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Abstract

Porous graded materials found in nature can be regarded as variable stiffness optimized load carrier elements

that exhibit beneficial properties for real-life engineering designs. In order to investigate the nonlinear

behaviour of variable stiffness bioinspired materials, the large deflection of functionally graded beams made

from porous materials is considered in this work. Our purpose is to present an efficient and accurate

methodology capable of capturing spatially large deflections of these structures with different types of loading

conditions and porosity distributions. A geometrically exact beam model with fully intrinsic formulation

is employed for the first time to study the large deflection behaviour of functionally graded beams under

conservative and non-conservative (follower) loading scenarios. An orthogonal Chebyshev collocation method

is used for the discretisation of the fully intrinsic formulation. Two types of porosity distributions, namely

cross-sectional and span-wise, are considered and the effect of porosity distribution has been investigated

for various benchmark classical test cases. It is shown that to obtain a given level of accuracy, the span-wise

functionally graded beam is computationally more demanding compared to the cross-sectional functionally

graded beam. In addition to classical problems, two examples demonstrating 3D deflections of a highly

flexible structures made from porous material subject to combined loads are investigated. It is shown that

the current paradigm, while being computationally efficient, can effectively capture the large deflections of

functionally graded beams with excellent accuracy.

Keywords: Bioinspired Materials, Functionally Graded Beams, Porous Materials, Geometrically Exact

Beam, Large deflection, Intrinsic Formulation

1. Introduction

Bioinspired materials play a key role in recent advances in technology. These materials satisfy multiple

design criteria due to their variable and state-dependent characteristics (Saavedra Flores et al. [1]) and

therefore circumvent the usual trade-offs between shape adaptability, load-bearing capability and stability.
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Applications include plant biomechanics (Rafsanjani et al. [2], Zhao et al. [3], Gonzalez and Nguyen [4]),

bone biomechanics (Bottlang and Long [5], Heyland et al. [6]), biological inspired sensing systems (Birdwell

et al. [7], Li et al. [8], Mongeau et al. [9]) and soft robotics (Trivedi et al. [10], Mac Murray et al. [11]).

Mechanical/structural components made of bioinspired materials, such as porous and poroelastic materi-

als, may undergo large deflections as part of their design needs. Examples include morphing aerostructures,

soft robotic arms, highly flexible and lightweight aircraft wings and wind turbine blades. Many of these

components can be modelled as a functionally graded beam.

Functionally graded materials (FGM) are characterized as inhomogeneous materials in which their prop-

erties such as density and elastic modulus vary continuously over volume. Porous materials with varying

porosity are functionally graded (FG) structures which are mostly found in biological materials such as

human/animal bones, plant stems, etc., and act as load carriers with optimized characteristics. The porous

FG structures offer a wide range of multifunctional properties including enhanced acoustics, shock resistance

and heat transfer capabilities and high-performance to weight ratio. With the advance of manufacturing

methods such as additive 3D printing, the manufacture of the porous FG structures is now possible (e.g. see

Parthasarathy et al. [12]). All of these properties can be employed to design structures with tailored variable

stiffness properties and increased manufacturability. Thus, from an engineering point of view, this natural

constructional paradigm creates promising options for applying the concept of variable stiffness porous func-

tionally graded structures for engineering applications in which optimum performance with minimal weight

is sought such as aircraft wings, wind turbine rotor blades and robotic arms.

There have been a number of studies on the large deflection analysis of functionally graded structures.

Kang and Li [13] investigated the large deflections of cantilever beams subject to a conservative end force

and in a later work (Kang and Li [14]) subject to an end moment. Rahimi and Davoodinik [15] considered

the large deflections of FG beams under inclined tip load using Adomian Decomposition Method. Kocatürk

et al. [16] studied the large displacements of FG beams under non-follower (conservative) transverse uniformly

distributed load by using the total Lagrangian Timoshenko beam element. Almeida et al. [17] presented

the in-plane large deflections of FG beams by means of a tailored total Lagrangian formulation. Zhang

[18] studied the nonlinear bending of FG beams using a high-order shear deformation theory with von

Kármán strain-displacement relationships. Nguyen [19, 20], Nguyen and Gan [21] have considered the large

displacement behaviour of tapered FG beams using Euler-Bernoulli or Timoshenko hypotheses, using a

corotational finite element method. Sitar et al. [22] studied the large deflection of a cantilever FG beam

subject to a combined loading consisting of the distributed continuous loads and point loads at the free

end. Niknam et al. [23] considered the nonlinear bending behaviour of tapered FG beams based on two

different numerical approaches namely; Galerkin method and Generalized Differential Quadrature method

(GDQ). Yoon et al. [24] presented a continuum based 3D beam finite element for geometrically nonlinear

analysis of FG beam structures considering cross-sectional warping. Pascon [25] proposed a plane beam
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finite element to solve bending problem of FG beams assuming moderate strains and variable Poisson’s

ratio. In the context of geometrically exact beam theories, Eroglu [26] solved the problem of in-plane

large deflections of curved FG beams with a displacement based formulation using the Variational Iteration

Method (VIM) under conservative loads. Ebrahimi and Zia [27] investigated the large amplitude vibration

of FG Timoshenko beams using a combined Galerkin method and multiple scales approach. Using the Ritz

method, Chen et al. [28] considered the large amplitude deformations of FG porous beams by including

von Kármán strain-displacement relations for free vibration and postbuckling analysis. This approach was

further extended by Chen et al. [29] for the nonlinear vibration and postbuckling of FG graphene reinforced

nano beams. More recently, nonlinear bending of nano porous functionally graded beams has been considered

by She et al. [30, 31] for straight and curved beams, respectively. Li et al. [32] used GDQ for studying the

linear and nonlinear bending of two-dimensionally FG beams. Lin et al. [33] introduced Smoothed Particle

Hydrodynamics (SPM) with a Total Lagrangian (TL) formulation for the nonlinear bending analysis of FG

beams with variable thickness. Using nonlocal strain gradient theory, Sahmani et al. [34] studied size effects

on the nonlinear bending of micro/nano-beams reinforced with graphene. Yang et al. [35] considered the

nonlinear bending of nano-beams made of bi-directional FGM using DQM. Nguyen et al. [36] investigated

the ealstoplastic nonlinear bending of FG beams under various types of nonuniform distributed load.

However, except for the work of Yoon et al. [24], all of the works on the large deflection analysis of FG

beams are restricted to 2D plane problems and the main focus of all of these works has been mostly on the

chemical composition gradient functionally graded materials by the micro-structural mixture of metals and

ceramics. Moreover, the important problem of non-conservative (follower) loads for FG beams has received

little attention and as apparent from the above literature review, the 3D large deflection behaviour of

functionally graded beams with porous structure has not yet been appropriately addressed in the literature.

The application of the fully intrinsic formulation of geometrically exact beams is relatively new and

the potential, applicability and accuracy of this formulation are not comprehensively addressed yet in the

literature. In this paper, intrinsic formulation is applied for the first time to the 3D large deflection analysis

of FG porous beams under conservative and non-conservative (follower) loads. The intrinsic formulation

which is free from any rotational or displacement variables, presents a number of advantages over more

common displacement/rotational-based formulations including low degree of nonlinearity (quadratic at most)

and bypassing the parameterisation and interpolation of finite rotations and by bringing computational

efficiency and simplicity to the problem (for more details readers are referred to Khaneh Masjedi and

Ovesy [37], Khaneh Masjedi and Ovesy [38] and Khaneh Masjedi and Maheri [39]). However, while the

intrinsic formulation in its static form is suitable for statically determinate beams (e.g. cantilever or simply

supported beams), it has difficulties in the case of statically indeterminate problems (e.g. clamped-clamped

and clamped-simply supported beams) in which it is not possible to express boundary conditions without the

displacement or rotational variables (Sotoudeh and Hodges [40]). In addition, based on nonlinear Green-
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Lagrange strain measures, constitutive relations are obtained for spatially variable stiffness FG porous

beams.

It has been shown by Schillinger et al. [41] that computational costs are reduced with collocation meth-

ods and they can be orders of magnitude faster to achieve a certain level of accuracy compared to the

finite element or Galerkin methods. Thus, we adopt the Chebyshev collocation method for the numerical

discretisation and apply it to the strong form of the governing equations. The proposed collocation method

contains no integration which is common to the Galerkin and finite element methods and it also shows a

fast rate of convergence with fairly low order polynomials (Khaneh Masjedi and Ovesy [37]). These char-

acteristics make the Chebyshev collocation method computationally efficient in comparison with the finite

element-based methods. The intrinsic formulation along with the Chebyshev collocation method presents a

new paradigm in the context of the large deflection analysis of FG porous beams which is relatively efficient

without any ad hoc assumption in the kinematical field description and as shown in this work it shows an

excellent accuracy for the analysis of FG porous beams.

To show the robustness of the Chebyshev collocation method in the analysis of the large deflection

behaviour of FGM slender structures made of porous materials, a number of classical benchmark problems are

investigated. In addition to the classical benchmark problems, an example demonstrating 3D deflections of a

highly flexible wing/blade made from porous material subject to combined loads representing aerodynamic

loads is investigated. Various loading scenarios are considered in order to simulate different conditions

and mechanisms that a typical porous structure may experience in real-life problems. The follower loading

scenario imitates structures subject to engine thrust (e.g. missiles, aircraft wings), wind turbine tower and

muscular forces exerted on bones, to name just a few and conservative loading scenarios corresponds to

dead-weight loads. The methodology presented in this work fills the aforementioned gaps in the literature

being capable of capturing 3D large deflections of FG porous beams under both conservative and non-

conservative (follower) load cases. It is also noted that while the current approach is limited to a single

beam, it can be further extended to more complex cases in which several beam assemblies is required by

adopting multi-domain hybrid approaches such as the strong formulation finite element method [42].

The content of the current paper is outlined as follows. In Section 2 a brief description of the static

intrinsic formulation of the spatially variable stiffness beams is given. In Section 3 a simplified constitutive

equation is derived from the basic concepts of continuum mechanics for functionally graded beams and the

effects of porosity on the elastic properties based on the semi-empirical power law are established. In Section

4 a concise description of orthogonal Chebyshev collocation and its application to the numerical discretization

of the static intrinsic formulation of the beam is portrayed. In Section 5 the large deflection behaviour of FG

porous beams under various load cases are studied and the obtained results based on the proposed scheme

are validated against analytical results. The effects of porosity distribution for either through-the-thickness

or through the beam span, are examined under both conservative and non-conservative (follower) loads.
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Finally in Section 6 some concluding remarks are drawn.

2. Governing Equations

2.1. Fully Intrinsic Formulation

The intrinsic equations of motion of a spatially variable stiffness geometrically exact beam are as follow

(Khaneh Masjedi and Ovesy [37]):

F,1 ` rK.F` f “ 0

M,1 ` rK.M` rR0,1.F`m “ 0
(2.1)

where pq,1 is the derivative with respect to the beam reference line x1, ”„” is the cross-product operator

and the vector K is the curvature of the beam in the deformed state of the beam. F and M are the internal

forces and moments and f and m are the external applied forces and moments, respectively.

Introducing the linear constitutive equation:
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where γ and κ are the vectors of generalised strains and curvatures respectively. One can eliminate γ, κ and

then only F, M remain as unknowns. In Eq. (2.2) R, S and T are the matrices of cross-sectional flexibility.

Eqs. (2.1) and (2.2) in conjunction with the boundary conditions constitute a complete set of equations

to be numerically solved.

The governing Eq. (2.1) can be written in component form as:

F1,1 `K2F3 ´K3F2 ` f1 “ 0

F2,1 `K3F1 ´K1F3 ` f2 “ 0

F3,1 `K1F2 ´K2F1 ` f3 “ 0

M1,1 `K2M3 ´K3M2 ` 2γ12F3 ´ 2γ13F2 `m1 “ 0

M2,1 `K3M1 ´K1M3 ` 2γ13F1 ´ p1` γ11qF3 `m2 “ 0

M3,1 `K1M2 ´K2M1 ` p1` γ11qF2 ´ 2γ12F1 `m3 “ 0

(2.3)

in which, K1 is the twist and K2 and K3 are the curvatures of the beam in the deformed state.

3. Constitutive Equations

In this section a simplified constitutive relation is obtained based on the nonlinear strain measures for

the porous functionally graded beams.
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3.1. Strain Energy

The nonlinear strain measures can be obtained based on Green-Lagrange strains as:

Eij “
1

2
pGij ´ gijq (3.1)

Herein, Eij are the Green-Lagrange strain tensor components in the curvilinear coordinate system and

Gij and gij are the metric tensor in the deformed and undeformed state respectively. The metric tensors

are defined as (Washizu [43]):

gij “ gi ¨ gj

Gij “ Gi ¨Gj

(3.2)

Considering the x1, x2 and x3 as the curvilinear coordinates, the tangent base vectors on the undeformed

and deformed state of the beam are defined in a curvilinear coordinate system as:

gi “
Br

Bxi
(3.3)

Gi “
BR

Bxi
(3.4)

Given that r0,i “ ei, the tangent covariant base vectors in the undeformed state (i.e. gi) and deformed

state (i.e. Gi) of the beam can be derived from the Eqs. (A.1) and (A.2) as:

g1 “ p1` x3k2 ´ x2k3q e1 ` p´x3k1q e2 ` px2k1q e3

g2 “ e2

g3 “ e3

(3.5)

G1 “ p1` γ11 ` x3K2 ´ x2K3q e
˚
1 ` p2γ12 ´ x3K1q e

˚
2 ` p2γ13 ` x2K1q e

˚
3

G2 “ e˚2

G3 “ e˚3

(3.6)

From Eqs. (3.5) and (3.6) the following expressions for the metric tensor components can be derived:

g11 “ p1` x3k2 ´ x2k3q ` px3k1q
2
` px2k1q

2

g12 “ g21 “ ´x3k1

g13 “ g31 “ x2k1

g22 “ 1

g23 “ g32 “ 0

g33 “ 1

(3.7)
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G11 “ p1` γ11 ` x3K2 ´ x2K3q
2
` p2γ12 ´ x3K1q

2
` p2γ13 ` x2K1q

2

G12 “ G21 “ p2γ12 ´ x3K1q
2

G13 “ G31 “ p2γ13 ` x2K1q
2

G22 “ 1

G23 “ G32 “ 0

G33 “ 1

(3.8)

The non-zero Green-Lagrange strains in terms of 1D strain measures can be shown to be in the following

form:
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(3.9)

where g is the determinant of the metric tensor i.e. g “ |gij | and we have:

?
g “ 1´ x2k3 ` x3k2 (3.10)

Assuming the validity of the Hooke’s law i.e. S “ C.E, where S is denoted as the corresponding work

conjugate stress measures to the Green-Lagrange strain measures, namely the 2nd Piola-Kirchhoff stresses

and C is the constitutive tensor, the strain energy for the unit length of the beam is presented as follows:

U “ 1

2

ż

A

pE.C.Eq
?
gdA (3.11)

For the special case of an non-shearable straight beam (i.e. γ12 “ γ13 “ 0 and k1 “ k2 “ k3 “ 0) with

rectangular cross-section made from a functionally graded porous material, the strain energy per unit length

of the beam with the help of Eq.(3.9) is written as:

U “ 1

2
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where:

S11 “

ż

A

E px1, x2, x3q dA

S22 “

ż

A

G px1, x2, x3q
`

x22 ` x
2
3

˘

dA

S33 “

ż

A

E px1, x2, x3qx
2
3dA

S44 “

ż

A

E px1, x2, x3qx
2
2dA

S13 “

ż

A

E px1, x2, x3qx3dA

S14 “ ´

ż

A

E px1, x2, x3qx2dA

S34 “ ´

ż

A

E px1, x2, x3qx2x3dA

(3.13)

Considering that F1 “
BU
Bγ11

, M1 “
BU
Bκ1

,M2 “
BU
Bκ2

and M3 “
BU
Bκ3

, the simplified constitutive equations

are presented as:
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(3.14)

It is noted that in order to retain the above constitutive equation in the numerical implementation the

shear stiffness terms are assumed to be very large (i.e. tends to 8).

3.2. Porosity Distribution

Two types of porosity distribution may be considered for the beam problem, namely; through the thick-

ness variation and also spanwise variation which are shown in Figs. (1) and (2), respectively. The relationship

between the elastic properties and porosity is recognized and semi-empirical equations are derived by curve

fitting experimental data. They can be expressed in a power law form as (Kováčik [44]):

Y “ Y0

ˆ

1´
P

Pc

˙NY

(3.15)

where Y is the effective elastic property of the porous material, Y0 is the associated property of the solid

material, P is the porosity, Pc is the porosity at which the effective material property is zero and NY is a

characteristic exponent. Subsequently one can express the Young’s modulus of a porous material as:

E “ Es

ˆ

1´
P

Pc

˙NE

(3.16)
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where E is the effective Young’s modulus of porous material with porosity P , Es is the Young’s modulus

of the solid metal, Pc is the porosity at which the effective Young’s modulus becomes zero and NE is the

material constant often extracted from experimental data fitting. The porosity for a porous material is

defined as:

P “ 1´
ρ

ρs
(3.17)

where ρs and ρm are the density of the solid and porous material, respectively. Fitting experimental data

to Eq. (3.16) often gives Pc “ 1. Thus considering Eqs. (3.16) and (3.17), the effective Young’s modulus

can be written as (Gibson and Ashby [45]):

E “ Es

ˆ

ρ

ρs

˙NE

(3.18)

a

b x2

x3

Figure 1: Porosity Distribution Through a Rectangular Beam Cross-Section Thickness

L

x1

x3

Figure 2: Spanwise Porosity Distribution

4. Numerical Solution Scheme

For the purpose of numerical solution of the governing equations of the beam, the Chebyshev collocation

method is adopted. The Chebyshev polynomials of the first kind are employed as the trial functions for

the spatial discretization of the unknown variables and the Chebyshev points are considered as collocation
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points. In the subsequent sections a brief description of the fundamentals of Chebyshev polynomials and

Chebyshev collocation points is given. Please note that the content of this section is given in more detail in

Khaneh Masjedi and Ovesy [37]. The Chebyshev polynomials described in AppendixB section are adopted

as the trial functions and the Chebyshev points are employed as the collocation points at which the residuals

are minimized. The Chebyshev points are the roots of the Chebyshev polynomials of the first kind and in

the interval ´1 ď x ď `1 are:

xi “ cos

ˆ

2i´ 1

2N
π

˙

, i “ 1, 2, . . . , N (4.1)

in which N is the highest degree of the Chebyshev polynomials used as the trial functions. For an arbitrary

interval a ď x ď b the transformed Chebyshev points are:

xi “
1

2
pa` bq ´

1

2
pb´ aq cos

ˆ

2i´ 1

2N
π

˙

, i “ 1, 2, . . . , N (4.2)

Using the Chebyshev polynomials the variables F and M are discretized as:
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(4.3)

The total 6 boundary conditions of a cantilever beam (which is the main focus of the current paper) at

the free end of the beam are denoted as:

F |at free end “ Ftip, M |at free end “ Mtip (4.4)

where Ftip and Mtip are the vectors of applied concentrated tip forces and moments respectively. Introducing

Eq.(4.3) into Eq.(2.3) and setting the residuals at the Chebyshev points equal to zero in conjunction with the

boundary condition equations (4.4), constitute 6ˆpN`1q equations. This system of nonlinear equations will

be solved for unknown coefficients aij and bij where i “ 1, 2, 3 and j “ 0, 1, . . . , N using a Newton-Raphson

scheme.

10



4.1. Post-Processing

In order to retrieve the displacement and rotational variables from the intrinsic formulation a set of

equations which relate the strains and curvatures, and displacements and rotations are presented as fol-

low(Khaneh Masjedi and Ovesy [37]):

Λ̄,1 “ ´prκq Λ̄

R0,1 “ Λ̄T pγ ` e1q
(4.5)

where Λ̄ is the matrix of linear transformation from inertial reference frame to deformed frame, R0 “

rR1, R2, R3s
T and e1 “ r1, 0, 0s

T . By integration of Eq.(4.5) the desired displacements can be obtained.

5. Case Studies

In this section a number of test cases are presented and the large deflection behaviour is studied under

conservative and nonconservative (follower) load cases and the obtained results are validated against an-

alytical results where available. An open cell metal foam is assumed as being representative of a porous

structure and the porosity is considered to be either distributed through the beam cross-section thickness

or axially along the beam span. In this work an open cell foam is considered for which NE “ 2, ν “ 0.33

and the shear modulus for the solid metal is denoted as; Gs “
Es

2 p1` νq
. The following characteristics are

assumed for all numerical examples:

L “ 1m, a “ 0.05m, b “ 0.05m, ρs “ 2700kg{m3, ρm “ 500kg{m3, Es “ 70GPa. It is noted that

for all of the following illustrative samples, the purpose is to study the large deflection behaviour of FG

beam qualitatively and show the capabilities of the proposed method. Thus, while the beam goes under

large deflections, it is assumed that neither failure in the material nor any kind of elastic instability occurs.

5.1. FG Beam with Through the Thickness Distribution of Porosity

A porous beam made from a metal foam with rectangular cross-section is considered. The porosity is

distributed through the thickness of the beam cross-section and the effective density ρ is functionally graded

in the x3 direction by the power law as follows:

ρ px3q “ ρm ` pρs ´ ρmq

ˆ

2|x3|

b

˙β

(5.1)

where ρs is the density of the solid metal, ρm is the lowest density of the foam and β is an exponent

determining how the density or in this case porosity is distributed through the thickness. According to

Eqs.(3.18) and (5.1) the density and Young’s modulus distribution through a rectangular cross-section is

depicted for a number of porosity levels β in Figs.(3) and (4), respectively.
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Figure 3: Density Distribution Through Beam Cross-section Thickness for Various Values of β
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Figure 4: Young’s Modulus Distribution Through Beam Cross-section Thickness for Various Values of β

5.2. Cantilever Subject to Tip Shear Force: Linear vs Nonlinear

In order to show the importance of including the nonlinearities in the deflection analysis of FG porous

beams, a cantilever beam subject to a tip shear force is considered and the numerical results are obtained

12



based on both linear and nonlinear assumptions. Additionally, the obtained results which are based on

Euler-Bernoulli theory are compared to those of [46] which are based on a linear Timoshenko theory. A

convergence study is performed based on the L2 norm of the forces and moments at the clamped end. As

shown in Table (1), a relatively fast convergence is obtained by using only Chebyshev polynomials of the

highest degree of 8. Table (2) depicts the tip displacement of cantilever beams for various levels of porosity

β. It is noted that the exact results are obtained based on the exact solution of the linearised intrinsic

governing equations for a cantilever subject to tip shear forces and moments, given by Hodges [47]:

U “
”

x1R`
`

x1L´
1

2
x21
˘

Sre1 ´
1

2
x21re1S

T ´
`1

2
x21L´

1

6
x31
˘

re1Tre1

ı

F tip `
”

x1S ´
1

2
x21re1T

ı

M tip, (5.2)

where U “ ru1 u2 u3s
T .

A good agreement is observed between all linear sets of results. As expected, the tip deflections predicted

based on linear Timoshenko theory are larger compared to the linear Euler-Bernoulli theory. However, since

the cantilever beam is relatively long and slender, this difference is negligible. On the other hand, the tip

deflections obtained based on the nonlinear theory are smaller compared to both linear Euler-Bernoulli and

Timoshenko theories. This behaviour occurs due to the stiffening effects of the geometric couplings in the

nonlinear theory. As shown in Table (2), the difference between the tip deflections predicted by the nonlinear

and linear theories increases as the porosity level β increases.

Table 1: L2 norm convergence

N (highest degree of polynomials)

2 4 6 8 10

}F }2 4718.662 4716.866 4716.766 4716.766 4716.766

}M}2 4676.898 4662.740 4662.768 4662.769 4662.769
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Table 2: Tip Displacement (mm) of FG Porous Cantilever Beam For Various Porosity Distribution

Euler-Bernoulli (Present) Timoshenko [46]

β Exact Linear Nonlinear Difference˚ (%) Exact Linear

1 69.371 69.285 68.884 0.579 69.600 69.536

2 91.446 91.250 90.341 1.006 91.803 91.675

3 112.460 112.095 110.428 1.510 112.935 112.750

4 132.621 132.022 129.333 2.079 133.206 132.970

5 152.039 151.137 147.156 2.705 152.726 152.446

6 170.784 169.506 163.970 3.376 171.567 171.248

7 188.909 187.180 179.836 4.084 189.779 189.428

8 206.452 204.198 194.809 4.820 207.405 207.024

9 223.448 220.592 208.943 5.575 224.477 224.071

10 239.926 236.393 222.286 6.346 241.027 240.599

˚Difference = |
Nonlinear ´ Linear

Nonlinear
| ˆ 100

5.2.1. Roll-Up of a Cantilever Subject to an End Moment

In order to show the geometrical exactness of the current approach the roll-up problem due to an end

moment is considered. Since there are no couplings between in-plane and out-of-plane bending deflections

this problem has an analytical solution. In pure bending of a beam the reference line deforms into a part

of a circle of radius r, therefore the reference line of the deformed beam can be defined by the angle θ and

one can write:

θ “

ż L

0

dθ “

ż L

0

M tip
2

S33

dx1 “
M tip

2 L

S33

(5.3)

Subsequently the tip deflection of the cantilever subject to an end moment is:

u1 “ L´ r sin θ

u3 “ r ´ r cos θ
(5.4)
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Introducing; r “ L
θ into Eq. (5.4):

u1 “ L

ˆ

1´
sin θ

θ

˙

u3 “ L

ˆ

1´ cos θ

θ

˙ (5.5)

Eq.(5.3) in conjunction with Eq.(5.5) are used to obtain the analytical solution of the problem. Table (3)

shows the analytical and numerical results for the end position of the FG porous beam under end moment

for various load level n “
M tip

2 L

2πS33

. Excellent agreement is observed between analytical and numerical results.

Two sets of results are identical except for one case with a difference of only 0.0005%. Table (4) shows the

effects of porosity level on the tip deflection of FG beam under end moment MRef “ M tip
2 “ 43646.6N.m

corresponding to a moment under which the FG beam with porosity level β “ 10 deforms into a complete

circle. The deformed configuration is depicted in Fig.(5) for various porosity distribution. As expected by

increasing the porosity level β results in more flexibility and an increase in the beam tip deflection.

Table 3: Tip Displacement of FG Porous Cantilever Beam under Tip Moment (n “
Mtip

2 L

2πS33

)

´u1{L u3{L

n Exact Present Exact Present

0.25 0.363380 0.363380 0.636620 0.636620

0.50 1.000000 1.000000 0.636620 0.636620

0.75 1.212207 1.212207 0.212207 0.212208

1.00 1.000000 1.000000 0.000000 0.000000
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Table 4: Tip Displacement of FG Porous Cantilever Beam under Tip Moment (MRef ) for Various Porosity Distribution

´u1{L u3{L

β Exact Present Exact Present

1 0.4661 0.4661 0.6844 0.6844

2 0.7163 0.7163 0.7240 0.7240

3 0.9337 0.9337 0.6726 0.6726

4 1.0937 1.0937 0.5602 0.5602

5 1.1870 1.1870 0.4188 0.4188

6 1.2172 1.2172 0.2767 0.2767

7 1.1966 1.1966 0.1551 0.1551

8 1.1422 1.1422 0.0666 0.0666

9 1.0715 1.0715 0.0157 0.0157

10 1.0000 1.0000 0.0000 0.0000
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Figure 5: Deformed Configuration of FG Porous Cantilever Beam under Tip Moment (MRef ) for Various Porosity Distribution
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5.2.2. Cantilever Subject to Non-Conservative (Follower) Transverse Load

A cantilevered FG beam under non-conservative (follower) transverse tip load is considered. The ori-

entation of the load is varying with respect to an inertial frame but it is fixed with respect to the moving

frame. An analytical solution is presented by Rao and Rao [48] for the large deflection of beams under either

conservative or non-conservative (follower) loads. In Table (5) the obtained numerical results are compared

against analytical results of Rao and Rao [48]. Two sets of results match exactly for almost all of the load

cases λ “
F tip3 L2

S33

except for the cases of ”´R3{L” in λ “ 5, 6, 7 where a slight difference is observed. The

effects of porosity level β on the tip deflection of the FG beam under transverse tip force F tip3 “ 60kN is

given in Table (6) and the associated deformed configuration is depicted in Fig. (6) for a number of porosity

level β.

Table 5: Tip Deflection of FG Porous Cantilever Beam under Non-Conservative (Follower) Tip Load For Various Load Level

(λ “
F tip
3 L2

S33

)

R1{L ´R3{L

λ Exact Present Difference˚ (%) Exact Present Difference˚ (%)

1 0.9356 0.9356 0.0000 0.3206 0.3206 0.0000

2 0.7672 0.7672 0.0000 0.5737 0.5737 0.0000

3 0.5514 0.5514 0.0000 0.7263 0.7263 0.0000

4 0.3426 0.3426 0.0000 0.7856 0.7856 0.0000

5 0.1722 0.1722 0.0000 0.7800 0.7799 0.0128

6 0.0495 0.0495 0.0000 0.7395 0.7394 0.0135

7 -0.0296 -0.0296 0.0000 0.6861 0.6860 0.0146

8 -0.0739 -0.0739 0.0000 0.6326 0.6326 0.0000

9 -0.0924 -0.0924 0.0000 0.5852 0.5852 0.0000

10 -0.0923 -0.0923 0.0000 0.5458 0.5458 0.0000

˚Difference = |
Exact´ Present

Exact
| ˆ 100
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Table 6: Tip Displacement of FG Porous Cantilever Beam under Non-Conservative (Follower) Tip Load For various Porosity

Distribution (F tip
3 “ 60kN)

β ´u1{L ´u3{L

1 0.3379 0.6625

2 0.5121 0.7522

3 0.6667 0.7866

4 0.7935 0.7852

5 0.8918 0.7635

6 0.9648 0.7319

7 1.0169 0.6970

8 1.0525 0.6625

9 1.0752 0.6304

10 1.0882 0.6015
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Figure 6: Tip Deflection of FG Porous Cantilever Beam under Non-Conservative (Follower) Tip Load (F tip
3 “ 60kN)For

Various Porosity Distribution
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5.2.3. Cantilever Subject to Conservative Transverse Load

A cantilevered FG beam under conservative transverse tip load is considered. In the conservative load

case the orientation of the load with respect to the inertial frame is fixed in space. The numerical results

are compared with the analytical results of Rao and Rao [48] in Table (7) for various load level λ “
PL2

S33

.

A slight increase in the difference between two sets of results are observed when the load level λ increases.

However the agreement between two sets for all load levels remains excellent. The effects of porosity level

on the tip deflection of FG beam under conservative transverse tip force P “ 60kN is given in Table (8)

and the associated deformed configuration is depicted in Fig. (7) for a number of porosity levels β.

Table 7: Tip Deflection of Porous Cantilever Beam under Conservative Tip Load For Various Load Levels (λ “
PL2

S33

)

R1{L ´R3{L

λ Exact Present Difference˚ (%) Exact Present Difference˚ (%)

1 0.9436 0.9334 0.0212 0.3017 0.3026 0.2983

2 0.8393 0.8389 0.0477 0.4935 0.4949 0.2837

3 0.7456 0.7450 0.0805 0.6033 0.6052 0.3149

4 0.6711 0.6704 0.1043 0.6700 0.6723 0.3433

5 0.6124 0.6117 0.1143 0.7138 0.7166 0.3923

6 0.5654 0.5647 0.1238 0.7446 0.7478 0.4298

7 0.5271 0.5263 0.1518 0.7674 0.7710 0.4691

8 0.4952 0.4944 0.1615 0.7850 0.7890 0.5095

9 0.4682 0.4673 0.1922 0.7991 0.8035 0.5506

10 0.4450 0.4439 0.2472 0.8106 0.8167 0.7525

˚Difference = |
Exact´ Present

Exact
| ˆ 100
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Table 8: Tip Deflection of FG Porous Cantilever Beam under Conservative Tip Load For Various Porosity Distribution

(P “ 60kN)

β ´u1{L ´u3{L

1 0.2095 0.5558

2 0.2778 0.6268

3 0.3318 0.6736

4 0.3752 0.7067

5 0.4107 0.7313

6 0.4403 0.7503

7 0.4654 0.7655

8 0.4870 0.7780

9 0.5056 0.7883

10 0.5220 0.7972
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Figure 7: Deformed Configuration of FG Porous Cantilever Beam under Conservative Tip Load For Various Porosity Distri-

bution (P “ 60kN)
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5.3. FG Beam with Axial Distribution of Porosity

A porous beam which is functionally graded axially (i.e. exhibiting spanwise variable stiffness) along its

span is considered in this section. The effective density ρ is functionally graded in the x1 direction by the

power law as follows:

ρ px1q “ ρm ` pρs ´ ρmq
´

1´
x1
L

¯β
(5.6)

According to Eqs.(3.18) and (5.6) the spanwise density and Young’s modulus distribution is depicted for

a number of porosity levels β in Figs.(8) and (9), respectively.
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Figure 8: Density Distribution Along Beam Span for Various Values of β
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Figure 9: Young’s Modulus Distribution Along Beam Span for Various Values of β

5.3.1. Roll-Up of a Cantilever Subject to an End Moment

The roll-up problem is considered under a tip moment. The convergence study is shown in Table (9).

Using polynomials with the highest degree of 14, results in a converged solution. A comparison of this

study and those of Table (1) reveals that for obtaining converged results in the case of axially distributed

porosity, higher level of discretisation is required. This can be attributed to the fact that for the FG beam

with axially distributed porosity a finer descritisation including a higher number of collocation points is

necessary to capture the spanwise variation of stiffness properties compared to the FG beam with through

the thickness distribution of porosity.

The tip displacement of the cantilevered FG beam under various load levels are given in Table (10) for

different porosity distributions. The deformed configurations are depicted in Figs. (10) under tip moment

of M tip
2 “ 10kN.m for a number of porosity levels β. As shown, due to the functionally distributed of elastic

properties along the beam span the beam does not undergo a deflection with a uniform curvature as was

the case of an FG beam with through the beam cross-section porosity distribution. The deformed state of

the beam has a distribution of curvature along its span which decreases from its free end to the clamped

end as expected due to the increase of Young’s modulus toward the clamped end.
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Table 9: L2 norm convergence

N (highest degree of polynomials)

4 6 8 10 12 14 16

}F }2 7.681 19.229 20.310 20.351 20.355 20.356 20.356

}M}2 10000.201 10001.884 10002.063 10002.070 10002.072 10002.072 10002.072

Table 10: Tip Displacement of FG Porous Cantilever Beam For Various Tip Moments and Porosity Distribution

2kN.m 4kN.m 6kN.m 8kN.m 10kN.m

β ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L

1 0.0051 0.0717 0.0202 0.1415 0.0447 0.2076 0.0777 0.2684 0.1179 0.3225

2 0.0234 0.1449 0.0894 0.2717 0.1867 0.3657 0.2990 0.4192 0.4088 0.4320

3 0.0504 0.2143 0.1849 0.3759 0.3607 0.4516 0.5255 0.4392 0.6379 0.3656

4 0.0784 0.2710 0.2778 0.4467 0.5102 0.4804 0.6841 0.3945 0.7499 0.2619

5 0.1042 0.3161 0.3586 0.4939 0.6269 0.4808 0.7848 0.3356 0.7943 0.1789

6 0.1271 0.3522 0.4267 0.5260 0.7161 0.4690 0.8481 0.2809 0.8084 0.1224

7 0.1470 0.3815 0.4838 0.5484 0.7850 0.4529 0.8887 0.2348 0.8103 0.0862

8 0.1644 0.4057 0.5317 0.5645 0.8389 0.4358 0.9153 0.1973 0.8078 0.0637

9 0.1795 0.4259 0.5723 0.5764 0.8818 0.4194 0.9332 0.1670 0.8043 0.0503

10 0.1927 0.4430 0.6071 0.5853 0.9166 0.4040 0.9456 0.1425 0.8011 0.0426
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Figure 10: Deformed Configuration of Rolled-Up FG Porous Cantilever Beam with Various Porosity Distribution Under Tip

Moment (Mtip
2 “ 10kN.m)

5.3.2. Cantilever Subject to Non-Conservative (Follower) Transverse Load

A cantilevered axially FG beam under non-conservative (follower) transverse tip load is considered. The

effects of porosity distribution level β on the tip deflection of FG beam under a number of non-conservative

(follower) transverse tip forces are given in Table (11) and the deformed configurations for a number of

porosity distribution levels β under a tip transverse force of F tip3 “ 20kN are depicted in Fig. (12). It is

observed that due to the lower Young’s modulus near tip regions compared to the clamped end regions, the

curvature of deformation increases. This behaviour becomes even more apparent when the level of porosity

increases.
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Table 11: Tip Displacement of FG Porous Cantilever Beam For Various Transverse Non-Conservative (Follower) Tip Load and

Porosity Distribution

4kN 8kN 12kN 16kN 20kN

β ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L

1 0.0033 0.0687 0.0128 0.1346 0.0272 0.1956 0.0451 0.2507 0.0651 0.2995

2 0.0123 0.1240 0.0427 0.2295 0.0804 0.3116 0.1182 0.3741 0.1533 0.4223

3 0.0280 0.1840 0.0853 0.3158 0.1426 0.4013 0.1916 0.4589 0.2324 0.5003

4 0.0464 0.2371 0.1267 0.3812 0.1956 0.4636 0.2495 0.5155 0.2919 0.5516

5 0.0647 0.2809 0.1621 0.4302 0.2378 0.5085 0.2940 0.5559 0.3368 0.5884

6 0.0815 0.3167 0.1916 0.4677 0.2771 0.5423 0.3287 0.5865 0.3715 0.6164

7 0.0963 0.3461 0.2161 0.4973 0.2987 0.5689 0.3565 0.6107 0.3991 0.6388

8 0.1094 0.3705 0.2365 0.5212 0.3211 0.5904 0.3792 0.6303 0.4216 0.6570

9 0.1209 0.3910 0.2538 0.5410 0.3398 0.6082 0.3981 0.6466 0.4404 0.6722

10 0.1310 0.4084 0.2686 0.5576 0.3557 0.6232 0.4141 0.6604 0.4562 0.6852
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Figure 11: Deformed Configuration of FG Porous Cantilever Beam with Various Porosity Distribution Under Non-Conservative

(Follower) Tip Load (F tip
3 “ 20kN)
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5.3.3. Cantilever Subject to Conservative Transverse Load

A cantilevered axially FG beam under conservative transverse tip load is considered. Table (12) shows

the effects of porosity distribution levels β on the tip deflection of FG beam under a number of conservative

transverse tip forces.The deformed configurations for a number of porosity distribution level β under a tip

transverse force of P “ 20kN are depicted in Fig. (12). It is observed that when the level of porosity

increases the overall beam stiffness decreases and as expected beam undergoes larger deformations.

Table 12: Tip Displacement of FG Porous Cantilever Beam For Various Transverse Conservative Tip Load and Porosity

Distribution

4kN 8kN 12kN 16kN 20kN

β ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L ´u1{L u3{L

1 0.0034 0.0689 0.0133 0.1364 0.0292 0.2010 0.0505 0.2617 0.0761 0.3174

2 0.0128 0.1258 0.0485 0.2404 0.1004 0.3355 0.1598 0.4071 0.2190 0.4554

3 0.0306 0.1907 0.1100 0.3457 0.2102 0.4472 0.3054 0.4978 0.3809 0.5107

4 0.0537 0.2516 0.1828 0.4312 0.3252 0.5187 0.4388 0.5369 0.5120 0.5171

5 0.0788 0.3046 0.2553 0.4955 0.4280 0.5602 0.5465 0.5487 0.6094 0.5066

6 0.1037 0.3496 0.3219 0.5429 0.5145 0.5833 0.6305 0.5482 0.6808 0.4924

7 0.1273 0.3875 0.3812 0.5779 0.5861 0.5956 0.6958 0.5428 0.7337 0.4790

8 0.1493 0.4196 0.4331 0.6042 0.6450 0.6017 0.7459 0.5358 0.7732 0.4676

9 0.1694 0.4469 0.4783 0.6241 0.6938 0.6041 0.7873 0.5286 0.8033 0.4583

10 0.1877 0.4703 0.5177 0.6395 0.7344 0.6046 0.8197 0.5220 0.8264 0.4510
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Figure 12: Deformed Configuration of FG Porous Cantilever Beam with Various Porosity Distribution Under Conservative Tip

Load (P “ 20kN)

5.3.4. Cantilever Subject to Combined Shear Loads

A cantilevered axially FG beam subject to combined follower tip shear loads (i.e. F tip2 and F tip3 ) is

considered. Under the action of the combined load, the FG beam undergoes large 3D deflections. In

order to verify the results obtained from the proposed method, a finite element (FE) model is developed in

ABAQUS using 32 beam elements of type ”B31”. Young’s modulus (Epx1q) is considered to be constant

along each element and its value is assumed to be equal to the value of Epx1q at the middle point of each

element. Table (13) shows the 3D tip displacement of FG beam subject to F tip2 “ 2kN and F tip2 “ 3kN for

various porosity distributions β obtained from the FE and present model. Very good agreement is observed

between two sets of results. The deformed configuration is depicted in Fig. (13) for a number of porosity

distribution β.
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Table 13: Tip Displacement of FG Porous Cantilever Beam under Combined Shear Loads (F tip
2 “ 2kN , F tip

2 “ 3kN)

´u1{L u2{L u3{L

β FE Present FE Present FE Present

1 0.0027 0.0028 0.0347 0.0347 0.0517 0.0520

2 0.0104 0.0105 0.0631 0.0635 0.0947 0.0105

3 0.0250 0.0253 0.0960 0.0965 0.1440 0.1448

4 0.0441 0.0445 0.1271 0.1277 0.1907 0.1916

5 0.0650 0.0654 0.1545 0.1551 0.2317 0.2327

6 0.0857 0.0863 0.1779 0.1786 0.2668 0.2678

7 0.1056 0.1062 0.1978 0.1985 0.2967 0.2977

8 0.1241 0.1248 0.2148 0.2155 0.3221 0.3232

9 0.1411 0.1418 0.2293 0.2300 0.3440 0.3450

10 0.1567 0.1574 0.2418 0.2425 0.3628 0.3618
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Figure 13: Deformed Configuration of FG Porous Cantilever Beam Under Combined Shear Tip Loads (F tip
2 “ 2kN , F tip

2 “

3kN) for Various Porosity Distribution
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5.3.5. Cantilever Subject to Combined Loads

A cantilevered axially FG beam under a combined load of tip twist moment (i.e. M tip
1 ) and transverse

tip force (i.e. F tip3 ) is considered in this test case. Due to the coupling of in- and out-of-plane bending,

the FG beam undergoes a 3D deflection. The motivation for this test case is the aeroelastic response of

structures such as aircraft wings and wind turbine rotor blades under the action of aerodynamic forces which

are considered as nonconservative (follower) loads (Argyris and Symeonidis [49]). The 3D displacement of

an axially FG beam under combined load of M tip
1 “ 1kN.m and F tip3 “ 10kN is presented in Table (14)

for various porosity distributions β. The deformed configuration is depicted in Fig. (14) for a number of

porosity distribution β.

Table 14: Tip Displacement of FG Porous Cantilever Beam Under Combined Tip Load (Mtip
1 “ 1kN.m, F tip

3 “ 10kN) for

Various Porosity Distribution

β ´u1{L u2{L u3{L

1 0.0205 0.0269 0.1669

2 0.0726 0.0855 0.2772

3 0.1581 0.1534 0.3715

4 0.2532 0.2130 0.4342

5 0.3428 0.2603 0.4718

6 0.4215 0.2967 0.4931

7 0.4889 0.3248 0.5043

8 0.5460 0.3465 0.5095

9 0.5944 0.3637 0.5112

10 0.6356 0.3774 0.5107
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Figure 14: Deformed Configuration of FG Porous Cantilever Beam Under Combined Tip Load (Mtip
1 “ 1kN.m, F tip

3 “ 10kN)

for Various Porosity Distribution

6. Summary and Conclusion

Functionally graded porous materials offer promising multifunctional properties for the optimal design

of structures with minimal weight, so they are favourable options for engineering design. Slender structures

showing large deflections are involved in many engineering applications. For addressing this problem, a

spatially variable stiffness geometrically exact beam model with fully intrinsic formulation showing a very

low degree of nonlinearity is presented for the large deflection analysis of slender beam-like porous structures

under conservative or non-conservative (follower) load cases. An orthogonal Chebyshev collocation method

is adopted for the numerical discretization of the governing equations which is simple to implement and

bypasses the integrations common in finite element and Galerkin methods. However, the proposed method

is appropriate only for statically determinate problems. A number of test cases have been considered for

two types of porosity distribution, namely; a distribution through the beam cross-section and an axial

distribution along the beam span where results are compared to available analytical solutions. While the

focus of the numerical samples has been on classical problems, it gives fundamental understanding of the

large deflection mechanism of functionally graded porous structures. The proposed method can model

both conservative and non-conservative (follower) load cases and while being relatively accurate, presents a

versatile computationally efficient tool for the 3D large deflection analysis of variable stiffness functionally

graded porous structures.
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AppendixA. Beam Kinematics

A comprehensive description of the kinematics of a spatial geometrically exact beam is presented by

Khaneh Masjedi and Ovesy [37]. In order for this work to be self-contained some key relations are reported

from Khaneh Masjedi and Ovesy [37] herein.

The position vectors r and R which denote the corresponding position of a generic point on the cross

section of the beam in the undeformed and deformed state of the beam can be written as:

r “ r px1, x2, x3q “ r0 px1q ` xαeα (A.1)

R “ R px1, x2, x3q “ R0 px1q ` xαe˚α (A.2)

where r0 and R0 are the position vectors of the beam axis in the undeformed and deformed state of the

beam, respectively, xα is the position of a material point on the beam cross-section and α varies from 2 to

3. The displacement vector of the reference line of the beam can be expressed as:

u0 “ R0 ´ r0 (A.3)

The 1D generalized strain measures for an initially curved and twisted beam can be expressed as:

γ “ ΛT .R0,1 ´ r0,1 (A.4)

κ “ ΛT .K´ k (A.5)
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where Λ is the linear transformation that relates the inertial reference frame and the deformed frame. One

can easily obtain the following expressions:

R0,1 “ p1` γ11q e
˚
1 ` 2γ1αe˚α

κie
˚
i “ pKi´kiq e

˚
i

(A.6)

AppendixB. Chebyshev Polynomials

The Chebyshev polynomials are a sequence of orthogonal polynomials. The Chebyshev polynomial Tnpxq

of the first kind is a polynomial in x of degree n and is defined as:

Tnpxq “ cospnθq when x “ cos θ, ´1 ď x ď `1 (B.1)

Combining the trigonometric identity,

cospnθq ` cosppn´ 2qθq “ 2 cos θ cospn´ 1qθ (B.2)

with Eq.(B.1), the recurrence relation can be obtained as:

Tnpxq “ 2xTn´1pxq ´ Tn´2pxq, n “ 2, 3, . . . ,

where

T0pxq “ 1, T1pxq “ x

(B.3)

The first few Chebyshev polynomials of the first kind are:

T2pxq “ 2x2 ´ 1

T3pxq “ 4x3 ´ 3x

T4pxq “ 8x4 ´ 8x2 ` 1

T5pxq “ 16x5 ´ 20x3 ` 5x

...

(B.4)

Using the weight function w “
`

1´ x2
˘´ 1

2 one can find that the Chebyshev polynomials of the first kind

satisfy the orthogonality condition:

ż 1

´1

TipxqTjpxq
?

1´ x2
“

$

’

’

’

’

&

’

’

’

’

%

0, i ‰ j

π

2
, i “ j ‰ 0

π, i “ j “ 0

(B.5)
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It is noted that for any arbitrary range a ď x ď b the Chebyshev polynomials can be shifted by replacing

the independent variable x in Eq.(B.3) by

x “
2

b´ a
x´

b` a

b´ a
(B.6)
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