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ABSTRACT 14 

A comprehensive modelling approach has been developed to predict population exposure to 15 

the ambient air PM2.5 concentrations in different microenvironments in London. The 16 

modelling approach integrates air pollution dispersion and exposure assessment, including 17 
treatment of the locations and time activity of the population in three microenvironments, 18 
namely, residential, work and transport, based on national demographic information. The 19 

approach also includes differences between urban centre and suburban areas of London by 20 
taking account of the population movements and the infiltration of PM2.5 from outdoor to 21 

indoor. The approach is tested comprehensively by modelling ambient air concentrations of 22 
PM2.5 at street scale for the year 2008, including both regional and urban contributions. Model 23 
analysis of the exposure in the three microenvironments shows that most of the total exposure, 24 

85%, occurred at home and work microenvironments and 15% in the transport 25 
microenvironment. However, the annual population weighted mean (PWM) concentrations of 26 

PM2.5 for London in transport microenvironments were almost twice as high (corresponding 27 
to 13-20 µg/m3) as those for home and work environments (7-12 µg/m3). Analysis has shown 28 

that the PWM PM2.5 concentrations in central London were almost 20% higher than in the 29 
surrounding suburban areas. Moreover, the population exposure in the central London per unit 30 
area was almost three times higher than that in suburban regions. The exposure resulting from 31 
all activities, including outdoor to indoor infiltration, was about 20% higher, when compared 32 
with the corresponding value obtained assuming inside home exposure for all times. The 33 

exposure assessment methodology used in this study predicted approximately over one quarter 34 
(-28%) lower population exposure, compared with using simply outdoor concentrations at 35 
residential locations. An important implication of this study is that for estimating population 36 
exposure, one needs to consider the population movements, and the infiltration of pollution 37 
from outdoors to indoors. 38 
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1.  INTRODUCTION 39 

Most epidemiological studies focusing on health impacts of air pollution are based on 40 
relationships between measured pollution concentrations at fixed monitoring sites, or 41 

modelled concentrations, and various health indicators (e.g., Pope and Dockery, 2006; Rohr 42 
and Wyzga. 2012, de Hoogh et al., 2014). However, such approaches ignore the activity 43 
patterns of individuals, i.e., people’s day-to-day movements from one location to another and, 44 

the infiltration of outdoor air to indoor. Both factors are known to cause significant variations 45 
in the predicted exposure (e.g., Beckx et al., 2009; Soares et al., 2014; Kukkonen et al., 2016).  46 

Variations in the individual exposure during the daily activity have been studied by measuring 47 
the personal exposure to ambient air concentrations using portable instruments in different 48 
microenvironments (Wallace and Ott, 2011, Steinle et al., 2013, 2015; Williams and Knibbs, 49 

2016; Ham et al., 2017; Carvalho et al., 2018). As the studies were based on measurements 50 
over relatively short periods, they do not account for the day-to-day and seasonal variations 51 
in the exposure to ambient pollutants. To account for the temporal variability, earlier studies 52 

(Dockery et al., 1993), estimated the population exposure based on the measured 53 
concentrations at the nearest monitoring site, which was then assumed to represent the 54 

pollution levels over a fairly wide area. Other studies (Bell, 2006; Brauer et al., 2008) used 55 
the concentrations measured at several monitoring sites, to spatially interpolate the pollutant 56 

concentrations using inverse distance weighting (IDW) and kriging techniques (Singh et al., 57 
2011) to estimate the exposure. However, such methods do not capture the finer scale spatial 58 
heterogeneity in the air pollution across the city. The concentrations of pollutants in urban 59 

areas are highly heterogeneous and may vary by an order of magnitude on street scale in 60 
different areas due to traffic-originated pollution (e.g., Beevers et al., 2013; Singh et al., 2014; 61 

Pattinson et al., 2014; Targino et al., 2016).  62 

Exposure models can vary from simple empirical relationships between health outcomes and 63 
outdoor air concentrations up to comprehensive deterministic exposure models (e.g. Kousa et 64 
al., 2002; Ashmore and Dimitripoulou, 2009; Soares et al., 2014; Smith et al., 2016). A more 65 

refined procedure combines the spatially predicted concentrations, and location and activity 66 
of the population, to estimate the spatial and temporal variation of mean exposure in different 67 

MEs (e.g., Soares et al., 2014; Kukkonen et al., 2016, Smith et al., 2016). This is particularly 68 
important, as accurate exposure estimates are necessary to reliably quantify population health 69 
impacts.  70 

Geographical Information Systems based approaches have been used by Jensen (1999) and 71 
Gulliver and Briggs (2005) to estimate the exposure from traffic. Considerably more 72 

sophisticated Eulerian gridded chemical transport models have been used globally (Lelieveld 73 
et al., 2015, Picornell et al., 2019) and at regional scale (Isakov et al., 2007; Borrego et al., 74 
2009; Beckx et al., 2009; Conibear et al., 2018) to estimate the exposure at different grid 75 
resolutions. The city scale dispersion models (Carruthers et al., 2000; Sokhi et al., 2008; Singh 76 

et al., 2014) and land use regression models (Beelen et al., 2010; Gulliver et al., 2011 and de 77 
Hoogh et al., 2014) provide the within-city variations in the concentrations. There are, 78 
however, fundamental differences in approach adopted by such methods in terms of the 79 

Analysis, based on a modelling approach, demonstrates that it is critical to consider 

both population movements in key microenvironments and the infiltration of pollution 

from outdoors to indoors for calculating the total exposure due to the ambient PM2.5 



methodology to estimate the concentrations. While dispersion models use a deterministic 80 
approach to estimate the pollutant concentrations based on the spatially resolved emissions 81 
and meteorology driven dispersion, land use regression models predict the pollutants based 82 
on empirical relations between measured pollutant concentrations at a number sites and 83 

predictor variables, such as land use, traffic and topography (Beelen et al, 2013; Korek et al., 84 
2016).  85 

Probabilistic models such as EXPOLIS (Hänninen et al., 2003, 2005) and INDAIR 86 
(Dimitroulopoulou et al., 2006) provide the frequency distribution of exposure within a 87 
population. In order to estimate the spatial distribution of mean exposure, an integrated 88 

deterministic modelling approach such as EXPAND (Exposure model for Particulate matter 89 
And Nitrogen oxiDes; Soares et al., 2014; Kukkonen et al., 2016) and LHEM (London Hybrid 90 

Exposure Model; Smith et al., 2016) has been adopted. These models can be applied for 91 
various temporal and urban spatial domains based on the available temporal and spatial 92 
resolution of population activity and emission data.  93 

With a population of over 8 million in accordance with the 2011 census (ONS, 2012), London 94 
is one of the largest cities in the Europe. It serves as an ideal study area, as comprehensive 95 

datasets on emissions, air pollutant concentrations and population are available. A few London 96 
specific urban high-resolution (from tens of m to a few hundreds of m) dispersion modelling 97 
studies have been reported (Beevers et al., 2013, Singh et al., 2014 and Hood et al., 2018). 98 
Singh et al., (2014) and Beevers et al., (2013) evaluated dispersion models against annual 99 

mean PM2.5 measurements and both reported that the regional background was on the average 100 
the largest contributor to the total PM2.5 concentration. Near busy roads, however, the levels 101 

of PM2.5 due to vehicular emissions were of similar magnitude as the regional background.  102 

Examining how air pollution distributions are influenced by population activities within a 103 

complex urban environment, such as London, it is essential to understand exposure to air 104 
pollution. Picornell et al., (2019) highlighted the importance of people’s movements for 105 
calculating the exposure using population movement based on mobile phone data. Reis et al., 106 

(2018) evaluated the influence of population mobility on exposure in the whole of the UK at 107 
a resolution of 1 km×1 km. They reported that taking workday location into account had only 108 

a minor influence (0.3%) on the predicted exposure to PM2.5, compared with considering 109 
simply the residential exposure. However, they did not address the outdoor to indoor 110 
infiltration of pollution. The minor effect probably reflects not allowing for the infiltration 111 

effects and the fairly coarse resolution.  112 

GLA (2013) provides ambient air PM2.5 concentrations for population weighted exposure 113 
calculations over London, but does not allow for different human activities or infiltration of 114 

air pollution to indoors. Kaur and Nieuwenhuijsen (2009) and studies of Adams et al. (2001a 115 
and 2001b) have examined the personal exposure in London based on the field measurements, 116 
including a limited amount of samples. The use of dispersion model combined with space-117 
time-activity data allows the calculation of exposure in detail.  118 

A detailed study by Smith et al., (2016) combines the outdoor pollution concentrations 119 

evaluated by the CMAQ-Urban model and space-time-activity data based upon London Travel 120 
Demand Survey (LTDS) to estimate the exposure of the Greater London population to the 121 

outdoor air concentrations of PM2.5 and NO2 using the LHEM model. They calculated the 122 
population average daily exposure in indoor, in-vehicle and outdoor microenvironments and 123 
their contribution to the total exposure. Smith et al., (2016) to a large extent focused on the 124 
examination of the differences of the exposure values evaluated by the LHEM model, 125 

https://data.london.gov.uk/dataset/pm2-5-map-and-exposure-data


compared with the exposures computed at residential addresses. They also investigated the 126 
differences of exposure to PM2.5 and NO2.  The present study, in contrast to Smith et al. (2016), 127 
also analyzes in detail predicted spatial concentration distribution and population weighted 128 
concentrations for PM2.5 in main microenvironments (home, work and transport). We 129 

considered it important also to investigate the impacts of the spatial heterogeneity of the 130 
population and PM2.5 concentrations over the whole of London.  131 

In this study, we have extended the previously published development and application of the 132 
OSCAR Air Quality Modelling System, which is mainly based on a multiple-source Gaussian 133 
dispersion approach. The OSCAR modelled concentrations of PM2.5 have been combined with 134 

the estimates of the regional background concentrations and population activity based on 135 
census data reported by the Office for National Statistics (ONS) in the UK, (ONS, 2012) and 136 

population activity from the London Travel Demand Survey (LTDS, 2011 from Transport for 137 
London), to predict the population exposure to ambient air concentrations of PM2.5 across a 138 
megacity of London, UK.  139 

The objectives of this study were to:  140 

(i) Develop and implement a comprehensive approach to analyse and estimate the 141 

time activity of the population of London for three microenvironments (home, 142 

work and transport);  143 
(ii) Quantify the population exposure to the concentrations of PM2.5 in London; 144 
(iii) Examine the relative importance of exposure to ambient PM2.5 in terms of key 145 

microenvironments, their spatial distributions across Greater London and quantify 146 

the difference between central London and surrounding regions; and 147 

(iv) Assess the importance of including the movements of the populations and the 148 
infiltration of ambient air pollution indoors to the total exposure of the population, 149 

compared, e.g., with using solely the exposure predicted at residential locations.  150 

In order to achieve the research objectives, we have estimated the concentrations and the time-151 
activities of the population, and combined these datasets to examine the exposure of the whole 152 

population in London to outdoor concentrations of PM2.5. In line with the first objective, we 153 

demonstrate a robust methodology that can be applied to quantify spatially resolved 154 
population exposures due to air pollution in cities such as London for any time period, without 155 
the reliance on excessively detailed population activity data.  156 

2.  METHODOLOGY  157 

We present an overview of the methodology, including the modelling of the PM2.5 158 
concentrations and exposure. In addition, we explain the selection and definitions of the 159 
microenvironments, and present the data and methods for the assessment of the locations and 160 

movements of the population.  161 

2.1 Modelling of the PM2.5 concentration in London for 2008 162 

We have used the OSCAR Air Quality Assessment system (Singh et al., 2014; Sokhi et al., 163 
2008) to model the PM2.5 concentrations originated from vehicular urban sources in London 164 

(Supplementary Figure S1). A detailed description of the modelling domain, road traffic data 165 
and model validation can be found in Singh et al., (2014). The OSCAR Air Quality 166 
Assessment System consists of an emission model, a meteorological pre-processing model 167 

and a road network Gaussian dispersion model (Kukkonen et al., 2001).  168 



The OSCAR modelled concentrations of PM2.5 have been combined with the estimates of the 169 
regional and urban background concentrations. The annual mean regional and urban 170 
background concentrations of PM2.5 at 1 km × 1 km grid resolution were extracted from Grice 171 
et al. (2009). The regional and urban background concentration was added to the modelled 172 

concentrations originating from the urban vehicular sources by linear interpolation using a 173 
geographic information system (GIS). The temporal variability in the annual mean regional 174 
and urban background concentrations was derived using the measured hourly time series from 175 
a representative urban background station at Camden – Bloomsbury. 176 

The emission model of the OSCAR system is based on the COPERT IV (Gkatzoflias et al., 177 

2012) and  Department for Transport (DfT; Boulter et al., 2009) emission functions and factors 178 
as used in London Atmospheric Emission Inventory (LAEI  ̧ GLA, 2010). The PM2.5 non-179 

exhaust emissions due to tyre and brake wear were based on the UK National Atmospheric 180 
Emission Inventory (NAEI; Dore et al., 2008). The particle resuspension has not been 181 
considered because of its relatively small contribution compared with tyre and brake wear 182 
(Beevers et al., 2013).  Although the OSCAR model does not include a detailed treatment of 183 
traffic congestion on emissions, the effects of congestion are allowed for on an average level, 184 

via the influence of vehicle travel speed on emissions.  185 

The meteorological pre-processor GAMMA-MET (Bualert, 2002) was used to process the 186 
hourly parameters including wind speed and direction, solar radiation, friction, velocity, 187 
temperature, relative humidity and Monin–Obukhov length. The influence of buildings and 188 

other obstacles on the dispersion was represented using the roughness length (z0) (see Seinfeld 189 
and Pandis, 2006). Roughness length value equal to 1.5m was used for the central London and 190 

a lower value of 0.2m was used for open road environments located in outer London. It should 191 
be noted that, in order to retain efficient and reasonable computation run times, complex street 192 

canyons were not treated within OSCAR. This may potentially lead to an underestimation of 193 
PM2.5 concentrations as street canyons would typically reduce dispersion. The model includes 194 
dry deposition process for the fine particulate matter originating from the line source 195 

(Kukkonen et al., 2001); this has been allowed for in the modelling. However, the chemical 196 
transformation processes were not taken into account in the urban scale modelling. Therefore, 197 

the particles originating from the urban traffic sources were treated mainly as primary 198 
particles, although regional and urban background concentrations used in the model included 199 
contributions from secondary particles.  200 

For the sake of brevity, we have not presented any further details on the model and its 201 
evaluation against experimental data.  For more detailed descriptions, the readers are referred 202 
to Singh et al. (2014), Sokhi et al. (2008) and Srimath et al. (2005, 2017). 203 

2.2 Evaluation of population exposure 204 

2.2.1 Definitions of exposure and population weighted concentration 205 

The time averaged population exposure Ei at a given location i (or a computational grid square) 206 
and for a given time period t, can be written as (Soares et al., 2014; Reis et al., 2018). 207 
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where Cijt and Pijt are the pollutant concentration and the number of persons at the location i 209 
and microenvironment j at a time period of the day t, and N is the number of the considered 210 



microenvironments. Clearly, equation (1) can be defined correspondingly for hourly, daily or 211 
annual as in the current case.  The use of equation (1) also allows for the modelling of exposure 212 
in various microenvironments (MEs), including peoples’ movements and the evaluation of 213 
outdoor pollution in indoor air.    214 

It is also useful to define a population weighted mean (PWM) concentration to which the 215 
population is exposed in different environments. For a time period of 24 hours, this can be 216 
defined as (Reis et al., 2018):  217 
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where the denominator is the cumulative amount of population within location i during 24 219 
hours period. In this current study, we have presented numerical results on the population 220 

exposure and population weighted concentration values as annual averages. 221 

2.2.2 Microenvironments 222 

ME is a useful concept when considering movement of people and their resultant exposure to 223 
air pollution. It is defined as a location having relatively uniform concentration, such as home 224 

or workplace, in which exposure takes place. Three MEs have been considered in this study, 225 

namely, home, work and transport. One could also define other, more specific 226 

microenvironments. For instance, Soares et al. (2014) considered a microenvironment called 227 
‘other environments’ that included exposure in recreational activities, such as sports activities, 228 

shopping and restaurants. The microenvironments considered in this study are as follows 229 

(i) The home microenvironment includes all the people at home or working at home. 230 
(ii) The work microenvironment includes all the people at workplace. We have assumed, 231 

for simplicity, that all the people are working either in offices or inside buildings. 232 

(iii) The transport microenvironment includes exposure of people while travelling in buses, 233 
personal cars, trains, pedestrians and cyclists and hence includes all the people 234 
travelling by all modes of transport (supplementary Figure S2) to homes, work or to 235 
any other location.  236 

 237 
As mentioned previously, this study considers only exposure to outdoor air pollution; the 238 
effects of indoor air pollution sources in London (Shrubsole et al., 2012) were outside the 239 

scope of this study. The infiltration of outdoor air pollutants indoors is dependent on numerous 240 
factors, such as, e.g., the structure and ventilation systems of the building, on the particular 241 
pollutant, and in case of particulate matter, on its size distribution. As the information on the 242 
infiltration coefficients for various buildings and vehicles in London was very scarce, we have 243 
used estimates from available literature (Hänninen et al., 2004 and 2011). Further discussion 244 

is given in section 2.3.3.  245 

2.3 Evaluation of the location and time-activity of the population   246 

We have analysed the amounts of population at home, at work and in transport 247 
microenvironments within London for 2008. The analysis was based on the census population 248 
data reported by Office for National Statistics (ONS, 2012). The diurnal variation of 249 



population activity has been obtained from the London Travel Demand Survey LTDS (2011). 250 
Instead of having individual activity pattern based on the individual trips such as analysed by 251 
Smith et al., (2016), our study calculates the population space-time activity that has been 252 
estimated by combining the information extracted from ONS (2012) and LTDS (2011). The 253 

population space-time activity provides the information on the number of people in a given 254 
microenvironment at given time of the day at the census location. This approach allows a 255 
population based analysis, as most of the cities have residential as well as work population 256 
records based on the census survey. 257 

2.3.1 London population data 258 

The spatial distribution of the London population (supplementary Figure S3) has been taken 259 

from the ONS census data. Census of the population is conducted every 10 years in the UK. 260 

In census 2011, the data was collected from the 95% household based on the questionnaire 261 
that provided the detailed information on the residential and work population. We used the 262 
population at the output areas (OA, Census Glossary, 2011) that is the highest available 263 
geographical resolution for population allocation published over for all the districts of Greater 264 
London. The area of OA is different which varies from 156 m2 to 12.2 km2. The median area 265 

of OA across London is 0.033 km2.  266 

The census population information has been reported for the years 2001 and 2011; we have 267 
therefore extrapolated the values in 2008, by assuming a linear growth rate of the total 268 
population in London from 2001 to 2011. The numbers of residential and workday population 269 

were evaluated to be 7.86 and 8.37 million in London in 2008, respectively. The workday 270 

population is larger than the resident population due to the population commuting from the 271 

outside of London. The growth rates of resident and workday populations were on average 272 
1.39% and 1.33% per annum, during the decade from 2001 to 2011.  273 

The spatial distribution of population during daytime (defined as the period from 7:00 am to 274 
7:00 pm) and nighttime (the other times) have been presented in supplementary Figure S3 275 
(a,b). All the spatial distributions in this study have been presented at the output areas (OA, 276 

Census Glossary, 2011) for all the districts of Greater London. As expected, the population 277 

density during daytime is clearly higher in central London and in the vicinity of the busiest 278 
business districts.  The population at night is distributed much more uniformly across the 279 
whole area of London.  280 

The percentages of the modes of travel from home to work in London based on ONS (2012) 281 
have been presented in supplementary Figure S2. Public transport includes buses, trains and 282 
the underground.  Public transport accounts for approximately a half of all transportation from 283 
home to work. Other vehicular modes of travel, such as private car, taxi and motorcycles are 284 

responsible for almost a third of all travels. A fairly small fraction of people, 13% walk or 285 
cycle to work.   286 

2.3.2 The London Travel Demand Survey (LTDS) data 287 

LTDS is a continuous household survey of the London area, covering the Greater London 288 
area, assessed based on the travel demand. LTDS collects the information on households, 289 

people, trips and vehicles. The diurnal and weekly variation of the fractions of people 290 
travelling in London obtained from LTDS has been presented in supplementary Figure S4. 291 

Clearly, during the weekdays, there are substantial morning and afternoon rush hours peaks.  292 



During the weekends, the amount of people travelling peaks at approximately 11 am, and then 293 
slowly decreases at later times of the day.  294 

The percentages of population in the selected microenvironments are presented in Figure 1.  295 
Based on ONS (2012) and LTDS (2011) datasets, more than half of the population spent their 296 

time at home throughout the day. The data shows that the time spent in both work and in 297 
transport environments is distributed fairly evenly during the working hours. However, as 298 
expected, there are higher activities associated with the transport environment during the 299 
morning and afternoon rush hours.   300 

2.3.3 Outdoor to indoor infiltration 301 

While indoor sources and sinks were not considered, the contribution of outdoor air pollution 302 
to indoor air quality was determined by the use of the efficiency of infiltration, which takes 303 

account of outdoor air coming indoors and the ventilation. The infiltration factor is defined to 304 
be equal to the fraction of outdoor air pollution that will be infiltrated indoors (e.g., Soares et 305 
al., 2014). In this study a mean value of the infiltration factor for PM2.5 of 0.60 has been used, 306 
based on Hänninen et al., (2004 and 2011), to calculate the concentrations at home and at work 307 
microenvironments. Hänninen et al. (2011) presented an overview of a number of European 308 

studies that have determined IF’s for PM2.5 and PM10; the values in the overview ranged from 309 

0.37 to 0.70. Soares et al. (2014) presented an update of part of these values. We have selected 310 
the value of 0.60, based on averages of the extensive datasets within these updates, based on 311 
the EXPOLIS and ULTRA studies.   312 
 313 
Smith et al (2016) have used spatially resolved infiltration factors within a range of from 0.35 314 
to 0.86; however, these have been derived only for domestic buildings.  It is not clear, whether 315 

these values are representative of commercial areas of London, including the centre.  316 
 317 
In the case of the transport microenvironment, the information on the infiltration factors for 318 

various modes of transport is not known sufficiently well for a detailed modelling analysis. 319 
The mean values and the range of the PM2.5 concentrations reported within traffic 320 

microenvironments by Smith et al., (2016) suggest that the concentrations within traffic 321 
micro-environments are in the range of the ambient concentration, except for the underground 322 
environment. The infiltration factor used in this study for all the various transport 323 
microenvironments, for all transport modes is therefore assumed to be unity. 324 

   325 
 326 
 327 
3. RESULTS AND DISCUSSION 328 

3.1 Temporal and spatial distribution of PWM concentrations and exposures for 329 
different microenvironments 330 

A diurnal variation of the modelled annual average PM2.5 concentrations has been presented 331 
in supplementary Figure S5. The diurnal profile shows a bimodal distribution. The two broad 332 
highs are due to increased urban traffic in the morning, approximately from 7 to 9 am and 333 
again in the evening, approximately from 7 to 9 pm. In general, the day time concentrations 334 

are higher by 3-4 µg/m3
, as compared with  the values at night. The overall PM2.5 diurnal 335 

profile is of course a resultant of the variations in the emissions as well as meteorology (e.g. 336 
changes in boundary layer height) over the day and night hours.   337 



The spatial distribution of the modelled annual mean PM2.5 concentrations for 2008 has been 338 
previously presented by Singh et al. (2014). The highest concentrations were found  near busy 339 
roads, motorways, at their junctions, and in the centre of London. For this study, the modelled 340 
spatial distributions of PWM concentrations of PM2.5 have been presented in Figure 2 for 341 

homes and workplaces, transport and for the total of all the microenvironments. All the results 342 
have been presented for exposure to outdoor air pollution, including infiltration of outdoor air 343 
pollution to indoors.  344 

Across London, our analysis shows that people at workplace and home are exposed to the 345 
annual average concentrations ranging from 7 to 11 µg/m3 of PM2.5 with mean value of 8 346 
µg/m3. However, people in the transport microenvironment are exposed to relatively much 347 
higher concentrations, the annual averages ranging from 13 to 20 µg/m3 with a mean value of 348 

15 µg/m3.  349 

The analysis of population weighted concentrations has been extended for city-wide mean 350 
values. PWM concentrations of PM2.5 in the different MEs are presented in Figure 3. People 351 

are exposed on average to almost twice as high concentration in the transport 352 
microenvironment, compared with the home and workplace environments. However, the total 353 
PWM concentration in all the considered MEs is only slightly higher than the corresponding 354 
average value in the home and work MEs, due to the large fraction of time that people spend 355 
in the home and work environments. 356 

The predicted spatial distribution of population exposures has been presented in Figure 4 for 357 

homes and workplaces, transport and for the all combined microenvironments exposure for 358 

London in 2008. The highest exposures occurred in the central areas of London, for both the 359 

total exposure and for both work and home, and the transport microenvironments. The largest 360 
proportion of exposure (85%) takes place at homes and workplaces microenvironments as 361 

much of the population spend large amount of the time indoors.  362 

3.2 Spatial difference in concentrations and exposure for central and outer areas of 363 

London 364 

A separate analysis has been conducted to understand the differences in exposure for central 365 
and outer parts of London. The central parts include Westminster, City of London, Kensington 366 
and Chelsea as shown in red colour in supplementary Figure S1 and the remaining area is 367 

referred as outer London. The central parts of London have high day time population, due to 368 

the working population (supplementary Figure S3). Figure 5 presents PWM concentrations 369 

and exposures for Greater London divided into a central part and an outer part. The PWM 370 
concentration of PM2.5 averaged over the central part of London is 20% higher than the 371 

corresponding average concentration in the outer parts of London. However, the population 372 
exposure is almost three times higher in central London, compared to outer London. The 373 
higher concentrations in central London are mainly caused by traffic originated air pollution.  374 
Reis et al., (2018) estimated around 8% differences in annual mean concentrations for PM2.5 375 
experienced by individuals living at Mayfair in central London, compared with living at 376 

Southfields in outer London. The lower estimate by Reis et al., (2018), compared with the 377 
corresponding values in the present study, could be due the exclusion of exposure in the 378 
transport microenvironments. 379 

The urban and traffic concentration increment calculations for London by Singh et al., (2014) 380 
showed that a major fraction of the total PM2.5 concentrations, 73%, was caused by regional 381 
background contributions, 19% by urban non-road sources and 8% by the emissions originated 382 



by road transport. These percentages provide useful information on the importance of these 383 
source categories on a city-wide scale but as indicated above there are spatial differences such 384 
as between the central part compared to the outer areas of London.   385 

 3.3 Importance of including population activity to quantify exposure to PM2.5 386 

The predicted diurnal variations of the population exposure, both including and excluding 387 
population activity have been plotted in Figure 6. The figure presents exposures in all the 388 
microenvironments, allowing for the influence of the infiltration of outdoor air indoors. The 389 
exposure excluding activity has been computed by assuming people spend their time only in 390 
the residential (indoor home) environment (but including infiltration effects from outdoor air 391 

pollution). The more realistic exposure with activity is where people also spend their time in 392 

transport and work environments and hence results in substantially higher population exposure 393 

values (by about 20%). This is especially the case during the day time, with higher values 394 
during the morning and evening commuting periods. Such a comparison clearly illustrates the 395 
importance of increased exposure due to taking account of population activity patterns 396 
compared to assuming a static residential population. 397 

3.4 Implication of this study for air pollution exposure and health impact assessments 398 

Air pollutant concentrations at residential locations of the population are commonly used in 399 

health impact assessments and epidemiological studies. The implicit assumption in these 400 
studies is that the residential exposure is representative of the total exposure of the target 401 
population or cohort members. However, this study questions this assumption by showing that 402 

exposures in various microenvironments are not the same. As this bias has been present in 403 
almost all of the previous larger scale exposure and health assessment studies, it is useful at 404 

least to know the magnitude of this uncertainty.  405 

We have, therefore, evaluated the difference of using only residential coordinates in 406 

estimating the total population exposure, compared with using the exposure evaluated 407 
separately for the three microenvironments addressed in this study. The exposure assessment 408 
methodology used in this study predicted over one quarter (-28%) lower total population 409 
exposure, compared with using simply outdoor concentrations at residential locations.  410 

The difference between exposure based on the use of static population exposed to residential 411 
ambient concentration and the exposure for a dynamic population moving within three 412 

microenvironments is mainly caused by two counteracting factors. (i) The so-called residential 413 
exposure in traditional health impact assessments is evaluated based on the assumption that 414 
the general population exposure is reflected by the air pollutant concentrations outside the 415 
vicinity of their homes. In the present study, we have also allowed for the infiltration effect of 416 
the houses and work buildings. The resulting modelled exposure of people indoors affected 417 

by a fraction of ambient air pollution that is infiltrated indoors, and the actual exposure inside 418 
the homes, is therefore smaller. We have evaluated this exposure reduction to be of the order 419 
of 40% (with an infiltration factor assumed to be equal to 0.60) (ii) The exposure in road 420 
transport environments is substantially higher than the corresponding exposures at homes. The 421 
exposure at workplaces also tends to be slightly higher than that at homes per unit of time 422 

(Soares et al, 2014), as the former are more commonly situated near roads with heavier traffic. 423 

The resulting predicted exposure is, hence expected to be higher for other microenvironments 424 

besides homes. These two factors counterbalance each other to some extent.  425 



It can be shown by simple numerical evaluations that the first mentioned effect (i) is larger 426 
than the second effect (ii). The resulting percentage change of the predicted exposure 427 
mentioned above (-28%) is therefore negative, but its absolute value is smaller than the above 428 
mentioned 40%. The results of detailed computations for the traditional method and the more 429 

refined one, both evaluated using the modelling system used in this study, are presented in 430 
Figure 7. The population exposure, taking into account all three microenvironments and the 431 
infiltration of pollution indoors, was 72% of the corresponding result obtained with the 432 
traditional method. The corresponding percentage was slightly lower, 67%, for the population 433 
weighted mean concentration, compared with the population exposure.  434 

This percentage has been evaluated for London for 2008; the overall reduction will probably 435 
be different for other urban regions and time periods. In particular, the exposure of people 436 

spending time near heavy traffic roads, as is the case in central London, will result to higher 437 
exposure compared to using residential concentrations.    438 

There is an important implication for exposure and health assessments (e.g., epidemiological 439 
studies identifying links between air pollution and health outcomes). The analysis of exposure 440 
in this study demonstrates to the importance of taking into account the exposure in various 441 

microenvironments and the infiltration of pollution to indoors, instead of using only the 442 
residential exposures.   443 

3.5. Underlying assumptions and limitations 444 

The scope of current study has included the exposure to ambient air pollution, both outdoors 445 

and indoors; however, we have not considered indoor sources and sinks of air pollution. 446 
Various European studies have reported infiltration factors for PM2.5 and PM10 that range from 447 
0.37 to 0.70 (Hänninen et al., 2011), i.e., substantial fractions of outdoor particulate pollution 448 

can be infiltrated to indoor air. The pollution infiltrated from outdoor to indoor air in the 449 
western and central European countries may therefore be more important for peoples’ health 450 

than pollution from the indoor sources, with the exception of tobacco smokers. 451 

We have considered emissions from road transport and most other urban sources; however, 452 
we have not addressed contributions from trains. In particular, the metro (underground) 453 
microenvironments are outside the scope of this study. The emission modelling allows for the 454 

effects of traffic congestion only implicitly, i.e., as a variation of exhaust coefficients as a 455 

function of travel speed.   456 

The infiltration factor for the transport microenvironments has been assumed to be unity, due 457 
substantial uncertainties of the ranges of these values (Smith et al., 2016).  While our analysis 458 
was done for 2008, the main findings are relevant also to the present situations, as the temporal 459 
changes in PM2.5 concentrations for London have been modest during the last decade (e.g., 460 

Brook and King, 2017, Font and Fuller., 2016). This study has considered exposure to PM2.5, 461 
due to its association with serious health impacts (e.g., Rohr and Wyzga. 2012). To retain the 462 
focus on exposure, we have not examined health impacts.  463 

In addition, we have not considered explicitly the chemical components of PM2.5, or other 464 

pollutants, such as NO2 and O3, and their resulting health impacts. The eventual goal is to 465 

evaluate the exposure and health impacts of all the relevant pollutants, and those for the 466 

various chemical components and different properties of particulate matter. However, it is 467 
important to understand the spatial and temporal distribution of population exposure to PM2.5, 468 



before examining the contribution from its chemical constituents. Important questions still 469 
remain on how exposure from PM2.5 affects the population spatially and in different key 470 
microenvironments.    471 

 472 

4.  CONCLUSIONS 473 

High resolution PM2.5 predictions from the OSCAR Air Quality Assessment model for 474 
London have been combined with demographic datasets to determine spatial distribution of 475 

population exposure for three different microenvironments (home, work and transport). The 476 
exposure model includes a treatment of the locations and time use of population and a simple 477 

treatment of the infiltration of pollution from outdoor to indoor air. This comprehensive 478 
modelling approach has been used to analyse the time activity dependent population exposure 479 
for more than eight million inhabitants of London megacity. The annual population exposure 480 
to ambient air PM2.5 concentrations has been estimated based on hourly time-activities at fine 481 
scale for the whole of Greater London.  482 

Numerical results have been presented for time activities, PWM concentrations and the 483 
population exposures to PM2.5. The computations included the regionally and long-range 484 

transported pollution with contributions originating from all urban pollution source categories, 485 
including especially those related to vehicular emissions. A number of key conclusions can 486 
be drawn from the study.  487 

(i) We have demonstrated the development and applicability of the OSCAR 488 

modelling approach for predicting population exposure to PM2.5 for a megacity, 489 
London, UK. The approach combines high resolution, spatially and temporally 490 
resolved concentrations of ambient PM2.5 with data on time activity for three main 491 

microenvironments. As this approach does not rely on excessively detailed 492 
information, it can be utilized for evaluating the impacts of urban and traffic 493 

planning and for conducting assessment of adverse health impacts resulting from 494 
air pollution exposure as well as for urban air quality research.   495 

 496 
(ii) Our analysis shows that on an annual average level, more than half of the 497 

population of London is at home throughout the day. The time spent in both work 498 

and in transport microenvironments is distributed fairly evenly during the working 499 
hours, although expectedly, there were higher activities in the transport ME during 500 
the morning and afternoon rush hours. A similar variation of the population 501 
activities has been reported by Kousa et al. (2002) and Soares et al. (2014) for the 502 

Helsinki Metropolitan Area. 503 

(iii) In terms of microenvironments, people at work and home were exposed to 504 
concentrations ranging from 7 to 11 µg/m3 of PM2.5 on an annual average level, 505 
whereas people in transport, were exposed to almost twice as high concentrations, 506 
the annual averages ranging from 13 to 20 µg/m3. 507 

(iv) Analysis on a city-wide basis in terms of the individual ME and the total population 508 

exposures to PM2.5 reveals that 85% of the total exposure occurred at home and 509 

workplace microenvironments, and 15% in the transport microenvironment. Smith 510 
et al., (2014) found in their study that travel was responsible from 4 to 12% of the 511 
total population exposure.   512 



(v) There is a distinct demarcation of exposure for people spending time in central 513 
London compared to other regions. Comparison of the spatial distribution shows 514 
that the highest exposures per unit area occurred in the centre of London and in the 515 
area of urban business centres. This is the case for both the total exposure and for 516 

both work and home, and the transport microenvironments. In terms of population 517 
weighted concentration of PM2.5, the value averaged over the central part of 518 
London is 20% higher than the corresponding average concentration in the outer 519 
parts of London. Because of higher PM2.5 concentrations due to higher traffic 520 
density and high population density, the population exposure per unit area is almost 521 

three times higher in central London, compared to outer London. 522 
 523 

(vi) The total exposure resulting from all the considered activities, including the 524 

outdoor to indoor infiltration compared with indoor home exposure only (inside 525 

the homes, considering the infiltration of PM2.5 from outdoors to indoors) resulted 526 

in about 20% higher exposure to PM2.5. This analysis illustrates the importance of 527 

allowing for population activity.  528 

 529 
(vii) There are important implications also for air quality and health related 530 

epidemiological studies that assume that the air pollutant concentrations outside 531 
the home place are representative of the total population exposure. These studies 532 

also commonly neglect the infiltration of pollutants to indoors. This study shows 533 
that the exposures to ambient concentrations of PM2.5 can be substantially different 534 

in different microenvironments. Results from the current work demonstrate that 535 

the total population exposure was over one quarter (-28%) lower on a city-wide 536 

average level, compared with using simply outdoor concentrations at residential 537 
locations. Smith et al., (2016) have also shown that exposure estimates based on 538 

space-time activity and infiltration of PM2.5 to indoors is lower; they found a 37% 539 
lower value, compared to the outdoor exposure evaluated at residential addresses. 540 
However, this proportion will be different for other urban regions and time periods, 541 

or when addressing specific population sub-groups. For pollutants that are more 542 
dominated by local urban sources (such as, e.g., NO2), this difference in using only 543 

residential exposure could be substantially higher, compared with the 544 
corresponding difference in case of PM2.5 (Kukkonen et al, 2016). 545 

In exposure and health assessments, therefore, it is important to allow for the movements 546 
of the population and for the infiltration of ambient air pollution indoors. The 547 
epidemiological studies commonly use outdoor concentrations in the residential areas or 548 
at home addresses. The use of more dynamic exposure data in epidemiological studies in 549 
the future could substantially improve the accuracy of health impact assessments. 550 
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 788 

Figure 1. The diurnal variation of the activity of the population in London in three 789 
microenvironments in 2008.  790 

 791 

 792 
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 795 

Figure 2 a-c. Population weighted mean concentrations of PM2.5 in London (a) at homes and 796 
workplaces, (b) in traffic and (c) in the three considered microenvironments in 2008 (µg/m3).  797 



 798 

Figure 3. Population weighted mean concentration of PM2.5 in combined home and workplace 799 

microenvironments, in transport microenvironments, and in all of these microenvironments 800 

combined in London in 2008.   801 
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 803 



 804 

Figure 4 a-c. The predicted population exposures (µg/m3 × number of people) to PM2.5 (a) in 805 

homes and workplaces, (b) in transport, and (c) in all the considered microenvironments 806 

combined in 2008.  807 



 808 

 809 

Figure 5. Relative population weighted mean concentrations of PM2.5 and population exposure 810 

per unit area in central and outer London (Supplementary Figure S1). The values have been 811 

normalised to the values of the outer London.  812 
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 815 

 816 

Figure 6. Diurnal variations in population exposure where people spend all the time in a 817 

residential (home) indoors environment (Exposure without activity) and combined exposure 818 

when people move within the transport and work environments (Exposure with activity),  819 

taking into account of infiltration of outdoor air pollution indoors for all the 820 

microenvironments. The difference illustrates the influence due to the population activity.  821 
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 824 

Figure 7. Predicted relative population weighted annual mean PM2.5 concentrations and 825 

population exposure in London, calculated using the traditional method outside the residential 826 

locations (traditional method) and using the approach presented in this work. The approach of 827 

this work allows for three microenvironments and infiltration of pollution from outdoor to 828 

indoor. The values have been normalised to the values of the traditional method. 829 


