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Dynamic Resource Allocation Model for

Distribution Operations using SDN
Shidrokh Goudarzi, Member, IEEE, Mohammad Hossein Anisi, Senior Member, IEEE,

Hamed Ahmadi, Senior Member, IEEE, and Leila Mousavian, Member, IEEE

Abstract—In vehicular ad-hoc networks, autonomous vehicles
generate a large amount of data prior to support in-vehicle
applications. So, a big storage and high computation platform is
needed. On the other hand, the computation for vehicular net-
works at the cloud platform requires low latency. Applying edge
computation (EC) as a new computing paradigm has potentials
to provide computation services while reducing the latency and
improving the total utility. We propose a three-tier EC framework
to set the elastic calculating processing capacity and dynamic
route calculation to suitable edge servers for real-time vehicle
monitoring. This framework includes the cloud computation
layer, EC layer, and device layer. The formulation of resource
allocation approach is similar to an optimization problem. We
design a new reinforcement learning (RL) algorithm to deal with
resource allocation problem assisted by cloud computation. By
integration of EC and software defined networking (SDN), this
study provides a new software defined networking edge (SDNE)
framework for resource assignment in vehicular networks. The
novelty of this work is to design a multi-agent RL-based approach
using experience reply. The proposed algorithm stores the users’
communication information and the network tracks’ state in real-
time. The results of simulation with various system factors are
presented to display the efficiency of the suggested framework.
We present results with a real-world case study.

Index Terms—Resource allocation, Reinforcement learning,
Transportation.

I. INTRODUCTION

These days, vehicular communications provide a strong

way to connect vehicles with different devices and users in

improving transportation. Recently, vehicular cloud networks

(VCN) has been proposed as combination of vehicular ad-

hoc networks (VANET) and cloud computing to solve some

of the exiting challenges of the vehicular networking such as

storage, computing, etc. In order to address the challenges for

efficient monitoring of vehicles in transit, a vehicular cloud

based solution can be adopted. However, the vehicular cloud is

a complex setting with soft and hard quality-of-service (QoS)

needs on its services [1], [2]. This is due to some devices

some devices have communication inside the vehicular cloud.

This large number of communications increases the need for

adoption of wireless technologies for relatively fast moving
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vehicles which is challenging. There is intermittent commu-

nication links requiring high-speed data transfer in a mobile

topology, with dynamically altering demands for services

with varying QoS requirements. Hence, dynamic and efficient

resource provisioning is vital for successful vehicular clouds

[3]. Since the traditional cellular networks have limitations,

such as, inefficient,and unscalable packet forwarding, and

QoS management, the software defined networking (SDN)-

based cellular core was presented in [4]–[6]. To discrete all

control functions from the forwarding information function,

OpenFlow switches are employed in the SDN cellular core. All

base stations (BSs) are controlled by an OpenFlow controller

and switched through the OpenFlow protocol [7].

These tasks are difficult without a help from an intelligent

internet of vehicles system in terms of edge computation (EC).

Since mobile edge computing can employ different cloud

resources such as storage and computational resources closer

to smart devices/objects, EC has been considered as a highly

promising technology for realizing and reaping the advantages

of heterogeneous IoT applications [8]. EC inside the vehicular

networks can reduce end-to-end delay [9], [10]. The applica-

tion server is responsible to provide real-time services with

constant bounds on the delay. Also, many computational tasks

can be performed on small databases which lead to overhead

reduction. In real-time vehicle monitoring, the EC is useful to

offer a real-time and low latency transmission of the vehicles’

information [11], [12]. In the existing literature, considering

edge servers for real-time vehicle monitoring for connected

vehicles were greatly overlooked. Traditional systems such as

data loggers used inefficient passive data collection methods in

sharing information among various supply chain parties while

in an IoT environment offers real-time vehicle monitoring

[13]. In order to manage the mutual interference between the

device-to-device links and the cellular links, effective resource

allocation mechanisms are needed. The resources assigned to

satisfy the alteration in demands for services are adapted by

dynamic resource assignment techniques [14].

The work in this paper is motivated by the need to manage

the trajectory of vehicles while searching for an efficient

channel allocation. We envisage that the suggested framework

should be able to support many IoT use cases like mobile de-

livery and content caching, distributed big data processing. In

such vehicular networks, both the bandwidth and computation

resources should be efficiently utilized to improve the QoS

of vehicular applications. Considering numerous resource-rich

vehicles on the road, there is an opportunity for executing

data processing and computation offloading on smart vehicles.

Copyright c© 2020 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.
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In this paper, we investigate the integration between cloud

edge into IoTs for monitoring the vehicles while in transit.

We propose a novel architecture to address dynamic demands

for the resources that empowered by EC and reinforcement

learning (RL)-based techniques. In this work, by integration

of EC and SDN, an innovative software defined edge (SDN-

E) framework is proposed for resource assignment in vehicular

networks. In our architecture, we provide an integrated mobile

edge computation by exploiting the advantages of flexible

and high mobility computing resource assignment of edges.

In our vehicular edge multi-access networks framework, the

distributed computation and collaborative task offloading can

be constructed by the vehicles as edge computation resources.

RL is a strong tool in managing scenarios that consider real-

world complexity and is useful for designing efficient dynamic

resource provisioning heuristics for vehicular clouds [15], [16].

In fact, RL-based techniques can provide an ideal solution for

designing a resource assignment model for vehicular clouds

in real-time vehicles monitoring during transportation. Also,

RL can solve optimization problems for an individual agent

[15], but the application of RL to solve system optimization

problems in dynamic, real-time vehicles monitoring is an open

research problem. Traditionally, researchers have focused on

optimization methods to solve real-time vehicles monitoring

problems using prior knowledge, but these methods are not vi-

able in dynamic environment that resources change frequently

[17].

In the previous works, the QoS of vehicle-to-vehicle (V2V)

links only includes the reliability of SINR and the latency

constraints and capacity processing to reduce reallocation

overhead and delay has not been considered thoroughly.To

address these problems, we develop a reinforcement learning

technique to learn an optimization policy to improve its opti-

mization objective (cumulative reward) using experience reply

dynamically. Currently, some centralized resource assignment

mechanisms were established for V2V communications. Since

the vehicles’ information needs to be reported to the central

controller to solve the resource assignment optimization prob-

lem, there is a large transmission overhead growing intensely

based on the network’s size that inhibits these approaches

to scale to large networks. Hence, this work focus on de-

centralized resource assignment approaches with no central

controllers to collect the network’s information. We exploit

deep RL to discover the mapping within the local observations

such as local interference levels and channel state information

(CSI), and the resource assignment solution.

The proposed architecture offers a dynamic resource assign-

ment method to be reactive to dynamic demands for the ser-

vices. We focus on resource provisioning in real-time vehicle

monitoring. For effective resource provisioning, the demands

are precisely examined for deducing the kind of required

resources, the amount of each type of required resource and

the placement of the resources in the vehicular cloud. The

proposed multi-agent RL-based method follows three main ob-

jectives: (i) to provide the resources efficiently, (ii) to improve

QoS for the end user, and (iii) to reduce delay and overhead

for completing requested tasks. Our proposed model can be

taken into account as a promising and operative method for

managing the network resources such as time, infrastructure

and spectrum The proposed model can be used in various types

of applications, e.g., civil, military, agricultural applications

and environmental remote sensing. Moreover, our model can

be utilized for forest fire management, air quality and pollution

assessment, coastal ocean observations, precipitation and cloud

evaluation, and severe storm monitoring applications. Here,

integrating the distributed IoTs and edge resources have the

role of moving aggregators for IoT networks [18]. This paper

is mainly organized as follows:

• We build a three-tier edge computing framework replac-

ing conventional neural networks for computation and

data processing tasks in the edge servers. The architecture

uses SDN to simplify the dynamic programming process

and manage network connectivity across the data center.

• We integrate distributed IoTs and EC to dynamically

allocate the edge servers resources and adjust resources

according to the real capacity of the application to reduce

reallocation overhead and delay in vehicular clouds.

• We propose a RL-based model for resources allocation

based on experience reply that restores experiences into

a memory and then samples classes by greedy selection

from experience pool for parameters training instead of

using consecutive samples.

• We offer a multi-agent RL-based approach to encourage

and exploit V2V link cooperation by sharing Q-values

among agents to improve network level performance.

Other parts of this study are structured as follows. Correlated

works on vehicular networks, cloud computation and IoT in

the transportation domain is clarified in Section 2. In Section 3,

the core modeling procedure are presented in detail. Section 4

addresses the problem formulation. The reinforcement learning

model for resource assignment is explained in Section 5.

Performance comparison among the state-of-the-art techniques

are presented in Section 6. In the final part, a conclusion is

provided in Section 7.

II. RELATED WORK

Edge has a key role in intelligent transportation systems

(ITS) to achieve quick response and/or availability [19]. The

idea of ITS as the application of the innovative information

and communication technologies (ICT) to obtain a decrease

in accidents and congestion was summarized in [20] which

also showed more security in transport networks was created.

In [21], it is highlighted that ITS faces significant challenges

for designing and operating the enhanced global supply chain,

such as, real-time data-based control, eventually affecting

the resiliency and risk. The rising significance of wireless

vehicular networks indeed related to the growth and accep-

tance of mobile wireless communications, in which through

progresses in wireless channel modelling methods and the suc-

ceeding progress of complex digital transmission approaches,

providing high data rate communications is possible while

following the severe QoS requirements [22], [23]. According

to [24], this is imperative and data overload is experienced

by modern companies due to utilizing numerous disparate

innovative technologies pursuing a unified functioning picture
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for situational awareness. Also, the traditional cloud infrastruc-

ture includes geographically dispersed large-scale data centers

with thousands of machines publicly available. Integrating

this cloud infrastructure and its computation paradigm with

VANET increases different vehicular clouds (VCs). Mostly,

the vision is to connect the abundant resources within the on-

board units (OBUs), road side units (RSUs) and integrating

them with the apparently infinite resources of the conventional

cloud data centers, [25]–[27], to mention a few.

ITS uses VANET to offer services primarily for vehicle

monitoring. However, popular ITS services can improve the

efficiency of vehicle monitoring during transportation by of-

fering some infotainment services, like traffic sign detection

and recognition, on-demand multimedia video streaming, etc

[28], [29]. In a vehicular cloud computing system, vehicles

are equipped with OBUs with computational, storage and

communication resources. Vehicles communicate with each

other as well as with RSUs. Also, each RSU can interact with

a cloud infrastructure to offer a variety of modern services

with strict QoS requirements [30]. With the development of

vehicular technologies, some of the problems such as lack

of essential information for monitoring the vehicles while in

transit can be eliminated. Autonomous vehicles have abilities

in sensing, data processing and communicating with other

vehicles [31]. Also, these vehicles can exchange the data

with the external environments using various protocols such

as Transmission Control Protocol/Internet Protocol (TCP/IP),

Next Generation Telematics Protocol (NGTP) and wireless

application protocol (WAP) [32]. A new architecture based on

vehicular cloud known as ITS-Cloud was proposed to expand

vehicle-to-vehicle communication [33].

Access to remote computing resources in a centralized

manner is not well suited with massive traffic of distributed

edge devices. Therefore, pushing the computation, control and

storage to the edge of the network is becoming a basic trend.

A deeper look into the “Edge Computation” and we can see

the current fast advance in EC (known as “Fog Computation”

or Mobile Edge Computation as well in various literature) is

aimed to push the storage and computation resources from the

distant data center to the network edge to decrease the latency

and the backbone burden. Moreover, new improvements in

computation (for instance cloud/fog/edge computation) will

result in significant impacts on vehicular networks. To make

access to a mutual computation resources pool, cloud computa-

tion was used very widespread [25]. However, due to the large

distance between the end user device and the cloud, low la-

tency usages may not be ensured in cloud computation services

in vehicular networks. To state these concerns, studies were

performed on EC [26], [27] to organize computation resources

closer to vehicles able to competently enhance the QoS for

usages requiring concentrated computations and low latency

[34]. Integration of SDN and EC was not studied in literature.

SDNs offer novel possibilities for designing, securing, and

operating data-intensive networks [35]. Nevertheless, realizing

these advantages mainly requires the underlying infrastructure

support. Recently, the task offloading task for mobile edge

computation in a software defined ultra dense network (SD-

UDN) to process locally or offload task on edge cloud for

minimizing the task period was proposed in [36]. For reducing

the expense of deployment and EC services overhead, leverag-

ing the resources of underutilized mobile devices at the edge

was proposed in current exertions [37]–[39]. There is not much

literature focusing primarily on the MEC and SDN integration.

Our study fills the gap in earlier studies on evaluating and

designing an innovative architecture using a reinforcement

learning technique to allocate resources efficiently for reducing

delay and reassignment overhead in vehicular clouds. Such

integration can provide a fully software-based framework for

any system.

III. SDN-EC FRAMEWORK

Here, the details of the suggested model is explained. The

suggested SDN-enabled heterogeneous vehicular network sup-

ported by EC is able to offer preferred reliability and data rates

in the communication of vehicles to exchange information with

everything (V2X) simultaneously. The conceptual architecture

of the suggested SDN-EC framework, as shown in Fig.1,

depends on the deep convergence of three layers including the

cloud computation layer, edge computation layer, and device

layer. The key parts in the suggested SDN-EC framework are

presented in detail.

A. SDN

In this model, the SDN has been employed for four main

reasons: First, using SDN the independent deployment of

control, processing entities, and traffic forwarding are possible

[40]. Second, the service efficacy of resources is improved

by logically centralized control; Third, the network is made

more active by the programmability, hence, the appropriate

radio access interface is selected by the application to deliver

information [41]; Fourth, for vehicle monitoring on the basis

of the real-time road conditions, quick-response cloud service

is essential. There is no capability in a vehicle, restricted by

limited computation resources, in processing a huge volume

of uploading traffic data that are captured by the roadside

or onboard sensors; Therefore, this kind of tasks should

be outsourced to the infrastructure. Various reconfigurable

and programmable equipments and factors spanning ground

network sections comprise the device layer generally including

gateways, vehicles, routers, base stations, and different IoT

devices. A hypervisor extracts and virtualizes the device

layer resources and the upper-layer computation and storage

resources, while ultimately combined into a virtual resource

pool. A generalization to the controllers is offered by the

hypervisor taking within driving the underlying infrastructures

[42]. SDN Controller has two main modules. The first module

is for task monitoring. This module collects all vehicles

task information. Also, this module advises to compute tasks

locally or offload them to edge for processing. Another module

is edge server’s module. This module collects information of

distributed edge servers. This information shows how much

memory and CPU is available on the server side and how

much the server is loaded.
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Fig. 1: Architecture of the proposed SDN-EC framework.

B. EC nodes

Multiple virtual EC nodes are created and operated on the

similar original infrastructures via an appropriate mapping

within virtualized network resources and physical infrastruc-

tures. A part of the total virtualized resources is utilized by

each EC node for computation tasks and it is individually

monitored by the upper-layer controllers. Basic computation

functionalities for IoT applications are provided jointly by

EC and cloud layers. To control resource management and

computation task assignment at various scales, a hierarchical

computation architecture is utilized. To process locally, the

small-scale delay-sensitive computation tasks in a dispersed

mode, the edge calculating layer is more appropriate. The

computation, storage, and communication resources are ar-

ranged in this layer, close to the users and dispersed through

the network edges.

C. SDN-EC controller

Controllers in the lower layer edge are only able to observe

and control their individual virtual networks while managed

by the upper layer cloud regulators. The resources scale in the

cloud computation layer is larger in comparison to the ones in

the EC layer; the cloud regulator with central intelligence and

global network information manages the resources regularly.

To assist the various QoS requirements of IoT applications,

Fig. 2: Operation process in SDN-EC framework.

the upper-layer controllers allocate the resources to each

lower-layer controller, then regulates the resource allocation

according to traffic demands dynamically.

Each vehicle sends its context to the SDN-EC server’s

database through BSs that are armed with wireless OpenFlow

protocol. The vehicle’s parameters are speed, IDs of neigh-

boring vehicles, direction and location that can be derived

from GPS signaling. Also, the beacons of neighboring vehicles

can be received. SDN controller of SDN-EC are able to find

suitable path between vehicles and notifies vehicles to establish

path in their routing tables. Also, neighboring SDN-EC servers

are able to exchange the stored contents of their databases.

The detailed operation process in SDN-EC framework is

described in Fig. 2. In the proposed framework, vehicles are

armed with IEEE 802.11p network interface and the cellular

network interface. The vehicles describe their requirements

and mobility information. Then, the amount of available

resources will be updated by SDN-EC controller. In the next

step, the cooperative learning module is designed to solve

the problem of optimal actions to minimize delay within a

completion time limit by dynamically allocate the edge servers

resources and adjust resources according to the real capacity

of the application to reduce reallocation overhead in vehicular

clouds.

IV. PROBLEM FORMULATION

As shown in Fig. 2, the SDN controller is controlling the

network. Since the SDN controller can collect all information

of the network such as load, latency and speed of processing,

it can formulate the optimal strategies for total delay reduc-

tion. We assume that each vehicle has some tasks that can

be processed locally or offloaded to an EC by a wireless

channel. The total request rate that is processed by the EC

should be less than a maximum acceptance rate of EC. The

controller compares the amount of task computation with the

EC computation capability based on delay of vehicle’s task.

The task is decided to offload to EC or computed locally by

vehicle. We consider qi as the required CPU cycles per bit.

In case of local computing, we assume rli is the ratio of task

computed locally and si is size of computation task, qi is the
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is the required CPU cycles per bit. Thus, the required time for

local computation task is calculated as follows:

timevi = rlisi
qi

lvi
(1)

Also, the required time for computing a task to an EC is

divided into two parts; offloading time and executing time.

The data offloading from vi to ECj is computed as follows:

time
offloading
i,j = (1− rli)

si

rvi,j
(2)

As the edge is assumed to have limited computing capability,

the computation rate of each EC server is presented as rLC
i,j .

The execution time on the EC is:

timeexecutioni = rEC
i si

qi

rLC
i,j

(3)

Because EC has limited capacity, it is not able to execute

all tasks of vehicle. The rj is the data rate from EC in the

system to offload the overloaded requests of EC for further

execution.The computation time of the overloaded requests can

be calculated as follows:

timeover.tasksi = (1− rli − rEC
i )

si

rj
(4)

Now, we explain the main optimization objective. The objec-

tive is to minimize the total delay of local computation and

edge computing modes. The problem can be mathematically

written as:

min
rl
i
,rEC

i
,rLC

i,j

N
∑

i=1

[rlisi
qi

lvi
+ (1− rli)

si

rvi,j
+

rEC
i si

qi

rLC
i,j

+ (1− rli − rEC
i )

si

rj
]

(5)

subject to

C1 :
∑

i∈N

bi ≤ TotalRBs, ∀i ∈ N (6)

C2 :
∑

i∈N

rLC
i,j ≤ rLC.max

j , ∀i ∈ N (7)

C3 : tvivj ≤ dvivj
, ∀vi, vj ∈ N ; vj ∈ M (8)

C4 : 0 ≤ rli ≤ 1, ∀i ∈ N (9)

C5 : 0 ≤ rEC
i ≤ 1− rli, ∀i ∈ N (10)

where rli is the ratio of task computed locally, rEC
i is the ratio

of task computed in the EC, CCEC
ij is the computing capability

of EC, si is size of computation task, qi is the is the required

CPU cycles per bit, and rj is the data rate from EC in the

system to offload the overloaded requests of EC for further

execution. In the set of constraints, constraint C1 indicates

the communication resource constraint of wireless networks.

Because, the resource blocks (RBs) which used for communi-

cation among N vehicles are limited. The bi shows the quantity

of resource blocks which allocated to task Ti and TotalRBs is

the total number of resource blocks. Constraint C2 shows that

the total edge computing resources which assign to all tasks

must be less than the maximum computation capability of edge

rLC.max
j . Because, EC server has limited processing capacity

and cannot offer high computing resources. As the edge is

assumed to have limited computing capability, the computation

rate of each EC server is presented as rLC
i,j . Constraint C3

indicates that delay constraint for task execution time in edge

computing mode must be less than the link duration dvivj . In

addition, there is a set of vehicles M that are equipped with EC

servers. If the vehicle vi offloads its task to vehicle vj and its

task execution time is less than the dvivj , then vehicle vi can

achieve its computation result. C4 indicates that the ratio of

local task computation should be between 0 and 1. C5 shows

that the ratio of edge task computation should be between 0

and one minus ratio of local task computation.

The conventional method for resource allocation problem is

not efficient due to as a large number of communications in-

creases then the QoS requirement increases and this issue leads

to the high infeasibility ratio of the conventional algorithm.

As a result, it’s a NP-hard problem, and it is intractable to

find the global optimum solution of the overall network. Also,

the computational complexity and signaling overhead increase

highly with the number of vehicles, and the optimum solution

needs to be delivered from the baseband unit to vehicles

within the channel coherence time. This can be achieved using

reinforcement learning that can determine the optimal solution

to problems by evaluating the results of previous actions. In the

next section, we formulate the resource allocation optimization

problem as a deep reinforcement learning process.

V. RESOURCE ALLOCATION MODEL

In the proposed model, we deal with the problem from

a strengthening learning viewpoint and express any specific

optimizing process as a policy. We consider a finite-state

Markov decision process with continuous state and action

spaces defined by the tuple (S, A, p0, p, c, γ), S refers to set of

states, A refers to set of actions,p0 is the probability density

over initial states; p is the transition possibility density and it is

defined as p : S×A×S → R
+ conditional probability density

over successor conditions considering the current action and

state, c : S → R is a function defined for mapping state to

cost and γ is the discount factor and it’s defined between 0 and

1. The agent obtains U(t) in state si(t) when action ai(t) is

performed in time slot t. The objective is to learn a conditional

possibility density p
∗ : S × A → R

+ over actions based on

the current state, in a way that estimated cumulative cost is

minimized.

p∗ = argmin
p ES0,a0,S1,a1,....sT

[

T
∑

t=0

γtc(st)

]

, (11)

The problem of finding the policy with minimum cost is

identified as the policy search problem. We use reinforcement

learning to learn the policy p. We explain the cost function

that penalizes policies exhibiting unwelcome performances

over their executing. If the optimization processes converge

quickly, they reward. Otherwise, we penalize those that con-

verge slowly. We can calculate the total executive time of a
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process. The executive time of a process is equivalent to the

last completed task of a process. We show the computation

speed of the process at execution time on node k by (CS)k.

Let PT show the finish time of last completed task of a process

on a node and it is explained as follows:

PT = max {E(tp) + Cp + np × (CS)k)} , (12)

where, E(tp) defines the initial finish time of a task tp. The

Cp donates the cost of data transmission in a process. Also, np

donates the number of executed instructions for a task. For the

transferring data d, the communication cost is Comc(ij) from

node in location i to node in location j. If i=j then Comc(ij)=0.

The cost of transferred data d with size of s during the time

t, with the bandwidth BWij is as follows:

Cp =
s

BWij
× Comc(ij), (13)

where s denotes the size of the periodically generated V2V

payload in bits.

The goal of this study is to reward the processes with

quick converge and penalize the processes with slow con-

verge to provide services for users. An agent chooses the

transmission power and frequency band level incurring only

small interference to all vehicle-to-infrastructure (V2I) links

as well as other V2V links and preserve adequate resources

to satisfy the need for the latency restrictions. There are

mobile edge computation servers (E), base stations (BS)and

requested contents (RC) that are manage by a centralized

controller which provide services for vehicles and flexible

resource control by separating the information and control

functions as well as the innovative concept of fundamental

infrastructures. Since the downlink channel conditions of base

stations and computation abilities of mobile edge computation

servers are changing dynamically, the channels of vehicles

and their connected BSs/RSUs are modeled as finite-state

Markov channels and a large amount of system states should

be analysed. The best decision should be made to allocate the

resources to multiple vehicles according to the recent state of

the system.

A. Deep Q-learning

The deep Q-Network can solve this problem and manage

the system effectively. Deep Q-learning has the ability to

receive complex high dimensional information as input data

and assigning a best action for each input statistics in a given

state x. The proposed model, firstly, all states from per B, E
and RC should be collected, and all input data are sent to the

deep Q-Network.Then, a feedback of the best policy p∗ for

assigning the demanded resources for a vehicle is obtained.

The agent using the neural network (NN) to characterize Q

function is known Q-network that is defined as Q(x, a; θ). The

factor θ represents the neural network weights, a represents the

action in a given state x and the Q-network is qualified through

updating θ at each iteration to estimate the real values of Q.

By determining θ, Q-values, Q(x, a), will be the outputs of the

deep neural networks. The deep neural networks can represent

sophisticate mappings between the channel information and

the desirable output in terms of numerous training data that

will be utilized for determining Q-values. Furthermore, as a

result of the weight functions particularity in all benchmarks,

we present a new scoring function.The Q-network updates

its weights, θ, at each iteration for minimizing the following

function as a loss function (L) extracted from the same Q-

network with old weights on a data set Ds,

L (θ) =
∑

Q∈Ds

(

Q(x, a, θ)− [r + γmax
a
′

Q(x
′

, a
′

, θ) | x, a]

)2

(14)

The stochastic gradient descent is applied to take an action

a in state x for moving to x
′

and achieve reward r on each new

example (x,a,x
′

,r). The scoring function is defined to compare

the weights of vehicles. The weights are corresponded to the

vehicles’ priority. When the quantity of energy consumed and

number of fulfilled vehicles and downloaded bits is achieved,

the RSU provide the channel access.

In Q-network, the experience of agent (indeed the deep Q-

learning) stored in a memory at each time slot.The agents

cooperate with each other in order to learn how to share their

sensory data and act as the scout for each other. Actually, uti-

lizing a multi-agent RL network makes possible for the agents

to communicate and share their capabilities and learn from one

another. Episode sharing can be utilized for communicating

the state, action, and reward triples within the reinforcement

learners. The multi-agent RL network consisting of numerous

novel agents, cooperation and information sharing among

these agents can decrease search time for the delay minimizing

solution.

Also, the parameters of Q-network are updated with spec-

imens from the memory at each time instant. A Q-value is

a state-action pair function in deep reinforcement learning

procedure which returns a real value. Exploration is required to

make sure each action in each state is sampled. An agent must

select the actions that it has found make maximum rewards

given actions it has tried in the past. Though, for learning

those actions, it must to do exploration to try fresh actions

that it has not achieved before. At some time, the agent must

use what it has learned (exploitation) in order to get rewards.

A common method for exploration is to select random

actions with minor probability, this is known as ε-greedy

exploration. We defined a ε-greedy policy to make balance

in the exploitation and exploration. In other words, this policy

is used to make balance between the reward maximization on

the basis of the knowledge already identified by trying new

actions to find unknown knowledge.The greedy procedure to

improve the initial solution.

B. Deep Q-network algorithm in VANET

The Q-network training algorithm is demonstrated in Algo-

rithm 1. To achieve the states, actions, and reward and best

policy functions need to be described. The proposed algorithm

can be implemented in the SDN-EC server’s SDN controller.
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State: Each base station(BS) as an agent should collect the

status of EC server. The agent can determine the optimal

amount of spectrum resource based on collected information

such as average of SINR. Then, all information should be

assembled into a constructed system. After that, the BS should

send the recorded states to an agent and receives feedback to

allocate resources based on proper strategy for a vehicle. For

a base station b ∈ {1, 2, 3, ..., B}, a mobile edge computing

server e ∈ {1, 2, 3, ..., E}, for vehicle vs at time instant

t ∈ {0, 1, 2, ..., T − 1}, the environment state is defined as,

st = {y, n, p, SINRc, SINRe, SINRb} , (15)

where y is the triggered tier transmitter, n shows the accessible

resources, p represents the transmission power of the triggered

tier transmitter, SINRc,SINRe, SINRb are the SINR measured

at a triggered receiver in the centre band, edge band and macro

receiver BS, respectively. The SINRs of the V2I link and the

V2V link over the sub-band are expressed as SINRV2I and

SINRV2V.

The capacities of the V2I links and the V2V links over the

sub-bands are then obtained as,

CV 2I = Blog(1 + SINRV 2I), (16)

and

CV 2V = Blog(1 + SINRV 2V ), (17)

where B is the bandwidth of each spectrum sub-band. The

reward is defined to maximize the total processing capacity of

all nth V2I links, defined as
∑

n Cn [n].
Action: The action for a specific vehicle vs at time instant

t is determined as follows:

avs = {n, pc, pe,m} , (18)

where m is the transmission modulation order, pc and pe show

the chosen transmission power of the triggered transmitters

positioned at the centre band and edge band, respectively.The

list of actions performed by the agent have a finite impact on

the delay.

Reward: In the proposed model, the problem of resource

allocation optimizing has formulated as a deep reinforcement

learning procedure. The optimization problem is to achieve

the minimal total cost. The objective of reinforcement learning

procedure is to obtain the highest reward which is inversely as-

sociated with total cost and it’s defined as
TCl−TC(s,a)

TCl
.When

the cost of local calculation is shown by TCl and the total

cost of system is presented as TC(s,a). In each stage, an

agent calculates and store the Q(s, a) in the Q-table. In

the proposed model, each base station BS should pay for

employing the spectrum that is determined as δb per Hz. Also,

the computation fee should pay for computation task to be

executed on the mobile edge computation server. This value

at eth mobile edge computation server is explained as τe per

Joule. Furthermore, the charge for each vehicle vs to access

to an available network for computing a task at base station

BS is defined as φvs
per bps. Also, required number of CPU

cycles for completing each task for specific vehicle is defined

as qvs
. In our framework, the reward function consists of three

parts, namely, reliability of SINR, the capacity of the V2I and

V2V links, and the delay condition. The latency condition is

represented as a penalty. The action defines if the reward will

be obtained. Our objective is to meet the delay and the goal of

RL is to obtain the maximum rewards. We measure the delay

after each action. We define a reward function based on delay

in executing a task and can be defined as:

Rt =
1

delaycurrentminimum

(19)

where delaycurrentminimumis the minimum delay in task execution

in current state. Then, the reward for a particular vehicle vs
is defined as:

Rvs
=

B
∑

b=1

Rvs,b
(t) +

E
∑

e=1

Rvs,e(t)− γp(T0 − Tr) =

B
∑

b=1

avs,b
(t)(φvs

bvs,e
− δbbvs,e

)+

E
∑

e=1

avs,e(t)(φvs
rvs,e

− τeqvs
evs,e

)

(20)

where γp is the penalty weight, T0 is the maximum tolerable

latency and Tr the remaining time to meet the latency con-

straints. The (T0 − Tr) denotes the transmission time and the

penalty grows as the transmission time increases. The system

reward is defined as the maximum efficiency (E) from a vs at

time t in equation (4). The Deep Q-network aims at finding

an ideal policy for maximizing the efficiency of model, and

the cumulative efficiency is calculated as,

Rlong
vs

= max E

T−1
∑

t=0

ǫt Rvs
(t) (21)

where ǫt reaches 0 when t is large enough. To terminate the

process, a threshold can be set. The proposed mechanism uses

the gathered state data to assign resources and to control inter-

ference. Since the utilized learning method is cooperative, it

requires distribution of the state-action data from the consistent

agent Q-table to the neighbours entirely and receive their state-

action data. The exploitation stage is supported by state-action

data, where the action is chosen based on the highest value of

Q, recursively updated as follows,

Qvs (svs
, avs

) = (1− α)Qvs (svs , avs
)

+α
(

rvs
(svs

, avs
) + γmax

l∈Avs
Q (svs∗ , l)

) (22)

where 0 < α ≤ 1 is the learning rate, svs
is the present

condition of the specific vehicle y, and svs∗ represents the

preceding state of the specific vehicle vs.

The process begins with gathering the network state data.

The state information exchange process then is engaged where
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Fig. 3: Deep Q-network with a decreasing learning rate.

the row of its Q-table is shared by each vehicle corresponding

to its present state and the optimal action. Simultaneously, it

obtains the present state and all other vehicles’ optimal actions.

This aids the vehicle to control its joint action with the highest

cumulative Q-value in the exploitation stage as follows,

avs
= arg max

∑

Q (svs
, avs) (23)

Regarding this observation, through choosing the action on

the basis of (12), the global value of Q will be maximized.

A further improvement is needed in achieving optimal

learning rate and exploration rate. We start a learning rate

of 0.005 and decreases exponentially. We use a rule at each

epoch as follows:

αn+1 = 0.98αn (24)

It should be noted that the average Q-value function V reduced

when the learning rate is lowered. We manage to improve

the score of the Q-value function when the learning rate is

decreased. The learning rates used in our work are tested

between 0 < α ≤ 1 and we set α = 0.07 for rewarded solution

and α = 0.01 for the punished solution. At the beginning of

process, the score is very low. While the time passes, the score

is adding but has fluctuation. The reason for this fluctuation

is that the operator is still learning the system’s parameters

and try find the best parameters. Also, it reduces errors and

instabilities when decreases exploration. The Fig. 3 shows that

higher rate helps the algorithm to get out of the local optimum.

Fig. 4 shows that the exploration rate can be adopted during

the training process in the ε-greedy action selection until the

agent was able to get out of the local optimum.

C. Complexity Analysis

In this section, we analysis the computational complexity of

proposed algorithm. The complexity of a RL-based algorithm

mainly depends on the state space size, the structure of

states and the primary knowledge of the agents [43]. If prior

knowledge is available to an agent, the search time can be

reduced significantly. In our algorithm, by sharing Q-values

among agents, a prior knowledge is provided for agents to

reduce their search time. Accordingly, the sharing of Q-tables

Algorithm 1: Deep Q-network algorithm in VANET

1 Step 1: Initialization

2 Step 1.1: Initialize the experience replay memory.

3 Step 1.2: Initialize the main Q-network with weights θ.

4 Step 1.3 Initialize the target deep Q-network with

weights θ− = θ.

5 Step 2. for episode b = 1, ..., B do

6 Step 2.1 Receive the initial observation state s1.

7 Step 2.2 for t = 1, 2, .., T do

8 for Train : 1, 2, 3, ..., R do

9 Step 2.3 Select a random probability p.

10 Step 2.4 Select at as,

11 if p ≤ ε then

12 select a random action at

13 else

14 at = arg maxa Q(x, a; θ)

15 Step 2.5 Execute action at in the system,

gain the reward rt,and the subsequent

statement st+1 to the next state xt+1.

16 Step 2.6 Store the experience

(xt, at, rt, xt+1) into the experience replay

memory.

17 Step 2.7 Get a batch of U samples

(xi, ai, ri, xi+1) from the reply memory.

18 Step 2.8 Compute the target y−t from the

target network, y−t = ri +

εQ
(

xi+1, arg maxa
′ Q

(

xi+1, a
′

; θ−
))

19 Step 2.9 Minimize the loss L(θ) for

updating the main deep Q-network L(θ),

L(θ) = 1
U

∑.

i

(

y−i −Q(xi, ai; θ)
)2

20 Step 2.10 do a gradient descent step on

L(θ)
21 Step 2.11 Train = Train + 1, If Train ≤ R ,

go to Step 2.3.

22 Step 2.12 t = t+ 1, if t ≤ T , go to Step

2.3.

// T represents the pre-set

number of epochs in an

episode.

23

24 Step 3 Let k = k + 1. If k ≤ K, go to Step

2.

// K indicates the pre-set

maximum number of episodes.

25

26 Step 4 Return the value parameters θ in the

Q-network.

by agents, which are corresponding to its present state and

the optimal action can reduce the overhead. Also, to perform

accurate sharing, we used weighted functions to achieve a

lower complexity. The complexity of this operation mainly

depends on the number of the available computation node. In

a single agent network [44] that uses the ǫ-greedy policy with
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Fig. 5: Singapore Map in OpenStreetMap(a) and SUMO(b).

fixed ǫ in the size of the state-space |S|, the needed time for

convergence is bounded by O
(

|S| log |S|
log( 1

ǫ
)

ǫ2

)

, when the

limit number of iterations has been reached. Our proposed RL-

based algorithm for resources allocation restores experiences

into a memory and then samples classes by greedy selection

from experience pool for parameters training instead of using

consecutive samples. Thus, the use of the greedy selection

with threshold leads to significant reduction of the system

complexity. Also, in the Q-network in our work, the activation

function uses relu, and after the model is trained. In our

multi-agent RL-based algorithm, with the number of actions

Nactions in each iteration, the computational complexity is

O
(

|S|Nactions
log( 1

ǫ
)

ǫ2

)

and is linear in state-space size. On

the other hand, the complexity of exhaustive search for optimal

solution is O
(

NK
actions

)

, where K is number of the available

computation node.

D. A Case Study of Distribution of Food Products

In this section, we develop a case study in order to show

the effectiveness of the proposed framework. The efficient

distribution of food products, such as fruits, is important for

reducing the product spoilage rate during transportation. One

of the vital components of this system is the possibility of

monitoring vehicles in the transportation process. There are

public concerns with monitoring of fresh products during in

transit and the spread of microbiological hazards as a potential

health issue. One of the challenges is determining how to mon-

itor and control the vehicles through the transportation process.

In traditional marketing channels, obtaining information on

supermarkets of the fresh produce, such as, the quantities of

fruits and vegetables, and delivery time, are difficult tasks

[45]. Limitations occurring within the fresh products involve

lasting the trucks idle over a long time and constrained abilities

of monitoring of vehicles in transit. Efficient monitoring of

various supply chain elements can prevent delivery of spoiled

material to customers. In fresh distribution of products, effi-

cient communication between vehicles can reduce delay and

congestion. The developments in the internet of things (IoT)

and cloud computing have offered potential solutions to solve

the problems faced by the growing transportation issues such

as in-transit fresh produce [46].

We investigate the integration between cloud edge into IoTs

for monitoring the fresh produce while in transit. We utilized

Simulation of Urban Mobility (SUMO) [47] and MATLAB as

two main platforms. SUMO is an open source microscopic

traffic simulator. A reduced area of the downtown area of

Singapore is downloaded from OpenStreetMap [48], as shown

in Fig. 5. There is a real traffic scenario with a large number

of vehicles in a reduced area. To perform the experiment,

the MATLAB software is employed as interface with TraCI

[49]. The geographical areas in OSM were exported to in-

dividual map (.osm) files. The irrelevant data such as parks

and pedestrian walkways were removed from maps by Java

Open Street Map (JOSM). Then, the realistic road scenario as

working map imported from OpenStreetMap into the SUMO

traffic simulator.All base stations and vehicles are accidentally

dispersed in the MBS’s area. During the simulations, it’s

supposed that there are four base stations, six mobile edge

computation servers while normalizing the bandwidth of each

base station.

The Markov model is considered for wireless channels

within the vehicles and base stations. It is considered that

the channels between vehicles and BSs/RSUs are modeled as

finite-state Markov channels and they are real time-varying

channels. The vehicles are dropped in the lane randomly

according to the spatial Poisson process and each plan for

communicating with the three adjacent vehicles. Therefore, the

number of V2V links is three times of the number of vehicles.

The deep Q-network in our work is a completely connected

neural network with 5 layers and 3 hidden layers. In the 3

concealed layers, the number of neurons is 500, 250, and 120,

respectively. We also use ǫ-greedy policy for balancing the

exploitation and exploration and adaptive moment estimation

technique (Adam) for training [50]. In addition, we fix the

V2V payload packet size s in the training stage to be of

2×1060 bytes, but vary the sizes in the testing stage to verify

robustness of the proposed method. The simulation parameters

for all models are given in Table I.

In this model, each V2V link is considered as an agent and

spectrum are chosen in terms of the transmission power and

spectrum are chosen in terms of the channel circumstances

and data shared from the neighbors at each time slot. Also,

the received SNR is an appropriate factor for reflecting the



10

2000 4000 6000 8000 10000 12000 14000 16000 18000

Episode

1000

1500

2000

2500

3000

3500

T
o
t
a
l
 
U
t
i
l
i
t
y

Proposed Model

SARL

Proposed Model w.o. MEC Offloading

Static Model

Fig. 6: Convergence performance of various patterns.

quality of a channel. A random variable rbvs is defined to model

the received SNR of the wireless channel linking vehicle vs
and BS b.QoS queues are configured by the SDN controller

at the ports of network edge switches. The Floodlight SDN

controller [51] has been extended as a resource monitoring

module to calculate the delay and traffic level in each link

periodically. Also, OVSDB queue management module [52]

has been employed to enable dynamic queue creation.

When implementing the queues, utilizing Open Flow queu-

ing action, particular traffic flows can be routed over particular

queues to satisfy the associated bandwidth needs. In the

proposed architecture, the centralized SDN controller plans

time slots in time-division multiple access (TDMA) for RSUs

to periodically communicate with the controller. Also, RSUs

assign time slots to vehicles in their transmission range for

network information collection [53].

VI. RESULTS AND DISCUSSION

For performance comparison, three models namely static

model, the single agent reinforcement learning (SARL) algo-

rithm [54] and proposed model without mobile edge com-

puting servers are used for comparison with the proposed

model. The state of system is supposed to be static, not chang-

ing dynamically. The queues are configured in two different

ways. For static configuration, the queues are configured at a

fixed number of queues with some maximum bitrates, and

for dynamic configuration, the queues are on-demand and

allocating one or more flows in each queue. Edge computing

offloading is not considered in the model without mobile edge

computing servers, and vehicles can only do the calculation

tasks occasionally. In SARL model, only one link operates as

an agent updates its action at each moment and makes its own

allocation decisions optimally to minimize interference under

latency constraints.

Based on Fig. 6, we can find that at the start of the learning

procedure, the overall effectiveness of various scenarios in

the suggested system is very low. Increasing the number

of the episodes, there will be an increment in the overall

utility until reaching a fairly stable value (almost 6500 in the

recommended scheme), as shown in Fig. 6. This indicates the

convergence performance of the suggested system. It is also

observed that not considering the networking and computing

together, the overall utility of other scenarios is less.
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Fig. 7: The utility per resource for computing resources.
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Fig. 7 indicates the expected utility per resource against the

unit paid-price to use computing resources φvs
in different

methods. The utility from computing resources extends by the

increase of the unit paid-price to use computation resources

that leads to the increase of the utility. Our proposed scheme

has the best utility because it can make superior strategies.

Fig. 8 indicates the association between the average delay

performance and the number of nodes. It is indicated that

regarding the number of users, the average delay performances

of all models is increased monotonically. The reason is the

increment in the time over the task uploading, processing

and queuing, as more users attempt to connect to the similar

offload computation tasks and edge nodes. Nonetheless, the

achieved results indicated that through a considerable margin

by effective use of the integrated resources, the average delay

can be decreased. By reaching the number of users to 600, the

average delay obtained by the suggested scheme is 51% less

compared to the baseline model.

Fig. 9 shows the success connections against the number

of users by calculating the cumulative distribution function

(CDF). The CDF is an increasing function against the time

but, we derived the CDF against the number of users, so that

the CDF is decreasing. Here, the success connections indicate

the ratio of users with accepted computing demands positively

by mobile edge computing nodes. It is stated that increasing

the number of users to 1000, as a result of the access and

backhaul-associated limitations, only 14% of service demands

can be effectively connected in the standard structure. In con-
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TABLE I: PARAMETER VALUES
Parameter Value

BS antenna height 24m
Vehicle speed 35 km/h
BS receiver noise figure 5 dB
Vehicle antenna gain 4 dBi
V2I transmit power 24 dBm
V2V transmit power [24, 10,-100] dBm
δb 2 units/MHz (Units paid for wireless spectrum usage)
φvs 10 unit/Mbps (Unit for unit paid-price of using computing resources)
SINR threshold 1 dB
Latency constraints for V2V links T0 100 ms
Carrier frequency 2 GHz
τe 100 units/J (Units of energy consumed by EC servers)
qvs 100 M cycles (Cycles of CPU for each task)
Learning Rate (α) dynamic
Exploration Rate (ǫ) dynamic
Number of Resources blocks 20
Path loss PL = 127 + 37 log(d), d = distance between underlay transmitter and UE
V2V links 4
V2I links 4
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Fig. 9: CDF of effective service connections against the number of
users.

trast, the suggested scheme overtakes the baseline system by

89%, since QoS performances of mobile edge users able to be

successfully improved by the integrated resources with large-

scale coverage while offering more consistent communication

links compared to the traditional static connections.

VII. CONCLUSIONS

In this work, new software defined edge framework for

resource assignment in vehicular networks has been proposed.

According to the programmable control standard created by

SDN, an integrated framework is able to optimally allocate

networking and computing resources. The resource assignment

approach is formulated as an optimization problem. In the

proposed model, integrated edge computing framework, each

agent can learn how to satisfy the vehicle to vehicle communi-

cations while the total delay can be significantly reduced. Our

simulation results indicate that the our resource assignment

approach serves all vehicles in a suitable manner by sharing

the learning experiences among all agents to compute vehicles

tasks. The analysis of a case study has demonstrated the effec-

tiveness of the proposed framework against compared models.

Studies on air-ground integrated mobile edge computation

framework are proposed as the futures work, through using the

advantages of high flexible and mobility computation resource

assignment of vehicles and UAVs.
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