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We report the measurement of reaction cross sections (σexR ) of
27;29F with a carbon target at RIKEN. The

unexpectedly large σexR and derived matter radius identify 29F as the heaviest two-neutron Borromean halo

to date. The halo is attributed to neutrons occupying the 2p3=2 orbital, thereby vanishing the shell closure

associated with the neutron number N ¼ 20. The results are explained by state-of-the-art shell model

calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force

describe the matter radius of 27F but are challenged for 29F.

DOI: 10.1103/PhysRevLett.124.222504

In atomic nuclei the strong force binds protons and

neutrons into complex systems. Long-lived isotopes and β-

stable nuclei exhibit a well-known shell structure [1,2].

However, in some nuclei with a large neutron excess an

unusual type of structure emerges. In neutron-halo nuclei a

large nuclear surface is formed that is almost entirely

composed of neutrons [3,4]. Particularly interesting are so-

called Borromean two-neutron halos [5]. These intriguing

quantum systems consist of a bound state between a core

nucleus and two neutrons, where any of the two-body

subsystems are unbound. Examples known so far are 6He,
11Li, 14Be, 17B, and 22C. A neutron-halo nucleus exhibits an

enhanced root-mean-square matter radius (Rex
m ) that can be

extracted from the (unusually large) reaction cross section

σexR , which deviates from the known trend Rex
m ∝ A1=3 with

mass number A. Some general conditions for halos are

summarized in Ref. [6]. These exotic nuclei are intricately

related to changes in the nuclear shell structure. In 11Li, for

example, the N ¼ 8 shell gap vanishes with the intruder

2s1=2 orbital (35%–55%) that forms a Borromean halo in

the last bound isotone [7,8].

Do all traditional neutron shell closures vanish into

Borromean two-neutron halos? We address this question

here for N ¼ 20 by reporting the discovery of the heaviest
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Borromean halo to date, and the first of its kind in the

proton sd shell. The measured total reaction cross section

σexR of the N ¼ 20 nucleus 29F is much larger than that of
27F. This observation implies a two-neutron halo structure

in 29F, and the corresponding melting of the traditional N ¼
20 shell gap is due to the intrusion of the 2p3=2 orbital from

a higher shell. Therefore, the two weakly bound neutrons

experience only a small centrifugal barrier and have

extended wave function to form the halo.

The weakening of the N ¼ 20 shell gap was first hinted

at from systematics of the two-neutron separation energies

(S2n) of sodium isotopes [9] and subsequently observed

through the low excitation energy [10] and enhancement of

reduced electric quadrupole transition probability [11] of
32Mg. Since then a large number of investigations in neon to

aluminum isotopes found intruder pf-shell components in

level schemes [12,13], orbital configurations [14–17], and

magnetic moment [18].

Monte Carlo shell model calculations [19] align well

with these findings. It suggests that the monopole tensor

interaction contributes to the shell quenching [20,21]. The

high atomic number (Z) boundary of the quenched shell is

drawn at the aluminum isotopes. The low-Z shore of this

quenched shell remains undetermined. The observed lowest

resonance state of 28F can be explained by the USDB shell

model interaction without appreciable need for any intruder

orbitals from the pf shell [22] thereby concluding 28F to

follow normal shell ordering. Large-scale shell model

calculations, however, predict the Borromean nucleus 29F

to be at the boundary of normal to quenched shells [23].

The boundary of bound nuclear landscape, the drip lines,

are defined by the last bound isotopes or isotones [24]. We

have few data on nuclei close to the neutron-drip line of the

N ¼ 20 isotones. In 29F, the two-neutron separation energy

S2n ¼ 1.4ð6Þ MeV is only known with a low precision

[25]. The excited states of 27;29F are observed [26] at 915

(12) keVand 1080(18) keV, respectively. The state in 29F is

slightly higher than shell-model prediction using the SDPF-

M interaction [19] that includes the pf shell. A particle-

rotor picture [27] also explains the 29F spectrum, using a

deformed 28O core coupled to a proton in the 1d5=2 Nilsson

multiplet. Regarding neutron halos, our knowledge is

similarly limited. Carbon is the last known element to

exhibit a Borromean two-neutron halo, and we do not know

about any neutron halos in fluorine.

In this work, we report on the first measurement of the

interaction cross sections (σexI ) and determination of point

matter radius of 27;29F. The experiment was performed at

the Radioactive Isotope Beam Factory operated by the

RIKEN Nishina Center and the Center for Nuclear Study

(CNS), University of Tokyo, Japan using the BigRIPS

fragment separator and ZeroDegree spectrometer (ZDS)

[28]. The experimental setup is shown in Fig. 1(a). The
27;29F isotopes were produced from fragmentation of a 48Ca

beam with an average intensity of 570 pnA and an energy

of 345A MeV interacting with a 10 mm thick rotating Be

target. The isotopes of interest were separated from the

various contaminant fragments using the BigRIPS frag-

ment separator and identified [Fig. 1(b)] using the tech-

nique of in-flight energy deposit (ΔE), time of flight (TOF),

and magnetic rigidity (Bρ). Achromatic wedge-shaped

aluminium degraders of thicknesses 15 mm and 5 mm

were used at the dispersive foci F1 and F5 [black inverted

triangle in Fig. 1(a)], respectively, to spatially separate the

beam contaminants. The Bρ was determined from a

position measurement with parallel plate avalanche coun-

ters (PPACs) [29] placed at the F3, F5, and F7 focal planes

[green boxes in Fig. 1(a)]. An ionization chamber placed at

F7 [pink box in Fig. 1(a)] provided the ΔE information.

Plastic scintillator detectors of 3 mm thickness located at

the F3 and F7 focal planes [white boxes in Fig. 1(a)]

provided the TOF information. A 2.01� 0.01 g=cm2-thick

carbon reaction target was placed at F8 and was surrounded

by the DALI2 NaI(Tl) array [30] for detecting gamma rays

from the reactions. The average beam rates onto the F8

target were 314 pps and 78 pps, whereas the beam energies

before the F8 target were 250A MeV and 255A MeV for
27F and 29F, respectively. In the event selection of fluorine

isotopes, the relative contribution from Ne isotopes

was ≤ 2 × 10−9.

The σexI of the AF nuclei were measured via the trans-

mission technique where the number of the incident nuclei

(Nin) is obtained from an event-by-event counting at F7 and

F8. After interaction with a carbon reaction target at F8, the

unreacted AF (Nout) were counted at the F11 focal plane.
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FIG. 1. (a) Schematic view of the experimental setup. The

nuclei 27;29F are transported from the focal plane F0 to F8, where

the reaction target is located. Unreacted 29F is identified using the

ZDS from F8 to F11. Particle identification (b) before the carbon

reaction target at F8 and (c) after the target at F11 with 29F events

selected before the target.
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The σI was then obtained from the relation σexI ¼
t−1 lnðTt-out=Tt-inÞ, where Tt-in and Tt-out are the ratios of

Nout=Nin with and without the reaction target, respectively,

and t is the areal thickness of the target. Empty-target

measurements were needed in order to take into account the

losses due to interactions with residual materials in the

beam-line and detection efficiencies. Constant transmission

throughout the ZDS was obtained by restricting the phase

space in x, y, and momentum directions before the reaction

target at F8.

The unreacted 27;29F residues were analyzed using the

ZDS. The ΔE of these ions was measured using a Multi-

Sampling Ionization Chamber (MUSIC) [31] detector [pink

box in Fig. 1(a)] placed at the final achromatic focal plane

F11 of the ZDS. The TOF was measured between two

plastic scintillators having thicknesses 3 mm and 1 mm

placed at the achromatic focal planes F8 and F11, respec-

tively. The Bρ was determined from the PPACs placed

at the dispersive focal plane F9 and final focus F11.

Figure 1(c) shows the particle identification obtained in

the ZDS for events selected as 29F before the reaction target

at F8. The resolution of Z is obtained to be 0.2 (FWHM)

and that of A=q for the F isotopes is 0.013 (FWHM).

The reaction cross section σexR is the sum of σexI and the

inelastic scattering cross section (σinel;bs) to bound excited

states. No gamma rays from inelastic scattering were

observed. The efficiency of 1 MeV γ-ray detection was

∼20%. The inelastic scattering γ-ray spectrum in Ref. [32]

for 20C yields a cross section of ∼3 mb. Therefore, non-

observation of a γ-ray peak places an upper limit of σinel;bs
to less than 1 mb for 27;29F. Hence, σexR ≈ σexI . The σexR for
27;29F, 1243(14) mb and 1396(28) mb, respectively (red

filled circles), and those for 19–26F from Ref. [33] (open blue

squares), presented in Fig. 2, show a steep increase of about

12(2)% for 29F revealing the presence of a two-neutron

halo. This increase in σexR is similar to that found for
22C [32].

The σR are calculated from the Glauber model with the

nucleon-target profile function and a harmonic oscillator

density for the 12C target (see Supplemental Material for

further details [34]). For 27;29F we consider harmonic

oscillator densities with several oscillator width parameters

that yield different point-matter radii for these nuclei. Using

each of these densities we evaluate the σR with the Glauber

model. The calculated σR are compared to the measured σexR
to extract the experimental Rex

m of 3.15� 0.04 fm and

3.50� 0.07 fm for 27F and 29F, respectively. The results

obtained are also consistent with a two-parameter Fermi

density function. The large increase of Rex
m by about 11(3)%

for 29F compared to 27F is consistent with a two-neutron

halo formation in the N ¼ 20 isotone at the drip line and is

well above the 2.4% increase expected from the A1=3 rule.

A large root-mean-square halo radius of 6.6 fm for 29F is

derived considering the proton radii in 27F and 29F to be

similar. The difference between the Rex
m of 29F and its core

27F is 0.35� 0.08 fm which is similar to the two-neutron

halo nuclei 14Be, 17B [48], and 22C [32].

To assess the neutron orbitals associated with the halo,

we perform Glauber calculation with a density of 29F as
27Fþ nþ n. The large increase of the matter radii from 27F

to 29F indicates a strong component of the intruder 2p3=2

orbital. Its centrifugal barrier being a factor of 3 lower than

the 1d3=2 orbital facilitates an extended wave function. The

large extension becomes possible due to the small S2n in
29F

[25] approaching the effective threshold as shown for the

higher angular momentum orbital in Ref. [49]. To obtain

the 29F density, we assume mixing of the ð1d3=2Þ
2 and

ð2p3=2Þ
2 configurations with their wave functions gener-

ated from the Woods-Saxon potential using a single-

neutron energy of S2n=2 ¼ 0.7ð3Þ MeV [25] (see

Supplemental Material [34] for more details). Figure 3

shows the result of the mixing according to σR ¼ α ×

σRð2p3=2Þ þ ð1 − αÞ × σRð1d3=2Þ with α being the occu-

pation probability normalized to unity. For 29F, the con-

sistency between σexR and the σR calculated with the Glauber

model requires α ¼ 0.54–1.0 for S2n=2 ¼ 0.7 MeV, indi-

cating that the halo is driven by the lowering of the 2p3=2

orbital and theN ¼ 20 and 28 shell closures vanishing. The

uncertainty in S2n gives a lower limit of α ¼ 0.36 (Fig. 3).

One can also describe 27F as a 26Fþ n configuration (where

the 26F core radius Rm is taken to reproduce its σexR ). In this

approach, the neutron occupation in the 1d3=2 orbital alone

is able to explain σexR of 27F, suggesting a very small

contribution of the intruder pf orbitals.

In order to gain further insight into the shell structure

driving the halo formation, the matter radii are evaluated by
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FIG. 2. Measured reaction cross sections of fluorine isotopes

with a carbon target at E=A ≈ 240 MeV. The red filled circles are

data of the present work. The open blue squares are from

Ref. [33]. The data show statistical and systematic uncertainties.

The dashed line shows the trend of A2=3 relative evolution

normalized for best fit to 19–27F.
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using occupation numbers obtained from shell-model

calculations in the sd-pf shell. One calculation is per-

formed with the SDPF-MU Hamiltonian [50]. For 27;29F,

radial wave functions are calculated in a Woods-Saxon

potential (see Supplemental Material [34] for further

details). The σR using these densities for 27;29F are shown

by open blue circles in Fig. 4(a). The resultant matter radii

are 3.22 fm and 3.30 fm [open blue circles in Fig. 4(b)] for
27F and 29F, respectively. The corresponding neutron

occupation numbers of the 1d3=2, 1f7=2, and 2p3=2 orbitals

are predicted as 2.68, 0.90, and 0.56 in 29F and 1.67, 0.48,

and 0.24 in 27F. The underprediction of Rm and σR for 29F

can be traced back to unbound pf orbitals. These appear

with a small component in the ground-state configuration

while the 1d3=2 orbital is bound and has a larger compo-

nent. The predicted first excited states in 27;29F are at

1.48 MeV and 1.51 MeV, respectively, slightly higher than

the data in Ref. [26].

Matter radii and σR are also evaluated with a microscopic

interaction called EEdf1 [51] which has been derived [52]

by the extended Kuo-Krenciglowa (EKK) method [53–56]

from a chiral N3LO interaction [57] and Fujita-Miyazawa

three-body force [58] (magenta squares in Fig. 4). The sd
and pf shells are more strongly mixed than by the SDPF-

MU interaction, with neutron occupation numbers of the

1d3=2, 1f7=2, and 2p3=2 orbitals in 29F (27F) being 0.84,

2.19, and 1.26 (0.80, 1.08, and 0.67), respectively. The

substantial contribution of the bound 2p3=2 orbital leads to

the observed halo formation. The computed matter radius

of 3.44 fm for 29F agrees with the data, while that of 27F is

3.19 fm [magneta squares in Fig. 4(b)]. We note that the

1d3=2 orbital is unbound with the EEdf1 interaction. It

predicts the first and second excited states in 27F at

0.14 MeV and 1.42 MeV, respectively. Those in 29F are

predicted at 0.09MeVand 1.08MeV, respectively, the latter

being in agreement with the observed γ-ray transition [26].

This suggests the first excited state could be below the

detection threshold. The low excitation energies in 29F align

with the quenching of the N ¼ 20 shell closure.

We also performed ab initio coupled-cluster calculations

[59–65] for the binding energies and matter radii of 27;29F.

These computations are based on a deformed reference

state. We used two different interactions from chiral

effective field theory [66–68] that consist of nucleon-

nucleon and three-nucleon forces, namely NNLOsat [69]
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and Δ-NNLOGOð450Þ [70]. Both interactions are con-

strained by nuclear saturation properties (see

Supplemental Material [34] for further details). The

coupled-cluster results for the matter radius of 27F agree

with the data, while those for 29F are smaller than the data.

Error ranges reflect uncertainties with respect to model-

space sizes and extrapolation of radii. In our deformed

reference state, the neutrons closest to the Fermi surface

occupy positive parity states, dominantly associated with

the 1d3=2 orbital. These states were self-consistently

selected by the Hartree-Fock method. A halo in 29F would

require neutrons to occupy the 2p3=2 orbital. Thus, the

coupled-cluster computations lead to smaller radii pointing

to shortcomings in the employed interactions.

The matter radius is also estimated for 29F using the

particle-rotor model [27], assuming a prolate ellipsoidal

shape. This approach hints to a possible effective deformed
28O core (with deformation ε2 ≈ 0.16þ0.15

−0.2 ) [27], supportive

of a breakdown of the N ¼ 20 shell. The resulting radius is

slightly lower than the data (cyan bar in Fig. 4).

While this Letter was under review, the matter radii of
27–31F were predicted in a Gamow Shell Model framework

[71]. The prediction for 27F is slightly higher and that of 29F is

slightly lower than the data presented here. Future experi-

ments will aim to assess the halo predicted for 31F in

Ref. [71] and a pairing antihalo effect predicted in Ref. [72].

The present work shows that a small neutron separation

energy (∼1 MeV), and tensor force effects lead to a p-wave

halo in 29F, one proton above conventional doubly closed

shell Z ¼ 8 and N ¼ 20. This is analogous to an s-wave

halo in 11Li, one proton above Z ¼ 2 and N ¼ 8. Both 29F

and 11Li are at the neutron drip line with the respective

conventional doubly magic cores, 28O and 10He, being

unbound. The extended wave functions of such weakly

bound s or p orbitals in the ground states of nuclei around

the N ¼ 50, 82, and 126 shells will lead to greater

probability of neutron capture [73] thereby impacting the

flow of the rapid neutron capture process. One-neutron

halos and quenching of the N ¼ 50 shell gap are predicted

in Cr and Fe isotopes [74] and two-neutron halo in Ca

isotopes [75]. A recent study of 207Hg beyond N ¼ 126

shows the normal shell ordering to persist [76].

Calculations with a Woods-Saxon potential however pre-

dict a shell gap quenching due to weak binding in more

neutron-rich N ¼ 126 isotones. This follows the trend in

light nuclei discussed in Refs. [77,78].

In conclusion, we identified a new two-neutron

Borromean halo—the first of this kind in the proton sd

shell—in the N ¼ 20 drip-line nucleus 29F. This observa-

tion was from the large difference in the reaction cross

sections σexR measured for 27;29F. Assuming similar proton

distributions in 27F and 29F yields a large root-mean-square

halo radius of 6.6 fm for 29F. The emergence of the halo

leads to vanishing of the N ¼ 20 shell closure with

contribution of the 2p3=2 orbital. This weakens the N ¼
28 shell gap as well. The disappearance of the conventional

shell gap and emergence of the halo challenges ab initio

computations and will trigger further experiments charac-

terizing this halo.
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