  =3617.90 Psi,  =3709.42Psi,  2375.85 

Psi. These in situ stress trends indicated normal faulting regime in Wabi field, however, rock 

anisotropy exists in some parts of the reservoir thereby causes different stress regime existence. 

Where any small difference between  and  will affect stress orientation and fracture 

propagation design in Wabi field, if the need arises. The estimated hydrostatic pressure  are; 

1384.37 Psi, 1732.95 Psi and 1520.68 Psi.  

The estimated principal stresses and pore pressures above were used to construct 3D Mohr diagram 

for Wabi field. The Mohr diagram for the interval of interest at hydrostatic pressure indicated that 

the reservoirs are stable as the combined normal effective and shear stresses are below the failure 

envelope, but as exploitation activities progresses, it would reduce the effective stress and the 

reservoir would be compacted leading to subsidence. On the other hand, increasing pore fluid 

pressure by injection of fluid would cause fault reactivation and fracturing of the reservoirs at both 

chosen depth as shown in 3D Mohr diagram for this study (Appendices A-B).  

The estimation of the mechanical behavior of the rock mass was done to understand the 

formation’s properties to mitigate what will cause risk to Wabi reservoir either during exploitation 

or recovery phases. This is essential for stimulation and completion design to prevent fault 

reactivation, fracturing of the reservoir and subsidence.  

Addressing the technical challenges that would be faced for development of Marginal and 

Brownfield in the Niger Delta and elsewhere requires a generic workflow and integrated solution 

as demonstrated in this study. Therefore, geomechanical analysis play an important role in a field 

life spanning from exploration, appraisal, and development to production of hydrocarbon to 

prevent the risks and boost daily crude production required in our today’s energy demand.  

In summary, the followings conclusions are made: Wabi field has pockets of potential hydrocarbon 

reserves at different intervals with good reservoir qualities to enhance its development for 

production. Also, rock strength estimation in this field shows that the reservoir is stable; however, 

production of hydrocarbon from these zones may lead to subsidence in the future. To mitigate for 

this futuristic event reservoir pressure maintenance should be planned for.  
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5.3 Recommendations  

After a careful study and analysis of data collected, the following recommendations are made:  

1. Active sand control methods such as screens, slotted liners and gravel pack completion 

designed is recommended for the study area.  

2. Proper pressure maintenance should be planned for the longevity of the reservoir.  

3. Lack of appropriate data from Oil and Gas industry is highly needed to better understand 

the phenomena that may trigger or induce Seismicity or subsidence in the study area.  

4. Fracture data from Wabi field alongside rock mechanical properties from Laboratory 

testing should be used for the construction of the 3D Mohr diagram and compare with the 

model obtained in this study.  

5. The results presented in this study were based on log derived, to serve as representative 

values of the geomechanical properties of the field. Thus, further studies should be 

conducted in the area using laboratory core testing for geomechanical properties to validate 

results.  

6. More information from exploration to development phases of the reservoirs are needed as 

major input to understand the physics and geomechanics of the in-situ stresses for 

reappraisal, well completion, and accurate predictive model and for development strategy.  

7. Pressure information from leak of test (LOT), mini and micro fracture test from Wabi field 

should be used to validate the result in this study.  

8. Type of drilling fluid used for Wabi field drilling should be specified for its usage for 

further analysis of stress effect.  

9. This study focuses on macro-mechanical rock properties of Wabi field; therefore, further 

studies should be conducted on micromechanical properties as this may focus more on the 

initiation and propagation of failure or fracture in Wabi field.  

10. Also, further studies should be carried out in respect to temperature conditions of the field 

and its effect on the rock properties.  

11. Finally, to predict real time sanding issue in the field, simulation study must be done. This 

is what my PhD research will be focusing on. 
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              3D Mohr diagram construction for Wabi 05 stability of Wabi field for development design  
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Appendix B

  

3D Mohr diagram construction for Wabi 05 showing movement of Mohr circle for injectivity scenarios  

Appendix C        1                               2                               3                            4 
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1&2): X-ray radiography showing dip and strike orientations,3.)Daylight cut and 4.) UV light cut section 

  

 1&2): X-ray radiography showing dip and strike orientations,3.)Daylight cut and 4.) UV light cut section 
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     Core sections of Shallow reservoirs interpreted in this study  
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    Core sections of deep reservoir interpreted in this study  
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Appendix D  
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  Well log showing Shallow reservoir from which mechanical properties were evaluated  
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Well log showing Deep reservoir from which mechanical properties were evaluated.  
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 Equations used for calculation and few examples for illustration 

1. 𝑉𝑝  =   
1

∆𝑡 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
=  

1 (𝑓𝑡)∗0.3048

∆𝑡 (𝜇𝑠)×106   =    
30480

∆𝑡
 

2. 𝑉𝑠  =   
304800

∆𝑡 𝑠ℎ𝑒𝑎𝑟
 

3. 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑣) =   
𝑉𝑃

2  −  2𝑉𝑠
2

2(𝑉𝑝
2  −  𝑉𝑠

2)
   

4. 𝑆ℎ𝑒𝑎𝑟  𝑀𝑜𝑑𝑢𝑙𝑢𝑠  (𝐺) =   𝜌 (
𝑔

𝑐𝑐
) × 100  × 𝑉𝑆

2    (𝑚2

𝑆2⁄ ) 

=  
𝑘𝑔

𝑚3 
  .  

𝑚3  

 𝑆3
 = 𝑃𝑎𝑠𝑐𝑎𝑙 =  

𝑃𝑎𝑠𝑐𝑎𝑙

106
= 𝑀𝑃𝑎 

5. Young Modulus (E) = 
 𝜌(𝑔/𝑐𝑐) 𝑋 100 𝑋 𝑉𝑆

2 𝑋 (3𝑣𝑝
2− 4𝑉𝑠

2)

(𝑉𝑃
2− 𝑉𝑆

2)
 

=  
𝑘𝑔

𝑚3 
  .  

𝑚2  

 𝑆3
 =  (

𝑚2

𝑠2
/

𝑚2

𝑠2
) = 𝑃𝑎𝑠𝑐𝑎𝑙 

𝐸 = 2𝐺 (1 + 𝑉 ) 𝑃𝑎𝑠𝑐𝑎𝑙 

6. Porosity ∅ =   
𝜌𝑚𝑎𝑡𝑟𝑖𝑥− 𝜌𝑙𝑜𝑔

𝜌𝑚𝑎𝑡𝑟𝑖𝑥 −  𝜌𝑓𝑙𝑢𝑖𝑑
 

 

𝑊ℎ𝑒𝑟𝑒        𝜌 log 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  

                     𝜌𝑓 is the density of the pore fluid 

                     𝜌𝑚𝑎 is the density of the sedimentary reservoir matrix 

 

7. Overburden stress (Sv) = 𝜌.  𝑔  .  𝑧 

=  ∫ 𝜌𝑔𝑧
𝑧

0

 

 

where  z is the depth  

  𝜌 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

g is acceleration  

 

8. Overburden stress gradient = 
𝑜𝑣𝑒𝑟𝑏𝑢𝑟𝑑𝑒𝑛 𝑠𝑡𝑟𝑒𝑠𝑠 

𝑑𝑒𝑝𝑡ℎ
=   

𝑆𝑉

𝑍
 𝑖𝑛 

𝑃𝑠𝑖

𝑓𝑡
  

9. Hydrostatic Pore pressure (Pp) = 𝜌. 𝑔. ℎ 

 

   

Where 𝜌 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 of the formation (g/cc) 

  g is acceleration due gravity (m/s2) 

h is the depth in (feet) 
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10. 𝑃𝑎𝑠𝑐𝑎𝑙 =  𝑁

𝑚2  =  
𝑘𝑔

𝑚. 𝑠2⁄  
⁄  

𝜌. 𝑔. ℎ =
𝑔

𝑐𝑚3
 ×  1000 × [

𝑘𝑔

𝑚2
] . [

𝑚

𝑠2
] . 𝑓𝑡 𝑋  0.3048 (𝑚) 

=  [
𝑘𝑔

𝑚. 𝑠2
]   𝑃𝑎𝑠𝑐𝑎𝑙  

 

11.  Mega Pascal (MPa) = 106 Pascals = 10 Bars = 145.037738 Psi   

Pascals = 0.000145037738 Psi 

 

UCS correlation developed for the Niger Delta region used in this study 

 

12.  𝑈𝐶𝑆 = 0.2017 × 𝑉−3.162 

13. 𝑈𝐶𝑆 = 0.3966𝐸 + 1.1956 

 

Examples of calculation done 

At depth 3135.024          ∆𝑡𝑐 = 84.8668 𝜇𝑠/𝑓𝑡 

∆𝑡𝑠 = 145.1772 𝜇𝑠/𝑓𝑡 

       𝜌𝑏 = ρlog = 2.2685  𝑔/𝑐𝑐 

𝑉𝑝 =  
304800

84.8668 ×  106
= 3591.51 𝑚/𝑠2 

𝑉𝑠 =  
304800

145.1772 ×  106
= 2099.503228 𝑚/𝑠2 

 

Poisson’s ratio (0) = 
(3591.51)2− 2(2099.50)2

2(3591.51)2− (2099.503228)2 
= 0.245 

Shear Modulus (G) = 2.2685 ×  1000 × (2099.503228)2 = 9.9987𝐸 + 19 

Young Modulus (E) = 2.2685 ×  1000 × (2099.503228)2 − (33591.51)2- 

4 (2099.503228)2

(3591.51)2 −  (2099.503228)2 
    = 24807.13649 𝑀𝑃𝑎 

Porosity ∅ =  
2.648−2.2685

2.648−1.1
  = 0.245 no unit. 



 

 

166  

 

UCS (Young Modulus) = 0.3966 × (2480.13649) + 1.1956 

                                       = 9839.70593 MPa 

Overburden stress (𝑆𝑉 =  𝜎1) = 2.2109 x 100 x 9.8 3135 x 0.3048 x 0.00014503778 = 3002.83627Psi 

 

Overburden gradient = 
3002.83627

3135
= 0.957836𝑃𝑠𝑖   

 

 

 

                                    

  

 

  

  

  


