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Abstract

The Location-allocation (LA) problem concerns the location of facilities
and the allocation of demand to minimise or maximise a particular func-
tion such as cost, profit or a measure of distance. Many formulations of
LA problems have been presented in the literature to capture and study
the unique aspects of real-world problems. However, some real-world as-
pects, such as resilience is still lacking in the literature. Resilience ensures
uninterrupted supply of demand and enhances the quality of service. Due
to changes in population shift, market size, economic and labour market
which often causes demand to be stochastic, a reasonable LA problem
formulation should consider some aspect of future uncertainties. Almost
all LA problem formulations in the literature that capture some aspect
of future uncertainties fall in the domain of dynamic optimisation prob-
lems where new facilities are located every time the environment changes.
However, considering the substantial cost associated with locating a new
facility, it becomes infeasible to locate facilities each time the environment
changes.

In this study, we propose and investigate variations of LA problem formu-
lations. Firstly, we develop and study new LA formulations that extend
the location of facilities and the allocation of demand to add a layer of
resilience. We apply the Population-based incremental learning algorithm
for the first time in the literature to solve the new novel LA formula-
tions. Secondly, we propose and study a new dynamic formulation of
the LA problem where facilities are opened once at the start of a de-
fined period and are expected to be satisfactory in servicing customers
demands irrespective of changes in customer distribution. The problem
is based on the idea that customers will change locations over a defined
period, and these changes have to be taken into account when estab-
lishing facilities to service changing customers distributions. Thirdly, we
employ a simulation-based optimisation approach to tackle the new dy-
namic formulation. Owing to the high computational costs associated with
simulation-based optimisation, we investigate the concept of Racing, an
approach used in model selection, to reduce the high computational cost
by employing the minimum number of simulations for solution selection.
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Chapter 1

Research Background and
Motivation

Location-allocation (LA) problem is a branch of location problems that involves
choosing facility locations to service the demands of customers aimed at reducing
the overall total costs or maximising total profits [105]. The LA problem often occurs
in practical settings where facilities provide similar services. The location of facili-
ties and the allocation of demand to these facilities are critical elements in strategic
planning for a wide range of private and public organisations. In the past decade,
the LA problem has attracted much attention from the operation research commu-
nity. Research has focused on both problem formulations and algorithms to solve
them in diverse settings within the private sectors and public sectors. LA problem is
considered to be NP-hard, which means that the use of exact methods can be imprac-
ticable, especially for large instances of the problem. For this reason, meta-heuristic
methods have been proposed by the operational research community that is capable
of addressing the difficult real-world formulations of LA problem.

Many real-world problems have been formulated as LA problems within the private
sectors such as the location of industrial plants, banks, telecommunication facilities,
retail facilities and the public sectors such as hospitals, fire stations, police stations,
and post offices [60]. The distinctive characteristics of establishing facilities to service
demand within the private and public sectors have led to many different formulations
of LA problems. Although many formulations of LA problem exists in the literature
that captures many aspects of real-world problems, no LA problem formulation ex-
ists that captures the aspect of resilience. Resilience here is the option of providing
backup services to customers to ensure uninterruptible supply of services. The aspect
of resilience is vital, especially in settings where the success of customers operations
primary rely on the consistent and uninterruptible supply of services. E.g. data
centres require a constant high-speed network connection to operate; E-commerce or-
ganisations such as Amazon, Google, Facebook and E-bay require constant high-speed
network connections to keep their website running efficiently; Financial institutions
require consistent network connections to keep their servers up and running in order
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to provide online banking services to customers. For such companies, an interruption
in network connections could result in huge financial reputational risk.

Although LA problem formulations are essential study topics, the changes in popu-
lation, market size, environmental factors and the rapid advancement in technology
often drives the need of consumers, which causes demand to be stochastic [8]. There-
fore a reasonable LA formulation should consider some aspect of future uncertainty.
In response to the dynamic nature of customers distribution, many dynamic formu-
lations of LA problems have been presented in the literature to capture many of the
dynamic characteristics of problems within the private and public sector. A study of
the dynamic formulations of LA problem in the literature shows that almost all the
dynamic formulations consider the location and relocation of facilities overtime to ser-
vice the changing distribution of customers [18; 23; 43; 50; 109; 160; 165; 178]. These
formulations are known in the literature as multi-period or explicit LA problems and
falls in the context of dynamic optimisation problems. In dynamic optimisation prob-
lems, the decision-maker has to determine and implement a solution every time the
environment changes. In multi-period LA formulations, anytime the distributions of
customers change, new facilities are required to be opened, or existing facilities are
relocated to service customers needs adequately.

In the absence of substantial costs of opening new facilities or relocating existing facil-
ities to service the changing distribution of customers, multi-period LA problem for-
mulations offer a good approach to tackling real-world dynamic problems. However,
in settings where the opening or relocation of facilities attract considerable capital
and resource investment, which often brings to bear significant financial, technical
and reputational risk, it becomes infeasible to open new facilities or relocate existing
facilities to adequately service customers demands each time customers change loca-
tions. In such problem scenarios, it becomes imperative that facility location choices
executed today consider expected future circumstances. Considering changing dis-
tributions of customers when locating facilities for the first time will help to ensure
that facilities are not only ideal for current conditions but also stay useful over a
defined horizon [45]. This type of LA problem formulation requires that facilities are
established once at the start of a defined horizon and are expected to be effective in
servicing the changing demands of customers over a specified period. Such dynamic
LA formulations are referred to as Implicit LA problems and fall in the domain of
Robust optimisation over time (ROOT) [63]. In ROOT the quality of a solution, i.e.
the location of facilities continues to be satisfactory and is relatively indifferent to the
environmental fluctuations during the defined time interval. Very few works exist in
the literature that studies LA problems in the context of ROOT. To the best of our
knowledge, the only work that studied an LA problem formulation in the context of
ROOT was the work presented by Daskin et al. in [45] where authors sought to find
an optimal or near-optimal location of facilities to service changing distribution of
customers over an infinite horizon. The low level of research work in this area makes
it an area of interest for study.

In the dynamic LA problem literature, two main approaches are considered for pre-
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dicting potential changes in customers distributions. These are forecast and scenario
planning. Forecast concerns predicting the future as accurately as possible, given
all the information available, including historical data and knowledge of any future
events that might impact the forecasts [45]. The use of forecast is often favourable in
instances with low uncertainty and low complexity because it is justifiable to make
numerical predictions about variables of interest without extensively conditioning the
forecast on key assumptions about other variables that may influence it. Scenario
planning on the other-hand concerns predicting the future by generating many sce-
narios of how the future might unfold. Scenario planning is often employed in prob-
lems with high uncertainties where predetermined elements, common to the scenario
are combined with critical uncertainties, that vary between the scenarios [167]. Fore-
casting predicts the potential changes in one future while scenario planning projects
the potential changes in multiple futures. Due to the dynamic nature of real-world
problems, scenario planning offers a robust approach to predicting future changes.

However, many of the work presented on dynamic LA problem formulations in the
literature employed forecast models to predict future changes [16; 26; 45; 64; 158].
Very few works on dynamic LA problem formulations exist in the literature that em-
ploys scenario planning for predicting future changes [12; 66; 110]. To the best of our
knowledge, no dynamic LA problem formulation exists in the literature that employs
scenario planning for predicting future changes in the context of ROOT. The reason
for the lack of work in the literature that employ scenario planning for predicting fu-
ture changes maybe the fact that the class of the dynamic LA problems studied in the
literature have low uncertainties and hence forecast models are more appropriate for
such formulations or the fact that scenario planning comes with a high computational
cost as a result of evaluating the many scenarios against decision variables. Decision
variables represent the solution to a problem, i.e. the location of facilities that can
be opened. In the context of LA problem, decision variables are often presented as
a binary string x = {x1, ..., xm} ∈ {0, 1}m where 1 represents an opened facility and
0 represent a closed facility. The evaluation of a decision variable against a scenario
is called a simulation. The decision variables are provided by an optimisation algo-
rithm which is then evaluated against a scenario, and a result is produced according
to the optimisation objective function. The process will repeatedly continue until it
results in a satisfactory solution or terminated according to a prescribed condition.
This solution approach is termed as simulation-based optimisation. Because all deci-
sion variables in a Simulation-based optimisation (S-BO) are evaluated against many
scenarios many times, they often have very high computational costs. E.g. suppose
we have 50 decision variables and 200 scenarios. We evaluate each decision variable
against a scenario 100 times. That will give us a total of 1,000,000 simulations. If
a simulation takes 0.5 seconds, then on average, it will take us 500,000 seconds to
evaluate all 50 decision variables against all 200 scenarios. Considering that the time
it takes to evaluate a decision variable against a scenario is problem dependent, the
more significant the problem, the more costly the computational cost.

A review of the literature on the LA problem found three significant areas of study
that have received very little attention in the literature. These areas are (1) the aspect
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of resilience; (2) the study of a dynamic LA problem formulation in the context of
ROOT; and (3) the use of scenario planning in modelling changes in a dynamic LA
problem in the context of ROOT. We are thus motivated to focus our study in these
three key areas using a large practical scale real-world example of service company
from the telecommunications industry as a case study. We introduce the case study
in Section 1.1.

1.1 Case Study

To adequately and efficiently supply bandwidth demand over connection lines to
customers locations, service companies have to strategically position facilities in areas
that offer optimal coverage to customers concerning the minimal distance between a
facility location and customers premises. Customers here refer to big corporations
that include financial institutions, data centres and technology companies. A facility
receives prodigious amounts of bandwidth from international leased lines and then
breaks down the bandwidth into smaller bandwidth sizes according to customers
demands. The requested bandwidth of a customer is carried over a wired connection
from a facility to the customer site. Hence, the further away a customer site is from
a facility, the more expensive it is to service the demand of the customer as this will
require an extra wired connection to be constructed to the customer site.

The quality of connection a customer receives is also primarily influenced by how close
or far a customer site is to a facility. The further away a customer is from a facility,
the more likely the customer is to experience a disruption in connectivity or high
latency, i.e. the delay before a transfer of data begins following an instruction for its
transfer. To ensure the quality of service delivery and competitive cost of connections,
facilities have to be located concerning customers locations ensuring that customers
are close to facility sites to ensure the best of services. In light of this, the best
option to ensure the best service to customers is to build facilities close to customers
sites. However, considering that establishing facilities involve considerable capital
and resource investment and the fact that customers locations are often spread across
a wide area, it becomes infeasible to build facilities next to all customers sites. Hence
there is the need to find optimal locations to establish the facilities that can supply
the demand of customers whiles at the same time minimising the overall operational
cost of building facilities and servicing customers demands.

The nature of customers businesses requires constant and uninterrupted connections
from facilities to customer sites. Any disruption to customers connections will harm
their operations, often leading to financial and market loss. As a means of ensuring
constant up-time for customers, the concept of resilience becomes an essential factor
to consider when deciding the location of facilities. Resilience here is the option of
a second bandwidth connection to customer site from a different facility that serves
as a backup in the event of a disruption to the primary facility or the primary wired
connection to a customer’s site.
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In the real-world several factors causes the markets to be dynamic. Hence, for cus-
tomers to stay relevant in a competitive market requires them to adapt to changing
trends. The changes in trends are often prompted by factors such as technological
advancement, economic and labour markets shifts. For this reason, customers are
continually relocating to cities that offer them more significant market shares as well
as sound economic policies for operations. For service companies to adequately service
the changing distributions and demands of their customers, they are required to find
the optimal locations of their facilities that offer them the best trade-off between the
costs involved in establishing and running facilities and the quality of service their
customers receive. Due to the high uncertainty in the movement of customers, it
becomes difficult for the service companies to predict with ease how their customers
will evolve. The high uncertainty is as a result of the many factors that contribute to
how attractive a city is to a customer such as economic policies, market competition,
life stage of the market, consumer preferences. The constant differentiation of cus-
tomers products or services also influences their target market. Therefore it becomes
a difficult task to forecast how customers will move between cities in the future. The
dynamic nature of the real-world problem described above requires the use of scenario
planning to capture or model the future distribution of customers.

The real-world case study presented above highlights the relevance of the three key
areas of this research: (1) The aspect of resilience, (2) Formulation of dynamic LA
problem in the context of ROOT and (3) Use of scenario planning for predicting
future changes in customer movements.

1.2 Research Aims

Our work builds on the knowledge that establishing facilities to adequately service
customers demands over an extended period of time must take into consideration
how customers will move locations over time. However, simulating customers move-
ments in a dynamic environment comes with a high computational cost since many
movement scenarios of customers have to be generated to provide a good measure
for making decisions to locate facilities. Hence this research intends to find out if
we can decide the location of facilities without taking customers movements into
consideration over a defined period and thereby avoid high computational overhead.
Alternatively, ascertain if there is value in expending the extra computational effort
by simulating the movements of customers when deciding the locations of facilities
which are expected to be operable over an extended period of time. If there is value
in simulating the movements of customers to decide the location of facilities, we in-
tend to find out how we can reduce the computational effort required to simulate and
evaluate the many customer movements scenarios. The following questions in Section
1.2.1 are set as guidelines to fulfil these aims.
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1.2.1 Research Questions

Based on our interest in this study, we seek to investigate the following research
questions ((RQ1)-(RQ3)):

(RQ1) What suitable LA formulations can capture the real-world problem complexities
of a service company such as telecommunication company?

(RQ2) How can simulation-based optimisation be exploited to help find a satisfactory
and robust solution concerning the changing customers’ demands over time in
the context of ROOT?

(RQ3) How can the high computational costs that come with simulation-based opti-
misation be addressed?

1.2.2 Research Objectives

In order to address the research questions asked in Section 1.2.1, this thesis has the
following objectives:

(O1) Develop new formulations that capture the real-world complexities of service
companies as an LA problem.

This objective addresses (RQ1) in part. We are keen to capture the complexities
of the real-world service company in an LA problem formulation. The new LA
problem formulations will extend existing LA problem formulations to capture
the aspect of resilience, and the changes in customers demand over time in the
context of ROOT.

(O2) Propose a new problem instance to study the new LA problem formulations.

This objective address (RQ1) in part. Due to the specific characteristics of our
new LA problem formulations, existing problem instances such as the uncapac-
itated facility location datasets in the OR Library [13] will not be adequate
to study the new formulations. Hence, we will develop new problem instances
in collaboration with industry experts from the telecommunication industry to
help study the new problem formulations.

(O3) Investigate optimisation algorithms suitable for solving the new LA problem
formulations.

This objective address (RQ1) in part. Many state-of-the-art algorithms exist
in the literature that has been used to tackle different LA problem formula-
tions. We will investigate the major-state-of-the-arts optimisation algorithms
presented in the literature to find a suitable algorithm that can find satisfactory
solutions to the new LA problem formulations.

(O4) Develop a stochastic simulation model to simulate the changes in customers
distributions over time.
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This objective address (RQ2) in part. In order to capture the changing demand
of customers over time, we will develop a stochastic simulation model that takes
as input some predetermined values and random values to simulate possible
changes in customers demands over a specified period.

(O5) Investigate a way to help reduce the high computational cost associated with
the simulation-based optimisation.

This objective address (RQ3). The idea here is to find a way to reduce a large
number of simulations often required to evaluate a solution in a simulation-based
optimisation.

1.3 Contributions

In this Section, we present the original research generated in the process of meeting
our objectives.

In Chapter 3, we introduce two new novel non-linear models of LA problem motivated
by real-world scenarios from the telecommunication industry in collaboration with in-
dustry experts. The first formulation we call Location-allocation resilience problem
(LARP), which extends the location of facilities and the allocation of customers to in-
clude a resilience layer. The second formulation, called Location-allocation resilience
problem with restrictions (LARPR) is a constrained version of LARP due to budget
constraints for establishing facilities. We also present a new problem instance in col-
laboration with industry experts from the telecommunication field to help study the
new non-linear LA problem formulations. In addition to finding a suitable state-of-
the-art algorithm from the literature to tackle the new LA problem formulations, we
study the effectiveness of Population-based incremental learning algorithm (PBIL)
algorithm [58; 59] for solving the LA problem formulations. PBIL has been shown in
the literature to be effective in tackling combinatorial problems. To the best of our
knowledge, this is the first time in the literature, PBIL will be employed to solve an
LA problem formulation. Research work presented in Chapter 3 has been published
in IEEE Congress on Evolutionary Computation (CEC) 2018 Jul 8 (pp. 1-8) [5].

In Chapter 4 we introduce a new dynamic formulation of LA problem we call Dynamic-
customer location-allocation (DC-LA) problem in the context of Robust optimisation
over time (ROOT) which takes into account the actualised servicing costs and the
movement of customers over a defined period. The new dynamic variant stems from
the telecommunication industry where customers change locations over a defined hori-
zon, and these changes have to be taken into account when establishing facilities to
service changing customers locations. To help measure how good a solution is to the
new problem, we define a stochastic dynamic evaluation function that takes the move-
ment of customers into account when evaluating a solution to the DC-LA problem.
We also define a baseline evaluation function by which to compare the performance
of the stochastic dynamic evaluation function. The baseline evaluation function as-
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sumes that customers do not move over time. Research work presented in Chapter
4 has been published in the International Conference on Innovative Techniques and
Applications of Artificial Intelligence 2018 Dec 11 (pp. 433-439). Springer, Cham.
[3]

In Chapter 5, we develop 1440 new problem instances based on the different param-
eters of DC-LA problem to help study the new dynamic LA problem formulation.
Research work presented in Chapter 5 has been published in the Proceedings of the
2019 Institute of Electrical and Electronics Engineers (IEEE) Congress on evolution-
ary computation (IEEE CEC 2019), 10-13 June 2019, Wellington, NZ. [4].

In Chapter 6, we adapt the concept of racing [104] to help reduce the number of
evaluations required to find good and robust solutions to DC-LA problem. Racing
uses statistical tests to compare solutions in the evolutionary process until a statistical
difference is found between solutions. After the test, solutions found to be statistically
significant from the best solution in the population are discarded. The advantage of
using a statistical test in the context of simulation-based optimisation is that the test
can be performed iteratively until statistical significance is found. The adaptation
of racing is to help ensure that the minimum number of simulations is performed
to detect statistical difference to support solution selection. By adapting racing to
DC-LA problem, we can reduce the total number of simulations required to find a
robust solution to the new dynamic LA formulation which leads to a reduction in the
high computational cost associated with simulation-based optimisation.

1.4 Thesis Structure

The rest of the Chapters are organised as follows: In Chapter 2, we review relevant
works in the literature, focusing on how real-world problems have been formulated
as an LA problem and highlight areas for further research. We discuss the recent
solutions presented in the literature for tackling LA problem. In Chapter 3, we intro-
duce two new formulations of LA problem motivated by real-world scenarios from the
telecommunication industry in collaboration with industry experts and explore state-
of-the-art solutions from the literature to solve the new formulations. In Chapter 4
we introduce a new dynamic formulation of LA problem we call DC-LA problem in
the context of Robust optimisation over time (ROOT) which takes into account the
actualised servicing costs and the movement of customers over a defined period. In
Chapter 5, we develop 1440 new problem instances based on the different parameters
of DC-LA problem to help study the new dynamic LA problem formulation. In Chap-
ter 6, we adapt the concept of racing [104] to help reduce the number of evaluations
required to find good and robust solutions to DC-LA problem. In Chapter 7, we apply
our adaptation of racing to find robust solutions to a changing real-world scenario.
Finally, in Chapter 8, we present a summary of our contributions and a review of the
extent to which we met our research objectives. We also outline the limitations of
the work presented in this thesis and considerations for future extensions.
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Chapter 2

Literature Review

This chapter explores the literature around Location-allocation (LA) problem and
examines how many real-world problems have been formulated as LA problems. In
reviewing the literature on LA problem, we also explore how formulations of LA
problem have been tackled.

2.1 Location-Allocation (LA) Problems

Location-allocation problem [157] is a branch of location problem that involves choos-
ing facility locations in a region of concern to service the demands of customers aimed
at minimising or maximising costs. Costs here could represent operational costs, ser-
vice delivery, service coverage or profit the aspect of locating facilities and allocating
demand to these facilities impacts on various logistics and operational decisions. In
order to formulate a real-world problem as a Location-allocation (LA) problem, we
first have to define the essential elements that impact the decision of locating facili-
ties and allocating customers. These elements are facilities, customers, location and
efficiency criteria. Facilities are the objects to be located to provide a service or good;
customers refer to the users of the facilities who demand certain services or goods;
locations are the set of candidate points for facility sites, and efficiency criteria defines
the quality of interaction between facilities and customers which is expressed as the
cost to be minimised or maximised.

2.1.1 Facilities

Facilities [54] denote a vast class of objects for which we must determine a spatial
position to optimise their intercommunication with pre-existing objects. Typical ex-
amples of facilities within the context of LA problem are warehouses, manufacturing
factories, schools, clinics, retail outlets and several other productions, industrial or
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government structures. The main properties characterising facilities are their number,
their type and the cost associated with them.

• Number: In the simplest case of LA problem [52], only one facility is to be
located relative to some existing facilities. This kind of LA problem is referred
to as a single-facility. However, in the general case, LA formulations involve the
concurrent location of multiple facilities called multi-facility. In multi-facility
LA problem, the decision involves a trade-off among the improved accessibility
of the customers to the facilities obtained by opening a larger number of centres,
and the increased costs for establishing and operating the facilities.

• Type: Type [52] involves the capacity, service, and structural considerations of
facilities. The first case of LA problem requires the placement of identical facil-
ities concerning both size and kind of service they can supply. However, other
applications may require the location of simultaneous facilities which differ from
each other such as the location of both manufacturing plants and warehouses to
produce and distribute goods in an efficient way. The number of levels at which
different facilities operate distinguishes LA problems between single-echelon and
multi-echelon. LA problems can also be contrasted according to single-service
and multi-service, based upon whether the facilities can render a single or sev-
eral varieties of service respectively. Moreover, some models admit facilities that
supply an infinite demand, whereas other models look for the best placement
of facilities with limited production or supply capacity. In this respect, models
are denoted as capacitated or uncapacitated, respectively.

• Cost: The costs of facilities involve the fixed expenses incurred for their opening
and the variable charges related to the service delivery. While the first type
of costs are usually connected to the specific location where the facilities are
established, the second is usually some function of the distance from the user
of the service.

2.1.2 Customers

The word customer can be used in its most traditional meaning to denote a person
or entity requiring accessibility to a service or supply of a good. In an LA problem,
it is vital to know customers distribution, demand and behaviour.

• Distribution: It may be assumed that customers are either spread uniformly
over a given set or that they are located at specific points in space.

• Demand: Each customer is assigned a weight which expresses the amount of
service the customer requires, i.e. its demand [53]. The weight assigned to
a customer can be a measure of the distance between the customer and the
facility or the actual cost incurred for servicing a customer. When a customer
is a single user, the associated weight can be a unit weight, or a fixed weight
representing the sufficient demand of the user for the good or service. When
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the demand point is symbolic of an area destination for the service (such as a
community or a city), the weight is often to account for the total demand arising
in that area (for instance it might be a function of the population size). In both
cases of single and demand areas, the demand may not necessarily be known
with certainty. If facilities provide essential services (such as issuing driver’s
licenses or providing polling places on election day), consumer demand may
be deterministic and known a priori. However, for facilities that provide non-
essential services (for example, fast food restaurants, retail stores or ATMs),
consumer demand may be a function of the total cost of receiving service.

• Behaviour: In some LA problem formulations customers are free to choose from
which facility to be served, in which case the question is whether they will
always patronise the closest facility or use some other criterion which reflects
their preferences. In this respect, they can behave individually or as a group,
meaning that when choosing a facility, they might consider the convenience of
all the other members of the group. Conversely, location problems exist where
the assignment of customers to specific facilities is compulsory, as in the case of
schools located in some districts.

2.1.3 Locations

The physical site where facilities can be located. Concerning the set of available
points, three spatial descriptions are studied in literature: discrete, continuous and
network.

• Discrete (site selection): The decision-maker can specify a list of plausible sites
for facility locations [55]. This kind of solution space proves to be very flexible
because it makes it possible to incorporate several geographical and economic
features into the model. Furthermore, the discrete space is the most natural
option for designing problems when land availability, zoning regulations or the
presence of pre-existing structures require that new facilities be opened only at
some pre-specified points within the area under consideration.

• Continuous (site generation): In a continuous space [55], no a-priori knowledge
of particular candidate sites are assumed, and the generation of appropriate
sites is left to the model at hand.

• Network: LA problem represented on networks can be perceived as both dis-
crete or continuous [55], depending on whether connections are regarded as a
continuous collection of candidate points for facility location, or only the nodes
are available for the location of new facilities. For some applications in both
public and private service systems, the graph-theoretic approach lends itself in
an excellent way to an intuitive representation of the problem. Some examples
include the set up of plants in a transportation system to reduce production
and shipment costs and the placement of emergency services in rural areas to
guarantee fast intervention to population centres.
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2.1.4 Efficiency criteria

An essential part in the formulation of an LA problem is to identify an efficiency
measure [51; 54] of the interaction occurring among the locations where the facilities
are positioned and the customers using the service, to provide a tool for driving the
location process towards a satisfactory result concerning many different objectives.
The quality of the interactions is considered to be directly related to the relative
spatial position of the interacting points (namely, customers and facility locations)
and can be a measure of the distance between the customer and the facility or the
actual cost incurred for servicing a customer. Most work presented in the literature
usually express the measure of efficiency by some notion of distance. Many different
distance measures may be of interest depending on the application, and the study
and choice of adequate distance concepts have almost become a research field in its
own right. The definition of distance measures represents the first step towards the
specification of different efficiency criteria, which can be built by converting estimated
distances into appropriate costs. For instance, distances can be adjusted to reflect
travel or response times, by including factors such as physical or social barriers to
travel, congestion and road conditions. In some cases, distance-related elements do
not appear directly as objectives but might be necessary to capture some particular
aspects of the problem in the form of additional constraints.

Below we describe some distance measures which have been extensively analysed
and used in LA problem literature to approximate distances between two spatial
coordinates. For the sake of simplicity, we denote the coordinates of two points p and
q by (p1, p2) and (q1, q2) which identifies the position of the customer and the facility
location for which we want to measure the distance.

The most familiar and widely used distance measure is the straight-line or euclidean
measure, denoted by l2(x, y). It is derived from the euclidean norm and can be
mathematically written as:

f(p, q) = ((p1 − q1)2 + (p2 − q2)2)1/2 (2.1)

Euclidean distance often applies when movement is allowed homogeneously in all
directions. The second topper distance measure, l1(p, q), is the variously referred
rectangular, rectilinear, metropolitan, or manhattan distance. Rectilinear distances
derive from the rectangular norm and can be mathematically expressed as:

f(p, q) = |p1 − q1)|+|p2 − q2)| (2.2)
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2.2 Existing formulations of LA problem

Many real-world problems have been formulated as an LA problem in the literature
by leveraging on the important elements of facilities, customers, location and effi-
ciency criteria. The first of these formulations recorded in the literature is the work
presented in [41] by Cooper Leon in 1963. Cooper’s formulation involved locating two
facilities m to service seven customer n demands. In order to formulate his problem
as an LA problem, Cooper made some assumptions about the facilities, customers,
location and efficiency criteria. Cooper assumed facilities to be uncapacitated, which
meant that a single facility could fully service the demand of a customer. However,
the location of the facilities was unknown and had to be determined by solving the
LA problem. Cooper also assumed that the location and demand of each customer
are known. The efficiency criteria employed by Cooper was the minimum euclidean
distance between a facility and a customer multiplied by the service cost of servicing
a customer. Hence, in his formulation cost is proportional to distance. The decision
variables were represented by a binary string x = {x1, ..., xm} ∈ {0, 1}m where 1
represents an opened facility and 0 represent a closed facility. The objective of the
formulation was to minimise the total cost of establishing m facilities and the cost of
supplying n customers with m facilities. Cooper formulated his problem as:

f(x) =
m∑
i=1

n∑
j=1

xici + wijd(xi, aj) (2.3)

subject to
m∑
i=1

wij = rj, j = 1, 2.....n (2.4)

wij ≥ 0, i = 1, 2....,m j = 1, 2...., n (2.5)

where m: is the number of facilities; n: is the number of customers; xi = 1 if facility
is opened and 0 otherwise; ci: is the cost of opening facility i ; wij: is the quantity
of goods supplied to customer j by facility i ; d(xi, aj): is the euclidean distance
between customer j and facility i ; aj: is the location of customer j ; rj: is the demand
of customer j. Equation (2.3) minimises the total cost of establishing facilities and
the cost of supplying n customers with m facilities. Equation (2.4) ensures that
all customer demand is satisfied. Since there exist no capacity restrictions on the
facilities, an optimal solution will have the requirement of each customer serviced by
the facility that is the nearest to it. Constraint (2.5) is ensures that the quantity of
goods supplied to a customer is not less than 0.

Over the years, many real-world problems within the public and private sectors have
been formulated as an LA problem. Below we explore some of the different formula-
tions presented in the literature.
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2.2.1 Emergency response

Verma and Gaukler in [166] studied the optimal placement of disaster response fa-
cilities that will be used to pre-position emergency supplies such as food, medicine,
potable water, medical equipment’s, generators and tents in the event of natural
disasters such as earthquakes, floods, and large scale fires or non-natural events
such as terrorist attacks. They formulated an LA problem that explicitly consid-
ered the impact a disaster could have on disaster response facilities and population
centres in the surrounding areas in California. The authors used the response time
from a facility to an affected population centre defined by the euclidean distance,
which is proportional to transportation costs as the efficiency criteria. The objec-
tive, therefore, is to minimise the total transportation cost from facilities to affected
population centres. The decision variables were represented by a binary string x =
{x1, ..., xm} ∈ {0, 1}m where 1 represents an opened facility and 0 represent a closed
facility. Similar works to Verma and Gaukler in field of emergency response includes
[14; 29; 31; 73; 83; 86; 111; 138; 146; 152; 173].

2.2.2 Utility allocation

Patel in [133] studied the problem of locating 45 social service centres m within
the Dharampur region of India to provide agricultural extension, primary schools,
public health centres, cooperative service societies, fair-price shops and post offices
to 237 villages n. The objective of the study was to minimise the total distance
of accessibility of the service centres from villages. Due to budget constraint, the
total costs of establishing all service centres were not to exceed Rs. 1.4 million.
Also, the maximum distance of any village from a service centre was not to exceed
the maximum allowed distance D. Patel used the Euclidean distance as an efficiency
criterion, however, to compensate for the terrain in Dharampur a factor of 1.5 was
applied to the euclidean distance between a service centre and a village. The decision
variables were represented by a binary string x = {x1, ..., xm} ∈ {0, 1}m where 1
represents an opened service centre and 0 represent a closed service center.

The work presented in [79] by Ali et al. aimed to determine the optimal site for the
parking facilities of a Steel company and designate travels connecting departments to
all parking facility. The objective of their work seeks to minimise the total cost of the
system, including the costs of equipment, maintenance and operation of the facilities
plus the cost of travelled distance in the company. The cost of travelled distance in-
cluded the cost of fuel exhaustion, driver’s salaries and the cost of vehicle deprecation.
The decision variables were represented by a binary string x = {x1, ..., xm} ∈ {0, 1}m
where 1 represents a chosen parking facility and 0 otherwise. Similar research works
to Ali et.al. were conducted in [75; 120; 168].
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2.2.3 Administration

In work by Lolonis et al. in [112], the authors formulate an LA problem to group a
collection of basic spatial units (US counties) into bordering administrative regions,
so that the supplies of services are efficient, and the regions are uniform guarantee-
ing that specific types of services are rendered to beneficiaries at an affordable cost.
The uniformity of the regions improves the spatial uniqueness of regions, which fa-
cilitates developmental plans. Since the cost of providing services increases with the
distance separating a demand point from the assigned centre, they employ distance
as an efficiency criterion. However because the allocation of a demand point to a
facility depends on its similarity to the centre concerning selected socio-economic and
physical characteristics, the authors assume that spatial difference has an interference
consequence that artificially raises the cost of designating demand to regional centres.
The measure of this increase is decided by the Coefficient of Spatial Differentiation
(CSD), which is a rigidly growing function of the difference of two demand points.
Hence the product of CSD and the actual distance separating demand point j and
centre i denotes the total cost of allotting a demand unit j to centre i and includes
both the cost of spatial separation and the impact of dissimilarity as well. The prod-
uct is called Transformed distance (TD) of demand point j and centre i and is used
as the criterion for allocating demand points to centres. Hence a demand point is al-
located to the centre that is closer in terms of Transformation Distance. The decision
variables were represented by a binary string x = {x1, ..., xn} ∈ {0, 1}n where 1 repre-
sents a selected administrative region and 0 otherwise. Similar works to Lolonis et.al.
in the area of administrative LA problem are conducted in [6; 21; 124; 130; 151; 174].

2.2.4 Healthcare

In recent works, Shariff et al. in [159], presented an LA problem formulation which
was used to study and address the location of healthcare facilities of one of the districts
in Malasia. The objective of the study was to maximise the population assigned to
a facility within a coverage distance. The decision variables were represented by a
binary string x = {x1, ..., xm} ∈ {0, 1}m where 1 represents an opened facility and 0
represent a closed facility. Similar research works to Shariff et al. problem has been
conducted in [15; 36; 37; 90; 129; 137].

2.2.5 Agriculture

Tong et al. [164] examined the problem of determining farmers’ markets in Tucson,
Arizona, state. Farmers’ market is established locations where farmers periodically
gather, to peddle their farm produce. Given that many farmers’ market operates a
few hours a week, the problem formulation considers not only locations but also time
frames. By taking into considerations the different travel patterns and work schedule
of customers, the variations of travel distances with the time of day when customers
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originate their trips from non-home places can be devised to ensure the effective use
of the farmers’ market. The objective of the authors’ work was to minimise the
overall additional travel accrued by visiting farmer’s markets. The decision variables
were represented by a binary string x = {x1, ..., xm} ∈ {0, 1}m where 1 represents a
chosen farmers’ market site and 0 otherwise. Similar LA formulations in the area of
agriculture include [20; 34; 171].

2.2.6 Education

Neema et al. formulated an LA problem in [128] to find the optimal location of
high schools and the allocation of students within a sub-district of Bangladesh. The
objective of their work was to minimise the total travelled distance of students from
home to high schools. The decision variables were represented by a binary string x
= {x1, ..., xm} ∈ {0, 1}m where 1 represents an opened high school and 0 otherwise.
Similar research works to Neema et. el. problem have been conducted in [76; 123; 126].

2.2.7 Energy

Bojic et al. in [19] formulated an LA problem to solve the problem of locating solid
biomass power plants for Vojvodina, an agricultural, energy-deficient province of Ser-
bia. Several factors were considered when locating biomass plants in Vojvodina; the
plant had to be located close enough to biomass source to reduce the transportation
cost but also close enough to urban centres to ensure competitive pricing for deliver-
ing electricity to customers. The type of the plant also affected the decision to locate
a biomass plant, the bigger the capacity of the plant, the more expensive it was to op-
erate. Also, high operation costs affected the cost of service rendered. The objective
of the authors, therefore, was to ascertain the capacities, type and locations of solid
biomass power plants that generate minimal electricity costs, for areas with known
resources and targeted electricity generation. The decision variables were represented
by a binary string x = {xt1, ..., xtm} ∈ {0, 1}m where 1 represents an open facility with
plant type t and 0 otherwise. Similar research work within this area are presented in
[98; 135; 141; 143].

Although formulations of real-world problems as LA problems are interesting to study
topics, they, however, do not capture many of the features of real-world problems.
The fundamental characteristics of LA problem require that any rational formulation
reflect some aspects of future changes. Changes in population growth and migration
often drive the need of consumers. For this reason, facilities are expected to be
effective in servicing demand over an extended planning horizon, especially in cases
where considerable capital and resource investment is required in locating a facility
such as a telecommunication infrastructure. It, therefore, makes sense to plan the
location of facilities with consideration to the varying time aspect of the problem [131].
Taking the varying time aspect of the problem into consideration when planning the
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location of facilities will ensure that facilities are not only ideal for current conditions
but also stay useful over a defined time horizon. We are, therefore, motivated to
explore dynamic formulations of LA problem in section 2.3.

2.3 Dynamic LA formulations in the literature

In the literature, the dynamic formulations of LA problem are mainly categorised into
Explicit and Implicit dynamic models [52]. In explicit dynamic formulations, facilities
will be opened and possibly closed over a defined period, also known as multi-period.
They include other factors such as relocation time, number of relocations and number
of facilities to be relocated. This categorisation of LA problem falls in the domain
of dynamic optimisation. Implicit dynamic formulations concern selecting profitable
facilities locations to be opened once at the start and remain open over a defined
time. Implicit dynamic formulations are dynamic because they recognise that problem
parameters such as demand may vary across time and endeavour to anticipate these
changes in the facility location scheme generated. This implicit dynamic formulations
of LA problem falls in the domain of Robust Optimisation Over Time (ROOT).
Section 2.3.1 highlights the main difference between dynamic optimisation problems
and robust optimisation overtime problems.

2.3.1 Dynamic Optimisation problems vs Robust Optimisa-
tion over time problems (ROOT)

In a Dynamic optimisation problem (DOP), the fitness functions of the optimisation
change over time, resulting in the global optima to change as well [22; 92]. In DOPs,
it is presumed that the decision-maker has to plan and implement a solution each
time the environment changes. For DOPs the objective of the current time is to
obtain an optimum solution in terms of fitness for the current environment and then
relocate a new optimum solution in terms of fitness for the new environment once
the environment shifts or changes. In dynamic optimisation problems, the fitness
function is deterministic at each time instant, but dependent on time t, i.e.

f(x, α(t)) (2.6)

where x describes the configuration parameters, α(t) denotes time-dependent prob-
lem parameters. The most basic aim in solving dynamic optimisation problems is
to pursue the changing optima over time. The formalisation of DOPs is logical in
circumstances where implementing a solution, e.g. establishing or relocating new fa-
cilities, can be completed promptly and cheaply. However, in circumstances where
the implementation of a solution requires features of human operation and high costs
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in establishing facilities, it will be highly capital intensive and sometimes infeasible to
execute a new solution each time the environment varies. Taking a practical dynamic
LA problem, for example, the environmental states, e.g. location of customers vary
from year to year. For this kind of problem, if we implement a new solution every
year by building new facilities to service changing customer locations, it will incur
high financial risks. Therefore, in such circumstance, it would be more cost-effective
having a fixed solution implemented and used for a long-time period than implement-
ing a new solution each time the environment varies as it is done in DOPs. This
process of finding and implementing a fixed solution to a changing problem over time
is known as ROOT.

In ROOT, we aim to obtain solutions that are reliable or robust over the defined
time, rather than pursuing the shifting optima [63]. A solution is described as robust
over a specific period when its quality continues to be satisfactory and is relatively
indifferent to the environmental fluctuations during the defined time interval. An
obtained solution that is robust over time will be employed until its quality diminishes
to an unacceptable level in the present environment. A new robust solution should
be obtained when the solution quality diminishes to an undesirable state. Assuming
a solution x is determined at time t. We define the robustness of a solution during a
period as:

F a(x, t, T ) =
1

t

∫ t+T

t

f(x, α(i))di (2.7)

where x signifies the decision variables, i.e. the solution; T is a user-specified pa-
rameter asserting the duration a solution is employed; α defines the environmental
condition that stipulates the fitness function f. The environment condition at period
i is expressed as α(i).

To the best of our knowledge almost all LA problem formulations studied in the liter-
ature fall in the domain of dynamic optimisation problem except for work presented
by Daskin et al. in [45]. When formulating dynamic LA problem, two processes
are mainly considered in the literature for predicting potential changes. These are
forecasting and scenario planning.

2.3.2 Forecasting vs Scenario planning

Forecasting [156] concerns prognosticating the future as precisely as feasible, given all
the information accessible, including past data and information of any forthcoming
events that might influence the predictions. Forecasting predicts potential changes in
one future. Forecasting models are most favourable in instances with low uncertainty
and low complexity because it is defensible to make numerical predictions about the
variable of concern without widely conditioning the forecast on crucial assumptions
about other variables that may change it. However, forecast models often fail to
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prognosticate quick vital shifts in conditions. A limitation of using forecasting to
evaluate risk is that in dynamic conditions where there exist high uncertainty and
high complexity, forecast models usually break down because they are encountering
new events that are not represented in their test statistics. Works in the literature
that employs forecasting for predicting future changes include [16; 26; 45; 64; 106;
154; 158; 177].

Scenario planning [167], on the other hand, is a strategic planning method used to
conceive flexible continued term strategies for the future by considering the plausibil-
ity and possibility that discusses the weaknesses of forecasting. In scenario planning,
many scenarios of how the future might unfold are generated in considerable detail.
Predetermined elements, common to the scenario, are combined with critical uncer-
tainties, that vary between the scenarios. In many cases of scenario planning, the
goal is to choose strategies that are robust to all scenarios. A scenario is a rich
data-driven story concerning the future that can support organisations more reliable
decision-making now where hypothesis shows a variety of likelihoods for the future.
Works in the literature that employs scenario planning for predicting future changes
include [12; 66; 110].

2.4 Existing dynamic formulation of LA problem

To capture many of the dynamic aspects of real-world problems, varying dynamic for-
mulations of LA problem has been presented in the literature. A generalised formula-
tion of the dynamic LA problem was first introduced in the literature by Wesolowsky
and Truscott [169]. In their formulation, they aimed to devise a plan of optimal
locations and relocations in response to predicted changes in the demand volume
originating at demand points over a planning period T. Wesolowsky and Truscott
formulated the dynamic LA problem as:

f(x) =
T∑
t=1

m∑
i=1

n∑
j=1

aijtyijt +
T∑

k=2

m∑
i=1

(citxit + c
′

itx
′

it) (2.8)

Subject to:
m∑
i=1

yijt = 1 ∀j, t, (2.9)

n∑
j=1

yijt ≤ Nxiit ∀i, t, (2.10)

m∑
i=1

yijt = G ∀t, (2.11)

m∑
i=1

xit ≤ mt ∀t ≥ 2, (2.12)
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yiit − yiit−1 + xit − x
′

it = 0 ∀i, t ≥ 2, (2.13)

yijt ≥ 0 ∀j 6= i xit, x
′

it ≥ 0, ∀i, t yiit ∈ 0, 1, ∀i, t. (2.14)

where aijt: is the present value of the cost of assigning demand point j to facility
i in period t ; cit: is the present value of the cost of removing a facility from site i
in period t ; c

′
it: is the present value of the cost of establishing a facility at site i in

period t ; mt: the maximum number of facility location changes allowed in period
t ; yijt: is 1 if demand point j is assigned to facility location i in period t and 0
otherwise; xit: is 1 if facility is established at site i in period t and 0 otherwise;
x
′
it: is 1 if a facility is removed from site i in period t and 0 otherwise; G: is the

total number of facilities that can be established in period k ; m: number of facility
locations; n: number of demand points. The objective function is to minimize the
costs of distribution from the facilities to the demand points. Based on Equation
(2.9), each demand point j is assigned to exactly one facility location i . In Equation
(2.10) demand point j can be assigned to facility location i only if i is self assigned.
Equation (2.11) guarantee that G self-assignments are made among the m locations.
Equation (2.12) limit the number of sites vacated in each of periods 2 through T.
Since constant number of facilities, G, is required in all periods, placing an upper
bound on the number of facility removals in a period is equivalent to limiting the
number of facility location changes in the period. Equation (2.13) in conjunction
with the second term of Equation (2.8) ensure that the appropriate relocation costs
are charged. The required minimisation of costs forces the following binary values of
xit and x

′
it for each possible combination of values for yiit and yii,t−1 in (2.14).

In succeeding sections, we examine the dynamic LA formulations of some real-world
scenarios.

2.4.1 Manufacturing/Production

Canel and Khumawala [26] proposed a multi-period LA problem aimed at locating
facilities across different countries. The model seeks to decide which countries to
establish manufacturing facilities, quantities of goods to be manufactured and the
amounts to be dispatched from the facilities to the customers. The objective function
maximises profits rather than minimising costs in order to capture the different prices
in different countries. The problem formulation assumes the demand of customers to
vary over time based on the growth rate of the market. The demand of customers is
forecasted over the future time horizon. The decision variables were represented by a
binary string x = {x1, ..., xm} ∈ {0, 1}m where 1 represents an opened facility at time
t and 0 otherwise. Similar work in this field includes [38; 39; 74; 81]
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2.4.2 Emergency Supply

Gama et al. in [64] present a multi-period LA problem for self-evacuation towards
shelter sites in Wake County, North Carolina, USA. Shelters here are facilities in which
evacuees can find health assistance, food and safety. The proposed LA formulation
considers shelter location, warning signals dissemination, and evacuation routing de-
cisions under flood forecast. The study aims to optimally identify opening times
and locations for shelter sites, timings for evacuation order dissemination, and opti-
mal evacuees-to-shelter allocation while minimising the total travelling time between
evacuation zones and shelter destinations. The decision variables were represented by
a binary string x = {x1, ..., xm} ∈ {0, 1}m where 1 represents an opened shelter at time
t and 0 otherwise. Similar research work in this area includes [18; 23; 50; 109; 178]

2.4.3 Healthcare

Benneyan et al. presents a multi-period LA problem in [16] that considers the location
of speciality care clinics for veteran Administration (VA) health in New England,
United States. The LA problem seeks to minimise the overall total costs over a defined
period relative to geographic demand by determining the optimal sleep bed capacity
for each open clinic concerning the maximum acceptable travel distance of a patient.
Forecast changes in geographic demand pattern are assumed for the formulation. The
decision variables are represented by a binary string x = {x1, ..., xm} ∈ {0, 1}m where
1 represents an opened clinic at time t and 0 otherwise. Similar in this area includes
[43; 160; 165]

2.4.4 Environmental

Whiles multi-period LA problem has received much attention from the research com-
munity it is important to note that the location and relocation of facilities due to
shifting in population over a defined period can be very expensive and sometimes
not feasible especially in the case of telecommunication where opening and running
facilities incur considerable cost and risk. For this reason, it is best to open facilities
once at the start and remain open over the defined period. These LA formulations are
termed as Implicit LA problem belonging to robust optimisation problems (ROOT)
[175]. To the best of our knowledge, the only paper within the context of dynamic
LA problem, in which focus is placed on formulating and solving implicit LA problem
is the one by Daskin et al. [45].

Daskin et al. acknowledge that the challenge in tackling dynamic LA problems stems
from the uncertainty encompassing future circumstances. The authors contend that
the most reliable way to handle uncertainty is to delay decision making as long as
feasible, accumulating information and advancing forecasts as time progresses. The
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study, therefore, strives to find an optimal or near-optimal first-period location of
facilities over an infinite period.

2.5 Exacts, Heuristics and Meta-heuristics approaches

to LA problem in the literature

Different solution approaches involving exact methods, heuristics and meta-heuristics
have been proposed and used to solve different formulations of the LA problem.
Exact methods [139] use optimisation mathematical models are guaranteed to find
the optimal solution for the problem by evaluating all possible solutions. LA problem
is considered as an NP-hard problem, i.e. the computation time required to solve them
increases as the size of the problem increases. Hence, the larger the problem, the more
complex the solution space which in-turn can make exact methods slower. Heuristics
and meta-heuristics are techniques designed for solving a problem more quickly when
exact methods are too slow, or for finding an approximate or near-optimal solution
when exact methods fail to find the optimal solution. While heuristic algorithms are
problem-specific meta-heuristics, have an independent problem structure consisting
of components which exploit problem-related information. Meta-heuristics start with
a set of initial solutions, generated either randomly or by exploiting some information
about the problem at hand. This set of solutions is iteratively improved by applying
a set of operations on the solutions in the set, such as combining two solutions or
searching for a better neighbour of a solution in the set for a pre-specified number of
iterations.

Since almost all formulations of the LA problem are NP-hard, exact methods are
limited. Hence most LA problem formulations are solved through heuristics and
meta-heuristics. A look through the literature shows a significant amount of research
on meta-heuristic based solution approaches for solving LA problem formulations in
the last decade. In the succeeding Sections, we examine some of the most widely used
exact methods, heuristics and meta-heuristics for solving the LA problem. We also
explore the Population-Based Incremental Learning Algorithm (PBIL) [9], which has
been reported in the literature to be effective in tackling optimisation problems. To
the best of our knowledge, PBIL has not been used in the literature to tackle LA
problem. We are motivated to explore the potential benefits of PBIL (i.e. a small
number of parameters and the probabilistic model that reveals much information
about the problem being solved but with a lightweight modelling cost) and how it
can be applied to solve the LA problem.

2.5.1 Exact methods

Ceselli [30] presented two exact algorithms, branch-and-bound and branch-and-price
technique for solving the LA problem. In this algorithm, the Lagrangian relaxation
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and subgradient optimization are utilized for branch-and-bound technique and column
generation is used for the branch-and-price algorithm. The author analysed and
compared some performance details, showed how a fine-tuning could improve the
performances of their technique.

Canos et al. .[27] proposed an exact algorithm for the LA problem. They considered
a set of restrictions such that the decision-maker can select partially feasible solu-
tions which partially cover the demands as they extensively decrease the cost. The
researchers proposed an alternative enumeration algorithm for solving the problem,
which is based on Hakimi’s seminal papers [77; 78], and it was appropriate when the
number of vertices is not too large. Neebe [127] considered a branch and bound algo-
rithm for the LA problem and for providing lower bound the Lagrangian relaxation
is used.

Jrvinen et al. [89] constructed a branch-and-bound algorithm for the LA problem.
The authors showed how the vertex-substitution technique could lead to premature
convergence and consequently local optimum, and give a heuristic method for finding
a good initial solution for this technique. In addition, they studied four techniques,
namely, branch-and-bound, branch-and-bound without backtracking, substitution so
that the initial solution was formed by the first p vertex heuristic, and substitution
with an initial heuristic solution.

The Branch-and-bound algorithms developed for the LA problem by Kuenne and
Soland [103] and Ostresh [145] used very small instances, of the order of customers
n = 15, facilities m = 4 and n = 50, m = 3. Rosing [144] is able to incorporate
improvements in the methodology that allow problems with n = 30, m = 5 and n =
25, m = 6 to be solved exactly.

2.5.2 Heuristic methods

Taillard [162] utilized a clustering technique to solve the LA problem. They applied a
candidate list search (CLS), local optimization (LOPT) and decomposition/recombination
(DEC). The CLS started with an alternate heuristic technique introduced by Maran-
zana [113] and obtained a locally optimal solution. Regarding the solutions, in the
CLS clustering technique, the solution is found by eliminating a vertex and adding
another, similar to vertex substitution. In this case, the new solution is selected only
if it is better than the initial one. The author utilized the LOPT technique in DEC
clustering method for finding a good solution in the overall problem.

Resende and Werneck [142] introduced a multi-start hybrid heuristic that combined
elements of several metaheuristics as Greedy Randomized Adaptive Search Procedure
(GRASP). In this process for each generation, a greedy randomized algorithm is
applied by a local search technique. The author utilized the idea of path-relinking
from tabu search and scatter search for storing a group of the best solutions of the
previous generation. This algorithm was useful from strategies that improve diversity:
selecting solutions from the pool in a biased way, returning a local minimum in the
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path if no improving solution is found, and applying local search to the solution
returned.

In [170] Whitaker develops a Greedy heuristic starts with an empty set of open fa-
cilities. Facilities are then added one by one until the total number of facilities is
reached; each time the location which most reduces total cost is selected.

In[56] Feldman et al., develops a Stingy heuristic, also known as Drop or Greedy-
Drop. The heuristic starts with all m facilities opened, and then removes them one
by one until the number of facilities has been reduced to the maximum number of
facilities required to be opened; each time the location which least cost of opening
a facility is selected. Salhi and Atkinson [149] modified the implementation of the
stingy heuristic to start from a subset instead of the entire set of potential sites.

In the Greedy heuristic developed by Captivo [28], the Alternate procedure is run for
each step. A combination of Alternate and Interchange heuristics has was suggested
in [136] by Pizzolato. In [121], a variant of Stingy (or Greedy-Drop) is compared with
Greedy combined with Alternate and Multi start Alternate. In [147] perturbation
heuristic, Stingy and Greedy is run one after another, each having a given number
of steps. The search allows exploration of infeasible regions by oscillating around
feasibility. The combination of Greedy and Interchange, where the Greedy solution
is chosen as the initial one for Interchange, has been most often used for comparison
with other newly proposed methods in the LA problem literature.

In the alternate heuristic developed by Maranzana [113], facilities are located at
location points, and users are assigned to the closest facility. Each facility is selected
evaluated according to each facilitys set of users. Then the procedure is iterated with
the new locations of the facilities until no more changes in assignments occur. Since
the iterations consist of alternately locating the facilities and then allocating users
to them, this method is referred to as the alternating heuristic. The heuristic may
switch to an exhaustive exact method if all possible subsets of locations are chosen
as an initial solution. However, this is not usually the case since the complexity of
the algorithm is then increased by an O(mp).

A heuristic that uses a dynamic programming idea is suggested by Hribar and Daskin
[85]. It may be viewed as reduced dynamic programming or as an extended greedy
constructive method. Instead of considering only the best facility as in Greedy, the
q best solutions are stored in each iteration (q is a parameter). The procedure stops
when the required maximum of opened facilities are reached, as in Greedy. This
heuristic was tested using three small data-sets of size m = n = 49, 55, and 88.

2.5.3 Meta-Heuristic methods

Genetic algorithm (GA) is one of the most widely used population-based meta-
heuristics applied to solve LA problems. The earliest application to solve an LA
problem with a GA was by Hosage and Goodchild in [84]. Other works that used
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GA to tackle LA problems include but not limited to [72; 87; 117; 128; 150]. In their
solution approach using a GA, authors either generated initial solutions randomly
or employed a heuristic approach. The most commonly used of the two was ran-
dom initialisation. Authors also fixed the size of the population to a fixed number
for the whole run of the algorithm irrespective of the size of the problem instance
[32; 42; 102; 161] or the size of the population was set a function of the problem size
[2; 88; 91]. The solution approaches also differed in their choice of crossover and mu-
tation operators. The most commonly used crossover operators were the One-point
and uniform crossover operators. The most commonly used mutation parameter was
the bit-flip or bit reversal operator. On the whole crossover probability were much
higher than the mutation operators with some work recording as high as 0.99 [44]
for crossover probability. Typically the mutation probability value changed between
0.005 and 0.8 with most papers taking shallow values of between 0.01 to 0.2. Con-
cerning termination criteria, three main criteria were employed in the literature: (1)
the maximum number of generations, (2) the maximum number of generations with-
out improvement in the best solution value and (3) the execution time. The most
commonly used termination criteria were the maximum number of generations; how-
ever, some works combined two or more of the criteria to terminate the algorithm.
GAs was recorded in the literature to offer better results when compared to other
methods for solving LA problem presented in the literature [87; 128; 163] on the 15
Uncapacitated Warehouse data-sets from the OR library [13].

Tabu search (TS) is among the widely used local search meta-heuristics for tackling
LA problem. Works that employed tabu search to solve LA problem include [24; 71;
148]. TS begins with the first solution to the problem and hunts for the fittest solution
in a suitably distinguished neighbourhood of the solution. Amongst the regularly
used approaches for creating the first solution are random initialisation [1; 7; 119],
greedy approach [33; 46; 67] and heuristic approach [25; 148]. TS then assigns the
best solution in the neighbourhood as the current solution and begins the exploration
process anew. TS ends the search if specified stopping criteria, either concerning
execution time, solution quality or both have been met [69]. During the exploration
process, TS retains the current best solution, and the best solution discovered so
far. In order to check TS from evaluating solutions that it has already evaluated
in previous iterations, TS keeps a record of neighbour generation moves it deems
forbidden, or tabu and eliminates solutions that can be attained only by tabu moves
from the neighbourhood. Once a move joins the list of tabu moves, it tarries there
for several consecutive iterations. The list of tabu moves alternates continuously
throughout the execution of the search, making tabu search an adaptive memory
search algorithm [69]. More details about TS and its components can be found in the
original paper by Glover [70]. For solving LA problem by a simple probabilistic TS,
good results on Kochetov test instances [97] are reported in [71].

Scatter search is a population-based meta-heuristic originally proposed by Fred Glover
[69]. Works that employed scatter search to solve LA problem include [40; 48; 49;
94; 95; 132; 155]. Scatter search keeps a set of solutions termed as the reference set,
which is initially generated from a seed solution. In generating the initial solutions,
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some works used a construction heuristic to ensure diversity [155] whiles others used
randomly generated seed [94], and others used a combination of greedy heuristic [95].
After generating the initial solution, Scatter search iteratively combines solutions in
the reference set to create new solutions which are in turn employed to update the ref-
erence set. The process ends when either the set of solutions does not change or after
a pre-specified time limit or after a pre-specified number of iterations [69]. Although
the structure of scatter search resembles that of GA, the fundamental principles on
which the two methods work are significantly different. Unlike GA, scatter search
utilises a much smaller reference set and employs more precise methods to guarantee
diversity and coverage of the solution space. Furthermore, while in GA, solutions are
selected at random for recombination, scatter search adopts a precise and exhaustive
scheme to select solutions for combination. Scatter search also employs intensifica-
tion procedures such as local search and tabu search to improve upon each solution
created from the combination process. Most implementation of scatter search for
solving LA problem in the literature used local search with different neighborhood
structures as improvement methods [49; 132] such as swap neighborhood [95] and
shift neighborhood [40; 48]. Good results are reported on TSP-Lib instances [140].

A basic Simulated annealing (SA) heuristic for LA problem was proposed in Murray
and Church [125]. The SA heuristic proposed by Chiyoshi and Galvo in [35] combines
elements of the vertex substitution method with the general methodology of simulated
annealing. The cooling schedule adopted incorporates the notion of temperature
adjustments rather than just temperature reductions. Computational results are
given for OR-Library test instances [13]. Optimal solutions were found for 26 of the 40
problems tested. Recently, an SA heuristic that uses the 1-interchange neighbourhood
structure has been proposed by Levanova and Loresh in [107]. Results of good quality
are reported on Kochetov data sets [97], and on the first 20 (among 40) OR-Library
[13] test instances. For example, 17 out of the 20 OR-Library instances are solved
exactly.

Variable neighbourhood search (VNS). There are several papers that use VNS [80;
121; 122] for solving the LA problem. In the first one [122], a basic VNS is applied
and extensive statistical analysis of various strategies performed. Neighbourhood
structures are defined by moving 1, 2, , kmax facilities and correspond to sets of 01
vector at Hamming distance 2, 4, , 2kmax from x. The descent heuristic used is 1in-
terchange, with the efficient, fast interchange (FI) computational scheme. Results
of a comparison of heuristics for OR-Library [13] and some TSP-Lib [140] problems
are reported. In order to solve larger LA problem instances, in [80], both reduced
VNS and a decomposition variant of VNS (VNDS) are applied. Sub-problems with
increasing numbers of users (that are solved by VNS) are obtained by merging sub-
sets of customers. Results on instances of 1400, 3038 and 5934 users from the TSP
library [140] show that VNDS improves notably upon VNS in less computing time,
and gives much better results than FI, in the same time that FI takes for a single
descent. Moreover, reduced VNS, which does not use a descent phase, gives results
similar to those of FI in much less computing time.
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Among the recent popular meta-heuristics for tackling optimisation problems are Es-
timation Distribution Algorithms (EDAs) particularly Population-based incremental
(PBIL) learning algorithm, which has been recorded in the literature to lead to better
results than a standard GA in many optimisation problems [59]. PBIL also allows for
problem encoding, which makes it suitable for tackling problems where prior knowl-
edge of the problem can be encoded in the algorithm to aid in finding an optimal or
near-optimal solution. Therefore, we proposed to explore the effectiveness of PBIL in
solving the LA problem. PBIL is discussed into detail in section 2.5.4. To the best
of our knowledge, this is potentially the first time PBIL has been applied to the LA
problem.

2.5.4 Population-Based Incremental learning Algorithm (PBIL)

Population-based Incremental Learning (PBIL) Algorithm is a simple Estimation of
Distribution Algorithm (EDA). EDAs are stochastic optimisation algorithms that
explore the space of candidate solutions by sampling an explicit probabilistic model
constructed from promising solutions found so far [82]. PBIL originally proposed
by Baluja [9] [11] is an optimisation algorithm that integrates the characteristics of
a GA efficiently with those of competitive learning. This combination results in a
tool that has proven through experiments to be simpler than a GA and sometimes
transcends the performance of a GA (in terms of speed and precision) on a broad
range of optimisation problems [93].

PBIL strives at extricating the population statistics instead of keeping a significant
number of samples. Population-based Incremental Learning initialises a probability
vector (PV) that acts as a model for high evaluation solutions. Through the probabil-
ity vector, the succeeding population for the next generation is created. An evident
characteristic of this model is that it demands less memory and executes faster than
a traditional GA.

PBIL employs the binary encoding scheme to create the probability vector. In this
bit string representation, the likelihood of each bit position containing a 1 is specified.
The probability that a bit position contains a 0 can be determined by subtracting
the probability in the vector from 1. Based on these probabilities, the members of a
population can be extracted. It should be mentioned here that the diversity of the
population depends on the probability values in the probability vector. A probability
vector where the value in each bit position is assigned to 0.5 introduces the most
diversity. In such a vector, the generation of 1 or 0 in each bit location is entirely
random.

The learning rate in PBIL directly affects how fast the probability vector gets altered
to resemble a classified point [9] correctly. As the population samples are created using
the probability vector, the learning rate influences which section of the search space is
searched. The learning rate has a primary impact on the trade-off amid exploration
and exploitation of the search space. Exploration describes the capability of the
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algorithm to scour the search space while exploitation describes the capability of the
algorithm to efficiently use the obtained knowledge to decrease and focus the future
search. For instance, if the learning rate is set as 0, there will be no exploitation of
knowledge obtained during the search. As the learning rate increases, exploitation
also increases, and the capacity to explore a vast portion of the search space is reduced.
In other words, the higher the learning rate, the quicker the algorithm focuses on the
search. The lower the learning rate, the more exploration takes place. To evolve the
PV in PBIL a truncation size is set which determines the number of solutions to be
discarded from the population. The truncation size is multiplied by the population
size to determine the number of solutions to be eliminated from the population,
i.e. a truncation size of 0.5 means half of the population will be discarded, and the
remaining solutions are used to evolve the PV.

In our LA problem the decision variables or solutions in PBIL are represented by a
binary string x = {x1, ..., xm} ∈ {0, 1}m where 1 represents an opened facility and 0
represent a closed facility. A Pseudocode of how PBIL is implemented to tackle our
LA problem is presented in Algorithm 1.
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Algorithm 1 Population-based Incremental learning Algorithm pseudo-code

P : population
n: number of solutions in population P
l : length of solution
pv : probability vector
nv : number of solutions used in updating the pv
LR: Learning rate
1. Initialise probability vector pv
for i := 1 to l do

pv [i ] = 0.5;
end for
2. Generate n solutions from pv
for i := 1 to n do

P [i ] = generate(pv);
end for
3. Evaluate the solutions in P
for i := 1 to n do

evaluate(P [i ]);
end for
4. Sort solutions in P according to fitness
5. Remove worst half of the solutions from population P to get nv
6. Update the probability vector pv
for i := 1 to l do

double sum = 0;
for j := 1 to nv do

sum += P [j][i];
end for
pv [i ] := (LR * (sum/n)) + pv [i] * (1.0 - LR)

end for
for j := 1 to nv do

for i := 1 to l do
pv [i ] := pv [i ]* (1.0 - LR)+P [j ][i ]*(LR);

end for
end for
7. If termination condition is not reached return to step 2
8. Return the best solution from population P

2.6 Chapter Summary

In this chapter, we focused on understanding the concept of LA problem and how they
have been formulated to capture many of the unique aspects of real-world scenarios
presented in the literature. Our study showed that LA problems formulations are
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categorised into static formulations which only takes into account present conditions
and dynamic formulations which aims to capture some aspect of future changes in
customer demand. Our review of the literature showed that within the dynamic
LA problem domain, two main categories exist. These are dynamic optimisation
LA problem and robust optimisation over time (ROOT) LA problem. In dynamic
optimisation LA problem, each time the environment changes, i.e. customer demand
changes, new facilities will have to built or relocated in order to meet the needs of
customers. This is often feasible in scenarios where the cost of building new facilities
or relocating new facilities do not attract high facility and operational costs. In ROOT
facilities are established once at the start of a defined period and are expected to be
satisfactory in servicing the demands of customers over the defined period irrespective
of how much the demand of customers change. ROOT often lends itself in situations
where the cost of building facilities or relocating existing facilities comes with high
financial and operational costs. Although many dynamic LA formulations have been
presented in the literature, almost all of the dynamic formulations fall in the domain
of dynamic optimisation problems. Only a single work in the literature presented an
LA problem formulation with the context of ROOT.

In modelling future changes of customers demands, two methods are mostly used
in the literature. These are forecasting and scenario planning. From the literature,
forecasting was often used when there was enough historical data to predict the future
with a level of certainty. Most dynamic formulations of LA problem reviewed in the
literature review used forecasting as a mode of predicting future changes. Scenario
planning, on the other hand, was used when there was a lot of uncertainty about the
future and many scenarios of future changes had to be simulated in order to find a
robust solution to the problem. A few of the research work surveyed in the literature
review employed scenario planning in predicting future changes in customer demands
and no work was found which employed scenario planning in the context of ROOT.

Another area we found lacking attention in the literature review was the aspect of
resilience within the LA problem domain. Resilience is a very important aspect in real-
world scenarios because it resolves the issue of downtime and ensures uninterrupted
supply of demand. From the research work surveyed in the literature review, no
formulation of LA problem captured the aspect of resilience in their formulation.

From the literature review, we identified three major areas that have received little
to no attention from the LA problem research community, which forms the focus of
our research. These are: (1) The aspect of resilience in LA problem formulation,
(2) Formulation of dynamic LA problem in the context of ROOT and (3) Use of
scenario planning for predicting future changes in customer movements in the context
of ROOT.

In the literature review, we also explored the many ways LA problem formulations
have been solved in the literature. We observed that exact methods, heuristic and
meta-heuristic methods have all been employed within the literature. A surveyed
of these methods showed that exact methods were often used for very small prob-
lems with instances of about three facilities and 50 customers. Heuristics and meta-
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heuristics proved to be more popular with meta-heuristics been the most widely used
within the last decade as they were recorded to offer better results on larger LA prob-
lems. Considering that our research is focused on the large real-world instance, we
are motivated to explore meta-heuristic solutions. Since our focus in this research is
on problem modelling and not to develop a new algorithm to solve our problem. We
are motivated to find a good enough algorithm presented in the literature to solve
our LA problem. The most popular among the meta-heuristics methods surveyed
in the literature review were Genetic Algorithms (GA), and hence in the succeeding
Section, we hope to explore the effectiveness of GA to solve our problem. We are
also motivated to explore the effectiveness of Population-Based incremental learning
(PBIL) algorithm as it has been recorded in the literature to perform well on many
optimisation problems. Our motivation for PBIL aside the recorded good perfor-
mance on optimisation problems is based on the fact that PBIL has few parameters
to configure with a univariate modelling cost. Also, PBIL allows for problem encoding
when prior knowledge is known about the problem. To the best of our knowledge,
this is potentially the first time PBIL will be employed to tackle an LA problem in
the literature.
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Chapter 3

GA Variants and PBIL for solving
Real-World Location-Allocation
Problems

In this Chapter, we present two novel non-linear models of LA problem motivated
by a real-world problem from the telecommunication industry. The first formulation
Location-Allocation Resilience Problem (LARP) is not restricted to the number of fa-
cilities that can be established to service customer demands. The second formulation;
Location-Allocation Resilience Problem with Restriction (LARPR) is a constrained
version of LARP having a limit on the number of facilities that can be established to
service customers demands due to budget constraint. Both formulations capture an
additional layer of resilience, where resilience is the backup connection provided to a
customer to ensure uninterrupted bandwidth connection. Our focus in this research
is primarily on problem modelling and not to develop a new algorithm to solve our
problem. Therefore we surveyed the literature to find a good enough algorithm to
solve our new LA problem formulations. From the literature review in Section 2, we
observed that among the most successful algorithms applied to solve the LA problem
are Genetic Algorithms (GAs). We also observed that the GAs employed, differed
in their component and configuration choices. The GAs differed in the way they ini-
tialise solutions; the selection method they employ to choose parents to generate new
offsprings; the crossover process they employ to recombine genes of parents to create
new solutions and the mutation process they employ to maintain diversity within the
population. In the hopes of designing an optimal GA to solve the new LA problem
formulations, we are motivated to understand the contribution each GA configuration
choice makes to the GA performance. To do this, we combine the different configura-
tion choices to create new GA variants. We give a detail description of the different
GA components in Section 3.3.

We are also motivated to explore Population-based Incremental Learning algorithm
(PBIL) [9], which has been shown in the literature to be efficient in tackling chal-
lenging combinatorial problems in recent years [9; 58; 59; 118; 153]. Our motivation
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in selecting PBIL is twofold: (1) PBIL has the potential benefits of an Estimation
distribution algorithm (EDA), i.e. a small number of parameters and employing a
probabilistic model that reveals much information about the problem being solved
but with a lightweight (uni-variate) modelling cost. (2) We observe that specifically
for the novel LA problem formulations proposed in this Chapter, useful problem
knowledge can be encoded directly into the probabilistic model. To the best of our
knowledge, this is potentially the first time PBIL has been applied to the LA problem.

Our aim, therefore, in this Chapter, is to explore the effectiveness of GA variants
and PBIL for solving the new LA problem formulations. The work presented in this
Chapter has been published in the 2018 IEEE Congress on Evolutionary Computation
(CEC) publications.

The rest of the Chapter are organised as follows: In Section 3.1 we present the problem
background. Section 3.2.1 and Section 3.2.2 presents the formulation of LARP and
LARPR respectively. Solution approach is presented in Section 3.3. Experimental
setup is presented in Section 3.4 and discussion of results are presented in Section
3.5. We conclude the Chapter in Section 3.6

3.1 Problem background

In this Section, we extend the case study presented in Section 1.1 to help formulate the
new LA problems. We consider a service company that needs to establish new facilities
to service the bandwidth demand of its customers adequately. Customers are large
corporate entities that require the highest quality of service. The quality of service
a customer receives is determined by how close the customer is to an opened facility.
A facility is assumed to be able to service all the demand of a customer adequately.
Facilities are also assumed to be adaptive to customer demands, i.e. they upgrade
their core bandwidth to meet the demands of customers they serve. Establishing a
facility incurs substantial costs covering land acquisition costs, workforce costs, energy
costs, equipment costs, maintenance costs, operational costs. The costs involved in
servicing a customer is based on the distance in kilometres a customer is from a
facility by a unit of cost per kilometre. Customers also require backup connections
linking them to different facilities other than the ones they are currently serviced by
to ensure resilience in connection.

We assume an already set of existing facilities that currently supply the demands of all
existing customers. Due to the emergence of new customer locations in places that are
further from existing facilities and the relocation of some existing customers, existing
facilities are unable to efficiently service the demands of customers without attracting
high service costs. This is because the further away a customer is from a facility less
the quality of service a customer receives and the more expensive it is to provide
a service to the customer. Also, the relocation of some existing customers renders
some existing facilities unprofitable due to the significant capital required to run the
facility to service a few existing customers connected to these facilities. If a decision is
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made to shut down unprofitable facilities, existing customers who are connected to the
facilities to be shut down have to be reassigned to new facilities. The decommissioning
of a facility and the reassignment of customers to new facilities both attract costs ei
and g respectfully. Opening a new facility i attracts a cost of ci however, the existing
facility does not attract an opening cost. Every opened facility attracts a running cost
of hi. To accommodate the demands of all the customers j allocated to a facility, the
core bandwidth of the facility needs to be adapted, resulting in a cost calculated by
the function oi(xij) which is a step cost function where xij determines if a customer
is connected to a facility or not. The core bandwidth to be used at a facility is the
smallest value from the set S = {s1, ...., sq} of all core bandwidths available that can
accommodate the sum of all facilitys customer expected bandwidth.

To ensure competitive pricing, quality of service and uninterrupted connections, we
are motivated to formulate two new LA problems. The new formulations seek to find
the optimal locations of facilities that minimise the total costs incurred by the service
company for establishing new facilities, the running costs of all established facilities,
shutting down unprofitable facilities, reassigning customers, and servicing customer
demands, i.e. both primary and backup connections.

3.2 Problem Formulation

In this Section, we present the formal description of LARP and LARPR. These for-
mulations look for the optimal location for facilities and assignment decisions of cus-
tomers, that lead to the minimisation of the total operating costs. To mathematically
formulate our LA problem we use the following notations:
We assume the decision space and variables to be discrete.

• A set A = {ai, ..., am} of potential locations.

• A set B = {bj, ..., an} of customer locations.

• A set S of available core bandwidth. The core bandwidth to be used by facility
ai is the smallest value of the set S = {s1, ...., sq} that can accommodate the
sum of all expected bandwidths of customers connected to facility ai

• ci: cost for opening a new facility

• hi: running cost of an opened facility

• ei: cost of shutting down a facility

• g: reassignment cost of moving customer j from facility i to facility k

• l : the number of reassignment of customer j. l ∈ {0, 1, 2}

• pq: cost associated core bandwidth sq

• wj: expected bandwidth of customer bj
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• dij: service cost of servicing customer bj from facility ai

• xij = 1 if customer bj is connected to facility ai and 0 otherwise.

• U : maximum number of total facilities that can be opened.

• The decision variables are represented by a binary string x = {x1, ...., xm} ∈
{0, 1}m where 1 represents an opened facility and 0 represent a closed facility.

Possible solutions to the LA problem formulation are assessed based on the facility
and service costs. Nevertheless, considering the capacity of facilities are not limited,
once locations have been determined, the highest performance is achieved when each
customer employs the facility giving the least expensive service. Therefore for the
LA problem formulations, a solution to the problem is wholly determined by choice
to place a facility or not at each of the m locations.

3.2.1 Location-Allocation Resilience Problem (LARP)

LARP aims to minimise the operational costs made up of establishing new facilities,
the running costs of all established facilities, shutting down unprofitable facilities,
reassigning customers, and servicing customer demands, i.e. both primary and backup
connections. We formulate the problem of LARP as:

f(x) =
m∑
i=1

[
(ci +hi)∗xi +

n∑
j=1

(dij ∗xij)+ei ∗ (1−xi)+
n∑

j=1

(g ∗ l∗xij)+oi(xij)

]
(3.1)

where:

oi(xij) =


p1

∑n
j wjxij < s1

p2 s1 ≤
∑n

j wjxij < s2
...
pq sq−1 ≤

∑n
j wjxij

(3.2)

Subject to:

m∑
i=1

xij = 2,∀j (3.3)

xi ∈ {0, 1} (3.4)

Equation (3.1) minimises the total operational costs. Equation (3.2) determines the
total core bandwidth of a facility whiles Equation (3.3) ensures that every customer
is connected to two facilities. Constraint (3.4) defines the decision variables.
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3.2.2 Location-Allocation Resilience Problem with Restric-
tions (LARPR)

Unlike LARP, which has no restrictions on the number of facilities that can be opened,
LARPR has a budget constraint that limits the total number of facilities that can be
established. The objective of LARPR remains the same as the objective of LARP pre-
sented in Equation (3.1). However, we introduce a new constraint shown in Equation
(3.5) that limits the number of opened facilities.

m∑
i=1

ai ≤ U | a ∈ {0, 1}, (3.5)

3.3 Proposed Methods

All algorithms employ a binary problem representation and so can be directly com-
pared in the same search space.

3.3.1 Genetic Algorithm (GA)

In this Section, we describe the different GA operators presented in the literature for
tackling LA problem formulations.

Two initialisation methods are presented.

• Random Initialisation (R): In random initialisation, the initial population is
populated with random solutions with a uniform probability. In random ini-
tialisation, every gene or element in a solution has a probability of 0.5 of been
assigned a 0 or 1 [99].

• Heuristic Initialisation (H): The Heuristic initialisation method [163] functions
on the basis that an approximate number of facilities in the optimal solution
to the LA problem can be estimated from the ratio of facility costs to service
costs. Hence the more efficient search for optimal solutions can be achieved
by configuring the initial population in the areas of the search space where
optimal solutions are likely to exist. For this purpose, a classification index t is
introduced:

t =
1
m

∑m
i=1 ci

1
mn

∑m
i=1

∑n
j=1 dij

(3.6)

The classification index t is the ratio of the average facility cost to the average
service cost. The authors [163] of this heuristic method argue that by using
index t, one can determine the number of opened facilities in an optimal solution.
Nevertheless, with too detailed a classification, the first solutions would converge
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in a single search space, consequently inducing early convergence of solutions.
To avoid the problem of early convergence, the heuristic considers two cases
when deciding the number of facilities for initial solutions: whether facility
costs are similar to service costs or facility costs are more significant than service
costs. The initial solution x = {x1, ....xm} is generated using the classification
index t.

Three selection methods are presented.

• Tournament selection: In this selection procedure [163], a parent is selected
from the population using the tournament selection parameter Ntour. Ntour

solutions are randomly selected from the population and a competition is held
amongst the solutions. The fittest of the solutions is chosen as a parent for
recombination. The process is repeated to chose the second parent.

• Roulette-Wheel selection: In this selection process [99], the selection of a so-
lution to be a parent is dependent on a probability which is equivalent to the
solutions fitness. Hence, a solution with a higher fitness will have a higher
chance of being chosen as a parent. The strategy employed by Roulette wheel
employs a selection pressure to the fitter solutions in the population, evolving
better solutions to its fitness. Consider a circular wheel which is split into k
pies, k representing all solutions in a population. Each solution is assigned a
piece of the pie on the wheel. The size of the pie is relative to the proportion of
the solutions fitness. On the circumference of the wheel, a fixed spot is selected
and the wheel is revolved. When the wheel comes to a stop, the solution whose
fitness area lies in front of the fixed spot is selected as a parent. The second
parent is selected by repeating the process.

• Fine-Grained tournament selection: The Fine-grained tournament selection
(FGTS) [57] is similar to the tournament selection; however FGTS is man-
aged by the real value parameter Ftour (which is the desired mean tournament
size) rather than the integer parameter Ntour (which is the tournament size).
Much like the tournament selection, a solution is selected if the solution is the
fittest in the tournament. Unlike the tournament selection, the tournament size
is not unique in the entire population. In FGTS, different tournaments are held
with a varying number of opponents within a single step of the selection process.
The Ftour parameter manages the selection process. Sizes of the tournaments
are Ftour− = [Ftour], Ftour+ = [Ftour]+1. The size of all z held tournaments is
either Ftour− or Ftour+ . The number of tournaments with size Ftour− is denoted
as z− and the number of tournaments with size Ftour+ is denoted as z+. The
sum of z− and z+ is z. The pseudocode of FGTS is presented in algorithm 2
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Algorithm 2 Fine-Grained Tournament Selection pseudo-code
.

Input: Population p (size of array p is z )
Input: Desired average tournament size Ftour, Ftour ∈ R;
Output: Population after selection p′ (size of array p′ is z)
begin
F−tour = trunc(Ftour);
F+
tour = trunc(Ftour)+1;
z− = trunc(n ∗ (F+

tour − Ftour));
z+ = n− z−;
1. Conduct tournament with size Ftour−

for i = 1 to z− do
p[i]′ =best fitted among Ftour− solutions randomly selected from popula-

tion p.
end for
2. Conduct tournament with size Ftour+

for i = z− + 1 to n do
p[i]′ =best fitted among Ftour+ solutions randomly selected from popula-

tion p.
end for

return p
′
;

end

Two crossover operators are presented:

• One-Point Crossover (1P): In 1P [114] a single random point pi(i = 0 to n−1)
is chosen from the length of the solution. Once a point is selected, the tails of
the two parents selected for crossover are exchanged to create new offsprings.
The 1P crossover is employed with a crossover probability of 0.9.

• Uniform crossover (U): BF [163] affords the uniformity in merging the genes
of two-parent solutions. It accomplishes this process of exchanging bits in the
parents to be added in the child solution by adopting a uniform random real
number u (between 0 to 1). The random real value determines whether the
child choose the ith genes from the first or second parent. The U crossover is
employed with a high crossover probability of 0.9.

Two mutation operators are presented.

• Bit-Flip mutation (BF): In BF [163] one bit from a solution is chosen at random
and flipped, i.e. if the randomly chosen bit is 0, the bit is then flipped to become
1. The BF mutation is employed with a low mutation probability of 0.2.

• Partial Space Search (PSS): In PSS [163] a parent solution is divided into two
subsets of genes A1 and A2 and different actions are applied to each subset. For
A1 the best potential sites are found by ranking facilities according to facility
costs and the set of customers for which costs are at a minimum at site ai. For
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A2, if the number of facilities open exceeds the reference value t described in
equation 3.6, then some of the open facilities are randomly closed to keep the
number of opened facilities in A2 within the reference value. The two subsets
of A1 ∪ A2 are then combined to generate a new solution. The PSS mutation
is employed with a low mutation probability of 0.2. Algorithm 3 presents the
pseudocode of Partial Space Search proposed for the LA problem.

Algorithm 3 Partial Space Search pseudo-code

Require: A = {a1, ...., am}, Mutation rate for Partial Space Search: σ, Classification
index t.
Generate subset A1 and A2 from A
for Subset A1 do

Rank facilities according to the set of customers for which the service costs are
minimum at site ai and the set of potential sites with facility costs greater than
ai and aj.

end for
for Subset A2 do

if number of opened facilities exceed t then
Randomly close some of the opened facilities to keep the number of opened
facilities in A2 within the reference value

end if
end for
Recombine subsets to create new solution.

3.4 Experimental Setup

To evaluate the performance of the GA variants and PBIL, we test them against two
datasets. The first dataset is the uncapacitated warehouse location problem set from
the OR-Library [13] referred to as the CAP dataset. This is a standard dataset that
has facility and customer locations and does not capture the aspect of resilience. The
choice for selecting the CAP dataset is motivated by the availability of optimum values
to the problems instances and its use in a few of the LA problem literature for com-
paring the performance of algorithms [1; 100; 101; 119; 163]. The CAP test instances
consist of four small-sized problems (cap71,cap72,cap73 and cap74) with 16 facility
locations by fifty demand points; four medium-sized problems (cap101,cap102,cap103
and cap104) having 25 facility locations and 50 demand points; seven large-size prob-
lems namely cap131, cap132, cap133 and cap134 having 50 facility locations and
50 demand points and capa, capb and capc having 100 facility locations and 1000
demand points.

The second dataset is typical of a real-world service company data and captures the
aspect of resilience. The generated instance contains 100 facilities which correspond to
the first 100 most populous cities in the United States and 10000 customer locations.
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The second dataset is tested on LARP and LARPR.

For every problem instance, we run an algorithm twenty (20) times to obtain a dis-
tribution of results. We then employ the Friedman test described in Section 3.4.1 to
conduct the performance evaluation of the algorithms. Parameters for the GA pre-
sented in Table 3.1 were set according to the best parameter values recorded in [163]
determined by experimenting with the CAP data-set from [13]. We set the learning
rate parameter and truncation size for PBIL in Table 3.1 as the default value pre-
sented in the literature [9; 10] which has been experimentally shown to offer a good
trade-off between exploitation and exploration of the problem search space. To allow
for comparison, we employ the same population size and fitness evaluations for all
algorithms.

Table 3.1: Parameters for GAs and PBIL

Parameter Value
Population size 50
Fitness evaluation 20000
GA crossover rate 0.9
GA mutation rate 0.2
PBIL learning rate 0.1
PBIL truncation size 0.5

In order to understand the contribution each GA configuration component makes
to the performance of a GA, we exhaustively combine the configuration components
to create 24 GA variants. The configuration of each GA variant is represented by
{Initialiser/Selection/Crossover/Mutation}. The configuration components are pre-
sented in Table 3.2.

Table 3.2: GA components

GA operator Representation
Initialisers

Random R
Heuristic H

Selection
Tournament T
Fined-grained Tournament FGTS
Roulette Wheel RW

Crossover
Uniform U
1-point 1P

Mutation
Bit-flip BF
Partial space Search PSS

We present the 24 GA variants in Table 3.3.
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Table 3.3: GA Configurations

Initialiser Selection Crossover Mutation
R T U BF
H T U BF
R T 1P BF
H T 1P BF
R T U PS
H T U PS
R T 1P PS
H T 1P PS
R FGTS U BF
H FGTS U BF
R FGTS 1P BF
H FGTS 1P BF
R FGTS U PS
H FGTS U PS
R FGTS 1P PS
H FGTS 1P PS
R RW U BF
H RW U BF
R RW 1P BF
H RW 1P BF
R RW U PS
H RW U PS
R RW 1P PS
H RW 1P PS

To conduct the performance evaluation of the GA variants and PBIL, we employ the
Frieman test. We describe the Friedman test is Section 3.4.1.

3.4.1 Friedman test

The Friedman test [61; 62], also known as the Friedman two-way analysis of variances
by ranks can be described as the non-parametric analogue of the parametric two-way
analysis of variance. The Friedman test is useful in answering the question: within a
collection of k samples, where the size of k is greater or equal to 2, does two of the
samples at the least depicts populations with different mean values. The Friedman
test is considered as a multiple comparison test which strives to identify significant
or notable differences among the behaviour of at least two algorithms. The null
hypothesis of Friedmans test denotes that there is no difference between the means
of populations. On the other hand, the alternative hypothesis states that there is a
difference between the means of populations. The hypothesis is thus non-directional,
i.e. the alternative hypothesis does not state the direction of the difference; it only
indicates that a difference exists. In computing the test statistic for the Friedman
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test, the first step is to transform the initial results into ranks. The following steps
describe the process for computing the ranks:

1. The first step is to collect all observed values or results for each algorithm or
problem pair.

2. To obtain the ranks, values of each problem i of algorithm j is ranked from 1,
which is the best result to k which is the worst result. The ranks are therefore
expressed as rji (1 ≤ j ≤ k).

3. To achieve the definitive rank for each algorithm j, the average of the ranks

calculated for all problems are computed. This is expressed as Rj =
1

n

∑
i r

j
i .

Hence, the Friedman test separately ranks the algorithms for each problem; this means
that the algorithm with the best performance will have the rank of 1, the second-best
performing algorithm will have the rank of 2 and so on. In the event of ties, it is still
suggested to calculate the average ranks.

Because the Friedman test is non-directional, it can only identify significant differences
across the entire multiple comparisons. As a result, the Friedman test is incapable of
ascertaining a precise comparison between the algorithms being compared.

However, when the purpose of performing multiple comparison test is to ascertain a
precise comparison between the algorithms being compared using a control method,
then a family of hypotheses can be defined relating to the control method. A control
method is the algorithm of interest to the experimental study whose performance can
be compared with other algorithms. In the case where we hope to find the precise
comparison between algorithms, a post-hoc test can be administered to obtain a p-
value. Post-hoc methods help to determine which of the algorithms are deemed to
be significantly better or worse when compared to the control method. In this work,
we employ the Holms procedure. Our choice for the Holm procedure is motivated by
the fact that it is easy to compute and considered in the literature [47] to be more
potent than other post hoc methods such as the Bonferroni-Dunn test.

3.5 Experimental Results and Analysis

In this Section, we present and analyse the results obtained from experiments by the
GA variants and PBIL on data instances described in Section 3.4

3.5.1 Results of GA configurations and PBIL on CAP prob-
lem instances

We first examine the performance of the algorithms on the CAP dataset. In Table 3.4,
the column labelled Algorithm shows the GAs configurations and PBIL. The column
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labelled Mean Rank shows the average ranking each algorithm obtained over the 15
CAP problem instances. Here the lower the mean rank, the better the performance
of the algorithm. The best mean ranked algorithm is highlighted in bold.

Table 3.4: Mean Rank of GA Variants and PBIL on CAP dataset

Initialiser Selection Crossover Mutation Mean Rank
R T U BF 6.5
H T U BF 5.17
R T 1P BF 15.57
H T 1P BF 12.33
R T U PS 8.73
H T U PS 6.37
R T 1P PS 22.73
H T 1P PS 20.47
R FGTS U BF 7.2
H FGTS U BF 6.33
R FGTS 1P BF 11.63
H FGTS 1P BF 10.07
R FGTS U PS 8.83
H FGTS U PS 7.23
R FGTS 1P PS 21.8
H FGTS 1P PS 19.33
R RW U BF 8.93
H RW U BF 7.47
R RW 1P BF 22.13
H RW 1P BF 18.93
R RW U PS 16
H RW U PS 12.93
R RW 1P PS 23.13
H RW 1P PS 20.73

PBIL 4.43

We apply the Friedman test defined in Section 3.4.1 to test for statistical difference
between results obtained by all algorithms on the CAP dataset. When a statistical
difference is detected, we employ the Holms procedure defined in Section 3.4.1 with
a significance level of α= 0.05 to make a proper comparison between the algorithms.
The statistical comparison of results is presented in Table 3.5. In the Holms procedure,
if the p-value obtained by an algorithm is less or equal to (α/i) where i is the position
of the algorithm in the Table, the algorithm is seen to be statistically different from
the best mean-ranked algorithm highlighted in Table 3.4 which is PBIL. Algorithms
in Table 3.5 are arranged in descending order with the statistically worse algorithm
highlighted in bold.
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Table 3.5: Holm test on Friedman results to compute the differences between results
obtained by GA configurations and PBIL on CAP instances. α = 0.05

i Initialiser Selection Crossover Mutation p-value α/i
24 R RW 1P PS 3.44E-12 2.08E-03
23 R T 1P PS 9.79E-12 2.17E-03
22 R RW 1P BF 4.51E-11 2.27E-03
21 R FGTS 1P PS 1.03E-10 2.38E-03
20 H RW 1P PS 1.32E-09 2.50E-03
19 H T 1P PS 2.43E-09 2.63E-03
18 H FGTS 1P PS 2.95E-08 2.78E-03
17 H RW 1P BF 6.83E-08 2.94E-03
16 R RW U PS 1.68E-05 3.13E-03
15 R T 1P BF 3.43E-05 3.33E-03
14 H RW U PS 1.56E-03 3.57E-03
13 H T 1P BF 3.29E-03 3.85E-03
12 R FGTS 1P BF 7.38E-03 4.17E-03
11 H FGTS 1P BF 3.61E-02 4.55E-03
10 R RW U BF 9.40E-02 5.00E-03
9 R FGTS U PS 1.02E-01 5.56E-03
8 R T U PS 1.10E-01 6.25E-03
7 H RW U BF 2.59E-01 7.14E-03
6 H FGTS U PS 2.97E-01 8.33E-03
5 R FGTS U BF 3.03E-01 1.00E-02
4 R T U BF 4.42E-01 1.25E-02
3 H T U PS 4.72E-01 1.67E-02
2 H FGTS U BF 4.80E-01 2.50E-02
1 H T U BF 7.85E-01 5.00E-02

Results in Table 3.5 shows the GA configurations from thirteen to twenty-four to
be statistically different from the control method and algorithms 1 to 12. The best
mean ranked algorithm in Table 3.4, i.e. PBIL, is used as the control method. Algo-
rithms one to twelve are deemed to be mutually statistically indistinguishable from
the control method.

To understand the contribution each component makes to the performance of a GA,
we examine the GA configurations. To do this, consideration is given to the first
twelve algorithms, whose results are deemed to be mutually statistically indistin-
guishable from the PBIL. In the Table, both the heuristic and random method of
initialisation appears in six GA configuration out of the twelve GA configurations of
interest. The heuristic method generates initial solutions in the area of the problem
search space where possible good solutions are assumed to exist. It does this by using
an index calculated from the ratio of the average of facility opening costs and the
average of service costs. This helps to provide good initial solutions for breeding new
solutions. However, as seen from later experiments, the Heuristic approach seems to
work best on problems with fewer or no constraints, i.e. LA problem formulations
that only gives considerations to only facility and service costs. Random initialisa-
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tion creates much diversity in the population at the start of the search, which allows
a greater area of the search space to be explored. Indeed it has been observed ex-
perimentally in the literature that random solutions often are the ones to drive the
population to optimality [172].

Fine-Grained tournament selection (FGTS) appears in six of the GA configurations
out of the twelve GA configurations of interest when compared to Tournament (T)
and Roulette wheel (RW) selection with four and two appearances respectively. The
ability of FGTS to conduct several tournaments in one selection process gives it
a better chance of finding fitter parents for recombination when compared to the
tournament selection which allows for a single tournament in one selection process.
In FGTS the population is divided into different groups, and a varying number of
parents are selected from each group to compete in a tournament where the fittest
parents are selected for each tournament. This process allows for a good exploration
of the population in finding good parents for recombination. Whiles in tournament
(T) selection a single tournament is held within a single step of the selection process
which can sometimes lead to missing out on the more fitter solutions in the population.
The performance of the Roulette wheel method of selection can be attributed to its
naive way of selecting solutions. For example, if the best solution in the population
has a 90% fitness of the entire roulette wheel, then the other solutions have very few
chances to be selected, and this can often cause early convergence of the search.

Uniform (U) crossover appears in ten GA configurations out of the twelve GA configu-
rations of interest when compared to One-Point (1-P) crossover with two appearances.
The success of Uniform (U) crossover over 1-P crossover may be attributed to the
ability of uniform crossover to keep a right balance between diversity and convergence.
In Uniform crossover, new solutions will be different from their parents if their parents
are not similar which helps with diversity in the population and similar to parents
if parents are similar which helps to preserve good genes. Since tails of two parents
are swapped after a cross-point to get a new offspring in the 1-P crossover, there is
a high percentage of preserving bad genes in an offspring from the parent which can
affect the performance of the GA configuration in finding optimal solutions.

Finally, BF mutation appears in eight out of the twelve algorithms of interest when
compared to PSS with four appearances. The success of Bit-Flip mutation can be
attributed to its ability to introduce diversity into the population without causing
too much disruption. BF does this by altering a single gene in the solution which
ensures diversification without entirely changing the solution. The process of BF
mutation, therefore, helps to prevent the search from converging too quickly but
also ensures that the search process is not heavily disrupted to prevent convergence
after a certain period of exploration of the search space. PSS method works by
dividing the solution into two subsets, then employs a local search process using a
classification index described in Section 3.3.1 to find the best facility sites or genes in
the first subset. However, PSS randomly rearranges the genes in the second subset.
The second process introduces a higher degree of diversification which causes a later
convergence of the algorithm, which in part affects the performance of the algorithm
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to find optimal solutions within the designated run time of the algorithm.

PBIL showed good and competitive performance by achieving the best mean rank.
The performance of PBIL can be attributed to its ability to quickly focus the search
in the region of the search space where good solutions are likely to exist. The compet-
itive learning in PBIL helps it to focus its search by evolving the probability vector
with good solutions and then sampling equally or similarly good solutions from the
probability vector.

3.5.2 Results of GA configurations and PBIL on LARP LARPR
problem instance

In LARP there are no restrictions to the number of facilities that can be opened to
service demands whiles LARPR restricts the number of facilities that can be opened
due to budget constraints. Hence, solutions found in LARPR are penalised by adding
a high cost when the number of opened facilities exceeds the allowed number of
facilities to be opened. The primary choice of PBIL is highlighted here as we can
directly encode problem knowledge into the probabilistic model. Encoding problem
knowledge here means, we can feed the model at the start of the search with a
probable number of facilities that we are allowed to open out of the maximum number
of potential locations.

In encoding the problem knowledge in PBIL, we assume three scenarios. In the first
scenario, we assume that each facility location has an even chance to be selected
for establishing a facility, and hence we initialise the probability vector with the
default value of 0.5%. In the second scenario, we assume that the total number of
facilities locations that can be opened out of the 100 potential locations must not
exceed 34 facilities hence we initialise the probability vector with the value of 0.34.
The restriction on the total number of facilities that can be opened is due to budget
constraint, and the total number of 34 is set based on a real-world problem with
industry experts. The third scenario extends the second scenario, by assuming an
initial set of 29 opened facilities which attracts zero opening costs. As in the second
scenario, the total number of facilities that can be opened out of the 100 locations is
34. Due to the high cost involved in establishing a facility, we would prefer to have
the already opened facilities stay open if favourable and possibly open five additional
new facilities. We, therefore, initialise the first 29 elements of the PBILs probability
vector with the value of 0.85 and remaining elements with 0.15. Here we hope to
give a higher probability to the first 29 facility locations of staying opened since they
attract no opening cost and a 15% chance to the remaining facilities. The value of
29 existing facilities was set according to a real-world problem in collaboration with
industry experts. To allow for a good comparison, we initialise all GA configurations
with the same probabilities of generating initial solutions.

To make for easy discussion, we grouped succeeding Tables according to the three
scenarios described above. In Tables 3.6, 3.7 and 3.8 we present the mean ranks
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achieved by each algorithm on LARP and LARPR. In all three Tables, Algorithm
represents the GA configurations and PBIL, Mean represent the mean value achieved
overall twenty runs for each algorithm on LARP and LARPR whiles Mean Rank shows
the mean ranks achieved by each algorithm on LARP and LARPR. In all Tables, the
best algorithm, i.e. the algorithm that achieved the least mean rank, is highlighted
in bold.

Table 3.6 shows the mean values obtained by all algorithms on LARP and LARPR
by initialising the probability vector with the default value of 0.5.

Table 3.6: Mean rank results of GA configurations and PBIL on LARP and LARPR
with an initialisation probability of 0.5

Algorithms LARP LARPR
Initialiser Selection Crossover Mutation Mean Rank Mean Rank
R T U BF 9.91E+07 2 1.61E+08 2
H T U BF 9.95E+07 6 1.61E+08 3
R T 1P BF 1.14E+08 10 1.90E+08 15
H T 1P BF 1.77E+08 20 1.85E+08 14
R T U PS 9.96E+07 7 1.82E+08 12
H T U PS 1.32E+08 17 1.79E+08 10
R T 1P PS 1.33E+08 18 2.89E+08 22
H T 1P PS 3.96E+08 24 4.17E+08 25
R FGTS U BF 9.91E+07 3 1.62E+08 4
H FGTS U BF 9.93E+07 4 1.63E+08 5
R FGTS 1P BF 1.06E+08 9 1.81E+08 11
H FGTS 1P BF 1.34E+08 19 1.74E+08 8
R FGTS U PS 9.94E+07 5 1.83E+08 13
H FGTS U PS 1.30E+08 14 1.77E+08 9
R FGTS 1P PS 1.30E+08 16 2.17E+08 17
H FGTS 1P PS 3.90E+08 23 3.99E+08 23
R RW U BF 1.03E+08 8 1.68E+08 7
H RW U BF 1.16E+08 11 1.67E+08 6
R RW 1P BF 1.30E+08 15 2.06E+08 16
H RW 1P BF 2.92E+08 22 2.86E+08 21
R RW U PS 1.23E+08 12 2.22E+08 18
H RW U PS 2.52E+08 21 2.59E+08 20
R RW 1P PS 1.24E+08 13 2.42E+08 19
H RW 1P PS 4.08E+08 25 4.12E+08 24

PBIL 9.91E+07 1 1.61E+08 1

In Table 3.6, PBIL is seen to have achieved the best mean rank for both LARP and
LARPR when initial solutions are initialised with a default probability of 0.5 for
both GA configurations and PBIL. The performance of PBIL shows that even with-
out encoding problem knowledge in the model, the learning process of PBIL saves the
knowledge obtained about good solutions in the early stages of the search and reuse
this knowledge to generate similar likely good solutions within each generation of the
search process. This helps PBIL to quickly focus the search in the regions of the search
space where good solutions are likely to exist. GAs with configurations R/T/U/BF
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and R/FGTS/U/BF rank second and third respectively with almost similar values to
PBIL on LARP. However, even-though GA configuration R/T/U/BF maintains the
second rank on LARPR, configuration R/FGTS/U/BF is taken over by H/T/U/BF .
A look at the three GA configurations shows that they all employ uniform crossover
and Bit-Flip mutation. However, configurations R/T/U/BF and H/T/U/BF em-
ploy the tournament selection method whiles R/FGTS/U/BF used FGTS method.
Configurations R/T/U/BF and R/FGTS/U/BF both employ random initialisation
whiles H/T/U/BF employs the heuristic method of initialisation. Although the
choice of initialisation and selection methods impacts the performance of a GA to
a degree as seen in the three GA configurations, considering that exploration and
exploitation of the search space are essential concepts that meaningfully impact on
the performance of a GA. We can safely assume that the choice of a crossover and
mutation operator in a GA which are the main operators that define the degree of ex-
ploration and exploitation in a GA play a significant role in the performance of a GA
configuration. In this situation, both the Uniform crossover and mutation operator
combine well together to enhance the performance of the GA configurations.

Table 3.7 shows the mean values obtained by all algorithms on LARP and LARPR
by initialising the probability vector with the default value of 0.34.

Table 3.7: Mean rank results of GA configurations and PBIL on LARP and LARPR
with an initialisation probability of 0.34

Algorithms LARP LARPR
Initialiser Selection Crossover Mutation Mean Rank Mean Rank
R T U BF 9.91E+07 2 1.61E+08 2
H T U BF 9.95E+07 6 1.61E+08 4
R T 1P BF 1.17E+08 11 1.78E+08 13
H T 1P BF 1.77E+08 20 1.85E+08 16
R T U PS 9.95E+07 7 1.63E+08 7
H T U PS 1.32E+08 17 1.79E+08 14
R T 1P PS 1.29E+08 15 1.98E+08 19
H T 1P PS 3.96E+08 24 4.17E+08 25
R FGTS U BF 9.91E+07 3 1.61E+08 3
H FGTS U BF 9.93E+07 4 1.63E+08 6
R FGTS 1P BF 1.07E+08 9 1.72E+08 10
H FGTS 1P BF 1.34E+08 18 1.74E+08 11
R FGTS U PS 9.94E+07 5 1.62E+08 5
H FGTS U PS 1.30E+08 16 1.77E+08 12
R FGTS 1P PS 1.27E+08 13 1.92E+08 18
H FGTS 1P PS 3.90E+08 23 3.99E+08 23
R RW U BF 1.03E+08 8 1.64E+08 8
H RW U BF 1.16E+08 10 1.67E+08 9
R RW 1P BF 1.28E+08 14 1.83E+08 15
H RW 1P BF 2.92E+08 22 2.86E+08 22
R RW U PS 1.25E+08 12 1.88E+08 17
H RW U PS 2.52E+08 21 2.59E+08 21
R RW 1P PS 1.62E+08 19 1.98E+08 20
H RW 1P PS 4.08E+08 25 4.12E+08 24

PBIL 9.90E+07 1 1.60E+08 1
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In Table 3.7 PBIL is again seen to have achieved the best mean rank on both LARP
and LARPR when the initial population is generated with a probability value of 0.34.
Once the initial population is generated, PBIL updates the probability vector with the
best half of the population and then samples new solutions from the probability vector.
In this way, PBIL can maintain the encoded problem knowledge to drive the search to
find the optimum or near optimum solution to the LARP and LARPR. Configurations
R/T/U/BF and R/FGTS/U/BF achieve second and third ranks respectively on
both LARP and LARPR with a noticeable difference in results when compared to
PBIL. The performance of the GA configuration can be explained by the fact that
even though the initial population of GAs are initialised with the same probability
as PBIL. The encoded knowledge is lost during the process of recombination and
mutation. The loss of knowledge is due to the random nature of the crossover and
mutation operators. In the uniform crossover operator, because genes from the two
parents are randomly chosen to form a new offspring, the new population generated
is likely to lose some of the knowledge provided at the start of the search. The
Bit-Flip mutation operator also randomly flip genes in a solution which is likely to
have the same effect of losing the encoded knowledge in the search process. However,
the consistent performance of GA configurations R/T/U/BF and R/FGTS/U/BF
shows that the uniform crossover combines well with the bit-flip mutation to enhance
the performance of the GAs. In both GA configuration, the Random initialiser is
employed. Because solutions generated through the random initialiser are likely to
be spread across the search space, it provides much diversity at the start of the
search, which can lead to finding reasonable good solutions for recombination. The
tournament and FGTS methods are employed by configurations R/T/U/BF and
R/FGTS/U/BF , respectively. The two selection methods appear to combine well
with Random initialiser, Uniform crossover and Bit-flip mutation.

Table 3.8 shows the mean values obtained by all algorithms on LARP and LARPR
by initialising the probability vector with the default value of 0.85/0.15.
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Table 3.8: Mean rank results of GA configurations and PBIL on LARP and LARPR
with an initialisation probability of 0.85/0.15

Algorithms LARP LARPR
Initialiser Selection Crossover Mutation Mean Rank Mean Rank
R T U BF 9.91E+07 2.5 1.61E+08 3
H T U BF 9.95E+07 6 1.61E+08 3
R T 1P BF 1.16E+08 10.5 1.78E+08 13
H T 1P BF 1.77E+08 20 1.85E+08 16
R T U PS 9.96E+07 7 1.63E+08 6.5
H T U PS 1.32E+08 17 1.79E+08 14
R T 1P PS 1.31E+08 16 1.98E+08 19.5
H T 1P PS 3.96E+08 24 4.17E+08 25
R FGTS U BF 9.91E+07 2.5 1.61E+08 3
H FGTS U BF 9.93E+07 4 1.63E+08 6.5
R FGTS 1P BF 1.07E+08 9 1.72E+08 10
H FGTS 1P BF 1.34E+08 18 1.74E+08 11
R FGTS U PS 9.94E+07 5 1.62E+08 5
H FGTS U PS 1.30E+08 15 1.77E+08 12
R FGTS 1P PS 1.29E+08 13.5 1.92E+08 18
H FGTS 1P PS 3.90E+08 23.5 3.99E+08 23
R RW U BF 1.03E+08 8 1.64E+08 8
H RW U BF 1.16E+08 10.5 1.67E+08 9
R RW 1P BF 1.29E+08 13.5 1.83E+08 15
H RW 1P BF 2.92E+08 22 2.86E+08 22
R RW U PS 1.24E+08 12 1.88E+08 17
H RW U PS 2.52E+08 21 2.59E+08 21
R RW 1P PS 1.43E+08 19 1.98E+08 19.5
H RW 1P PS 4.08E+08 25 4.12E+08 24

PBIL 9.90E+07 1 1.60E+08 1

From Table 3.8, a similar trend is observed as in previous Tables when algorithms are
initialised with a value of 0.85/0.15. PBIL again is seen to achieve the best mean ranks
on both LARP and LARPR. GA configurations R/T/U/BF and R/FGTS/U/BF
achieves the same rank on LARP whilesR/T/U/BF andH/T/U/BF andR/FGTS/U/BF
all achieve the same rank on LARPR. The emergence of the three GA configurations
employing the same crossover operator (Uniform) and mutation parameter (Bit-flip)
shows that the combination of these two operators plays a defining role in the over-
all performance of a GA on the problems presented. Random initialisation appears
in two of the GA configuration making it more preferred to the heuristic method.
The tournament selection method appears in two out of the three GA configura-
tions however FGTS has been consistent in all scenarios of the problem even on the
CAP instance where it appeared in six out of the twelve algorithms of interest. The
performance of both selection methods appears to both contribute positively to the
performance of the GA when combined with random initialiser, Uniform crossover and
bit-flip mutation. Based on the performance of the GA configurations, R/T/U/BF
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and R/FGTS/U/BF are considered as the best performing GA configurations.

3.6 Summary of Chapter

In this Chapter, we set out to find a suitable algorithm for solving the two novel
non-linear formulations of LA problem introduced in Sections 3.2.1 and 3.2.2. The
first model Location-Allocation Resilience Problem (LARP) has no restrictions on
the number of facilities that can be established to service customer demands. The
second model; Location-Allocation Resilience Problem with Restriction (LARPR) is
a constrained version of LARP.

Literature within the field of LA problem showed GAs to be among the most suc-
cessful algorithms presented for solving the LA problems in recent years. A search
through literature found that the GAs employed different components and configura-
tion choices. To develop an optimal GA configuration for solving the new models, we
needed to understand the contribution each GA component made to the performance
of the GA.

Combining the different GA components gave us 24 different configurations. The
components included:

• Random and Heuristic Initialisation

• Tournament, Fine-Grained Tournament and Roulette Wheel selection

• Uniform and 1-Point crossover

• Bit-Flip mutation and Partial space search.

We applied the Population-Based Learning (PBIL) Algorithm to solve the formulated
LA problems. Our choice for PBIL was motivated by the fact that PBIL has the
potential benefits of an EDA but with a lightweight (univariate) modelling cost; and
we observed that specifically for the novel LA problem formulations proposed, useful
problem knowledge can be encoded directly into the probabilistic model.

Addition of PBIL to the 24 GA variants gave us a total of 25 algorithms. To test the
performances of all algorithms, we generated a new benchmark problem instance mo-
tivated by a real-world problem from the telecommunication industry. The problem
contained 100 facilities by 10000 customers. We also used fifteen CAP test instances
[13] presented in the literature. To ensure a Uniform platform for result compari-
son, we initialised all algorithms with the same probability on the new benchmark
problems.

Results from experiments on CAP dataset showed that among the GA configurations,
12 were considered to be mutually statistically indistinguishable when compared to
the PBIL, which was the best algorithm among the 25 algorithms.
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Experiments on the LARP and LARPR saw PBIL outperforming all GA configu-
ration. The performance of PBIL can be attributed to its ability to use and retain
encoded problem knowledge to drive the search for finding an optimal or near-optimal
solution. In analysing the results of the top three best mean rank GA configurations,
we found that the combination of the GA components: Random initialisation, tour-
nament and FGTS, Uniform crossover and bit-flip mutation gave the best results on
all problems. Thus our optimal GAs found were GAs with configurations R/T/U/BF
and R/FGTS/U/BF .

Although the GA configurations such as R/T/U/BF and R/FGTS/U/BF showed
competitive performance on problem instances, PBIL emerged the best algorithm
of the 25 algorithms, especially when consideration is made to the performance of
the algorithms on the LARP and LARPR. PBIL was seen to perform best on all
instances of LARP and LARPR when compared to the GA variants. In this work,
we are primarily interested in a good enough algorithm for solving our LA problem.
Hence the successful performance of PBIL over the GA variants, therefore, makes
PBIL our algorithm of choice for tackling the formulated LA problems.
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Chapter 4

Dynamic-Customer
Location-Allocation Problem

4.1 Introduction

The location of facilities in both private and public sector systems critically affects
the ability of these systems to deliver the essential services [45]. Because facility loca-
tion decisions are long-term strategic decisions, they impact on shorter-term decisions
such as resource allocation. The strategic nature of location problems requires that
any reasonable formulation consider some aspects of future uncertainty. Changes in
population, market size, environmental factors and the rapid advancement in technol-
ogy often drives the need of consumers, which causes customers to relocate between
cities. In the absence of substantial costs of opening a facility, the optimal option of
locating facilities will be to site them optimally in each period to service changing dis-
tribution of customers. However, due to the significant capital investments required
for locating or relocating a facility, facilities are expected to remain operable for an
extended period [45]. The significant capital involved in locating facilities coupled
with the changing distribution of customers makes it imperative that location choices
executed today consider expected future circumstances. Considering changing distri-
bution of customers when locating facilities will help to ensure that facilities are not
only ideal for current conditions but also stay useful over the defined horizon [45].
The nature of this problem gives rise to the study of a dynamic LA problem formula-
tion motivated by a real-world problem from the telecommunication industry, where
customers frequently move between cities over time. We call this new formulation
Dynamic-Customer Location-Allocation (DC-LA) Problem. DC-LA problem is for-
mulated in the context of Robust Optimisation Over Time (ROOT) where facilities
are established only once at the beginning of the defined period and are expected
to be satisfactory in adequately servicing the changes in customers demands over
the defined period. Although motivated by a real-world problem, the problem of
DC-LA problem can be generalised to extend to broader location problems. DC-LA
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problem takes into account the actualised servicing costs and movement of customers
over time. The new dynamic LA problem formulation generates random customer
movements driven by the attractivity of cities.

This Chapter is organised as follows; we defined the problem of DC-LA problem in
Section 4.2. Experiments are conducted in Section 4.3. We conclude the Chapter in
Section 4.5. Work presented in this Chapter was published in the International Con-
ference on Innovative Techniques and Applications of Artificial Intelligence, Springer,
Cham, 2018.

4.2 Dynamic-Customer Location-Allocation (DC-

LA) Problem

In defining Dynamic-Customer Location-Allocation (DC-LA ) Problem, we first need
to define an initial set of notations. Let a set of m cities A = a1, a2, ..., am be a set of
m potential locations, and B = b1, b2, ......bn be a set of n customers. Each ai ∈ [0, 1]2

and bj ∈ [0, 1]2 define the coordinates in a 2-dimensional plane. Here, the cost dij of
connecting customer bj to location ai is defined by the euclidean distance between bj
to location ai. Let T = t1, t2, ..., tmax denote the defined time horizon where tmax is
the maximum length of time. DC-LA problem considers the potential movement of
customers over a given time horizon tmax. In DC-LA problem, the pattern of customer
location changes is assumed to be stochastically driven by the attractivity of cities,
i.e. how attractive a city is to a customer. In DC-LA problem a facility is assumed to
be located within the centre of a city. Hence for the remainder of the work, a city and
facility will be used interchangeably to refer to the location of a facility. Locations
employed in DC-LA problem are assumed to be discrete, and the optimal number
of facilities are found by solving the problem. The problem formulation assumes
that facilities offer similar services to customers and facilities are unconstrained in
the number of customers they can adequately service. Given the substantial costs
incurred in locating facilities, and recognising that the first-period decision is the one
that must be implemented [45], we believe that the goal of DC-LA problem planning
should be to determine an optimal or near-optimal first-period choice of facilities for
the defined horizon. For this reason, we model the problem as Robust optimisation
over time (ROOT) problem defined in Section 2.3.1. Thus DC-LA problem concerns
finding the optimal or near-optimal locations for establishing facilities in the first-
period to service changing demands over a defined horizon to reduce the overall total
costs.

In DC-LA problem, the movement of customers influences the connection cost of
customers to facilities. DC-LA problem considers an initial set A

′
= {a′1, a

′
2, ..., a

′
m}

of attraction rates for cities. The attraction rates define the probabilities at which
customers will be placed in each city. In Section 4.2.1, we define the simulation model
that simulates the movement of customers over a defined horizon tmax.
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4.2.1 Simulation model

A simulation is based on the assumption that customers will move over time i.e.
disappear from a location and reappear in another location. We also assume that
the attraction rate of each city in the future is unknown. To develop our simulation
model, we first define and understand the choice of parameters and environmental
constants and how they influence the simulation model.

Movement Rate (mr) is an important parameter that is varied in the simulation
process to regulates the mobility of customers. mr ranges from 0 to 1 and is used for
determining the movement dates for a customer. Movement dates here refers to the
times at which a customer changes locations between cities. The movement dates of
each customer are sampled from a normal distribution centred in mr · tmax. Hence,
each customer will move on average, mr · tmax times during the simulation. A low
mr value means that customers make frequent movements between cities over time
whiles a higher mr means customers will make little or no movements between cities
over time. E.g. if mr=0.25 and tmax = 30years, then per our model we will expect
a customer to move on average every 7.5 years. However if mr= 0.75, then for the
same value of tmax we will expect a customer to move on average every 22.5 years.
Hence, for this work a low mr relates to high customer movements over tmax whiles a
higher mr relates to lower customer movements over tmax. The values of mr were set
in consultation with an expert from the telecommunication industry to realistically
capture the varying rate of at which customers move between cities over time within
the telecommunications industry.

Attraction Rates is an important parameter that is varied within the simulation pro-
cess to define the probability of a city to attract customers. A set A

′
= {a′1, a

′
2, ..., a

′
m}

represent a set of attraction rates where
∑m

i=1 a
′
i = 1. The attractivity of cities drives

the movement of customers. We assume the attractiveness of a city will vary over
time; hence, they are randomly generated within a simulation. The process to gener-
ate attraction rates is shown in Algorithm 4.

Algorithm 4 Cities attraction rates generation

Require: Number of facilities : m
Set of attraction rates: A = ∅
a = random.nextDouble()
for i=1 to m do
a = (a+ random.nextDouble())
A = A ∪ a

end for
A/max(A)

The number of facilities (m) is an important environmental constant which will change
from problem to problem; however, in this work, we are not going to focus on the
changes in the problem search space. Rather our focus is on a real-world example.
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The number of cities represents the possible number of locations where a facility
can be established. Facility locations can range from ten locations to hundreds of
locations. Each facility location li ∈ [0, 1]2 define the coordinates in a 2-dimensional
plane. Each facility location also has a cost ci of opening that facility. To get a good
spread of the number of facility locations, we select a varying number of locations in
consultation with industry experts within the telecommunication industry.

Much like the number of cities, the number of customer locations (n) is an important
environmental constant which will change from problem to problem. The number of
customers locations indicates the total number of customers whose demands need to
be satisfied with operating facilities. The number of customers can range from a few
hundred to thousands of customers. Customers are assumed to exits in cities. Each
customer bi ∈ [0, 1]2 define the coordinates in a 2-dimensional plane. To get a good
spread of the number of customers, we select a varying number of customer locations
in consultation with industry experts within the telecommunication industry.

We assumed a finite time in which we wish to simulate the movement of customers.
Time is defined by a set T = t1, t2, ..., tmax, where tmax is the maximum length of
time. The value of tmax was determined in consultation with industry experts from
the telecommunication industry. The choice of tmax is informed by the extended
period a facility is expected to be efficiently operable in servicing customers demands
within the telecommunication industry.

Discount Rate (dr) is an important environmental constant which allows us to com-
pare costs incurred at different times over tmax. The choice of the discount rate dr
used in this work is motivated by historical data of interest rates from the Bank of
England, which has settled at the low rate of 0.05 since March 2009 [96]. However,
the choice of dr is only an estimate.

The Standard deviation for calculating Movement dates (sd for mr): sd here is the
measure used to quantify the amount of dispersion in the movement dates generated
for a customer. The value of sd here is motivated by the fact that we want the dates
generated for a customer to be closer to the expected date a customer is expected to
change locations.

The standard deviation for generating customers locations (sd for n): sd for n is
employed to generate new locations for customers within a city. When a customer
has to change locations, the new coordinates of the customer are obtained by sampling
its location from a normal distribution centred in the coordinates of the city. Hence,
the coordinates bj of customer j placed in city i is given by:

bj = {N (xai , 0.1),N (yai , 0.1)} (4.1)

sd for n here indicates the range or radius a customer is to be located from the
centre of a city. Choosing a high value for sd for n will cause customers to cover the
whole space of interest; however, this is not realistic in the real world. In the real-
world customers’ locations in cities are clustered together and especially in places like
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the United States where we have got cities in small areas with relatively large gaps
between cities. Therefore choosing a smaller sd for n, gives a more realistic picture of
the real-world scenario. In Figure 4.1, we show the clustering of customers based on
some values of sd for n. We generate 20 cities and for each city generate 100 customer
locations by varying the values of sd for n. Figure 4.1 shows the effect the values of
sd for n has on the distribution of customers. For our model to be representative of
the realistic distribution of customers in a city, we are motivated to choose a lower
value of sd for n. There is, however, an area to explore where the grouping of cities
and customers of problems might change, which could be a potential area for further
work.

Figure 4.1: Distributions of customers in cities according to values of sd for n

(a) std 0.05 (b) std 0.1

(c) std 0.5

Each simulation starts by generating new attraction rates for each city. For each
customer, we then generate the movement times at which the customer is going to
move over tmax years using mr. The movement times of each customer are sampled
from a normal distribution centred in mr · tmax. Hence, each customer will move on
average, mr · tmax times during the simulation. The process to generate movement
times is shown in Algorithm 5.
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Algorithm 5 Customer movement dates generation

Require: Movement rate : mr
Set of movement dates: M = ∅
t = 0
while t < tmax do
t = t+N (mr · tmax, 0.1 · tmax)
M = M ∪ t

end while

Each simulation consists of generating customer movements and calculating their
service costs over the tmax. For each simulation, we first generate a set of attraction
rates for each city. Then for each customer bj, we generate several possible dates
along the defined horizon tmax, which represent the point at which a customer will
change cities. We generate the possible movements of each customer bj using the
approach described in Algorithm 5. It is assumed that at the start of the simulation,
each customer bj is already located and serviced by a city. If a customer has to move
at a point in time along the defined horizon tmax, a new city is chosen for the customer
based on the attraction rate of a city. The new city for a customer bj is determined
by generating a random number between 0 and 1 each time customer bj has to move.
The customer is then assigned to the city within which range of attraction rate the
random value generated happens to fall. Once a new city has been chosen for a
customer bj, new coordinates are obtained for the customer by sampling the location
from a normal distribution centred in the coordinates of the city. The new cost for
customer bj is computed, which is the Euclidean distance between the new customer’s
location and facility locations. The service cost of each customer bj is added to the
total cost for each period of tmax. The total costs are then actualised at the end of
the simulation at a discount rate of dr. The steps of a simulation are outlined in
Algorithm 6.
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Algorithm 6 Simulation Model

Require: A, B, tmax

for Each Simulation do
Generate attraction rate a′ for each city ai ∈ A
for Each customer bj ∈ B do

Set of movement dates: M = ∅
t = 0
while t < tmax do
t = t+N (mr · tmax, 0.1 · tmax)
M = M ∪ t

end while
for ty in 1 to tmax do

if ty ∈M then
Choose a new city for the customer based on A′

Generate new location for customer in the new city
Update cost for servicing customer based on open facilities

end if
Add cost of servicing customer bj to total cost for year ty

end for
end for
Actualise costs obtained for tmax using discount rate dr

end for

In Section 4.2.2, we present two ways of measuring how good a solution is to DC-LA
problem.

4.2.2 Measure of the goodness of a solution to DC-LA prob-
lem

To assess the necessity of simulating future movements of customers, we introduce
two evaluation methods for measuring how good a solution is to DC-LA problem. The
first evaluation function forms the baseline evaluation for comparison and consists in
using a deterministic function which assumes that customers will not move over time.
We refer to this function as static evaluation. The decision variables are represented
by a binary string x = {x1, x2, ..., xm} ∈ {0, 1}m where 1 represents an opened facility
and 0 represents a closed facility. ci is the cost of opening a facility. We formulate
the static evaluation as:

fstatic(x) =
m∑
i=1

cixi + C0(x) +
tmax∑
t=1

C0(x)(1 + dr)−t (4.2)

Where C0 is the connection cost of each customer to an opened facility.
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(4.3)C0(x) =
m∑
i=1

n∑
j=1

dijxij

where xij = 1 if customer j is connected to facility i and xij = 0 if not.

Subject to:
(4.4)

m∑
i =1

n∑
j =1

xij = 1

Here the cost function C0, which is the connection costs of customers is assumed to be
deterministic. Service costs of customers for times {t1, t2, ..., tmax} are actualised and
discounted using the discount rate dr. The static evaluation function is motivated
by the current trend in the telecommunication industry in locating facilities which
are mostly informed by current parameters such as the concentration of customers
without consideration to how customers will evolve. The pseudo-code of the static
evaluation method is presented in algorithm 7.

Algorithm 7 Static evaluation method

Require: x, B, tmax

for Each Solution x do
for Each Customer b do

for ty in 0 to tmax do
if ty == 0 then

Allocate customer bj in B to an open facility ai in A that has the least
distance from bj
Calculate the fitness of x at t0 by summing up the facility costs of all
opened facility ai and the cost (distance) between ai and all bj

else
Add cost (distance) of servicing customer bj to total cost for year ty

end if
end for

end for
Actualise costs obtained for tmax using discount rate dr

end for

However, in the real world, several factors will influence a customer to move between
cities. We are therefore motivated to adopt an evaluation method that captures how
customers move and the frequency with which they move. The future possible move-
ments of customers necessitates the dynamic stochastic evaluation where a solution
to the problem is evaluated against a number of scenarios. The concept of ROOT
is emphasized here, where the facilities are open at the start of the defined period
and remain open over the defined period. Customer movements are then simulated
over the defined period and evaluation is made concerning the opened facilities. The
decision variables are represented by a binary string x = {x1, x2, ..., xm} ∈ {0, 1}m
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where 1 represents an opened facility and 0 represents a closed facility. The dynamic
approach reformulates Equation 4.2 as:

fdynamic(x) =
m∑
i=1

cixi + C0(x) + E

[
tmax∑
t=1

Ct(x)(1 + dr)−t

]
(4.5)

Subject to equations 4.3 and 4.4.

Where the opening cost of facilities and the connection cost C0(x) is a deterministic
function. E

[∑tmax

t=1 Ct(x)(1 + dr)−t
]

represents the expected discounted service costs
of customers for times {t1, t2, ..., tmax}. dr is a discount rate, typically applied to
allow comparison of costs incurred at different times. A pseudo-code of the dynamic
evaluation is presented in Algorithm 8.

Algorithm 8 Dynamic evaluation method

Require: x, B, tmax

for Each Solution x do
for Each Customer b do

for ty in 0 to tmax do
if ty == 0 then

Allocate customer bj in B to an open facility ai in A that has the least
distance from bj
Calculate the fitness of x at t0 by summing up the facility costs of all
opened facility ai and the cost (distance) between ai and all bj

else
Generate attraction rates A

′
for each city ai

Generate movement dates of customer M from Algorithm 5
Add cost (distance) of servicing customer bj to total cost for year ty
if ty ∈M then

Choose a new city for the customer based on A
′

Generate new location for customer in the new city
Update cost for servicing customer bj to total cost for year ty

end if
end if

end for
end for
Actualise costs obtained for tmax using discount rate

end for

4.2.3 Problem Generation

An instance of DC-LA problem comprises of three main parameters: the number of
facility locations m, number of customer n, and the movement rate mr. The choice of
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these parameters is set in consultation with experts from the telecommunications in-
dustry. To generate an instance of DC-LA problem, we first uniformly generate cities
locations and their attraction rate randomly. Based on those locations, customers
are then iteratively generated by randomly selecting a city (based on the attraction
rates). In a city, the coordinates of a customer are obtained by sampling its location
from a normal distribution centred in the coordinates of the city. A pseudo-code for
generating a problem instance is presented in Algorithm 9:

Algorithm 9 Generation of a problem instances for DC-LA problem

Require: Movement rates: mr, Number of facilities: m, Number of customers: n,
Attraction rates A′

for each mr do
Uniformly generate m cities locations where coordinates of m ∈ {0, 1}
Generate attraction rates for cities using Algorithm 4
for each city ai do

for (q=1 to (a
′
i * n)) do

Generate customers locations from a normal distribution with ai as the mean
and standard deviation of 0.1.

end for
end for

end for

4.3 Experimental Setup

Table 4.1 presents a summary of the values of the parameters and environmental
constants described in Section 4.2.1.

Table 4.1: Parameters for defining DC-LA problem

DC-LA problem Parameters Description Values
mr Movement rate 0.25,0.5,0.75,1.0
m Number of facility locations 10,20,50,100
n Number of customer locations 100, 500 , 1000
a
′

attraction rate randomised
dr Discount rate 0.05
sd for mr SD for movement dates 0.1
sd for n SD for customer locations 0.1
tmax Defined horizon 30

By varying the parameters m,n and mr we generate 48 problem configurations. For
each of the 48 configurations, we generate 30 instances creating a benchmark of 1440
problems. The cost of a facility is set as m/n, the rationale for setting the cost of the
facility is to try and minimise the number of facilities to open considering that the
cost of opening facilities incur substantial costs. In this Section, we seek to observe
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the influence the parameters defined may have on the problem. We do this by running
an initial set of experiments with a focus on each of the problem parameters. Results
and observations of influence for each parameter are presented below.

To examine how the distribution of customers changes between facilities over the
length of a simulation, we apply a measure called the Earth movers distance (EMD)
[108]. EMD is a measure of the distance between two distributions over a region
D. In simple terms, EMD is the minimum amount of effort requires to convert one
distribution into the other. In order to compute the EMD between the distribution of
customers to facilities for each year of the simulation, we first rank facilities according
to the number of customers they serve. The facility servicing the higher number
of customers gets the rank one, the facility servicing the second higher number of
customers gets the rank two, and so on. For each year of the simulation, facilities
are ranked according to the total number of customers they serve. The EMD is then
calculated between the ranks of facilities at the beginning of the simulation, i.e. year0
and yeart=1 to yeartmax . The bigger the distance recorded, the more significant the
difference between the ranks of facilities at yeart and year0. Algorithm 10 shows how
EMD is computed.

Algorithm 10 Computing EMD for rank of cities

Require: P= Ranks of facilities at yeart=0, Q= Ranks of facilities at yeart=1

TotalDistance = 0
EMD0 = 0
for i = 0 to (P.length-1) do
EMDi+1 = (Pi + EMDi)−Qi

TotalDistance =
∑
|EMDi|

end for

4.4 Experimental Results and Analysis

In this Section, we present and analyse the results obtained from experiments on the
1440 problem instances. We aim to understand the effects the parameters of DC-LA
problem exerts on the problem instances.

4.4.1 Effects of Movement Rate (mr)

To observe the effect of movement rate parameter, we conduct an exhaustive evalua-
tion of all solutions to the problem configurations with the smaller number of facilities,
i.e. 10 facilities. This is because an exhaustive evaluation of solutions for more than
10 facilities can be computationally costly. For example, an exhaustive search for a
problem with a facility size of 20 will require us to evaluate 220 (i.e. 1,048,576) solu-
tions. However, a problem instance with 10 facilities is more manageable as we will
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only be required to evaluate 210 (i.e. 1024) solutions. We therefore run an exhaustive
search for all 30 instances of m 10 by n 100, m 10 by n 500 and m 10 by n 1000.

Table 4.2 shows the sensitivity of the movement rates. The Table shows the cor-
relation of costs between the movement rates when compared to a static problem,
i.e. when customers are assumed to make no movements between cities over time.
Tables 4.3 and 4.4 shows the ranks of solutions of all 30 problems for problem con-
figuration m 10 by n 100, m 10 by n 500 and m 10 by n 1000 respectively. For the
dynamic evaluation, we consider four mr giving us four dynamic evaluation functions.
Hence, for all problems, there are five ways of evaluating a solution, the static method
which is deterministic, and the dynamic method with mr 0.25, mr 0.50, mr 0.75 and
mr 1.0. For each solution, we obtain fitness using each of the five evaluation func-
tions. We use 5000 simulations to evaluate a solution to problems where customers
are assumed to make movements because it is stochastic and return the median of the
5000 distribution as the fitness of the solution. For each of the method, we ranked
the solutions giving us a permutation of rankings of solutions. Then we performed
an experiment correlation on all the ranks. The results presented in the Tables 4.2,
4.3 and 4.4 below are the correlation between the static evaluation function and the
dynamic evaluation functions on m 10 by n 100, m 10 by n 500 and m 10 by n 1000
respectively.
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Table 4.2: Correlation of results for static and dynamic methods of evaluation

m n Problem mr0.25 mr0.5 mr0.75 mr1.0
10 100 p1 0.18 0.16 0.19 0.35
10 100 p2 0.16 0.15 0.21 0.48
10 100 p3 0.11 0.09 0.16 0.50
10 100 p4 0.22 0.27 0.37 0.65
10 100 p5 0.43 0.50 0.50 0.69
10 100 p6 0.64 0.66 0.70 0.80
10 100 p7 0.06 0.11 0.17 0.48
10 100 p8 0.13 0.09 0.11 0.33
10 100 p9 0.12 0.15 0.12 0.34
10 100 p10 0.23 0.19 0.29 0.50
10 100 p11 0.36 0.38 0.46 0.65
10 100 p12 0.19 0.22 0.25 0.53
10 100 p13 0.16 0.12 0.14 0.39
10 100 p14 0.45 0.49 0.54 0.62
10 100 p15 0.33 0.28 0.35 0.55
10 100 p16 0.17 0.18 0.32 0.70
10 100 p17 0.70 0.66 0.69 0.74
10 100 p18 0.32 0.32 0.39 0.57
10 100 p19 0.03 0.12 0.11 0.40
10 100 p20 0.18 0.17 0.14 0.36
10 100 p21 0.07 0.08 0.09 0.36
10 100 p22 0.21 0.22 0.26 0.45
10 100 p23 0.19 0.21 0.23 0.43
10 100 p24 0.19 0.18 0.23 0.54
10 100 p25 0.37 0.35 0.41 0.61
10 100 p26 0.25 0.28 0.26 0.46
10 100 p27 0.46 0.46 0.50 0.75
10 100 p28 0.29 0.22 0.31 0.49
10 100 p29 0.33 0.32 0.36 0.46
10 100 p30 0.56 0.56 0.61 0.69
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Table 4.3: Correlation of results for static and dynamic methods of evaluation

m n Problem mr0.25 mr0.5 mr0.75 mr1.0
10 500 p1 0.23 0.24 0.26 0.73
10 500 p2 0.43 0.46 0.53 0.84
10 500 p3 0.13 0.18 0.25 0.54
10 500 p4 0.46 0.49 0.54 0.79
10 500 p5 0.11 0.19 0.30 0.73
10 500 p6 0.21 0.21 0.31 0.79
10 500 p7 0.18 0.19 0.28 0.68
10 500 p8 0.26 0.21 0.31 0.62
10 500 p9 0.23 0.28 0.41 0.84
10 500 p10 0.17 0.20 0.20 0.59
10 500 p11 0.53 0.52 0.60 0.84
10 500 p12 0.28 0.28 0.34 0.74
10 500 p13 0.17 0.22 0.17 0.55
10 500 p14 0.26 0.34 0.44 0.75
10 500 p15 0.38 0.40 0.40 0.64
10 500 p16 0.39 0.37 0.52 0.75
10 500 p17 0.45 0.48 0.52 0.75
10 500 p18 0.48 0.50 0.50 0.61
10 500 p19 0.38 0.39 0.44 0.71
10 500 p20 0.16 0.13 0.17 0.67
10 500 p21 0.25 0.31 0.37 0.73
10 500 p22 0.20 0.18 0.27 0.60
10 500 p23 0.15 0.21 0.25 0.67
10 500 p24 0.19 0.23 0.24 0.62
10 500 p25 0.12 0.19 0.26 0.61
10 500 p26 0.30 0.31 0.37 0.70
10 500 p27 0.13 0.21 0.17 0.62
10 500 p28 0.17 0.24 0.30 0.58
10 500 p29 0.16 0.14 0.19 0.59
10 500 p30 0.09 0.14 0.18 0.53
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Table 4.4: Correlation of results for static and dynamic methods of evaluation

m n Problem mr0.25 mr0.5 mr0.75 mr1.0
10 1000 p1 0.38 0.38 0.43 0.73
10 1000 p2 0.36 0.42 0.52 0.82
10 1000 p3 0.57 0.61 0.70 0.91
10 1000 p4 0.45 0.44 0.52 0.85
10 1000 p5 0.37 0.40 0.44 0.64
10 1000 p6 0.28 0.26 0.42 0.79
10 1000 p7 0.50 0.50 0.53 0.82
10 1000 p8 0.44 0.40 0.50 0.75
10 1000 p9 0.23 0.26 0.39 0.79
10 1000 p10 0.45 0.48 0.55 0.85
10 1000 p11 0.23 0.29 0.37 0.74
10 1000 p12 0.21 0.23 0.43 0.78
10 1000 p13 0.33 0.33 0.45 0.79
10 1000 p14 0.19 0.22 0.25 0.59
10 1000 p15 0.21 0.25 0.30 0.70
10 1000 p16 0.19 0.21 0.25 0.62
10 1000 p17 0.17 0.24 0.32 0.71
10 1000 p18 0.14 0.16 0.21 0.61
10 1000 p19 0.29 0.34 0.39 0.73
10 1000 p20 0.45 0.46 0.51 0.80
10 1000 p21 0.20 0.25 0.38 0.76
10 1000 p22 0.18 0.19 0.33 0.70
10 1000 p23 0.15 0.21 0.27 0.71
10 1000 p24 0.22 0.24 0.33 0.71
10 1000 p25 0.15 0.19 0.29 0.71
10 1000 p26 0.48 0.46 0.49 0.75
10 1000 p27 0.27 0.35 0.47 0.84
10 1000 p28 0.29 0.35 0.45 0.72
10 1000 p29 0.31 0.36 0.41 0.66
10 1000 p30 0.47 0.48 0.52 0.78

4.4.2 Visual representation of the effects of Movement Rate
(mr)

Figures 4.2, 4.3 and 4.4 shows the visual representation of the correlations results
presented in Tables 4.2, 4.3 and 4.4 for 10 facilities by 100 customers, 10 facilities by
500 customers and 10 facilities by 100 customers.
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Figure 4.2: Correlation between static and dynamic evaluations for movement rates
on 10 facilities by 100 customers
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Figure 4.3: Correlation between static and dynamic evaluations for movement rates
on 10 facilities by 500 customers
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Figure 4.4: Correlation between static and dynamic evaluations for movement rates
on 10 facilities by 1000 customers
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From the Tables 4.2, 4.3, 4.4 and Figures 4.2, 4.3 and 4.4, we observe that on most
problem instances for problem configuration of m10 n100 there exist a low correlation
between dynamic and static when customers are assumed to make frequent movement
over the defined horizon. However, we also observe that when customers are assumed
to make little or no movement over the defined period, a low correlation exists between
static and dynamic on most problem instances. A look at problem configurations
m10 n500 andm10 n1000 shows an increasing correlation between static and dynamic
when customers are assumed to make little or no movement over the defined horizon.

From the results presented in Tables 4.2, 4.3, 4.4 and Figures 4.2, 4.3 and 4.4 shows
that the difference in correlation between results of static and dynamic is influenced
by the number customers. A small number of customers appears create varying distri-
butions which creates low correlation between results obtained by static and dynamic
especially in situations where customers are assumed to make frequent movement over
a defined period. However, a more significant number of customers appears to create
less different distributions, especially when customers are assumed to make little or
no movement over a defined period. Hence, we observe a higher correlation between
the results obtained by static and dynamic in scenarios where customers are assumed
to make little or no movement over the defined period. We also observe that for
problem configuration with m10 n100 the distance between mr0.25 and mr1 is lesser
when compared to problem configurations with a more significant number of cus-
tomers showing that a smaller number of customers creates more varying distribution
across all movement scenarios of customers.

A visual representation of the sensitivity of the movement rates are shown in Figures
4.5, 4.6,4.7 and 4.8. Each Figure shows the movement distribution of customers over
20 simulations across 30 years for an open set of facilities.
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Figure 4.5: Simulation of customers movements at mr = 0.25 with 50 facilities 100
customers
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Figure 4.6: Simulation of customers movements at mr = 0.5 with 50 facilities 100
customers

0.0

2.5

5.0

7.5

10.0

12.5

0 10 20 30

Length of simulation in years

D
is

tr
ib

ut
io

n 
of

 c
us

to
m

er
s

Facilities

F3

F7

F8

F11

F14

F15

F16

F19

F20

F23

F24

F26

F29

F33

F34

F35

F37

F39

F40

F41

F42

F43

F44

F45

F46

F49

Figure 4.7: Simulation of customers movements at mr = 0.75 with 50 facilities 100
customers
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Figure 4.8: Simulation of customers movements at mr = 1.0 with 50 facilities 100
customers
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A look at Figure 4.5 to 4.8 clearly shows how the movement rates impact the move-
ment of customers over the defined horizon. The smaller the value of mr the more
movement a customer makes across simulation and hence creates more varying costs
while the higher the value of mr the less movement a customer makes creating less
varying costs.

4.4.3 Effects of the number of facilities (m)

To understand what effect the number of facilities has on a problem, we calculate
the EMD between the ranks of cities over the length of a simulation averaged over
20 simulations. The EMD is calculated for facilities 10,20,50 and 100 using 100
customers. We show the effect observed in Figure 4.9
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Figure 4.9: Earth movers distance between the number of facilities over the length of
simulation

In Figure 4.9 we observe that as the number of facilities increases, the distance be-
tween the ranks of cities at the start of the simulation and ranks of cities over the
length of the simulation also increases. Figure 4.9 shows that the larger the num-
ber of facilities, the more variations in customers distributions are observed creating
more varying costs. This is because a larger number of facilities creates unevenly
distributed customers over the defined period.

4.4.4 Effects of the number of customers (n)

In Figure 4.10, we show the EMD calculated between the ranks of cities over the
length of a simulation averaged over 20 simulations for the number of customers.
The EMD is calculated for 100, 500 and 1000 customers using the same number of
facilities (50).
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Figure 4.10: Earth movers distance between the number of customers over the length
of simulation

From Figure 4.10, we observe that more variations in the distribution of customers are
observed for 100 and 500 customers. For the more significant number of customers,
we observe that the difference in the distribution of customers tends to even out after
some years. This means that a smaller number of customers tend to create more
variations in customer movement over the length of the simulation. This observation
is also evident in Tables 4.2,4.3 and 4.4 where we observe that for a more signifi-
cant number of customers the correlation between the results obtained by the static
evaluation and the dynamic evaluation when a customer is assumed to make fewer
movement over the defined period is higher when compared with a smaller number of
customers. This shows that a more significant number of customers movements (i.e.
1000 customers ) turns to even out at the end of the simulation and hence create less
varying costs especially when customers are assumed to make little or no movement
over the defined period.

4.4.5 Effect of attractive rates

To understand the impacts the attractive rates of cities make to simulation, we calcu-
late the earth movers distance (EMD) between the ranks of facilities over the length
of the simulation. In Figure 4.11, we simulate 20 customer movements and calcu-
late the EMD between the ranks of cities when the attraction rate is different for
every simulation. In Figure 4.12, we simulate 20 customer movements and calculate
the EMD between the ranks of cities when the attraction rate is the same for all 20
simulations.
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Figure 4.11: Simulation of customers movements with different attractive rates with
50 facilities 100 customers

From Figure 4.11, we observe that when the attraction rates of cities are different for
each simulation, there is more variation in the movement of customers. Throughout
a simulation, we observe that the difference in ranks between cities at the start of
the simulation and ranks of cities at the later stage of the simulation keeps increasing
showing a significant difference in the distribution of customers over the simulation.
The opposite effect is seen in Figure 4.12, where a smaller difference is observed
between the ranks of cities at the start of the simulation and the ranks of cities over
the length of the simulation. In particular, we observe that for later years of the
simulation, the difference between the ranks of cities appears to decrease, showing a
little variation of customer distribution between the start and end of the simulation.
Because the same attraction rates are fixed for all simulations, the only variations in
the distribution of customers are created from customers movements. Hence there is a
likelihood of customers movements in a later simulation to resemble earlier simulation
causing low variations in costs.
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Figure 4.12: Simulation of customers movements with the same attractive rates with
50 facilities 100 customers
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By using different attraction rates of cities for each simulation, we can ensure that the
distributions of customers of later simulations are different from earlier simulations.
By doing this, we will have different scenarios by which to evaluate our solutions.

4.5 Summary

In this Chapter, we introduced and defined the Dynamic-Customer location-Allocation
(DC-LA ) problem. DC-LA problem considers the potential movement of customers
over a given time horizon tmax. Dc-LA problem is primarily defined by three main
parameters; these are movement rate which defines the rate at which customers will
move locations over a defined period; Number of facilities and number of customers.
In DC-LA problem, the pattern of customer location changes is assumed to be stochas-
tically driven by the attractivity of cities, i.e. how attractive a city is to a customer.
In order to model the future expected changes in customers movements, we presented
and discussed a stochastic model for simulating future events for each customer. The
simulation model works by assigning each city an attractive rate at the start of the
simulation. Customers are then assigned to cities based on how attractive the city is
to the customer.

To evaluate solutions to DC-LA problem, we presented and discussed two evaluation
methods: dynamic and static evaluation functions. The dynamic evaluation function
assumes that customers will move locations over a defined period and account for
customer movement in its evaluation process. The static evaluation function forms
the baseline for comparison with the dynamic evaluation functions and assumes that
customers will not move over the defined time.

In order to study our DC-LA problem, we generated 1440 problem instances by
combining the parameters of movement rates mr, the number of facilities m and the
number of customers n. We then conducted an initial set of experiments to observe
and understand the influence the different parameters exerted on DC-LA problem.
Our aim in the experiment was to understand if there was a justification to expend
extra computational effort to simulate the movement of customers when deciding the
location of facilities or can we make good decisions concerning the location of facilities
using the static evaluation which requires less computational effort because we do not
need to simulate future movements of customers.

From experiments, we observed that for movement rate, when customers are as-
sumed to make frequent movement over a defined period, high variations in costs are
recorded. These variations in costs reduce as customers are observed to make little
or no movements over the defined period.

For the number of facilities, we observed that as the number of facilities increases
the greater the recorded variations in costs. The variations, however, reduces for a
smaller number of facilities.
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For the number of customers, we observed that a smaller number of customers tend to
create more variations in customer movements which creates a high variation in costs
recorded over the defined period. For the bigger number of customers, we observed
low variations in costs as the simulation tends to even out after some years. This is
because a similar number of customers tend to replace customer who leaves a city.

Variations in costs determine how different the problem is from a static problem which
assumes that customers movement will remain the same over the defined period and
hence there will be little or no variations in cost. High variations in costs show that
the problem changes over the defined period. This means that a static solution which
does not take future changes into consideration will be an infeasible solution.

The high variations in costs observed in some scenarios give justification to experiment
further to see if there is value in simulating customer movements and in what scenarios
will it be worth expending the extra effort to find a robust solution to DC-LA problem.
In the next Chapter, we will conduct a set of experiments on the new 1440 problem
instances to assess the necessity of simulating the future movement of customers.
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Chapter 5

Solution Approach to the Dynamic
Customer Location-Allocation
Problems

5.1 Introduction

The dynamic model of Location-Allocation (LA) problem introduced in Chapter 4
generates random customer movements based on varying attractivity of locations. To
assess the necessity of simulating future movements of customers, we aim to study
the DC-LA problem in this Chapter by conducting a set of experiments. To do this,
we experiment with the 1440 DC-LA problem instances generated by varying the
parameters of movement rates mr, the number of facilities m and the number of
customers n in Section 4.3 of Chapter 4.

The experimental results in Chapter 3, showed Population-Based Incremental Learn-
ing Algorithm (PBIL) to perform better than the GA variants when tested on the
CAP datasets and the new problem instance for LARP and LARPR. Hence we run
PBIL described in Section 2.5.4 on the 1440 problems using the two evaluation meth-
ods described in Section 4.2.2. The first method referred to as, the dynamic evalu-
ation, simulates customer movements to estimate the expected cost over time. The
second method, called, the static evaluation, which forms the baseline for compari-
son with the dynamic evaluation function, assumes no customer movements and only
evaluates the actualised service costs of customers. We compare the results obtained
using the two evaluation methods concerning the different problem parameters to
analyse the efficiency of each method. Our aim in this Chapter is to ascertain if
there is value in simulating customer movements over a defined horizon when making
decisions to site facilities to service changing demand bearing in mind the associated
high computational cost or can we rely on the static solution to decide the location
of facilities to a changing problem? The work presented in this Chapter has been
published in Proceedings of the 2019 Institute of Electrical and Electronics Engineers
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(IEEE) Congress on Evolutionary computation (IEEE CEC 2019), 10-13 June 2019,
Wellington, NZ.

The Chapter is organised as follows. In Section 5.2 we describe the experimental
setup and discuss result in Section 5.3. Finally, we conclude the Chapter in Section
5.4.

5.2 Experimental Setup

Parameters used for generating the problem instances are presented in Table 4.1 in
Chapter 4. Values defined for the number of customers are informed by a purely
commercial customer base often located in countries other than the united kingdom
such as the United States of America. In such countries, the commercial customers
such as financial institutions, data centres and engineering firms range from a couple
of hundreds to a few thousand.

Combining PBIL and the two evaluation functions gives us the configurations: PBILstatic

and PBILdynamic for all movement rates. However, in analysing the results obtained,
we refer to PBILstatic and PBILdynamic as static and dynamic respectively. The pa-
rameters used for PBIL are presented in Table 5.1. Each run is allowed 10000 fitness
evaluations.

Table 5.1: Parameters for PBIL

Parameter Value
Population size 50
Fitness evaluation 10000
PBIL learning rate 0.1
Truncation size 0.5

This experiment aims to ascertain whether it is worth taking customer movements
over a defined horizon into account when deciding to locate facilities to service cus-
tomer needs. Considering that the two evaluation functions evaluate solutions differ-
ently, and the fact that we seek to investigate if there is value in employing the more
expensive dynamic evaluation function, we evaluate the best solution found at the
end of each run with dynamic over 5000 simulations to allow for proper comparison of
the two evaluation functions. We run each evaluation for each of the 1440 problems
20 times. Experiments were performed on an Intel(R) Xeon(R) E5620 @2.40GHz
cluster.

Due to the stochastic nature of PBIL and the fact that we hope to compare only
two methods i.e. static and dynamic, we employ the Wilcoxon signed ranks test to
assess the performance of static and dynamic. Our choice of the Wilcoxon signed-
rank test is motivated by the fact that within the statistic community, the Wilcoxon
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signed ranks test is preferred and considered to be safer when compared to the t-test
because the test does not assume normal distributions. Outliers (particularly good
or bad performances of a few problems) also tend to have less of an effect on the
Wilcoxon signed ranks test than on the t-test.

5.2.1 The Wilcoxon signed ranks test

The Wilcoxon signed ranks test is a non-parametric method used in hypothesis testing
conditions, comprising a study with two samples. The Wilcoxon signed ranks test is
employed to answer the question: do two samples denote two diverse populations?
The Wilcoxon signed ranks test is comparable to the paired t-test in non-parametric
statistical procedures; hence, it is a pairwise test that strives to recognise significant
differentiation among two samples averages, i.e., the performance of two algorithms.

The Wilcoxon signed ranks test is described as follows: di denote the variations in
the performance scores of two algorithms on ith out of n problems. In the case where
the scores of the algorithms lie in different ranges, to prevent prioritising one problem
over the other, these scores can be normalised to the interval [0,1] [65].

di, which denotes the differences in the scores of the algorithms being compared are
ranked concerning their absolute values. In the event of a tie, computing the average
ranks is a recommended approach. For instance, if two di are tied in the allocation of
ranks 1 and 2, then the rank 1.5 is assigned to both di. However, one can also adopt
some of the available approaches in the literature such as [68] which disregards ties
and designates the highest ranks and then calculate all the potential assignments and
compute the average of the results gained within the test. The aggregate of ranks
on the problems for algorithm one is denoted as R+. The aggregate of ranks on the
problems for algorithm two is denoted as R−. When di = 0, the rank is divided
equally between the sums; however, one is discarded if there is an odd number of the
ranks.

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (5.1)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (5.2)

T denotes the least of the sums, T = min(R+, R). If T is smaller than or equivalent
to the value of the distribution of Wilcoxon for n degrees of freedom [176], the null
hypothesis which states that the means of the two algorithms are the same is rejected.
The rejection implies that one algorithm of the two performed better than the other
algorithm with the associated p-value. In practice, the Wilcoxon signed ranks test is
considered to be more sensitive when compared to the t-test.
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5.3 Experimental Results and Analysis

In this Section we present and discuss the effects DC-LA problem parameters exerts
on DC-LA problem instances. We seek to determine if there is value in expending
the extra computational effort to simulate the movements of customers over a defined
period when deciding the locations of facilities.

We perform the Wilcoxon signed ranks test described in Section 5.2.1 on the results
obtained from the experiments on all 30 problems for each of the 48 problem con-
figurations. We aim to determine if there is a significant differentiation between the
averages of results obtained using the static and dynamic evaluation functions.

The results of the Wilcoxon signed-rank test are shown in Table 5.2. In Table 5.2,
the aggregate of ranks on the problems for dynamic evaluation is denoted as R+ and
the aggregate of ranks on the problems for static evaluation is denoted as R−. For
each problem configuration, the aggregate of ranks for the problem configurations on
which an evaluation function performed better than the other is highlighted in bold.
Problem configurations are represented by movement rate mr, the number of facilities
m and the number of customer n. We employ a 95% confidence level for the test. A
95% confidence level means that if the p-value obtained by an evaluation function,
for example, static evaluation, on a problem configuration is less than the significance
level α=0.05, then the results obtained by the static evaluation function is deemed
to be statistically significant when compared to the results obtained by dynamic on
the same problem configuration. In Table 5.2 we obtain statistical difference for 21
out of the 48 problem configurations.
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Table 5.2: Wilcoxon comparison of dynamic vs static evaluations grouped by config-
urations of the DC-LA problem

Dynamic Static Statistical
mr m n R+ R− p− value difference?
0.25 10 100 210 0 9.57E-05 Yes
0.25 10 500 111 9 4.13E-03 Yes
0.25 10 1000 50 5 2.49E-02 Yes
0.25 20 100 422 13 1.03E-05 Yes
0.25 20 500 218 35 3.13E-03 Yes
0.25 20 1000 321 57 1.58E-03 Yes
0.25 50 100 465 0 1.86E-09 Yes
0.25 50 500 462 3 9.31E-09 Yes
0.25 50 1000 449 16 3.15E-07 Yes
0.25 100 100 465 0 1.86E-09 Yes
0.25 100 500 464 1 3.73E-09 Yes
0.25 100 1000 451 14 2.05E-07 Yes
0.5 10 100 105 15 1.15E-02 Yes
0.5 10 500 51 27 3.67E-01 No
0.5 10 1000 22 6 2.05E-01 No
0.5 20 100 269 109 5.61E-02 No
0.5 20 500 82 128 4.01E-01 No
0.5 20 1000 210 90 8.91E-02 No
0.5 50 100 464 1 3.73E-09 Yes
0.5 50 500 419 46 3.45E-05 Yes
0.5 50 1000 356 109 9.93E-03 Yes
0.5 100 100 460 5 1.86E-08 Yes
0.5 100 500 371 94 3.48E-03 Yes
0.5 100 1000 300 165 1.71E-01 No
0.75 10 100 40 5 4.40E-02 Yes
0.75 10 500 9 1 2.01E-01 No
0.75 10 1000 10 5 5.90E-01 No
0.75 20 100 81 109 5.87E-01 No
0.75 20 500 12 93 1.20E-02 Yes
0.75 20 1000 64 56 8.42E-01 No
0.75 50 100 372 93 3.22E-03 Yes
0.75 50 500 213 252 7.00E-01 No
0.75 50 1000 222 243 8.39E-01 No
0.75 100 100 305 160 1.40E-01 No
0.75 100 500 205 260 5.84E-01 No
0.75 100 1000 190 275 3.93E-01 No

1 10 100 0 0 0.00E+00 No
1 10 500 2 1 1.00E+00 No
1 10 1000 0 3 3.71E-01 No
1 20 100 16 39 2.62E-01 No
1 20 500 9 36 1.24E-01 No
1 20 1000 12 33 2.36E-01 No
1 50 100 247 218 7.77E-01 No
1 50 500 182 283 3.09E-01 No
1 50 1000 262 203 5.56E-01 No
1 100 100 263 202 5.43E-01 No
1 100 500 250 215 7.30E-01 No
1 100 1000 248 217 7.61E-01 No
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From the Table 5.2, it is observed that the dynamic evaluation function achieves a
statistical significance in results over the Static evaluation function when customers
are assumed to make frequent movements over the defined period. An opposing ef-
fect is seen as customers make fewer movements over the defined period. From the
aggregate of ranks for all problem configurations, it can be observed that even on
most problems where no statistical difference was recorded between the dynamic and
static evaluation, the dynamic evaluation shows more favourable results than the
static evaluation. Based on the observation of results from Table 5.2 we can con-
clude that in scenarios where customers are assumed to make frequent movements
over the planning period there is value in employing the dynamic evaluation function
to decide the locations of customers. In scenarios where customers are assumed to
make little or no movements over the defined period, the dynamic evaluation is still
recommended if the computational cost involved is not an issue because the dynamic
evaluation function achieves better results even if the results between dynamic and
static evaluations are mutually statistically indistinguishable. However, in the situ-
ation where the computational cost is of concern, then using the static evaluation
function will offer similarly better results.

Although the movement of customers seems to be the primary drive in the perfor-
mance of the dynamic evaluation function, results from the Table show that other
parameters such as the number of facilities and the number of customers appear to
have an impact on the performance of the evaluation functions. To better understand
how the parameter values influence the performance of the evaluation functions we
discussed them into details in Section 5.3.1

5.3.1 Analysis of the effects of DC-LA problem parameters
on problem instances

To help in analysing the influence of the problem parameters on the performance of the
evaluation functions we present Table 5.3 which shows the number of wins, losses and
ties of the dynamic evaluation overall 30 instances of the 48 problem configurations
when compared to the static evaluation function. On each problem configuration, the
highlighted value shows the wins, loses or ties of the dynamic evaluation function on
a problem configuration.
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Table 5.3: Wins, Losses and Ties of dynamic evaluation when compared to static
evaluation grouped by configurations of DC-LA problem

mr m n Wins Loss Ties
0.25 10 100 20 0 10
0.5 10 100 10 5 15
0.75 10 100 7 2 21

1 10 100 0 0 30

0.25 10 500 12 3 15
0.5 10 500 6 6 18
0.75 10 500 3 1 26

1 10 500 1 1 28

0.25 10 1000 8 2 20
0.5 10 1000 4 3 23
0.75 10 1000 3 2 25

1 10 1000 0 2 28

0.25 20 100 25 4 1
0.5 20 100 14 13 3
0.75 20 100 7 12 11

1 20 100 2 8 20

0.25 20 500 15 7 8
0.5 20 500 8 12 10
0.75 20 500 1 13 16

1 20 500 1 8 21

0.25 20 1000 18 9 3
0.5 20 1000 15 9 6
0.75 20 1000 6 9 15

1 20 1000 2 7 21

0.25 50 100 30 0 0
0.5 50 100 29 1 0
0.75 50 100 23 7 0

1 50 100 14 16 0

0.25 50 500 29 1 0
0.5 50 500 24 6 0
0.75 50 500 15 15 0

1 50 500 12 18 0

0.25 50 1000 26 4 0
0.5 50 1000 22 8 0
0.75 50 1000 16 14 0

1 50 1000 15 15 0

0.25 100 100 30 0 0
0.5 100 100 28 2 0
0.75 100 100 19 11 0

1 100 100 17 13 0

0.25 100 500 29 1 0
0.5 100 500 22 8 0
0.75 100 500 14 16 0

1 100 500 17 13 0

0.25 100 1000 28 2 0
0.5 100 1000 19 11 0
0.75 100 1000 13 17 0

1 100 1000 17 13 0
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5.3.2 Movement Rate (mr)

We first analyse the influence of the movement rate. As seen from Table 5.3, the
necessity of using the dynamic evaluation is diminished when customers are assumed
to make little or no movement over the defined period. This conclusion is affirmed by
the high number of ties achieved by the dynamic evaluation of problem configurations
with 10 and 20 facilities. Even for problem configurations with 50 and 100 facilities,
the dynamic evaluation is seen to achieve more loss when customers make little or no
movements over the defined period. Little or no movement of customers makes the
problem an almost static one hence the similarity in performance of the two evalua-
tion functions. On the other hand in all problem configurations when customers are
assumed to make frequent movement over the defined period the dynamic evaluation
function is seen to achieve the more wins as expressed in Table 5.4 where the problem
configurations are grouped according to movement rates.

Table 5.4: Wilcoxon comparison of dynamic vs static evaluations grouped by move-
ment rate of the DC-LA problem

Dynamic Static Statistical
mr R+ R− p− value difference?
0.25 44945 1111 9.36E-47 Yes
0.5 33002 7753 1.24E-19 Yes
0.75 15949 14432 4.97E-01 No

1 11437 11141 8.69E-01 No

The necessity of using the dynamic evaluation function to locate facilities when cus-
tomers are assumed to make frequent movements over the defined period is further
affirmed in Figure 5.1 which shows the percentage difference in costs savings when
compared to the static evaluation function. In Figure 5.1 negative values indicate
that the dynamic approach resulted in better performance.
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Figure 5.1: Percentage difference between the dynamic and static evaluation grouped
by movement rate

Indeed when customers are assumed to make the most movements over the defined
period, the dynamic evaluation achieves about 6% 1 in cost savings and decreases to
0.3% when customers make little or no movements over the defined period. Although
the dynamic evaluation shows such good performance when customers make frequent
movements over time, the profoundly different costs created as a result of the high
movements emphasise the necessity of simulating a large number of scenarios to obtain
a fitness for a solution which comes with very high computational costs as we will
observe in later Sections.

5.3.3 Number of Facilities (m)

Secondly, the number of facilities is seen to influence the performance of the evalua-
tion functions. From Table 5.3 we observe that the number of wins achieved by the
dynamic evaluation is less for problem configurations with a smaller number of facil-
ities, i.e. 10 facilities and more pronounced for problem configurations with a more
significant number of facilities such as 50 and 100 facilities. However, irrespective of
the problem size the dynamic evaluation achieves a significant difference in results
when compared to the static evaluation for all number of facilities as presented in
Table 5.5 where problem configurations are grouped by the number of facilities.

1Percentage cost savings recorded in this work translates into millions in cost savings over tmax
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Table 5.5: Wilcoxon comparison of dynamic vs static approach grouped by the num-
ber of facilities of the DC-LA problem

Dynamic Static Statistical
m R+ R− p− value difference?
10 4609 542 5.70E-12 Yes
20 17126 8299 6.35E-06 Yes
50 51722 13258 2.18E-22 Yes
100 50414 14566 1.18E-19 Yes

Even though the dynamic evaluation achieves statistical difference for all facility
sizes, we observe in Figure 5.2 that the higher amount of costs savings of about 6%
2 is achieved for a more significant number of facilities, i.e. 100 facilities; making
the dynamic evaluation more suitable of the two evaluation functions for problem
configurations with a large facility size.
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Figure 5.2: Percentage difference between the dynamic and static evaluation grouped
by number of facilities

Although the dynamic evaluation is the favourable choice for locating facilities, es-
pecially when the problem has a larger number of facilities, the size of the facilities
add to the computational costs of the dynamic evaluation function. The larger the
facility size, the more costs have to be computed in the evaluation process.

2Percentage cost savings recorded in this work translates into millions in cost savings over tmax
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5.3.4 Number of Customers (n)

Finally, the number of customers also appears to influence the choice of the evaluation
function. From Figure 5.3, we see that more cost savings are achieved for a smaller
number of customers than a larger number of customers.
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Figure 5.3: Percentage difference between the dynamic and static evaluation grouped
by number of customers

The effect of the number of customers can be explained by the fact that the movement
of a smaller number of customers creates more varying costs than a larger number of
customers as seen in Figure 5.4. Figure 5.4 shows the earth mover’s distance described
in Section 5.2 calculated across 20 simulations on the ranking of facilities for 100, 500
and 1000 customers on 50 facilities when customers are assumed to make the most
movements over a defined horizon.
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Figure 5.4: Earth mover’s distance between the distributions of customers over the
length of simulation for 100, 500 and 1000 customers

Here we see that as the years progresses the difference in the distribution of customers
is greater for 100 customers than 500 and 1000 customers showing that a bigger
change in customer distributions over the simulation. The big changes tend to affect
the number of resources and where the resource needs to be allocated. The distances
between the distributions for 1000 customers are seen to average out after a number
of years with slight changes, showing that the number of customers per a city does
not change much as the gains of customers who move out are about the same number
of customers who move in causing the distribution of customers to even out over
the simulation. It should, however, be noted that the level of variations in customer
distribution is dependent on how much customers move over time hence from Table
5.2, even for larger number of customers a statistical significance is recorded in results
between the two evaluation functions when customers are assumed to make frequent
movement over the defined horizon.

So far, we aimed to ascertain if there was value in using a stochastic simulation
model to simulate the movement of customers over a defined period. If so, when
do we use a more expensive evaluation function to decide to locate facilities because
it will have a cost impact? From the discussion of results, we see that when cus-
tomers make frequent movements over a defined period, there is value in simulating
customer movements to help make a decision. In such a scenario, we employ a more
expensive dynamic evaluation function to help decide the location of facilities. To
understand the computational effort exerted by the evaluation functions, we discuss
the computational time complexities of the two evaluation functions in Section 5.3.5.
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5.3.5 Computational time complexity

Table 5.6 shows the average computational time taken by the static and dynamic
evaluations for each of the 48 problem configurations. Dynamic/Static shows the
ratio of computational time in seconds between dynamic and static. Problem config-
urations are defined by the movement rates mr, the number of facilities m and the
number of customers n.

Table 5.6: Computational times in seconds of static and dynamic for each problem
configurations

Time (seconds)
mr m n Static Dynamic Dynamic/Static
0.25 10 100 0.65 100.99 155.37
0.5 10 100 0.46 56.88 123.65

0.75 10 100 0.38 45.69 120.24
1 10 100 0.26 33.37 128.35

0.25 20 100 0.86 121.45 141.22
0.5 20 100 0.47 65.48 139.32

0.75 20 100 0.35 51.22 146.34
1 20 100 0.26 35.77 137.58

0.25 50 100 1.19 172.44 144.91
0.5 50 100 0.67 85.36 127.40

0.75 50 100 0.58 64.49 111.19
1 50 100 0.44 41.44 94.18

0.25 100 100 1.64 241.85 147.47
0.5 100 100 0.96 112.95 117.66

0.75 100 100 0.79 82.89 104.92
1 100 100 0.59 49.69 84.22

0.25 10 500 3.12 493.43 158.15
0.5 10 500 1.88 275.83 146.72

0.75 10 500 1.6 220.5 137.81
1 10 500 1.25 159.39 127.51

0.25 20 500 4.19 595.03 142.01
0.5 20 500 2.4 319.39 133.08

0.75 20 500 1.95 249.18 127.78
1 20 500 1.48 171.52 115.89

0.25 50 500 5.84 865.87 148.27
0.5 50 500 3.3 427.85 129.65

0.75 50 500 2.62 322.91 123.25
1 50 500 1.93 203.44 105.41

0.25 100 500 8.22 1225.31 149.06
0.5 100 500 4.52 576.5 127.54

0.75 100 500 3.63 423.63 116.70
1 100 500 2.64 248.26 94.04

0.25 10 1000 6.84 999.69 146.15
0.5 10 1000 4.03 547.91 135.96

0.75 10 1000 3.33 441.84 132.68
1 10 1000 2.58 318.82 123.57

0.25 20 1000 8.23 1191.34 144.76
0.5 20 1000 4.8 628.33 130.90

0.75 20 1000 4.03 498.67 123.74
1 20 1000 2.91 342.57 117.72

0.25 50 1000 12 1723 143.58
0.5 50 1000 6.6 845.15 128.05

0.75 50 1000 5.34 645.87 120.95
1 50 1000 3.96 408.19 103.08

0.25 100 1000 16.71 2467.96 147.69
0.5 100 1000 9.07 1159.61 127.85

0.75 100 1000 7.27 857.84 118.00
1 100 1000 5.06 501.67 99.14

88



From Table 5.6, it is seen that for all problem configurations, the dynamic evaluation
is computationally about 84 to 158 times higher than static. To understand why this
is so, we need to analyse the impact each problem parameter has on the computational
time of the dynamic evaluation.

Firstly, we observe that the lower themr, the more expensive the time recorded. A low
mr means that customers make more movements over time. Whenever a customer
makes a move, new coordinates are computed for the customer and the distances
calculated between the new location of the customer and the cities to obtain the
least cost. Hence, the more movement a customer makes the more time it takes
to generate new locations and compute the costs. On the other hand, a higher mr
means that a customer will make little or no movement over tmax. Which means
the simulation models generate fewer movement times and hence fewer new customer
locations. From the Table, the average computational time taken by dynamic when
customers are assumed to make frequent movements over the defined period is 3 to 5
times higher than when customers are assumed to make little or no movement over
the defined time.

Secondly, the number of facilities also contribute to the computational time. To obtain
the least cost of a new customer location, we calculate the cost of service between
the customer location and the facilities. Hence, the more facility locations there is,
the longer the time taken to compute the distance between the facility locations and
a customer location. The computational cost of the dynamic increases by a factor of
2.5 to 3 between problems with 10 and 100 facilities.

Thirdly, the number of customers adds to the computational effort. Since costs are
computed for customers each time they move, the more customers there are, the more
the time taken to compute distances between new customer locations and facilities
locations. The computational cost of the dynamic evaluation function increases by a
factor of 9 to 10 between problem configurations with 100 and 1000 customers.

Due to the stochastic nature of PBIL, we run the algorithm on each problem instance
20 times for both static and dynamic evaluations. We do this so we can better access
the performance of the algorithm based on the distribution of results. Running the
algorithms many times comes with high computational overhead. For example, if it
takes 1.5 hours to make a single run of PBIL using dynamic evaluation on a small
problem instance with 10 facilities by 100 customers with mr=0.25, then it will take
us about 30 hours to complete all 20 runs of the algorithm. Not considering the time
it will take on a larger problem of 100 facilities by 1000 customers with mr=0.25.
We, therefore, explore the concept of the Maximum likelihood solution (MLS) [116]
which is a property of PBIL in Section 5.3.6 to see if we can avoid making many runs
of PBIL on a problem instance thereby saving us much experimental time.
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5.3.6 The Maximum Likelihood Solution

In PBIL, the entire genetic population is generated from the probability vector (PV).
Throughout a run, PBIL will generate whole populations of solutions, and the best
solutions in the population are used to evolve the PV from which new solutions are
generated as described in Section 2.5.4. At the end of a run, the solution that is
generated from the evolved PV is the solution of interest to us. We call this solution
the Maximum likelihood Solution (MLS) [116]. The solution is called the maximum
likelihood solution because if we run PBIL many times the value of MLS is most
likely to be the average solution fitness we will observe as it will come up a bit more
often than other solutions. Although we might not know the exact distributions of
the values or fitness of solutions that will be generated by PBIL. However, if PBIL is
run many times, we will expect MLS to show up more often than all other solutions.
In essence, we can refer to MLS as the mode of the distribution of solutions that will
be generated by PBIL over the many runs. MLS, therefore, is the maximum likeli-
hood estimate of what solution we will generate and hence, its fitness is a maximum
likelihood value we will get. The probability of obtaining MLS is defined as:

P (x) =
m∏
i=1

pi(xi) (5.3)

Because the PV in PBIL is a uni-variate model, i.e. it assumes full independence of
problem variables the probability of MLS: P(MLS) is the product of the probabilities
of the individual properties. Although the probability of obtaining MLS is minimal,
MLS has a whole region around it that is quite similar to it. Taking the region into
consideration gives us a large concentration of probabilities. It should be noted that
the MLS for an evaluation function is only obtained from the evolved probability
vector at the end of a run after solutions have been evaluated using an evaluation
function In Figure 5.5, we show how the MLS evolves throughout a run. We plot the
MLS over the number of generations against the best solution found in the population
for each generation. The red line indicates the best solution whiles the blue line shows
the evolution of MLS for a run.
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Figure 5.5: Evolution of MLS plotted against the best solution in the population

We employ MLS for comparison to see if we can get an estimate consistent with results
obtained by an evaluation function when we run the experiments many times. To
allow for comparison of results, we evaluate MLS with the same 5000 scenarios used
to evaluate the best solutions found for the static and dynamic evaluation functions.

In Table 5.7, we show the number of wins and ties recorded between each of the
evaluation functions and their respective MLS for all 30 problems of each problem
configuration. The highest wins or ties are highlighted in bold for each problem
configuration. The Maximum-Likelihood Solution is represented as StaticMLS and
DynamicMLS for static and dynamic evaluations, respectively. Each problem config-
uration is defined by movement rate mr, the number of facilities m and the number
of customer n.
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Table 5.7: Wins recorded between evaluations and their respective MLS

mr m n Static StaticMLS Ties Dynamic DynamicMLS Ties
0.25 10 100 0 0 30 0 5 25
0.5 10 100 0 1 29 1 1 28

0.75 10 100 0 0 30 0 2 28
1 10 100 0 0 30 0 0 30

0.25 10 500 0 0 30 1 0 29
0.5 10 500 0 0 30 2 1 27

0.75 10 500 0 0 30 1 0 29
1 10 500 0 0 30 1 1 28

0.25 10 1000 0 0 30 0 2 28
0.5 10 1000 0 0 30 1 2 27

0.75 10 1000 0 0 30 0 0 30
1 10 1000 0 0 30 0 0 30

0.25 20 100 7 1 22 16 4 10
0.5 20 100 4 1 25 8 4 18

0.75 20 100 7 0 23 12 0 18
1 20 100 8 0 22 10 0 20

0.25 20 500 8 2 20 14 2 14
0.5 20 500 7 3 20 10 3 17

0.75 20 500 10 0 20 12 1 17
1 20 500 10 0 20 11 0 19

0.25 20 1000 7 2 21 13 4 13
0.5 20 1000 11 2 17 14 3 13

0.75 20 1000 11 1 18 11 2 17
1 20 1000 11 0 19 15 0 15

0.25 50 100 27 3 0 28 2 0
0.5 50 100 29 1 0 30 0 0

0.75 50 100 30 0 0 30 0 0
1 50 100 30 0 0 30 0 0

0.25 50 500 30 0 0 30 0 0
0.5 50 500 30 0 0 30 0 0

0.75 50 500 30 0 0 30 0 0
1 50 500 30 0 0 30 0 0

0.25 50 1000 30 0 0 30 0 0
0.5 50 1000 30 0 0 30 0 0

0.75 50 1000 30 0 0 30 0 0
1 50 1000 30 0 0 30 0 0

0.25 100 100 20 10 0 2 27 1
0.5 100 100 8 22 0 1 29 0

0.75 100 100 2 28 0 0 30 0
1 100 100 0 29 1 0 30 0

0.25 100 500 14 15 1 2 28 0
0.5 100 500 8 22 0 3 27 0

0.75 100 500 4 25 1 2 28 0
1 100 500 0 30 0 1 29 0

0.25 100 1000 9 21 0 5 25 0
0.5 100 1000 10 20 0 5 25 0

0.75 100 1000 5 25 0 5 25 0
1 100 1000 3 27 0 1 29 0
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From Table 5.7, we observe that a higher number of ties is achieved for both static
and staticMLS and dynamic and dynamicMLS on problems with 10 and 20 facilities.
We also observe that for problem configurations with 50 facilities, both static and dy-
namic evaluations achieve a higher number of wins than their respective MLS. How-
ever, on the more significant problems with 100 facilities, we observe that staticMLS

and dynamicMLS both achieve a higher number of wins than static and dynamic eval-
uations respectively. The good performance of MLS for larger number of facilities
in both evaluation functions can be explained by the fact that when the search space
is larger such as in the case of a larger number of facilities, MLS achieves almost
consistent results over the 20 runs as it is the most likely solution to be obtained for
each run of the algorithm. However, due to the stochastic nature of the algorithm,
results obtained for static and dynamic may vary for each run of the algorithm es-
pecially for problems with a larger number of facilities which have a larger search
space. This is because the search space is too large to be adequately explored by the
algorithm. For smaller number of facilities which have a smaller search spaces, static
and dynamic evaluations both obtain consistent results as the search space can be
adequately explored by the algorithm to find the optimal or near-optimal solution
on each run of the algorithm. MLS on the other hand will almost always return
the mode solution of the distribution of solutions and this might not necessary be
the optimal or near-optimal solution. Hence we observe that on smaller number of
facilities, static and dynamic achieves better or similar results to MLS. However on
problems with a larger number of facilities, MLS is observed to obtain the better
results for both static and dynamic evaluations.

The results observed in Table 5.7 shows that when we employ PBIL to solve more
significant problems having 100 facilities, using the MLS offers better results than
the results obtained with static and dynamic evaluations. This means that for much
larger problems, we can employ the MLS as a measure of making decisions to locate
facilities without having to run many experiments.

To understand how the performance of staticMLS and dynamicMLS translates into
percentage cost savings we study Figure 5.6 and 5.7 grouped according to DC-LA
problem parameters of mr, m and n.
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(a) Grouped by movement rate
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(b) Grouped by number of facilities
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Figure 5.6: Percentage difference between the static and staticMLS
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(b) Grouped by number of facilities
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Figure 5.7: Percentage difference between the dynamic and dynamicMLS
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From both Figure 5.6 and 5.7 we observe an improve cost savings for a 100 number
facilities when MLS is employed for both static and dynamic evaluations. We see that
for static, MLS achieves an improved cost savings of about 0.77% 3 for a 100 facilities
in Figure 5.6b whiles for dynamic, MLS is seen to achieve an improve cost savings of
about 0.75% for a 100 facilities in Figure 5.7b. The results observed corresponds to
the observation made in Table 5.7, which affirms the choice of MLS as a good measure
for making decisions about locating facilities on problems with 100 facilities.

5.4 Chapter Summary

Our focus in this Chapter was to determine if there was value in simulating the
movement of customers when deciding to locate facilities to service the changing
distributions of customers. To do this, we run a set of experiments on the 1440
DC-LA problem instances generated in Section 4.3 by using PBIL 2.5.4 with the
static and dynamic evaluation functions described in Section 4.2.2. The dynamic
evaluation takes into consideration the customers movements between cities over the
defined period. The static evaluation function assumes that customers do not make
movements between cities over time and also forms the baseline for comparison with
the dynamic evaluation method.

We observed that dynamic evaluation obtained globally better results than the static.
However, we also noted that the performance of the dynamic evaluation function
in-terms of wins and cost savings was highly dependent on the parameters of the
problem. By analysing the problem parameters of movement rate mr, the number of
facilities m and the number of customer n we observed that when customers make
frequent movement over the defined horizon, the dynamic evaluation achieves higher
cost savings. We also observe that the greater the number of facilities, the more cost
savings are achieved by the dynamic evaluation. Finally, for the number of customers,
we observe that the dynamic evaluation favoured a smaller number of customers.

It is also important to note that the computational time of the dynamic method can be
extremely costly, especially in problems with a high frequency of customer movement,
and a large number of facilities and customers. This computation overhead should be
alleviated with the improvement in results obtained and should be taken into account
when facing a given problem.

The performances of the dynamic and static evaluation functions to the generated
benchmark raise the question of the computational effort one should dedicate to each
solution evaluation in a stochastic environment concerning the global budget allocated
to a search and the gain in performances. In the next Chapter, we will investigate
a new technique to help find the right balance between the number of simulations
required and computational time complexity of the dynamic evaluation method. We
will then aim at relating this problem to a real-world application.

3Percentage cost savings recorded in this work translates into millions in cost savings over tmax
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Chapter 6

Racing Strategy for the
Dynamic-Customer
Location-Allocation Problem

6.1 Introduction

Experimental results in Chapter 5 showed that the dynamic evaluation function of-
fered better results when compared to the static evaluation function, especially when
customers were assumed to make frequent movement over the defined horizon. How-
ever, the performance of the dynamic evaluation function comes with a high compu-
tational cost. The high computational cost is due to a large number of simulations
required by the dynamic evaluation function to compare solutions in a population,
and a large number of simulations often leads to a considerable computational effort
been wasted at the early stages of the search on poor solutions. To help reduce the
number of simulations required to compare solutions in a population, we explore the
concept of iterated racing [115]. Racing uses a statistical test to compare solutions
in the population after they have been evaluated against a number of simulations.
Racing was first proposed in machine learning to deal with the problem of model se-
lection [115]. Racing was then adapted by [17] for the configuration of an optimisation
algorithm. In this Chapter, we seek to adapt the concept of racing to help reduce the
number of simulations required to compare solutions in a population. The work pre-
sented in this Chapter has been accepted for publication in Proceedings of the 2020
Institute of Electrical and Electronics Engineers (IEEE) Congress on Evolutionary
Computation (IEEE CEC 2020), 19-24th July 2020, Glasgow, UK.

This Chapter is organised as follows: In Section, 6.2 we introduce the concept of
racing and how it has been used for parameter configurations. Then in Section 6.3,
we discuss our adaptation of racing as a selection method for tackling DC-LAP. Finally
Section 6.4 discusses experiments and results.
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6.2 Racing

The process of model selection is to find a model that best describe an observed
data. However, finding the model with the lowest generalisation error (a measure of
how accurately a model can predict observation of data) can be a computationally
expensive process, especially if the number of models is significant. Optimisation
algorithms such as hill climber and genetic algorithms have been employed in model
selection [17]; however, these algorithms sometimes end up with a model that is
arbitrarily worse than the best. To tackle the high computational effort expended in
finding the best model to describe a set of data, the concept of racing was developed
in [115] by Maron et.al. Racing worked by testing the various models in parallel,
one test point at a time. In this way, a running average could be maintained for
each model’s generalisation error. The average generalisation error is an estimate of
the model’s exact generalisation error had it been tested on all of the test points.
By using a statistical bound, the closeness of the estimated generalisation error to
the exact error could be determined. After a small number of test points, the best
models, i.e. the models with the lowest generalisation error can be distinguished from
the worst models (i.e. models with the highest generalisation error). The models that
are significantly worse than the best ones are discarded from the race. A race here
is a single iteration of the search process. The more test points that are observed,
the tighter the estimated generalisation error is to the exact error. Hence many
models can be differentiated from each other and discarded, thereby concentrating
the computational effort on differentiating among the better model [115].

The concept of racing was later adapted in [17] as Iterated racing to automatically
configure optimisation algorithms. The process of iterated racing primarily involves
three steps: (1) sampling new configurations according to a particular distribution,
(2) selecting the best configurations from the newly sampled ones utilising racing,
and (3) updating the sampling distribution in order to bias the sampling towards the
best configuration. These three actions are iterated until a termination condition is
reached.

From a general perspective, an iterated racing approach is any process that iterates
the generation of candidate configurations with some form of racing algorithm to se-
lect the best configurations. Hence a search process of an iterated racing approach
could be, in principle, very different from the current use of finding the best candidate
configurations and instead make use for example, of local searches, population-based
algorithms or surrogate models. The essential element here is the appropriate combi-
nation of a search process with an evaluation that takes the underlying stochasticity
of the evaluation into account [17]. Based on this reasoning, we are motivated to
adopt the concept of iterated racing to the problem of Dynamic-Customer Location-
Allocation (DC-LA) problem to help reduce the total number of evaluations which
will help to reduce the considerable computational effort expended by the dynamic
evaluation function. In Section 6.3, we describe our adaptation of racing to DC-LAP.
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6.3 Adaptation of Racing to Dynamic Customer

Location-Allocation problem

We employ the concept of racing in DC-LAP as a selection process to quickly discard
the statistically worse solutions from the best solutions at the early stages of the search
process thereby concentrating the computational effort on differentiating among the
better solutions. An essential aspect of our adaptation of racing is in the truncation
mechanism which strives to use the least number of simulations to compare solutions
in the population.

In describing our adaptation of racing to DC-LAP, we first define the input parame-
ters:

• A population size P of k solutions

• Smax: defines the maximum number of customer movement simulations per race.
In the situation where solutions become mutually statistically indistinguishable,
the race will continue to evaluate solutions against new simulations until the
maximum number per race Smax is exhausted.

• Smin: minimum number of simulations before running a statistical test.

• A truncation rate µ: Based on the size k of the initial population, the race
terminates when the size of the population P is decreased to µk. µ ∈ {0, 1}

Once the initial population P of k solutions are generated by PBIL, for each race i
every solution x in the population is evaluated on a customer movement scenario Si by
f(Px, Si). Before a statistical test is performed, each solution has to have performed
Smin simulations. We employ the Friedman test described in Section 3.4.1 as the
statistical test for determining statistical differences between the solutions. Once a
statistical difference has been recorded, the solution(s) considered to be statistically
worst when compared to the best solution in the population are removed from the
population. If neither of the terminating criteria for the race has been satisfied,
i.e. Smax or µk, the race continues by generating a new scenario and evaluating
the remaining solutions against the new scenario. After the first statistical test has
been performed using Smin simulations, subsequent statistical tests are performed
more frequently after the single evaluation of all remaining solutions on every new
scenario. After every test, statistically worse solutions from the best solutions are
discarded from the population. Race continues until the size of P is decreased to µk
or Smax is reached.

An example of a race is shown in Figure 6.1. In Figure 6.1 there exist 10 solutions.
At every step of the race, the solutions are evaluated on a single scenario A′ based
on a new attraction rate. After several steps, those solutions that are deemed to
be statistically worse than the best solution in the population are discarded from
the population, and the race proceeds with the surviving solutions. Because the ini-
tial elimination test is essential in performing the statistical test, typically a higher
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number of simulations (A′first) are observed before making the initial statistical test.
Succeeding statistical tests are performed for each (A′each) scenario. The process pro-
ceeds until a termination criterion is reached, i.e. a set minimum number of solutions
in the population is reached, or the set maximum number of scenarios is exhausted,
or a set number of solutions have been evaluated. Each node is the evaluation of a
solution on a scenario. ‘v’ indicates that no statistical test is performed, ‘-’ indicates
that the test removed at least one solution from the population, ‘=’ indicates that
the test did not remove any solutions from the population. In the example below,
A′first = 5 and A′each = 1.

Figure 6.1: Racing for solution selection.

After the race, PBIL updates the probability vector PV with the surviving solutions.
PBIL then generates new solutions to reset the population to its initial value of k. So-
lutions surviving from the previous generation are carried on to the next generation.
Because the surviving solutions are not evaluated again on the same customer move-
ment scenarios, it allows for the algorithm to save simulations in further generations.
Algorithm 11 shows the pseudo-code of racing.
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Algorithm 11 Racing as a selection method

1: k : population size
2: µ : truncation rate
3: Smin : minimum number of simulations before running statistical test
4: Smax : maximum number of simulation per race
5: Generate initial population at random of k solutions P = {x1, x2, ..., xk}
6: Generate set of customer movement scenarios S = {S1, ..., Smax}
7: while termination criterion not reached do
8: i=0;
9: while |P|> µk AND i < Smax do
10: i = i+ 1
11: for j= 1 to k do

Evaluate Fij = f(xj, Si)
12: end for
13: if i ≥ Smin then
14: Perform statistical test on Fij

15: Remove from P all xj that are significantly worse than the best individual
in the population.

16: end if
17: end while
18: Update probability vector of PBIL with remaining solutions.
19: Generate new solution from PBIL probability vector.
20: Add new solutions to P until the size of |P|= k
21: end while

6.4 Experimental Setup

For our experiment, we use the generated 1440 DC-LA problem instances used in
Chapter 5. Parameter settings for PBIL are the same presented in Table 5.1 however
we replace the truncation size of 0.5 with Smin or µk. The parameters for racing are
the default values presented in the literature [104] and are presented in Table 7.1.
Experiments were performed on an Intel(R) Xeon(R) E5620 @2.40GHz cluster.

Table 6.1: Racing parameters

Parameter Description Value
k Population size 50
µ Truncation rate 0.5
Smin Minimum number of iterations per race 20
Smax Maximum number of iterations per race 1000
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6.5 Experimental Results and Analysis

To give better clarity to the performance of racing, we compare racing with the static
and dynamic evaluation functions on the 1440 instances.

In Table 6.2, we show the average ranking of static, dynamic, and racing across all
thirty instances for each problem configuration. The best average rank among the
three evaluation functions on a problem configuration is highlighted in bold.

Table 6.2: Average ranking of static, dynamic and racing overall 48 problem config-
urations

mr m n Static Dynamic Racing
0.25 10 100 2.17 1.1 1.27
0.5 10 100 1.57 1.27 1.43

0.75 10 100 1.37 1.23 1.17
1 10 100 1 1 1.07

0.25 10 500 1.77 1.33 1.1
0.5 10 500 1.4 1.4 1.13

0.75 10 500 1.2 1.1 1.07
1 10 500 1.03 1.07 1.03

0.25 10 1000 1.5 1.13 1.03
0.5 10 1000 1.27 1.27 1

0.75 10 1000 1.1 1.13 1.1
1 10 1000 1 1.1 1.13

0.25 20 100 2.6 1.6 1.57
0.5 20 100 1.93 1.87 1.6

0.75 20 100 1.47 1.8 1.4
1 20 100 1.17 1.57 1

0.25 20 500 2 1.67 1.33
0.5 20 500 1.57 1.9 1.33

0.75 20 500 1.27 1.87 1.07
1 20 500 1.3 1.57 1

0.25 20 1000 2.27 1.83 1.17
0.5 20 1000 1.97 1.87 1.23

0.75 20 1000 1.43 1.7 1.07
1 20 1000 1.2 1.53 1

0.25 50 100 3 1.4 1.57
0.5 50 100 2.9 1.53 1.53

0.75 50 100 2.6 2.1 1.23
1 50 100 2.3 2.33 1.3

0.25 50 500 2.93 1.77 1.3
0.5 50 500 2.73 2 1.27

0.75 50 500 2.23 2.27 1.5
1 50 500 2.3 2.47 1.2

0.25 50 1000 2.83 2 1.17
0.5 50 1000 2.63 2.07 1.3

0.75 50 1000 2.43 2.4 1.17
1 50 1000 2.43 2.4 1.17

0.25 100 100 3 1.73 1.27
0.5 100 100 2.93 2 1.07

0.75 100 100 2.57 2.27 1.13
1 100 100 2.47 2.33 1.17

0.25 100 500 2.97 1.97 1.07
0.5 100 500 2.7 2.2 1.07

0.75 100 500 2.37 2.53 1.1
1 100 500 2.53 2.4 1.03

0.25 100 1000 2.93 2.07 1
0.5 100 1000 2.57 2.33 1.1

0.75 100 1000 2.23 2.53 1.23
1 100 1000 2.5 2.37 1.13
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From Table 6.2, it can be observed that racing achieves the best mean ranks for
forty out of the forty-eight problem configurations. In Chapter 5, we established
through experimentation that the dynamic evaluation offers better performance than
the static approach. Therefore to have a better insight into the performance of racing
when compared to the dynamic evaluation, we present a summary of wins and ties
of racing against the dynamic evaluation in Table 6.3. In Table 6.3 each problem
configuration has thirty problem instances. The wins obtained by racing and dynamic
for each problem configuration is presented under racing and dynamic, respectively.
Ties recorded between the two evaluation functions for each problem configurations
are presented under Ties. For each problem configuration, the highest wins or ties
are highlighted in bold.

Table 6.3: Wins, Losses and Ties of racing and dynamic evaluations grouped by the
configuration of DC-LA problem

mr m n Racing Dynamic Ties
0.25 10 100 3 8 19
0.5 10 100 3 9 18

0.75 10 100 5 4 21
1 10 100 0 1 29

0.25 10 500 7 2 21
0.5 10 500 6 2 22

0.75 10 500 2 1 27
1 10 500 1 1 28

0.25 10 1000 2 1 27
0.5 10 1000 5 0 25

0.75 10 1000 2 3 25
1 10 1000 1 2 27

0.25 20 100 14 12 4
0.5 20 100 14 10 6

0.75 20 100 12 6 12
1 20 100 9 0 21

0.25 20 500 13 7 10
0.5 20 500 15 6 9

0.75 20 500 13 1 16
1 20 500 9 0 21

0.25 20 1000 16 3 11
0.5 20 1000 17 4 9

0.75 20 1000 12 1 17
1 20 1000 9 0 21

0.25 50 100 12 17 1
0.5 50 100 15 14 1

0.75 50 100 26 3 1
1 50 100 25 5 0

0.25 50 500 22 8 0
0.5 50 500 24 6 0

0.75 50 500 23 7 0
1 50 500 26 4 0

0.25 50 1000 26 4 0
0.5 50 1000 24 6 0

0.75 50 1000 28 2 0
1 50 1000 27 3 0

0.25 100 100 22 8 0
0.5 100 100 28 2 0

0.75 100 100 27 2 1
1 100 100 27 3 0

0.25 100 500 28 2 0
0.5 100 500 28 2 0

0.75 100 500 30 0 0
1 100 500 29 0 1

0.25 100 1000 30 0 0
0.5 100 1000 29 1 0

0.75 100 1000 29 1 0
1 100 1000 28 2 0
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From Table 6.3, we observe that the maximum number of wins is obtained by racing
on problems with a more significant number of facilities. Problems with a larger
number of facilities have a more extensive search space; this means that racing can
effectively eliminate weak solutions from the population at the early stages of the
search which helps to focus the search on good solutions to the problem. A look
at the problems configurations with a smaller number of facilities shows more ties
recorded between racing and dynamic evaluation. However, racing is seen to achieve
more wins on average than the dynamic evaluation.

To know if there exists a statistical difference between the results obtained by static,
dynamic and racing we perform a statistical test on the results in Section ?? using
the Friedman test described in Section 3.4.1.

6.5.1 DC-LA problem parameters influence on results

Table 6.4 shows the average ranking of static, dynamic and racing evaluations overall
1440 problem instances. Here, the lower the average ranking, the better the overall
results obtained by an evaluation function.

Table 6.4: Average Rankings of the algorithms

Algorithm Ranking
Static 2.38
Dynamic 2.09
Racing 1.52

p-value computed by Friedman Test: 2.19E-10

In Table 6.4, racing is seen to have achieved the best average rank of 1.52, followed
by the dynamic evaluation and then the static evaluation. To know if there is a
significant difference between the results, we examine the p-value obtained by the
Friedman test. Here the p-value of 2.19E − 10 shows that there is a significant
difference between the results obtained. We, therefore, apply the Holms procedure
described in Section 3.4.1 as a post-hoc test to obtain p-values for each evaluation
with α = 0.05, which will help to determine where the significant differences exist.
We present the results of Holm’s test in Table 6.5. The Holm’s adjusts the value of α,
which is the significance level in a step-down manner. Holm’s step-down procedure
starts with the most significant p-value. If the p-value of an evaluation function is
below α/(k−1), we conclude that there is a significant difference between the selected
evaluation function and the control algorithm. In Table 6.5, the evaluation functions
are presented under algorithm and their corresponding p-value is presented under p.
Because racing achieved the least mean rank in Table 6.4, racing is used as the control
algorithm on which to compare static and dynamic evaluation functions for statistical
differences in results. If an evaluation function is deemed to be statistically different
in results to racing, that evaluation function is highlighted in bold.
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Table 6.5: Holm / Hochberg Table for α = 0.05

i algorithm p Holm
2 Static 1.70E-118 0.025
1 Dynamic 2.49E-53 0.05

From the Table, both static and dynamic evaluations are highlighted in bold signifying
a significant difference between racing and static and racing and dynamic. It is,
therefore, safe to conclude that racing obtains globally better results than static and
dynamic evaluations.

To understand how the problem parameters influence the performance of racing or
on what problem configurations racing performs better than static and dynamic, we
analyse the results obtained according to the problem parameters of movement rate
mr, the number of facilities m and number of customers n.

6.5.2 Movement Rate (mr)

Firstly, we examine the performance of racing according to the movement rate (mr)
in Table 6.6. In Table 6.6 the different movement rates are presented under mr, the
p-value obtained by the Friedman test for each movement rate is presented under
p-value, α is set to 0.05 as done in Table 6.5. Significance shows whether or not
a statistical difference is attained in results for a particular movement rate between
racing, static and dynamic evaluations. On the movement rates where a statistical
difference is detected, we perform the Holm’s procedure to determine which of the
evaluation functions is statistically different from the control method.

Table 6.6: Grouped by mr

mr p-value Alpha Significance
0.25 1.28E-10 0.05 Yes
0.5 1.05E-10 0.05 Yes

0.75 6.82E-11 0.05 Yes
1 7.71E-11 0.05 Yes

From Table 6.6, it is seen that on all movement rate a statistical difference is detected,
so we perform the Holm’s procedure and presents results in Table 6.7
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Table 6.7: Holm / Hochberg Table for α = 0.05 on mr

i algorithm p Holm
mr0.25

2 Static 2.28E-59 0.025
1 Dynamic 7.89E-07 0.05

mr0.5
2 Static 4.61E-34 0.025
1 Dynamic 5.40E-12 0.05

mr0.75
2 Static 2.87E-20 0.025
1 Dynamic 6.20E-19 0.05

mr1.0
2 Static 3.34E-22 0.025
1 Dynamic 2.67E-19 0.05

From 6.7, we observe that racing achieves statistically better results when compared
to the static and dynamic evaluations on all movement scenarios of customers. In
Section 5.3 where we compared the results of static and dynamic evaluations, we
observed that when customers made little or no movement over the defined period,
the dynamic evaluation obtained mutually indistinguishable results from the static
evaluation showing that the static evaluation was as good an option as dynamic in
such as scenario.

However, the performance of racing shows that even in scenarios where customers
are assumed to make little or no movements over the defined period, racing appears
to achieve significantly better results than the static and dynamic evaluations. The
performance of racing terms from the ability of racing to discard weak solutions from
the population at the early stages of the search thereby focusing the computational
effort on the good solutions in the population to evolve better solutions. To see how
the statistical difference in results achieved by racing translates into cost savings,
we direct our attention to Figure 6.2 and 6.3. Figure 6.2 shows the percentage cost
savings between racing and static evaluation whiles Figure 6.2 shows the percentage
cost savings between racing and dynamic evaluation. Negative values mean cost
savings.
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Figure 6.2: Percentage difference between the racing and static evaluation grouped
by movement rate

From Figure 6.2 we observe that when customers make frequent movements over the
defined period, racing achieves a costs savings of about 6% 1. The cost savings reduces
to about 0.5% when customers are assumed to make little or no movement over the
defined period.
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Figure 6.3: Percentage difference between the racing and dynamic evaluation grouped
by movement rate

1Percentage cost savings recorded in this work translates into millions in cost savings over tmax
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In Figure 6.3, racing is seen to improve on the cost savings achieved by the dynamic
evaluation of up to about 0.5% 2 across all customer movement scenarios. The per-
formance of racing on movement rates shows racing to be the best choice among the
three evaluation functions when consideration is made to the movement of customers
in deciding the locations of facilities.

6.5.3 Number of Facilities (m)

Secondly, we examine the influence of the number of facilities m on the performance
of racing. In Table 6.8 the number of facilities are presented under m, the p-value
obtained by the Friedman test for each facility size is presented under p-value, α is set
to 0.05 as done in Table 6.6. Significance shows whether or not a statistical difference
is attained in results for a particular number of facilities between racing, static and
dynamic evaluations. On the number of facilities where a statistical difference is
detected, we perform the Holm’s procedure to determine which of the evaluation
functions is statistically different from the control method.

Table 6.8: Grouped by m

m p-value Alpha Significance
10 1.21E-02 0.05 Yes
20 7.52E-10 0.05 Yes
50 1.45E-10 0.05 Yes

100 1.56E-10 0.05 Yes

From Table 6.8, we observe that a statistical difference is obtained for all number of
facilities. We, therefore, compute the Holm’s procedure to find where the statistical
difference exists for each number of facilities. The results of the Holm’s procedure is
presented in Table 6.9.

2Percentage cost savings recorded in this work translates into millions in cost savings over tmax
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Table 6.9: Holm / Hochberg Table for α = 0.05 on m

i algorithm p Holm
m10

2 Sim0 9.09E-03 0.025
1 Sim100 9.41E-01 0.05

m20
2 Sim0 1.64E-08 0.025
1 Sim100 2.27E-08 0.05

m50
2 Sim0 2.09E-68 0.025
1 Sim100 3.79E-24 0.05

mr100
2 Sim0 7.21E-94 0.025
1 Sim100 1.69E-50 0.05

Results obtained in Table 6.9 shows that there exists a statistical difference in re-
sults between racing which is the control method and the two evaluation functions
(static and dynamic) on 20, 50 and 100 facilities. However, for 10 facilities, racing
is mutually statistically indistinguishable from dynamic evaluation, but racing is sta-
tistically different in results when compared to the static evaluation the results in
Table 6.9 shows racing to be favourable to a more significant number of facilities. To
understand how the performance of racing translates into cost savings concerning the
number of facilities, we examine Figures 6.4 and 6.5. Figure 6.4 shows the percentage
difference in cost savings between racing and the static evaluation whiles Figure 6.5
shows the percentage in cost savings achieved by the dynamic evaluation. Negative
values mean cost savings.
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Figure 6.4: Percentage difference between the racing and static evaluation grouped
by number of facilities

In Figure 6.4, we observe that for a smaller number of facilities, racing achieves a
cost savings of about 2.6% and increases to about 6% for a more significant number
of facilities when compared to the static evaluation.
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Figure 6.5: Percentage difference between the racing and dynamic evaluation grouped
by number of facilities

In Figure 6.5, racing is observed to improve on the cost savings achieved by the
dynamic for a smaller number of facilities of about 0.125% and this increases to
about 0.55% for a more significant number of facilities.
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6.5.4 Number of Customers(m)

Finally, we examine the influence the number of customers has on the performance
of racing. In Table 6.10 the number of customers are presented under n, the p-value
obtained by the Friedman test for each facility size is presented under p-value, α is set
to 0.05 as done in Table 6.6. Significance shows whether or not a statistical difference
is attained in results for a particular number of customers between racing, static
and dynamic evaluations. On the number of customers where a statistical difference
is detected, we perform the Holm’s procedure to determine which of the evaluation
functions is statistically different from the control method.

Table 6.10: Grouped by n

n p-value Alpha Significance
100 1.28E-10 0.05 Yes
500 9.13E-11 0.05 Yes

1000 1.09E-10 0.05 Yes

From Table 6.10, we observe that a statistical difference is obtained for all number of
customers. We, therefore, compute the Holm’s procedure to find where the statistical
difference exists for each number of customers. The results of the Holm’s procedure
is presented in Table 6.11.

Table 6.11: Holm / Hochberg Table for = 0.05 on n

i algorithm p Holm
n100

2 Static 1.77E-41 0.025
1 Dynamic 1.34E-08 0.05

n500
2 Static 3.88E-39 0.025
1 Dynamic 3.30E-24 0.05

n1000
2 Static 1.42E-41 0.025
1 Dynamic 3.60E-27 0.05

Results obtained in Table 6.11 shows that there exists a statistical difference in results
between racing which is the control method and the two evaluation functions (static
and dynamic) on all number of customers. To understand how the performance of
racing translates into cost savings concerning the number of customers, we examine
Figures 6.6 and 6.7. Figure 6.6 shows the percentage difference in cost savings between
racing and the static evaluation whiles Figure 6.7 shows the percentage in cost savings
achieved by the dynamic evaluation. Negative values mean cost savings.
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Figure 6.6: Percentage difference between the racing and static evaluation grouped
by number of customers

In Figure 6.6, racing achieves a cost savings of about 6% for a smaller number of cus-
tomers, and this decreases to about 0.8% for a more significant number of customers
when compared to the static evaluation.
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Figure 6.7: Percentage difference between the racing and dynamic evaluation grouped
by number of customers

In Figure 6.7, racing is observed to have improved on the savings achieved by dynamic
evaluation with an improved cost savings of about 0.55% for a smaller number of
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customers and decreases to about 0.35% for a more significant number of customers.
The improved cost savings of racing makes it the best evaluation function among the
three evaluation functions concerning the number of customers.

Results discussed in this Section shows that racing achieves improved cost savings
when compared to the dynamic evaluation function concerning all problem parameters
of movement rate mr, the number of facilities m and number of customers n. An
important reason of adapting racing to our problem was to help reduce the number
of simulations needed to efficiently compare solutions in a population during the
search process thereby reducing the considerable computational effort that comes
with evaluating solutions with many simulations as done in the dynamic evaluation.
We, therefore, examine the computational effort expanded by racing in terms of time
on the DC-LA problem instances in Section 6.5.5.

6.5.5 Computational Time Complexity

In this Section, we examine the computational time of racing on problem instances
based on the problem parameters of DC-LAP. Table 6.12 shows the average com-
putational time taken by racing and dynamic evaluation for each of the 48 DC-LAP
problem configurations. The various movement rates are presented under mr, number
of facilities under m, number of customers under n, computational time of dynamic is
presented under Dynamic and computational time of racing under Racing. The ratio
between time obtained by dynamic and racing is presented under Dynamic/Racing.
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Table 6.12: Computational times in seconds of Racing and Dynamic for each problem
configuration

Time (s)
mr m n Dynamic Racing Dynamic/Racing
0.25 10 100 100.99 23.49 4.3
0.5 10 100 56.88 14.06 4.04

0.75 10 100 45.69 11.69 3.91
1 10 100 33.37 8.98 3.71

0.25 10 500 493.43 103.59 4.76
0.5 10 500 275.83 57.6 4.79

0.75 10 500 220.5 46.53 4.74
1 10 500 159.39 33.87 4.71

0.25 10 1000 999.69 205.38 4.87
0.5 10 1000 547.91 114.43 4.79

0.75 10 1000 441.84 91.78 4.81
1 10 1000 318.82 66.46 4.8

0.25 20 100 121.45 26.64 4.56
0.5 20 100 65.48 14.83 4.41

0.75 20 100 51.22 11.91 4.3
1 20 100 35.77 8.59 4.17

0.25 20 500 595.03 125.79 4.73
0.5 20 500 319.39 66.87 4.78

0.75 20 500 249.18 52.71 4.73
1 20 500 171.52 36.45 4.71

0.25 20 1000 1191.34 246.98 4.82
0.5 20 1000 628.33 131.78 4.77

0.75 20 1000 498.67 103.6 4.81
1 20 1000 342.57 71.43 4.8

0.25 50 100 172.44 37.06 4.65
0.5 50 100 85.36 19.01 4.49

0.75 50 100 64.49 14.76 4.37
1 50 100 41.44 9.83 4.22

0.25 50 500 865.87 179.79 4.82
0.5 50 500 427.85 89.14 4.8

0.75 50 500 322.91 67.83 4.76
1 50 500 203.44 42.84 4.75

0.25 50 1000 1723 354.54 4.86
0.5 50 1000 845.15 177.22 4.77

0.75 50 1000 645.87 134.62 4.8
1 50 1000 408.19 84.95 4.81

0.25 100 100 241.85 51.1 4.73
0.5 100 100 112.95 24.55 4.6

0.75 100 100 82.89 18.49 4.48
1 100 100 49.69 11.45 4.34

0.25 100 500 1225.31 253.42 4.84
0.5 100 500 576.5 119.88 4.81

0.75 100 500 423.63 88.94 4.76
1 100 500 248.26 52.15 4.76

0.25 100 1000 2467.96 506.33 4.87
0.5 100 1000 1159.61 241.54 4.8

0.75 100 1000 857.84 178.6 4.8
1 100 1000 501.62 103.87 4.83

114



From Table 6.12, we observe that as customers make frequent movement over time,
the average computational time of racing is 4.8 times lower than the average time
recorded by the dynamic evaluation. Also, as customers make little or no movement
over time, the average time recorded by racing is 4.5 times lower than the average
time recorded by the dynamic evaluation.

For the number of facilities, we observe that on the smallest number of facilities, the
average time recorded by racing is 4.5 times lower than the average time recorded
by the dynamic evaluation while the average time recorded by racing on the most
significant number of facilities is 4.7 times lower than the average time recorded by
dynamic evaluation.

For the number of customers, we observe that on the smallest number of customers,
the average time recorded by racing is 4.3 times lower than the average time recorded
by the dynamic evaluation while the average time recorded by racing on the most
significant number of customers is 4.8 times lower than the average time recorded by
the dynamic evaluation.

The improved computational time of racing can be attributed to the ability of racing
to discard weak solutions at the beginning of the search process through the use of
statistical tests to compare solutions in the evolutionary framework. This approach
allows simulations to be performed iteratively until a statistical difference is reached,
which ensures that the minimum number of simulations is performed to detect sta-
tistical difference to support solution selection. On the other hand, due to the larger
number of simulations required by the dynamic approach, a considerable effort is of-
ten wasted in the early stages of the search process on weak solutions. The waste of
effort and a large number of simulations all contribute to the expensive computational
cost of the dynamic evaluation, which is on average 4.5 times higher than the average
time recorded by racing.

For all problem parameters, the ratio between the variance in computational time
recorded for racing is 24 times lower than the variance in computational time recorded
by the dynamic. The variance shows that the computational time recorded for racing
on problem configurations are relatively closer to the mean recorded time than for
dynamic evaluation. On average racing employs about 21 simulations within each
race of a run to quickly discard weak solutions from the population. The use of
the minimum amount of simulation to discard weak solutions accounts for the low
variance in the computational costs recorded for racing.

In this Section, we examined the computational time complexity of racing and com-
pared it to that of the dynamic evaluation. Results showed that racing achieved
improved costs savings over the dynamic evaluation. The improved costs savings by
racing was achieved at an average of about 4.5 times less the computational time
taken by the dynamic evaluation. The improvement of racing in both costs savings
and computational time makes establishes racing as the best evaluation amongst the
three evaluations for deciding the location of facilities concerning the movement of
customers.
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Even though we achieve an improvement in computational time with racing, we still
run experiments many times in order to better assess the results obtained by racing.
We, therefore, explore the concept of the Maximum likelihood solution (MLS) as we
did in Section 5.3.6 for dynamic and static to see if we can avoid making many runs
of racing on a problem instance to save time.

6.5.6 Maximum-Likelihood Solution (MLS)

In Table 6.13, we show the number of wins and ties recorded between racing and
the MLS for all 30 problems of each problem configuration. The highest wins or
ties are highlighted in bold for each problem configuration. The Maximum-Likelihood
Solution is represented as Racing MLS. Each problem configuration is defined by
the movement rate of mr, the number of facilities m and the number of customer n.

From Table 6.13, we observe that on problem configurations with 10, 20 and 50
facilities, racing achieves the greater number of wins. In Table 5.7 of Chapter 5,
we observed that a greater number of ties was recorded for problem configurations
with 10 and 20 facilities between static and dynamic and their respective MLS. The
ability of racing to achieve more wins on the same number of facilities where static
and dynamic recorded more ties when compared to their respective MLS affirms an
improved performance of racing over static and dynamic evaluations.

Similar to observations made in Table 5.7, racingMLS achieves a greater number of
wins over racing for problem configurations with 100 facilities. The good performance
of MLS on the larger number of facilities can be explained by the fact that when
the search space is larger such as in the case of a larger number of facilities, MLS
achieves almost consistent results over the 20 runs as it is the most likely solution
to be obtained for each run of the algorithm. However, due to the stochastic nature
of the algorithm, results obtained for racing may vary for each run of the algorithm,
especially for problems with a larger number of facilities which have a larger search
space. This is because the search space is too large to be adequately explored by the
algorithm. The consistent performance of MLS on the problem configuration with 100
facilities affirms the choice of using MLS as a measure for making decisions to locate
facilities to service the changing demands of customers over time without having to
run many experiments.
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Table 6.13: Recorded wins and times between racing and racingMLS on problem
configurations

mr m n Racing RacingMLS Ties
0.25 10 100 19 3 8
0.5 10 100 17 3 10

0.75 10 100 19 0 11
1 10 100 23 0 7

0.25 10 500 24 0 6
0.5 10 500 21 0 9

0.75 10 500 24 0 6
1 10 500 27 0 3

0.25 10 1000 21 0 9
0.5 10 1000 24 0 6

0.75 10 1000 23 1 6
1 10 1000 25 0 5

0.25 20 100 21 4 5
0.5 20 100 18 8 4

0.75 20 100 21 1 8
1 20 100 21 0 9

0.25 20 500 21 1 8
0.5 20 500 22 1 7

0.75 20 500 21 0 9
1 20 500 24 0 6

0.25 20 1000 21 2 7
0.5 20 1000 23 1 6

0.75 20 1000 23 1 6
1 20 1000 22 0 8

0.25 50 100 18 11 1
0.5 50 100 18 11 1

0.75 50 100 30 0 0
1 50 100 30 0 0

0.25 50 500 29 1 0
0.5 50 500 30 0 0

0.75 50 500 30 0 0
1 50 500 30 0 0

0.25 50 1000 30 0 0
0.5 50 1000 30 0 0

0.75 50 1000 30 0 0
1 50 1000 30 0 0

0.25 100 100 0 30 0
0.5 100 100 0 30 0

0.75 100 100 0 30 0
1 100 100 1 29 0

0.25 100 500 3 27 0
0.5 100 500 2 28 0

0.75 100 500 3 27 0
1 100 500 2 28 0

0.25 100 1000 3 27 0
0.5 100 1000 5 25 0

0.75 100 1000 2 27 1
1 100 1000 3 27 0

To observe how the performance of racingMLS translates to cost savings, we study
Figure 6.8.
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(a) Grouped by movement rate
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(b) Grouped by number of facilities
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(c) Grouped by number of customer

Figure 6.8: Percentage difference between the racing and racingMLS
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From Figure 6.8, we observe that racingMLS achieves an improved cost savings of
about 0.63% on problem configurations with 100 facilities. The improved cost savings
of racingMLS on the larger number of facilities (100) correlates to the performance
of dynamicMLS and staticMLS for the same number of facilities. The performance of
racingMLS affirms the choice of MLS to help make decisions about locating facilities
without having to run many experiments on problem instances with a significant
number of facilities.

6.6 Chapter Summary

In Chapter 5, we explored the dynamic evaluation in the context of simulation-based
optimisation to tackle the problem of DC-LA. Although the dynamic evaluation
achieved better costs savings when compared to the static evaluation function, the
dynamic evaluation came with a high computational cost due to a large number of
simulations required in the evaluation process.

To help achieve a balance between a large number of simulation and the high compu-
tational cost, we adapted the concept of racing as a selection method to our problem.
Our adaptation of racing uses the Friedman test to compare solutions in PBIL sta-
tistically. Racing allows simulations to be performed iteratively, ensuring that the
minimum number of simulations is performed to detect a statistical difference.

We observed that racing obtained globally better results than the static and dynamic
evaluation functions. In terms of cost savings, racing showed good performance by
achieving improved cost savings over the dynamic evaluation.

We also observed that on average, the computational cost of racing was about 4.5
times lower than the computational cost recorded for the dynamic evaluation. The
improved performance of racing over the dynamic approach and the improved com-
putational time of racing makes it the best out of the evaluation functions to find
robust solutions to DC-LA problem.

Experimentation with the maximum likelihood solution MLS showed that for problem
configurations with a more significant number of facilities (100) we could employ the
MLS to decide the locations of facilities without having to run many experiments;
thereby saving much computational effort.

Having improved on costs savings and computational time with racing, we aim to
apply the concept of racing to solve a real-world scenario of DC-LA problem in the
next Chapter.
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Chapter 7

Application of Racing to
Real-World Dynamic-Customer
Location-Allocation Problem

Experimental results in Chapter 6 showed the effectiveness of our adaption of racing
to tackle the Dynamic-customer location-allocation (DC-LA) problem. The results
showed that racing improved on the costs savings achieved by the dynamic evaluation
in lesser time.

Owing to the successful performance of racing on DC-LA problem, in this Chapter, we
seek to explore the effectiveness of racing on a real-world problem from the telecom-
munication industry using a service telecommunication company as a case study. The
Chapter is structured as follows: In Section 7.1, we describe the real-world problem.
In Section 7.2, we describe the process of generating an instance of a real-world prob-
lem. Experiments are conducted in Section 7.3 and results are discussed in Section
7.4. Finally, the Chapter summary is presented in Section 7.5.

7.1 Problem definition

This Section extends the case study in Section 1.1. The problem scenario is based on
the service company’s operations in the United States. In this problem, we seek to
find optimal locations for establishing facilities out of 100 potential locations within
the United States to service the changing locations of customers. The 100 potential
locations correspond to the 100 most populous cities in the United States. This work
aims to reduce the overall operational costs of establishing facilities to service the
changing demand of customers. We assume that there are ten thousand customers
spread across the United States. The distance in kilometres from a facility to a
customer location by the unit cost of bandwidth per kilometre defines the major
cost of a customer’s connection to a facility. However, other factors add to the final
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operational costs at the end of the defined period. These factors are discussed below:

• Bandwidth: Each facility is assumed to have an initial core bandwidth of one
gigabyte, which attracts a fixed cost. Because a facility is not restricted to the
number of customers, it can service, the bandwidth need of a facility is thus
determined by the total amount of bandwidth demands of customers serviced by
the facility. i.e., if the bandwidth demands of customers currently being served
by a facility are higher than one gigabyte, then an additional one gigabyte is
added to the existing bandwidth. For every additional gigabyte of bandwidth
added, there is an associated fixed cost. The core bandwidth for a facility is
thus updated when required.

At the start of the defined period, every customer is assigned a bandwidth size
based on their demand. For all bandwidth sizes, there is an associated unit cost
of bandwidth per kilometre. There is a 50% chance that a customer will change
the bandwidth size when they make a move from one city to another. For
every bandwidth size change a customer makes, the unit cost of the customer’s
bandwidth is updated with associated bandwidth cost.

• Net location: Net location refers to the customer site or location. When a
customer location already has an established connection from a facility, the
location is termed as an on-net location. If the customer location has no estab-
lished connection from a facility, the location is termed as an off-net location.
At the start of the defined period, each customer location is assumed to be
either on-net or off-net. There exists a 50% chance that a customer may change
locations from an on-net to an off-net location or vice versa when the customer
moves between cities. In the situation that a customer relocates to an off-net
location, the unit cost of bandwidth is increased by 50% in the first month to
cover for new connection costs to the customer location. However, no extra cost
is attracted if the new location of a customer is an on-net location.

• Buck-Up Connection: We assume that 20% of the total customer base have a
backup connection to a new facility in addition to their primary connection to
ensure resilience in connection. When a customer moves between cities, there is
a 20% chance that a customer will request a backup connection which attracts
a cost based on the requested bandwidth size.

7.2 Problem Instance Generation

The data for generating an instance of a problem is provided to us by a telecom-
munications service company whose operations are located in the united states. To
generate, an instance of the problem, we randomly sample 10000 customer locations
from a pool of 120000 customer locations from the United States based on the at-
tractivity of the first one hundred most populous cities in the United States, i.e. the
attraction rate of cities defines the distribution of customers among the cities at the
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start of the defined period. The number of facility locations and customers is defined
together with industry experts from the service telecommunication company. By sam-
pling customer locations from the data pool, we create four problem configurations
based on the movement rates mr. For each problem configuration, we generate 30
problem instances. In all problem instances, the facilities locations remain the same;
however, the customer locations vary for each problem instance as well as the initial
bandwidth for each customer.

7.2.1 Simulation model

In simulating customer movements in the real world, we make some changes and ad-
ditions to the generic simulation model presented in Section 4.2.1 for DC-LA problem
formulation.

For each customer, we generate movement dates according to the movement rate
mr. In the generic simulation model presented Section 4.2.1, when a customer had
to move, the new location of the customer was randomly generated from a normal
distribution with the centre of the new city as the mean of the distribution. In the
real-world problem, the location of the customer is randomly sampled from a list of
existing locations for that city provided by the telecommunication service company.

In the generic simulation model, the cost of servicing a customer was primarily deter-
mined by the Euclidean distance between a facility location and a customer location.
In the real-world problem, the primary cost of servicing a customer is defined by the
distance in kilometres from a facility location to the customer location by the unit
cost of bandwidth a per a kilometre. However, other factors add up to the final cost
of a customer. These factors are whether or not a customer moves to an on-net or off-
net location; whether or not a customer decides to change their existing bandwidth
size; and whether or not the customer decides to take up a back-up connection for
resilience.

Figure 7.1: An example of facilities locations (red dots) and customers locations (blue
dots) distribution in the United States
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7.3 Experimental setup

All associated costs were defined based on industry standards with experts from the
service telecommunications company.

• Facility equipment cost: 50000

• Facility Maintenance cost: 5000

• Initial bandwidth cost for facility: 3000

• Additional bandwidth cost for facility: 3000

• Bandwidth sizes in megabytes: 2, 4, 5, 8, 10, 20, 50, 100, 150, 250, 600, 1000

• Unit cost per kilometer for each bandwidth size respectively: 2.75, 3.12, 3.73,
4.05, 4.58, 6.14, 8.66, 9.66, 13.04, 14.03, 16.75, 19.12

• Off-Net cost: 50% increase of the unit of bandwidth cost for the first month

The costs presented are indicative of monthly costs. Like previous experiments we
set the discount rate r = 0.05. The parameters for racing and PBIL are presented
in Table 7.1. Experiments were performed on an Intel(R) Xeon(R) E5620 @2.40GHz
cluster.

Table 7.1: Racing parameters

Parameter Description Value
k Population size 50
µ Truncation rate 0.5
Smin Minimum number of iterations per race 20
Smax Maximum number of iterations per race 1000

For each problem instance, we evaluate solutions using the static and racing evaluation
functions. For this real-world problem, it will be infeasible to evaluate solutions using
the dynamic evaluation function. This is evident from experiments conducted in
Section 6.4 where we observed that the dynamic evaluation was on average 4.5 times
greater than the time recorded by racing even on the larger problem with 100 facilities
and 1000 customers. It will therefore be infeasible to apply the dynamic evaluation
to a problem of 100 facilities by 10000 customers. Each run is allowed 10000 fitness
evaluations. At the end of each run, the best solution is evaluated using the dynamic
evaluation over 5000 simulations to allow for comparison. We run each evaluation
function 20 times on all problem instances.

7.4 Results and Discussions

In Table 7.2, we present the average mean ranking achieved by racing and static
overall 30 problem instances for each problem configuration. The smaller the mean
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value, the better the results achieved by the evaluation function.

Table 7.2: Average ranking of results overall problem instances

mr m n racing static
0.25 100 10000 1 2
0.5 100 10000 1 2

0.75 100 10000 1 2
1 100 10000 1 2

From Table 7.2, we observe that for the real world problem racing achieves the best
mean rank on all problem configurations.

In Table 7.3, we show the wins of racing and static evaluation for all 30 instances for
each problem configuration.

Table 7.3: Wins and losses of racing when compared to static evaluation grouped by
the configuration of DC-LAP

mr m n Racing Static
0.25 100 10000 30 0
0.5 100 10000 30 0

0.75 100 10000 30 0
1 100 10000 30 0

Results in Table 7.3 shows that for all problem configurations, racing achieves the
ultimate number of wins for each problem configurations. To understand if the wins
achieved by racing translates into a statistical difference in results, we perform the
Wilcoxon rank signed test described in Section 5.2.1 on the results obtained by the
evaluation functions and presents the test results in Table 7.4.

In Table 7.4, the aggregate of ranks for racing on problem configuration is denoted as
R+. The aggregate of ranks for static evaluation on problem configurations is denoted
as R−. The aggregate of ranks for the problem configurations on which an evaluation
function performed better than the other is highlighted in bold. Under the column
labelled significance, a Yes indicate that there exists a significant difference in results
between the evaluation functions on a problem configuration.

Table 7.4: Wilcoxon comparison of static and racing evaluations grouped by config-
urations of DC-LAP

mr m n Racing R+ Static R- p-value significance?
0.25 100 10000 465 0 1.86E-09 Yes
0.5 100 10000 465 0 1.86E-09 Yes

0.75 100 10000 465 0 1.86E-09 Yes
1 100 10000 465 0 1.86E-09 Yes
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Results from Table 7.4 shows that racing achieves significantly better results than
static on all problem configurations irrespective of the number of movements cus-
tomers make across the defined period. To study the cost-savings implication of
results represented in Table 7.4, we refer to Figure 7.2, which shows the percent-
age difference in cost-savings between racing and static. Negative values mean cost
savings.
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Figure 7.2: Percentage difference between the racing and static evaluation

From Figure 7.2 we observe that when customers make frequent movement over the
defined period racing achieves cost-savings of about 5.9%1, and this reduces to about
1.1% when customers are assumed to make little or no movement over the defined
period.

The performance of racing makes it the best among the evaluation functions to tackle
large real-world DC-LAP problems. The adaptation of racing as an evaluation func-
tion can also be extended to tackle other location problems that employ a stochastic
evaluation.

We observed in Sections 5.3.6 and 6.5.6 that the maximum likelihood solution (MLS)
obtained for each evaluation function showed better performances than their respec-
tive evaluation functions on problem configurations with 100 facilities. As a result of
this performance, we study the MLS of static and dynamic evaluation functions on
the real-world problem in Section 7.4.1.

1Percentage cost savings recorded in this work translates into millions in cost savings over tmax
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7.4.1 Maximum Likelihood Solution (MLS)

In Table 7.5, we present the wins achieved by static, racing and their respective MLS
over the 30 instances for each problem configuration. It should be noted that the MLS
for an evaluation function is only obtained from the evolved probability vector at the
end of a run after solutions have been evaluated using an evaluation function.The
maximum number of wins on each problem configuration is highlighted in bold.

Table 7.5: Recorded wins for racing, static and their respective MLS on problem
configurations

mr m n Static StaticMLS Ties Racing RacingMLS Ties
0.25 100 10000 0 30 0 0 30 0
0.5 100 10000 0 30 0 0 30 0

0.75 100 10000 0 30 0 1 29 0
1 100 10000 0 30 0 2 28 0

From the results presented in Table 7.5, we observe that staticMLS and racingMLS

achieves the maximum number of wins on all problem configurations when compared
to their respective evaluation functions.

To study how the wins of staticMLS translate to cost-savings, we refer to Figure 7.3,
which shows the percentage difference in cost-savings between static and staticMLS.
Negative values mean cost savings.
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Figure 7.3: Percentage difference between the static evaluation and staticMLS

From Figure 7.3, we observe that in all scenarios of customer movement, an improved
cost saving is achieved by staticMLS over static evaluation function. When customers

126



are assumed to move frequently over the defined period, we observed an improved
percentage cost savings of about 3.5%2, and when customers are assumed to make
little or no movement over the defined period, we observe an improved cost savings
of about 0.8%.

A look at figure 7.4 shows the percentage difference in cost savings between racing
and racingMLS. Negative values mean cost savings. Here also we observe improved
cost savings by racingMLS over racing.
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Figure 7.4: Percentage difference between racing and racingMLS

From Figure 7.4 we observe that as customers make frequent movement over the
defined period, racingMLS achieves an improved cost savings of about 0.4% over rac-
ing and as customers make less movement over the defined period we observe that
racingMLS achieves an improved cost savings of about 0.06% over racing. The per-
formance of racingMLS over racing on the larger number of facilities can be explained
by the fact that when the search space is larger such as in the case of a 100 facilities,
racingMLS achieves almost consistent results over the 20 runs as it is the most likely
solution to be obtained for each run of the algorithm. However, due to the stochastic
nature of the algorithm, results obtained for racing may vary for each run of the al-
gorithm especially for problems with a larger number of facilities which have a larger
search space. This is because the search space is too large to be adequately explored
by the algorithm.

2Percentage cost savings recorded in this work translates into millions in cost savings over tmax
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7.4.2 Computational time complexity

Table 7.6 shows the average computational time taken by static and racing. The
time recorded for racing is presented under the column labelled Racing and the time
recorded for static under the column labelled Static. The ratio between the time
recorded for racing and static is recorded under racing/static.

Table 7.6: Computational times in seconds of racing and static for each problem
configuration

Time (s)
mr m n Racing Static racing/static
0.25 100 10000 1.23E+08 3.61E+04 3.41E+03
0.5 100 10000 5.17E+07 3.68E+04 1.40E+03

0.75 100 10000 3.50E+07 3.66E+04 9.57E+02
1 100 10000 1.58E+07 3.61E+04 4.37E+02

From Table 7.6, we observe that the computational time recorded by racing is 3413
times higher than the time taken by static evaluation when customers are assumed to
make frequent movement over the defined period. The ratio in computational time
between racing and static reduces to about 437 when customers are assumed to make
little or no movement over the defined period. The computational time recorded by
racing shows that using the dynamic evaluation function to evaluate solutions to this
real-world problem would have been infeasible. Especially considering that for the
extensive problem configuration of 100 facilities by 1000 customers of DC-LAP studied
in Chapter 6, the time taken by the dynamic evaluation was on average about 4.8
times higher than racing when customers were assumed to make frequent movement
over the defined period and 4.5 times higher when customers were assumed to make
little or no movement over the defined period.

7.5 Chapter Summary

In this Chapter, we presented a real-world problem of DC-LAP using a service
telecommunications company in the United States as a case study. To tackle the
problem, we used our adaptation of racing introduced in Chapter 6 to find a robust
solution to the problem and help reduce the computational cost incurred in evaluat-
ing solutions with a stochastic evaluation. To assess the performance of racing, we
used static evaluation as a baseline for comparison. For each problem configuration,
we sampled 30 problem instances from an existing set of 120000 customer locations.
In all problem instances, facility locations were located in the centre of the first 100
most populous cities in the United States.

Results from the experiments showed racing to achieve a statistical difference in re-
sults on all problem configurations when compared to the static evaluation function.
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We observed that racing achieved cost-savings of about 5.9% when customers were as-
sumed to make frequent movement over the defined period and a cost-savings of about
1.1% when customers were assumed to make little or no movement over the defined
period. The performance of racing makes it the best out of the evaluation methods
introduced in this work for deciding the location of facilities in DC-LA problem.

To avoid running more experiments on a problem instance than necessary, we studied
the maximum likelihood solution (MLS) obtained for static and racing. The results
obtained by the MLS showed improved cost-savings over the savings achieved by
racing and static evaluations overall problem configurations. We observed that on
average racingMLS achieved an improved costs savings over racing of about 0.4%
when customers were assumed to make frequent movements over the defined period
and about 0.07% when customers were assumed to make little or no movement over
the planning period.

The performance of racingMLS, showed that we could confidently employ the MLS
obtained from racing to make a good and robust decision of locating facilities to
service the changing distribution of customers over a defined period.
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Chapter 8

Conclusion and Further Work

The purpose of this thesis was to propose and investigate variations of LA problem
formulations in the context of Robust optimisation over time (ROOT) [175]. In this
Chapter, we present a summary of our contributions and a review of the extent to
which we met our research objectives.

8.1 Contribution Summary

To aid in summarising the contribution of work in this thesis, we first present a
summary of the objectives below. For a detailed description of the objectives, please
refer to Section 1.2.2.

(O1) Develop new formulations that capture the real-world complexities of the telecom-
munications industry as an LA problem.

(O2) Propose a new problem instance to study the new LA problem formulation.

(O3) Investigate optimisation algorithms suitable for solving the new LA problem
formulations.

(O4) Develop a stochastic simulation model to simulate the changes in customer
demand over time.

(O5) Investigate a way to help reduce the high computational cost associated with
the simulation-based optimisation.

8.1.1 Introduction of Resilience to Location Allocation (LA)
Problems

We introduce two novels, non-linear formulations of LA problem that extends the
primary aspect of locating facilities and the allocating demand to capture the aspect
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of resilience. Resilience here is the option of providing backup services to customers
to ensure uninterruptible supply of demand. We called these formulations Location-
allocation resilience problem (LARP) 3.2.1 and Location-allocation resilience problem
with restriction (LARPR) 3.2.2 which is a constrained version of LARP. Other aspects
captured in the formulations include closing down of profitless and inefficient exist-
ing facilities, costs involved in reassigning customers from closed facilities to opened
facilities, step costs function involved in determining the bandwidth required by a
facility based on the demand exerted on the facility from customers, and the running
cost of facilities. This contribution address objective (O1) in part. Most of the work
relating to this contribution can be found in Chapter 3.

8.1.2 New problem instance for studying new formulations
of Location-Allocation Problem

Due to unique characteristics of our two new LA problem formulations (LARP 3.2.1,
LARPR 3.2.2), we are unable to study the formulations using existing problem in-
stances such as uncapacitated warehouse Location problem set [13] which do not
reflect the unique aspect of resilience. We, therefore, generate a new problem in-
stance typical of a real-world telecommunication problem. By using the new problem
instance which reflects the new characteristics of our LA problem formulations, we are
adequately able to study the new formulations. Detailed work on this contribution
can be found in Chapter 3. This contribution addresses objective (O2) in part.

8.1.3 Application of Population-based incremental learning
(PBIL) algorithm to solve Location-Allocation Prob-
lems

PBIL has been recorded in the literature to perform well on many combinatorial
problems. However, to the best of our knowledge, PBIL has never been applied
to tackling the LA problem in the literature. We, therefore, introduced the PBIL to
solve the new formulations. Our motivation in selecting PBIL was in twofold: Firstly,
we observed that specifically for the new LA problem formulation, useful problem
knowledge could be encoded directly into the probabilistic model of PBIL to aid in
finding an optimal or near-optimal solution. Secondly, PBIL has the potential benefits
of an EDA, such as employing a probabilistic model that reveals much information
about the problem being solved but with a lightweight (univariate) modelling cost. To
the best of our knowledge, PBIL has never been applied to tackling the LA problem
in the literature.

We compared PBIL to 24 variants of Genetic Algorithms (GA) generated by combin-
ing the components of four GAs presented in the literature for solving LA problem
formulations. Experiments showed PBIL to outperform all GA variants on all problem
instances. Detailed work showing the effectiveness of PBIL for solving LA problem
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formulations can be found in Chapters 3, 5, 6 and 7. This contribution addresses
objective (O3).

8.1.4 Introduction of Dynamic-Customer Location-Allocation
Problem in the context of Robust Optimisation Over
Time

We introduced a dynamic formulation of the LA problem called Dynamic-customer
Location-allocation (DC-LA) problem. DC-LA problem does not fall in the domain
of dynamic optimisation but rather robust optimisation over time [175], as described
in Section 2.3.1. In DC-LAP facilities are established once at the start of the defined
horizon and are expected to be operable and perform satisfactorily to the end of the
defined period. DC-LA problem considers the potential movement of customers over
a given time horizon. It does this by generating movement dates for a customer over
a defined period. The movement dates indicate the time a customer will relocate
from their current city to a new city. The model drives the movement of customers
using the attractivity of a city to a customer. DC-LA problem assumes that the
attractiveness of a city in the future is unknown; hence, it randomly generates the
attraction of cities within the simulation. When a customer has to move cities, the
choice of a new city is driven by how attractive the new city is to the customer.
Once a customer has relocated to a new city, the new costs for the customer are
calculated as the euclidean distance between a customer and facility. The customer
is then assigned to the facility that offers the customer the least cost of service. DC-
LA helps to capture and study the real-world properties of LA problem within the
telecommunication industry. Even though DC-LA problem is motivated by a real-
world problem from the telecommunications industry, it can be extended to other
location problems. Most of the work relating to this contribution can be found in
Chapters 4, 5, 6, and 7. This contribution addresses objective (O1) in part.

8.1.5 Introduction of a Stochastic Simulation Model to simu-
late customer movements in Dynamic-Customer Location-
Allocation Problem

We develop a simulation model for simulating the potential movement of customers
over a planning period. The simulation model is based on the assumption that cus-
tomers will move over time i.e. disappear from a location and reappear in another
location. The model also assumes that the attraction rate of each city in the future
is unknown and hence randomly generates the attraction of cities with the model.
Most of the work relating to this contribution can be found in Chapters 4, 5, 6, and
7. This contribution addresses objective (O4).
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8.1.6 New problem instance for studying new dynamic for-
mulation of Location-Allocation Problem

We develop a new set of problem instances to study the new dynamic formulation of
the LA problem. An instance of DC-LA problem comprises of three main parameters:
the number of facility locations m, number of customer n and the movement rate mr.
Real-world, telecommunication problems motivate the choice of these parameters. By
combining the parameters of DC-LA problem, we generate 1440 problem instances
to help study DC-LA problem. Most of the work relating to this contribution can be
found in Chapters 5, and 6. This contribution addresses objective (O1) in part.

8.1.7 Adaptation of Racing to reduce the high computational
cost associated with the Simulation-based optimisation

Racing was first proposed in machine learning to deal with the problem of model
selection [115]. Racing was then adapted by [17] for the configuration of the opti-
misation algorithm. We adapt the concept of racing as a selection approach to help
address the high computational cost that comes with the simulation-based optimisa-
tion. Our adaptation of racing works by comparing the fitnesses of solutions in the
search process using a statistical test. The innovation of our adaptation of racing is
in its truncation mechanism, which strives to use the least number of simulations in
a simulation-based optimisation where the cost function is stochastic. Experiments
showed racing to reduce the computational cost by 4.5 times when compared to the
stochastic dynamic evaluation function. We also observed that racing improved on the
cost-savings achieved by the stochastic dynamic evaluation function. The improved
performance of racing in terms of computational time and cost-savings is due to the
ability of racing to discard poor solutions at the early stages of the search process
and the ability of racing to use the minimum number of simulation to find statistical
differences between solutions. Most of the work relating to this contribution can be
found in Chapters 6 and 7. This contribution addresses objective (O5) in part.

8.2 Future Work

This Section highlights the limitations of the work presented in this thesis and outlines
some areas for consideration for future work.

The choice of using a Monte Carlo simulation approach attracts a high computational
cost due to a large number of simulations employed. In this work, we manage to reduce
the high computational cost by adopting the concept of racing to reduce the number
of simulations required for finding a robust solution. So a further step would be to
explore how the Maximum-likelihood solution (MLS) generated from the probability
vector (PV) of PBIL could be used to reduce the computational effort further. A
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possible area of study in this regard will be to evolve the PV using a single but
different simulation in each generation and observe the outcome. Also, in this work,
we employed the Friedman rank test and the Holm’s procedure as a complementary
post hoc test for testing for the statistical difference between solutions in racing. The
statistical power of the Friedman test is dependent on the sample size, i.e. a larger
sample size has more statistical power. Hence, before we can perform the initial
statistical test in the race, we have to evaluate each solution in the population 20
times to give us enough of a sample size for testing. Future work will explore other
non-parametric statistical tests other than the Friedman test to see if we can find
statistical differences between solutions with a lesser number of simulations.

The successful performance of PBIL on LARP, LARPR and DC-LA problem for-
mulations highlights the importance of exploring other Estimation of distribution
algorithms. Although PBIL has been shown in the literature to perform well on
many combinatorial problems, other EDA’s that are bi-variate in nature has been
shown to improve on the performance of uni-variate EDA’s such as PBIL especially
in considering the resilience constraints and strong trend in customer movements of
our LA problem formulations. This is because univariate EDAs treat each decision
variable independently and hence, they are often not representative enough to provide
the best performance. Future work will, therefore, explore bi-variate EDA such as
the Hierarchical-Bayesian optimisation algorithm (h-BOA) [134] to see if the results
obtained in this work can be improved.

The LA problems formulated in this work all considered discrete locations for estab-
lishing facilities. A continuous dynamic LA problem model where the locations of
facilities are not determined ahead of time is also an area of interest for further work.
Also, we assumed fixed sizes for cities in this work; it will be interesting to examine
the effect of different parameters for the city sizes and explore the impact this will
have on the problem.

The value in simulating customer movements and the use of racing to help reduce the
computational effort of simulating customer movements opens the door to exploring
the application of the racing in other fields of study. Additionally, other alternatives
aside racing can be explored to tackle DC-LA problem. Finally, we would seek to
investigate whether and where the ideas in this thesis could be extended to other
varieties of LA problems.
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