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Abstract

In this article we present a one-field monolithic finite element method in the
Arbitrary Lagrangian-Eulerian (ALE) formulation for Fluid-Structure Interac-
tion (FSI) problems. The method only solves for one velocity field in the whole
FSI domain, and it solves in a monolithic manner so that the fluid solid inter-
face conditions are satisfied automatically. We prove that the proposed scheme
is unconditionally stable, through energy analysis, by utilising a conservative
formulation and an exact quadrature rule. We implement the algorithm using
both F-scheme and d-scheme, and demonstrate that the former has the same
formulation in two and three dimensions. Finally several numerical examples
are presented to validate this methodology, including combination with remesh
techniques to handle the case of very large solid displacement.

Keywords: fluid structure interaction, finite element, one field, monolithic
scheme, arbitrary Lagrangian-Eulerian, energy stable

1. Introduction

Numerical methods for Fluid-Structure Interaction (FSI) have been widely
studied during the past decades, and a variety of methodologies have been devel-
oped in order to address different aspects of the FSI problem. However stability
analyses of the existing numerical methods are rare especially when large solid
deformation is involved. This paper is dedicated to developing a one-field mono-
lithic FSI method in the Arbitrary Lagrangian-Eulerian (ALE) framework, and
establishing its stability analysis over time.

Monolithic methods have been regarded as the most robust FSI algorithms in
the literature [1-9], which solve for the fluid and solid variables simultaneously
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in one equation system. Among these methodologies for FSI problems, the one-
field approaches [6, 7, 9, 10] express the solid equation in terms of velocity, thus
only solve for one velocity in the whole FSI domain. In this case the whole
system can be solved similarly to a modified fluid problem, and the coupling
conditions at fluid and solid interface are automatically satisfied.

The stability analysis when using the ALE framework is challenging, even
for the pure fluid problem, due to the arbitrary moving frame [11-13]. [14, 15]
present an energy stable Fictitious Domain Method with Distributed Lagrangian
Multiplier (FDM/DLM), and [6, 16] present an energy stable Eulerian formu-
lation by remeshing. There is also some analysis on the existence and stability
of solutions of different FSI formulations, such as [17-20]. In a previous study
[8] we analysed the energy stability for a one-field FDM method. In this article
we extend this one-field idea to the ALE formulation, and the stability result
is achieved by expressing the fluid and solid equations in a conservative formu-
lation. In this sense, the formulation is similar to the one introduced in [6].
However it differs from [6] in the following perspectives: (1) we formulate the
solid in the reference domain and analyse the FSI problem in an ALE frame of
reference, in which case the formulation and analysis are exactly the same for two
and three dimensional cases, whereas [6] formulates and analyses everything in
the current domain, for which the three dimensional case is significantly more
complicated [21]; (2) we update the solid deformation tensor (the F-scheme)
while [6] updates the solid displacement (the d-scheme); (3) we implement the
scheme by solving an additional solid-like equation at each time step in order
to move the mesh, whilst [6] implements their scheme by remeshing which is
expensive in the three dimensional case.

The paper is organized as follows. In Section 2 the control equations for
the FSI problem are introduced in an ALE framework. In Section 3 the finite
element weak formulation is introduced, followed by spatial and time discretisa-
tions in Section 4. The main results of energy stability are presented in Section
5. Implementation details are considered in Section 6 and numerical examples
are given in Section 7, with some conclusions in Section 8.

2. The arbitrary Lagrangian-Eulerian description for the FSI problem

Let Q{ C R? and Q3 C R? be the fluid and solid domain respectively (which

are time dependent regions), I'y = ﬁf N ﬁ: is the moving interface between
the fluid and solid, and Q; = ﬁ,f U ﬁf has an outer boundary 0€2;, which can
be fixed or moving as shown in Figure 1. We use the superscripts f and s to
denote the fluid and solid variables respectively in the above and throughout
this article. The Eulerian description is convenient when we observe a fluid
from a fixed frame, while the Lagrangian description is convenient when we
observe a solid from a frame moving with it. An ALE frame of reference can be
adopted when a fluid and solid share an interface and interact with each other
as shown in Figure 1, in which case the frame moves arbitrarily from a reference
configuration €2;,, chosen to be the same as the initial configuration at ¢g, to a
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current configuration €;. Let us define a family of mappings A;:
At : th C Rd — Qt C Rd, (1)

with d = 2,3 being the dimensions. We assume that A, € C° (ﬁto)d is one-

. . . . . — =\4d .
to-one and invertible with continuous inverse A; ' € C° (Qt) . Hence a point
X € (U4, has a unique image x € ), at time ¢, i.e.

x = A(x,t) = A (%), (2)
and a point x € (), at time ¢ has a unique inverse image X €
x=Ax,t) = A7 (x). (3)

We call x € €, the Eulerian coordinate, and call its inverse image X, via the
above mapping A; ', the ALE coordinate. We assume that A (x,t) is differen-
tiable with respect to ¢ for all X € €);,, and define the velocity of the ALE frame

as oA

w ()A(a t) = E ()A(’t) : (4)
Given an Fulerian coordinate x € €, its corresponding ALE coordinate X; €
Qy, should be distinguished from its material (or Lagrangian) coordinate X5 €
Qy, as shown in Figure 1. In fact x5 € €, (not necessarily the same as x;)
maps to x € (), via the Lagrangian mapping, i.e., the trajectory of a material
particle at xs:

Fi:x—»>x=F(X1t), (5)
and the velocity of the material particle at x € €2, is defined by
oOF
.t) = —. 6
w(x =2 (©

Remark 1. Although the Lagrangian configuration and the ALE configura-
tion are not generally the same, both are chosen to have the initial configu-
ration Sy, in this article. We shall also construct the ALE mapping such that
Ay (Qq,) coincides with Fy () at all boundaries including the fluid-solid inter-
face: Ay (004,) = F (0Q,) and Ay (Ty) = Fi (T).

Remark 2. The ALE mapping is the mapping that is actually used to move the
domain in this article, and the purpose of introducing the Lagrangian mapping is
to discuss its related variables, such as particle velocity u and solid deformation
tensor F, which will be defined in the following context.

Formulated in the current configuration, the conservation of momentum
takes the same form in the fluid and solid domain 2:

du (x,t)

g = div(o) + s, (7)
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Figure 1: ALE mapping from Q4 to Q4. Also shows the comparison between ALE mapping and
Lagrangian mapping with Eulerian coordinate x, ALE coordinate %; and material (Lagrangian)
coordinate %2. Ty = Qf N and Q, = Qf UT, 890, =Tp UTy.

with p, g, u and o being the density, gravity acceleration, velocity and Cauchy
pfin Q{

p* in Q5
the superscript f and s denote fluid and solid respectively, and similar notations
are also applied to u and o. In the above, % is the total derivative computed
along the trajectory of a material particle at x, i.e. via the Lagrangian mapping:

stress tensor respectively. Here we use the notation p = { with

du(x,t) du(F;(x),t) Ou

dt dt - ot

+(u-V)u (8)
x=F(%,t)

Replacing the above partial time derivative by the total derivative of

du (A (x),t)  Ou
—_— = = +(w-V)u 9)
dt Ot | A1)
leads to the ALE formulation of (7)
d X),t
pP A L4 w) V)u=div(e) £ pg i Q. (10)

dt

We consider here both an incompressible fluid and incompressible solid:
o=1—pl (11)

wifth 7 being the deviatoric part of the stress tensor. For a Newtonian fluid in
Q.
=7/ =u/Du=p' (Vu+ V'), (12)

and for a hyperelastic solid [22] in QF,

_1 0¥ (F)

T=7°"= J]_—t a—FFT, (13)
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with OF (%.1)
x,t
F = - 7 14
ox (14)
being the deformation tensor of the solid, Jz, being the determinant of F, and
¥ (F) being the energy function of the hyperelastic solid material. Combining

with the continuity equation
V.ou=0 in Q, (15)

the FSI system is completed with continuity of the velocity and normal stress
conditions on the interface I';:

u/ =uw®, o/nf =o°n’, (16)

and (for simplicity of this exposition) homogeneous Dirichlet and Neumann
boundaries on I'p and T'n respectively:

u=0, on=0, (17)

with Tp UTy = 99, as shown in Figure 1.

3. Finite element weak formulation

Let L?(w) be the square integrable functions in domain w, endowed with
norm ”“ng =/, lul>. Let H'(w) = {u:ue L?(w),Vue L*(w)?} with the
norm denoted by ||u||iw = Hu,||§7w + ||Vu||g7w. We also denote by H{ (w) the
subspace of H! (w) whose functions have zero value on the Dirichlet boundary
of w.

According to equation (2) we construct ; from €, so a function v €
H}(€) is one-to-one corresponding to a function ¥ € H{ (€,) via

voAd, =10. (18)

Choosing a test function v (x) = v o A (x) = v (X), the weak formulation
may be obtained by multiplying v on both sides of equation (10), and integrating
the stress term by parts in domain fo and €27 separately:

s du(A (R),1)
. /—

o ~v+pf/ﬂf((ufw)-V)Uov

' (19)
L / v / ol v+ f/
—_ u: vV — -V = o’'n’ -v - V.
2 Jaf o’ o P Jor

t t

ps/sz{ du{Azit(i)jt) 'V‘H’S/ (u=w)-V)u-v
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We used g—%’FT : Vv = g—% : VvF = ‘g—g : ViV in the above deduction. Using

the interface and boundary conditions (16) and (17), we have the following
equation by adding up (19) and (20).

d X),t
oy dt oY
w! oW (21)
— Du:Dv — - — Vv = V.
+ 2 Jor u:Dv /Qtpv v+/ﬂanF Vv p/th v
Using Jacobi’s formula [23], we have
0Ja, _10A
prale trace (JAtA 5 )
= trace (JAtA_lv,g%) (22)
ot
0A;
—JAtV'W—JAtV'W,

with A = 0’46(—:’15) = Vi A;. Then we can take the time derivative outside the
moving domain (conservative formulation [11]),

%/Qtu(x,t)-v(x) :% Q. Jau (A (X),1) v (%)

du (x,1) (23)
_/Qt dt7 ~v(x)—|—/gt(V~W)u(x,t)~v(x).
Substituting (23) into (21), using
diviw@u)=(w-V)u+ (V- -w)u, (24)

oo and combining the weak form of continuity equation (15), leads to the weak
formulation of the FSI problem:

Problem 1. Given Q,, I'y,, u(X,t9) and an ALE mapping A (consequently
given w by (4)), Vx € Qu,: Vt € (0,T] find u(x,t) = u(A; (X),t) € HE(Q)?
and p(x,t) = p(A, (X),t) € L2(), such that Vv(x) = v(A; (X)), v € HE(2,)?
and Vq(x) = q(A; (X)), q € L2(), the following equations hold:

d
p—/ u(At(fc),t)-erp/ (u-V)u-v+p/ (Ww®u): Vv
dt Q Q ¢
+? Q{DU:DV/Qtpv.VJr/Q;Oa_F(F):V*Vp/th.v’
—/ GV -u =0, (26)
Q¢
and
A (0Q,) = Fy (02,), A (Iy) = Fo (T) (27)

with 'y, and 0, being the initial interface and outer boundary respectively, as
shown in Figure 1, and F; being the Lagrangian mapping as defined in (5).
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4. Discretisation in space and time

Define a stable finite element space, such as the Taylor-Hood elements, for
the velocity-pressure pair (u,p) in Qy,:

Vh (Qto) = Spa‘n{@lv' o 7¢N“} C H(% (Qto)

and

L’L(Qtn) = span {q@l, e ,d;Np} c L? (),

with N* and NP being the number of nodal variables for each velocity compo-
nent and pressure respectively. Then

Vh (Qt) = {‘Ph LPh = @h O-At_la@h € Vh (Qto)}’

and

Lh (Qt) = {¢’L : ¢h = Q?)h oAt_laéh S Lh (Qto)} .

Using the backward Euler scheme, equation (25) and (26) can be discretised
respectively as follows:

P P
—/ ufl+1-v——/ uZ-v—i—p/ (u2+1-V)uZ+l-v
ot Qtn,+1 ot Q¢ Q4

n+1
7 w Du* | :Dv — ho V-
+pL(E(r)+ 5 [ Duyy,:Dv PnV -V (28)
trn41 tnt1
ov
+/ a—F(Fn_;,_l) . V,A(V :/ pg'V,
fo an+l
and
—/Q gV -ul,, =0. (29)
tn+1

In the above

£(r) = /Q (w(r) @ ul,,) : Vv, (30)

-

and 6tZ(€) is a quadrature formula used to compute ftt"“ &(7). In order to
have an unconditionally stable scheme, which will be proved in Section 5, the
mid-point integration is adopted for this term, i.e.:

Z(&)=£(tny1y2) (31)

in the two dimensional case, and the Simpson formula is adopted in the three
dimensional case:

()= ;f (tns1y2) + éﬁ (tn) + %f (tn+1) - (32)
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Notice that the Simpson formula can also be adopted in the two dimensional
case, but the mid-point rule is simpler (and still of the same order as the tempo-
ral discretisation). Due to the definition of the deformation tensor F (14) and
ALE velocity w (4), we have

Fn+1 - Fn F7L+1 o ‘Ftn+1 (5{) - Fn o ’Ftn ()A()

st 5t ~ Valnit, (33)
and ) .
Xan; Xn _ Atn+1 (X)&* As, (%) ~ Wi (34)
Therefore Fp, 1 and Q;, ., in (28) can be updated as follows:
Foi1 = F, +6tViu, 1, (35)
and
Dy = Ap () = {x:x =% +0twp1, %, € Ay, (Q)} - (36)

Up to now we have not stated how to construct w (or A;), because very
often we only need to construct the ALE mapping A; at a discrete time level,
that is to say computing A;, _, for n =0,1,... at each time step. This will be
explained in the rest of this section.

We solve the following static linear elastic equation in €, , in order to
compute w1, and take w(t) = w41 for t € (t,,t,4+1]. Given the following
boundary data:

Wyr1-n=0, n-Dw,i;-t=0 on 09, ., (37)
and
Woi1 = ul,, on Ty .., (38)
find wy41 € V"(Q,,,)? such that Vz € V7(Q, )% the following equation
holds:
ﬁ/ Dw, 1 : Dz + (V- wWs1) (V- 2) = 0, (39)
2 ), ., Qs

with ¢ and A being the Lamé constants used here as pseudo-solid parameters,
which may be different from the solid parameters [24]. It is well known that the
above elliptic problem (37) to (39) has a unique solution w € V" (€, ,,) [25]
(notice that n-Dwy, 11t = 0 on 0€, ,, should be enforced for the corresponding
PDE equation of (39), with t being the tangential direction of 9€),.,). As a
result, we are able to construct a mapping for ¢ € (ty, tyy1],

Atn,t : Qtn — Qt, Atn,t (Xn) =Xp + (t — tn)Wn+17 (40)
and further
Ap = Ay, 0 Ay 0 Ay (41)

From the computational point of view, knowing the ALE velocity w,41 at the
discrete level is sufficient.
Putting all the above together, the discrete ALE-FSI problem reads:
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Problem 2. Given A;, and ul = u(A;, (X),t,), VX € Q, find ul,, =

u(Atn+1 ()AQ 7f’n+1) € Vh(Qtn-H)d; pZ—i-l = p(‘Atn+1 ()A() 7tn+1) € Lh(Qtn-H)? and
Wni1 € Vh(SZtn+1 4 (consequently an ALE mapping A; by (41)), such that

) n+1
VV(X) = V(Atn+1 (5{))7 v E Vh/(Qtn+1)d7 Vq(x) = q(Atn+l (}AQ)) q € Lh(Qthrl)
and Vz € V", ,, )%, the following equation system holds:
5£/ u2+1~v—5ﬁ/ uﬁ-v—i—p/ (uZH-V)uZH~V
t Qi t Qip L

f
K 3
-l-pI(f(T))—&—?/Qf DuZH:DV—/Q pLHV-V
trngl tp+1 (42)
h ov .
— qV Uy, + 8_F (Fn+1> : V,"(V
Qy Qfo

n+1

I
<5

with quadrature formula (31) in 2D or (32) in 3D, updating ¥, 11 by (35) and
updating Q. by (36). In addition, the above FSI system equations are com-
pleted with the Dirichlet and Neumann boundary conditions (17) for the momen-
tum and continuity equations (28) and (29), and with the boundary conditions
(37) and (38) for the mesh equation (39).

Dwy41: Dz + )\/

[ (V-wn+1><v-z>=/ o8- .

Q

tn41 tn41 tn+1

Problem 2 is a highly non-linear system, so we solve it iteratively as described
in the following Algorithm 1.

Algorithm 1 Solve Problem 2 for A; ,, (or wP ), u"_ | and p"_

Require: ;, = A;, (Q4,), u? and a tolerance tol
Ensure: Qo =, u) 4 = u! and k=0
repeat
1. solve the mesh equation (39) for w¥t} in Qtﬁﬂ using boundary condi-
tions (37) and (38) with uf_,
Bl
2. update Qtﬁﬂ = Qe+ Stwy T using (36)

3. solve the FSI system (28) and (29) in Qs for ult and pit]

k+1 k

|‘ul;+1||

4. € = yk—k+1

until ¢, < tol

Remark 3. The mesh equation (39) is discretised as a positive definite linear
equation system, and we solve it efficiently using a preconditioned Conjugate
Gradient (pCG) method [26]. The FSI equations (28) and (29) are discretised
as a saddle-point equation system. We use an operator splitting method and ef-
ficiently solve a convection and Stokes problem separately [7, 27]. We solve the
convection equation using pCG and the Stokes equation using a preconditioned
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MinRes algorithm. The preconditioner for CG is an incomplete Cholesky decom-
position of the system matriz, and the preconditioner of MinRes is an incomplete
Cholesky decomposition of a modified system matriz, where the pressure mass
matriz replaces the zero pressure block [28].

5. Stability analysis

We shall deduce an energy stability result for Problem 2 at the end of this
section. In preparation for this we first prove the following lemmas.

Lemma 1. If (u, p, w) is the solution of Problem 2, then u satisfies the following
att = tn+1 .

/ (u-V)u-u=0. (43)
Q
Proof. Noticing that
/ (u~V)u~u:/ V- (u®u) -u— ul*V - u, (44)
(N (N (N

and integrating by parts:

/(u-V)u-u:/ |u|2u-n—/ (u-V)u-u—/ u?v - u
Q GloN Q Q

1 1
= (u-V)u-u:—/ |u|2u-n——/ u?v - u
Q 2 Joa, 2 Ja,

In the above faQt lu?u - n = 0, thanks to the enclosed flow u-n = 0 (17).
Using the Sobolev imbedding theorem [29, Theorem 6 in Chapter 5], we have
H' C L™ in the two dimensional case and H' C LS in the three dimensional

case. Either L or LS is included in L* because € has finite measure. Therefore
uc H' c L* = |u]’ € L?, and Ja, lul? V- u = 0 thanks to (29). O

(45)

Lemma 2. If (u,p,w) is the solution of Problem 2 then, for any w € V* (Q,),
u satisfies the following at t = t,41.

1
) = / (w®u):Vu=—= ul’ V- w. (46)
Ja 2 Jo,
Proof. Integrating by parts we get
§(t):/ (w®u)u-n—/ V-(w®u)- -u (47)
o9 Q

The boundary integral in (47) is zero due to the enclosed flow u-n = 0 condition
(17). The second term on the right-hand side of (47) can be expressed as:

/ Viwou) u=£t)+ [ ufv-w, (48)

Qy Q

we then have (46) by substituting (48) into (47). O
10



561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

Lemma 3. If (Wyt1,Pnt1, Wna1) is the solution of Problem 2, then
[nsilBan, .~ luila, = ot (), (49)

with

Tl(t) = ‘un+1|2 V- W(t)v t € (tn, tn+1) . (50)
Q

Proof. Since

QA"
‘]-Af,n,t |u7l+1|2 ( 8::7t Vxn) . W(t)

R )

- / ot (Cay V) - w(t),

tn

(51)

where C 4, , is the cofactor matrix of a—“?;f‘—t. According to the way we construct
At .+ (40), we know Cy4, , is a polynomial in time of degree d — 1 [11], with
d = 2,3 being the space dimension. Also w(t) = w11 is a constant for ¢ €
(tnytnt1], so M(t) is linear in time when d = 2 and quadratic when d = 3,

and a mid-point integration (d = 2) or Simpson formula (d = 3) would exactly
tn-}—l

compute |,
n

n(t). This is to say

() = / ). (52)

n

Noticing that for ¢ € (tn, tnt1),

d/ | d/ Tae, . il
J— u = — u
dt o, n+1 di e Ayt [Un+1

(53)
= T, W] Vaew (t) = n(t),
Qf/n
and using (52), we finally have (49). |
Lemma 4. Define potential energy of the solid:
E(t)= / U (F). (54)
Q

o
If (Wpi1,Pnt1, Way1) 48 the solution of Problem 2 and ¥ (F) is C! convex on

the set of second order tensors [14], then

ov

ot —

(Frt1) : Vitngr > E(tpy1) — E (L) . (55)
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Proof. Let
w(t) =V (Fn +1 (Fn+1 - Fn)) ’ (56)
then
, ov
Due to the convexity assumption of ¥ (F), we have
w'(1) > w(1) — w(0). (58)
This gives:
ov
8_F (Fn-i-l) : (Fn+1 - Fn) > (Fn—H) - (Fn) . (59)
Using (35) we have
ov
§ta—F (Fn+1) : V,‘cun+1 Z v (Fn+1) - (Fn) . (60)
which finally leads to (55) by integrating (60) in Q7 . d
Due to the arbitrariness of v, ¢ and z, we now choose v = UZ+1a q= fpr_l

and z = 0 in equation (42) to deduce the stability result. Using Lemma 1, we

have

h h h h
p/ Upiq - Upyq — p/ U, - U, q
Q Qe

n+1
Stut

2 Q{n+1

+0tpT (£(t)) + Duy,; : Dup

ov
+ 4t F (Foi1): Vgul, | =6t / pg-ul .

h ng h Qtn+1

Combining Lemmas 2 and 3 we have

[ 1]

Substituting equation (62) into the following estimate

/ﬂ uh ol < fut

tn

|079tn HUZH ||0,Qtn

|g,Qt" ) s

1
< 5 (Il o, + Itk

we get

1
[l <5 (B, +lukalbo, ,, + o).

tn

0, = ||11n+1||g,sz,n+1 —6tI (n) = ||11n+1||3,sztn+1 +0tZ(§).

(61)

(62)

(64)

Combining (61) and (64), and thanks to Lemma 4 the energy stability result

reads:

12
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Proposition 1 (Energy non-increasing). Let ( nH,an, n+1) be the solution
of Problem 2, if there is no body force, then

n+1
P u
§||u2+1||8,9tn+] + E (tny1) Z/ Du,C Du
(65)
P N
éiH ”()Qf +E n + Z/ Duk Dll

The above estimate indicate that the total energy, including kinetic energy,
potential energy and the viscous dissipation, of the FSI system is non-increasing.

Remark 4. The stability result (Proposition 1) is drawn under assumption of
the homogeneous Dirichlet and Neumann boundary conditions (17), and without
any body force. In this enclosed system, we prove that the interactions between
fluids and solid in the FSI system is stable. Although the stability is only proved
using an enclosed system, this also provides a strong indication of stability for
other FSI systems if the input energy is stable.

6. Implementation: F-scheme and d-scheme

In this section, we focus on the implementation of a specific solid model,
which determines the following term

/Q | g—i (Foi1) : Vav (66)

zo

in equation (42). We consider an incompressible neo-Hookean solid model with
the energy function ¥ being given as follows [30]:

U (F) = % [tr (FFT) — d — 2In (J7,)] . (67)

In order to compute the derivative of ¥ with respective to F, we first have

o (F'F) | otr(FuFy) 0020 F2
OF  OF,, OFmm
mn (68)
_O(FA A Fh e F)
OF.., mn

Let cof (Fi;) = (—1)"*ldet (F without i'" row and j column) be the cofactor
of F;;. Because of Jr, = ZZ Fikcof (Fix), we have —L = cof (Fyj), i

aJF,

— of _ -T
5F =cof (F)=JrF " (69)
Combining equations (68) and (69) gives
ov ,
8—F:(21(F7FT). (70)
13
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Using formula (35), the term (66) can then be expressed as:
ov
05, OF

= / Fot1:Viv—0; / J;jv -V (71)
Jag, Jas

n41

(Frt1) : Vav =10 / (Frg1 — F;L) :Vgv

Q3

= 10t Viupt1 : Vav + cl/

-1
F,L:V;(v—cl/ Jr V- v.
Qs Qs Q3
0 0

tp41

In the above we update the solid deformation tensor F and integrate in the
initial configuration, and we call this the F-scheme. We can also express the
stress in terms of displacement d and integrate in the current configuration as
introduced in [6], which is called the d-scheme. To deduce the d-scheme, we
first transform the term (66) to be integrated in the current domain:

ov ) . 109 _ s .
Joi, 9F (Frg1) : Viv = /Qg I, aFF Vv = /f Vv, (72)
n+1 n+1
where
™ =cJ7 (B-1I) (73)

is the deviatoric stress tensor, with B = FFT.

Let us only consider a two dimensional case, readers may refer to [21] for the
three dimensional case. According to the Cayley-Hamilton theorem, B satisfies
its characteristic equation:

B? —trgB + J%,1=0, (74)

from which we immediately have:

B =trgl — Jz, B~ (75)
Since
F=Vix=Vi(x+d)=1+FVd, (76)
we also have:
F'=1I-vVd. (77)

Substituting (75) and (77) into (73), 7° can be expressed by displacement as
follows:

= —c1Jr, (1-Vd)" (I-Vd) + e Jz! (trg — 1)1, (78)
which can further be written as

7% = c1Jg, (DA — VTdVd) + 71, (79)

14
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where p = clJ;tl (trg — 1) — c1J7, will be integrated into the solid pressure
p in (11) as an unknown. Similarly to the update of F in (35), updating the
displacement by

d'n—i—l == an + 5tun+la an = d'n o At_nl,tn+17 (80)
leads to the computation of term (66) as follows:
ov
— (F, :Vgv = .V
[ Ee): Vav= [ vy
to tn41
= C1 (an+1 - VTdn,+1Vdn+1) : Vv
an-%—l
160t c1 ~
= — Du,41:Dv+ — Dd,, : Dv (81)
2 Jas 2 Jas

n+1

— 0tey / <VTun+1 v&n + VTanVunH) : Vv
i fn+1

—C VT&nV&n : Vv.

tn41

Note that in the above, the second order term O (5t2) is neglected and Jr, is
replaced by 1. The stability of the d-scheme is proved in [6] with the neglection
of the term of order O(dt?), which may be regarded as a further approximation
of the F-scheme.

Remark 5. The two and three dimensional F-scheme have exactly the same
formulations. This can been seen from equation (71), which does not depend on
dimensions. However the formulation of the d-scheme depends on the Cayley-
Hamilton theorem, which is different in two and three dimensions, and con-
sequently leads to significant complexity of the d-scheme in three dimensions
[21].1¢ should be noted however that an advantage of the d-scheme is that, be-
cause it computes all integrals in the current domain, it ts more straight forward
to handle remeshing when it is required [6].

Remark 6. Notice that equation (80) is a backward-Euler approzimation for
displacement d rather than velocity u. This choice is consistent with the overall
first-order time discretisation. The mid-point rule is another choice, however
the overall scheme is still first order, because the update of domain §; is not
straightforward to compute to second order [6, 31].

7. Numerical experiments

In this section, we assess the reliability and stability of the proposed numer-
ical scheme through a selection of benchmarks in the FSI area. We shall use
the Taylor-Hood elements for the velocity-pressure pair. We validate the energy

15
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stability expressed by (65) in Section 7.1. We validate the proposed scheme
against a FSI problem with a semi-analytic solution in Section 7.2. Time and
mesh convergence tests are carried out in Section 7.3, and an example with very
large solid deformation is tested in Section 7.4. The F-scheme will be adopted in
all the following numerical tests. In addition, the d-scheme is also implemented
for tests in Section 7.1 and 7.4 in order to compare the two schemes.

We use the following consistent units for all the numerical tests in this sec-
tion: length (m), time (s) , velocity (m/s), acceleration (m/s?), mass (kg), force
(N), pressure/stress (N/m?), density (kg/m?) and viscosity (N - s/m?).

7.1. Oscillating disc

In this test, we consider an enclosed flow (n-u = 0) in 2 = [0,1] x [0, 1] with
a periodic boundary condition. A solid disc is initially located in the middle of
the square ) and has a radius of 0.2. The initial velocity of the fluid and solid
are prescribed by the following stream function

U = Upsin(az)sin(by),

where Uy = 5.0 x 1072 and a = b = 27. In this test, pf =1, /LfA =0.01, p° =15
and ¢; = 1. Taking the maximum initial velocity 27¥y = U and the height

of domain Q, H = 1, as the characteristic velocity and length respectively,

the Reynolds number is: Re = Jifﬁ = 10m. A mesh size of 3217 elements

with 13081 nodes is used in this tegt. In order to visualize the flow a snapshot
(t = 0.25) of the velocity and pressure field are presented in Figure 2, and the
evolution of energy is presented in Figure 3 and 4 from which we can observe
the property of non-increasing total energy as proved in Proposition 1.

The F-scheme and d-scheme are compared using this example and we have
not found any significant difference by comparing the solid deformation as shown
in Figure 5.

T
0.29859
0.23392

0.20735 0.16926
-0.1046

£0.47773 i

0.14811 0.039938
0.11849 T -0.024724
0.08886 2 -0.089385
0.05924 o - -0.15405
0.02962 SRR AR, -0.21871
0 P i -0.28337

(a) Velocity norm. (b) Pressure.

Figure 2: Snapshot of the oscillating disc at ¢ = 0.25 when the disc is maximally stretched, using
a time step of At = 0.01.
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7.2. Rotating disc

This test is taken from [6]. The computational domain is the area between
two concentric circles (Ry and R;) as shown in Figure 6, with fluid and solid
properties as p/ = 1,p° =2,/ =2 and ¢; = 4 . A constant angular velocity
(w=U/R; = 0.6) is prescribed at the outer boundary and the velocity on the
inner bounary is set to be zero. Taking the value of velocity U and length R;
as references, the Reynolds number is: Re = LUJJ& = 7.5. This velocity first
induces the fluid, that is initially at rest, to rotate and then gradually drags
the solid to rotate as well. For a long-term run, the solid disc will oscillate,
and its velocity will finally be damped to 0 as shown in Figure 7. However,
in this paper we are interested in time t=0.85 when the solid has its largest
deformation. Using the property of symmetry, this problem can be reduced to

a one-dimensional equation when considered in a polar coordinate system (r, 0)
[6]:

= —_— —, R< R 82
Tay_ 1 <r<nR (82)

f%_“_fﬁ uo\ _ ruo
ot r Or r2’

and

sOug 1 0 ( 6d9> dg  Odg = ug, Ry <r <R, (83)

o o\ ) T B
where u, and ug are the velocity components in the radial and tangential direc-
tions respectively. This one-dimensional problem (82) and (83) can be solved
numerically to high accuracy, and the solution is plotted in Figure 7 using
200 linear elements and At = 1.0 x 1073. Using the same time step, which
is stable, the proposed method can produce results of similar accuracy to the
semi-analytic solution (i.e. the high-accuracy numerical solution of (82) and
(83)), as shown in Figure 8. We use three different meshes to test convergence
of the proposed algorithm. A coarse mesh equally divides the radial direction of
the computational domain into 4 segments, and equally divides the tangential
direction into to 40 segments, which therefore has 4 x 40 = 160 biquadratic
clements. The medium and fine meshes are refined based on the coarse mesh,
which have 8 x 80 = 640 and 16 x 160 = 2560 elements respectively. Due to
the discontinuity in the derivative at the fluid-solid interface, we only achieve
an O(h) convergence as shown in Figure 9, where h is the mesh size. This
observation is consistent with the result in [6].

7.8. Oscillating flag

In this section, we consider an oscillating flag attached to a cylinder, which
was firstly proposed in [32] (named FSI3), and been regarded as a challenging
numerical test in the FSI field. We test the time and mesh convergence for the
proposed FSI method. The computational domain is a rectangle (L x H) with
a cut hole of radius r and center (¢, c) as shown in Figure 10. A leaflet of size
I x h is attached to the boundary of the hole (the mesh of the leaflet is fitted
to the boundary of the hole, see the solid mesh in Figure 11). In this test,
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Figure 9: Convergence of L? error.

L=25 H=041,1=0.35, h =0.02, c = 0.2 and r = 0.05. The fluid and solid
parameters are as follows: p/ = p* = 103, 4/ =1 and ¢; = 2.0 x 108. Taking

U= fOH ydy = 2H and the channel height H as the characteristic velocity and

length respectively, the Reynolds number is: Re = % = 336.2. The inlet
flow is prescribed as:

_ 12y _
U’CE:F(H_y)7 ty = 0. (84)
< L >
} u=0
0.2
;:::::#:h H on=0
‘0.19
I u=0

Figure 10: Computational domain and boundary conditions for the oscillating flag.

A wall boundary condition and the outlet flow condition are displayed in Fig-
ure 10. A coarse mesh has 10054 nodes and 2448 biquadratic elements as shown
in Figure 11, and a medium and fine mesh have 33746 nodes (8320 elements) and
68974 nodes (17081 elements) respectively. We study the oscillating frequency
and amplitude at the tip of the flag. The convergence with respect to time and
space are displayed in Figure 12 and Figure 13 respectively, and the period and
amplitude of the oscillation converge to 5.26 x 10~3 and 0.0018 £ 0.0365 respec-
tively. These figures have a good agreement with the reference values given in
[32] with oscillation period and amplitude being 5.3 x 1073 and 0.0014840.03438
respectively.

7.4. Falling disc

In this test, we simulate a falling disc due to gravity [30, 33|, which needs
remeshing in order to guarantee the mesh quality. However we will demonstrate
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Figure 12: Vertical displacement at the flag tip as a function of time, using different time step
and a medium mesh (data of the red curve is plotted up to ¢t = 5 for a better visualisation of the
blue curve).
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Figure 13: Vertical displacement at the flag tip as a function of time, using different mesh size
and a time step size of At =5 x 104,

that one needs much less remeshing, using the proposed ALE methods, com-
pared to methods using pure remesh in order to fit the fluid-solid interface [6].
This test is implemented using FreeFEM++ [34].

The computational domain is a vertical channel with a disc placed at the
top of the channel as illustrated in Figure 14, where W =4, H = 12, h = 2
and R = 1. In this test, pf =1, p* = 1.5 uf = 0.1, ¢; = 10* and the gravity
acceleration is g = —9.81. The fluid velocity is fixed to be 0 on all boundaries
except the top, which uses the zero-normal-stress boundary condition, i.e. on =
0. Notice that we choose ¢; sufficiently large so that the solid behaves as a rigid
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body. The computational domain is initially discretised by using 820 P»/P;
triangles with 1713 nodes as shown in Figure 15. We use a stable time step size
of 6t = 0.01 and remesh every 100 times. We compare the simulation result
against the empirical solution of a rigid ball falling in a viscous fluid [35], for
which the maximal velocity U, under gravity is given by

1774 2R\ ? 2R\*
In (ﬁ) — 0.9157 + 1.7244 (W> —1.7302 (W)

(p* — p!) gR?

Up, =
apf

In the test U,, = 1.2263. Taking this final velocity U,, and the disc radius R
as the characteristic velocity and length respectively, the Reynolds number is:
Re = pr—}”R = 12.263. The numerical and the empirical solutions agree well
with eacﬁ other when disc becomes stable as shown in Figure 16. It can be
understood that the disc velocity gradually decreases when it is close to the
bottom of the channel. The evolution of the disc is displayed in Figure 17.
If we move the mesh by fluid velocity without the proposed ALE techniques,
and remesh to guarantee the mesh quality then, for this example, we find that
remeshing has to be taken at least every 7 time steps, otherwise the disc cannot
successfully arrive at the bottom of the channel. We have also compared the F-
scheme and d-scheme using this numerical test, and found that they presented
very similar results (hence the latter are not shown in the figures here).

W
h
H
Figure 14: Sketch of the falling disc. Figure 15: Initial mesh for the falling disc.
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Figure 16: Comparison between the numerical and empirical velocity of the falling disc.

8. Conclusion

In this paper, we develop the one-field finite element method for Fluid-
Structure Interaction (FSI), which only solves one-velocity field in the whole
domain. We formulate the FSI system in an Arbitrary Lagrangian-Eulerian
(ALE) coordinate system, solve it in a fully-coupled manner, and prove this
ALE-FSI formulation is unconditionally stable by analysing the total energy of
the whole system. The stability result is achieved by expressing the problem in a
conservative form, and adopting an exact quadrature rule in order to eliminate
the mesh velocity. Several numerical tests are presented in order to validate
the proposed scheme, including testing the energy stability, validating against a
semi-analytical solution and a benchmark case, and combining with a remeshing
technique to simulate the case of extremely large solid displacement.

The stability proofs given in this manuscript are restricted to the case where
the backward Fuler scheme is applied in time. We expect the forward Euler
scheme to be conditionally stable but potentially with much more restrictive
time-step size than in the implicit case. We have not analysed the use of other
implicit time-discretisation schemes, such as BDF2 or Crank-Nicolson, since
these add significant complexity to the problem. In particular, as with all ALE
schemes, the stability depends critically on the unknown mesh velocities, which
makes the analysis very challenging in these higher order cases.

We test a variety of numerical examples, including a strong non-linear FSI
problem such as the oscillating flag in test 7.3, which is regarded as a challenging
benchmark in the FSI field, In none of the test cases that we have considered
have we observed any instabilities.
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