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Abstract: 

The peak load of a bus route is essential to service frequency determination. From the supply side, there 

exist ineffective predicted errors of peak load for the optimal number of trips. Whilst many studies were 

undertaken to model demand prediction and supply optimization separately, little evidence is provided 

about how the predicted results of peak load affect supply optimization. We propose a prediction model for 

the peak load of bus routes built upon the idea of newsvendor model, which explicitly combines demand 

prediction with supply optimization. A new cost-based indicator is devised built upon the practical 

implication of peak load on bus schedule. We further devise a scaled Shepard interpolation algorithm to 

resolve discontinuities in the probability distribution of prediction errors arising from the new indicator, 

while leveraging the potential efficacy of multi-source data by adding a novel quasi-attention mechanism 

(i.e., scaling feature space and parameter optimization). The real-world application showed that our method 

can achieve high stability and accuracy, and is more robust to predicted errors with higher capacity. Our 

method can also produce a larger number of better trip supply plans as compared to traditional methods, 

while presenting stronger explanatory power in prioritizing the relative contribution of influential factors 

to peak load prediction.  

Keywords: Public transport; Peak load forecast; Supply optimization; Interpolation; Influential factors 
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1. Introduction 

Operation of public transport features spatio-temporally uneven distributed passenger demand and 

resource shortage. Supply optimization is of great importance to public transport systems as it should realize 

simultaneously high-quality service to passengers and a cost-effective operation (Liu and Sinha, 2007; Yu 

et al., 2012; Yao et al., 2014). Accurate forecast of passenger demand is essential therefore to plan a cost-

effective public transport operation and improve the level of service via proper allocation of scarce supply. 

Meanwhile, passenger demand presents both regularity and complexity, while a variety of influential factors 

can be collected through multi-source information. This brings both opportunities and challenges for 

leveraging latent knowledge hidden in big data to accurate prediction. 

 

                                                         (a) Load profile over time of day 
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                   (b)  Side view of the load profile                                        (c) Peak load over time of day 

Fig. 1 Illustration of load profile and peak load 

The information of passenger loads is essential to crowding management in public transit. From the 

perspective of users, the provision of in-vehicle crowding information allows passengers to make better 
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informed decisions about whether to board a vehicle or not, or which vehicle to board. From the perspective 

of operators, the passenger load information can help the design of fleet allocation. The load profile of a 

period refers to the number of passengers passing through a route in a given direction (during a time period), 

as shown in Fig. 1(a). The peak load corresponds to the maximum value among all segments. Fig. 1(b) and 

(c) are two side views of Fig. 1(a) where the horizontal ordinates represent the segment between consecutive 

stops and the time of day, respectively. As we can see, while the peak load may arise in different positions 

over different time of day (Fig. 1(b)), the value of peak load is unique for each time of day (Fig. 1(c)). 

Generally, the peak load of a period determines the in-vehicle crowding level (during a time period), which 

may exert an influence on the supply optimization. Given its practical significance, this paper attempts to 

address the prediction of peak load at different time of day.  

 A common practice in bus supply optimization is to determine the departure frequencies and resultant 

number of trips during the planning horizon according to a series of factors, such as the desired in-vehicle 

occupancy, vehicle capacity, and operating costs. The main objective is to achieve the matching between 

vehicle resources and passenger travel needs. According to the well-known maximum loading point, the 

frequency should be set such that the bus load at the most heavily-used point along the route does not exceed 

the desired in-vehicle occupancy (Ceder, 2007). Therefore, the prediction of peak load is essential to the 

frequency settings, which in turn affects the required number of trips and fleet size. Unlike general demand 

forecasts in other field, in the context of peak load prediction, the predicted errors would not always change 

the supply, unless exceeding the vehicle capacity. In other words, when the predicted errors do not lead to 

a change in the number of trips, the forecast result is still feasible for bus scheduling. However, when the 

predicted value is smaller than or exceeds the vehicle capacity, insufficient or wasted fleet capacity would 

be induced, and the positive and negative errors will make a difference. The main challenge is how to 

incorporate supply optimization into the prediction framework to achieve the cost-effective forecast, taking 

into consideration the interest of different stakeholders. 

The insufficient capacity represents the degradation of service levels, while the surplus capacity 

denotes a waste of supply and imposed extra cost. The newsvendor model is a promising approach to 

optimize the supply and handle the trade-off between the service levels and costs under uncertain demand. 

In the newsvendor problem, a decision maker facing random demand for a perishable product decides how 

much to stock for a selling period, with the objective to maximize the expected profit given the retail price, 

purchase price and refund of a newspaper. Due to the uncertain demand, stocking excessive newspapers 

may result in potential loss due to unsold copies, while inadequate stocking may lead to insufficient sales 

and reduced revenue. The newsvendor models have been successfully applied in the supply chain inventory 

management, aviation area and hotel services reservation (Khouja; 1999; Hadas and Herbon, 2015; Bai et 

al., 2019). Essentially, bus scheduling optimization requires operators to make a trade-off between 
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economic viability of the system and maintaining good service for passengers. Such a cost trade-off 

between users and operators resembles the newspaper sale. In other words, the vehicle departure or supply 

determination directly leads to possible loss for either users or operators. Given the similarity between the 

newspaper sale and bus schedule, we propose a new performance indicator and develop a prediction model 

for the peak load of bus routes built upon the idea of newsvendor model, which explicitly combines demand 

prediction with supply optimization. This indicator is able to explicitly capture the effects of vehicle under-

utilization or denied boarding due to the surplus or insufficient bus trips, which facilitates the minimization 

of predicted error costs.  

The introduction of the new cost-based indicator, however, has further increased the challenges of 

developing a stable forecast model. As it turns out (Section 3 and 4), such an indicator creates a 

discontinuity in the probability distribution of prediction outputs, which in turn increases the instability of 

prediction outputs. In practice, the fluctuation of predicted error costs could lead to frequent reschedule and 

operational instability. As machine learning models are generally sensitive to the outliers, such instability 

may even worsen the prediction performance when using the traditional machine learning models. To 

address this issue, we propose a scaled Shepard interpolation algorithm to resolve discontinuities in the 

probability distribution of prediction errors. The mechanism is that the samples with higher similarity in 

influential factors are closer, and the weighted regression of historical data is used to obtain the predicted 

value based on the similarity in influential factors. Since the impact of outliers (such as the surge demand) 

will be weakened in the process of weighted regression of historical data, higher stability of prediction 

results can be achieved. Commendably, to leverage the potential efficacy of multi-source data, we enhance 

the standard Shepard interpolation algorithm by scaling the feature space and parameter optimization. The 

real-world application showed that our method can achieve outstanding prediction performance. Our 

method can also produce a larger number of better trip supply plans as compared to traditional methods, 

while presenting stronger explanatory power in prioritizing the relative contribution of influential factors 

to peak load prediction.  

 

2. Literature review and main contributions 

In this section, we review state-of-the-art solution methods, while comparing them to our solution 

methodology. We begin by reviewing supply optimization in public transport. It proceeds to review 

prediction models and point out the objectives and contributions. 

2.1 Supply optimization in public transport 

Public transport planning involves several hierarchically-related procedures including the network 

design, frequency setting, timetabling, vehicle and crew scheduling. Among them, frequency setting is the 
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prerequisite of subsequent procedures after line alignment. Generally, the methods to determine service 

frequencies can be classified into three types, namely, maximum loading point methods, load-profile 

methods (Ceder, 1984; Ceder, 2007) and optimization-based methods (Furth and Wilson, 1982; Hadas and 

Shnaiderman, 2012; Gkiotsalitis and Cats, 2018).  

There also exist other studies on bus operational strategies, such as limited-stop service (Liu et al., 2013; 

Chen et al., 2015; Wu et al., 2019), interlining service (Gkiotsalitis et al., 2019), real-time bus control (Li 

et al., 2019) and schedule synchronization (Wu et al., 2016). The main objective of deploying bus 

operational strategies is to correspond and scale to passenger demand by providing different fleet supplies 

along the route. 

2.2 Transit demand prediction models 

According to the prediction time span, passenger flow forecast can be divided into long-term and short-

term levels. The former contributes to the design of transit system infrastructure and route alignment, while 

the latter caters to operational design (Noursalehi et al., 2018). Methodologically, prediction methods can 

be grouped into two types: parametric approach and non-parametric approach. The parametric models, 

however, have certain characteristic defects. For example, time series models predict the future from a 

historic trend, such that they substantially rely on the similarity between the historical data and the predicted 

data. Given the assumption of linear relationships among time lagged variables, ARIMA cannot well reflect 

the nonlinear relationships between dependent variables and predictors. In comparison, non-parametric 

approaches can better tackle the issues of nonlinearity and high dimension. Existing studies mostly used 

machine learning models to predict the transit demand. To name a few, Liu and Chen (2017) developed a 

multi-stage deep learning architecture to forecast the passenger flow for Bus Rapid Transit stations. Liu et 

al. (2019) proposed a multilayer deep learning architecture for short-term passenger flow forecasting in 

urban rail transit. Tang et al (2019) developed a gradient boosting decision tree algorithm to estimate bus 

passengers alighting stops. Zhang et al. (2019) presented a deep learning based multitask model for 

network-wide traffic speed prediction. Wei and Chen (2012) predicted the passenger flow for Taipei rail 

transit by integrating empirical mode decomposition and back-propagation neural networks. Ma et al. 

(2014) constructed various demand relevant pattern time series, and developed an interactive multiple 

model-based hybrid method to forecast passenger demand. Jiang et al.  (2014)  combined the ensemble 

empirical mode decomposition and grey support vector machine models in the forecasting of high-speed 

rail demand. Lin et al. (2018) quantified the uncertainty in traffic volume prediction by combining particle 

swarm optimization and extreme learning machine.  

Although extensive machine learning models have been employed to forecast traffic demand, little 

evidence is provided on the relative importance of explanatory variables due to their ‘black-box’ procedures 
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and weak interpretation power. In addition, machine learning models substantially rely on the quality and 

quantity of data and are sensitive to the outliers.  

2.3 Evaluation of prediction performance 

In the aspect of the evaluation for forecast results, existing performance measures are usually based on 

the level of accuracy, such as absolute error, absolute percentage error and root square error (Yu et al., 

2019). Although these indicators are appropriate for traffic volume prediction, they may be not suitable for 

peak load prediction due to the peculiarity of practical implication on bus scheduling. One of the basic 

objectives for public transport service is to adapt the allocated capacities to the maximum number of on-

board passengers along the entire route, or peak load, over a given time period. On the supply side, the 

departure frequency and resulting number of trips in a planning horizon is usually determined by the peak 

load (Ceder, 2007), while being not directly related to the total passenger demand. Therefore, when the 

predicted errors do not lead to a change in the number of trips, the forecast result is still feasible for bus 

scheduling. However, when the predicted error is smaller than or exceeds the vehicle capacity, insufficient 

or wasted fleet capacity would be induced. In this study, we term such resultant additional costs as 

“predicted error cost”.  

2.4 Objectives and contributions 

  Previous transportation research is rich with approaches for demand prediction and supply optimization, 

while being short of fully treating both these aspects. More specifically, existing studies usually model 

demand prediction and supply optimization separately, and optimize the supply given the output of an 

independent demand model. However, this may result in suboptimal solution on the supply side in that the 

predicted errors will not always affect the optimal supply. To address this issue, in this paper we devise a 

framework which explicitly incorporates the supply optimization into the peak load prediction. Our 

objective is to predictively optimize the service frequencies and the number of trips during the planning 

horizon. This is achieved by devising a new cost-based loss function, drawing an analogy to the newsvendor 

problem. 

The main contributions of this work can be summarized as follows: (1) we develop a model to achieve 

a cost-effective prediction of peak load of bus routes, which explicitly combines demand prediction with 

supply optimization via the philosophy of the newsvendor model. Our model is scalable and can be 

extended to other frequency setting method (load-profile method) that takes into account load variations; 

(2) we propose a new indicator based on predicted error cost, which can comprehensively reflect the 

practical implication of predicted peak load on bus schedule, and the cost associated with vehicle under-

utilization or denied boarding as a result of surplus or insufficient trips; (3) We devise a novel interpolation 

method called scaled Shepard interpolation algorithm to resolve discontinuities in the probability 
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distribution of prediction errors arising from the new indicator, while leveraging the potential efficacy of 

multi-source data by scaling feature space and parameter optimization. The scaled Shepard interpolation 

algorithm processes stronger explanatory power in prioritizing the relative contribution of influential factors 

to peak load prediction compared to the standard version. 

The exposition of this paper is organized as follows. In Section 3, modeling frameworks are provided. 

In Section 4, prediction approach is devised. In Section 5, model extensions are presented. In Section 6, 

numerical examples are conducted to validate the models. Finally, the conclusions and future research are 

given in Section 7. 

 

3. Model development 

3.1 Problem description 
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Fig. 2 A modified procedure of prediction models  

Generally, the objective of traditional machine learning models is to pursue ‘loss’ as less as possible by 

optimizing the hyper parameters and model parameters. The hyper parameters are those values set prior to 

the commencement of the learning process, while the model parameters refer to the internal model variables 

that could be estimated by dataset. The loss function measures the quality of the predicted output relative 
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to the actual output, which is generally represented by a specific error function, such as mean square error, 

the mean absolute percent error, and the mean relative percent error. However, when it comes to the peak 

load prediction problem, the predicted value has its special implications since it directly determines the bus 

dispatching plan (the number of trips in a period) and the level of service.  

A common practice in public transport planning is to determine the service frequency and resultant 

number of trips in a planning horizon according to the predicted value of peak load (Ceder, 1984).  

Therefore, the deviation between the actual value and the predicted value would result in surplus or 

insufficient number of dispatching trips. To illustrate, we consider a scenario whereby the actual value of 

peak load is 550 pax and the in-vehicle occupancy is 50 pax. If the predicted peak load is 500 pax, then the 

planned number of trips is 10. In this case, 50 passengers will be unable to get aboard and have to wait for 

the subsequent bus, which results in additional waiting time cost. Meanwhile, part of these passengers might 

even leave the stop and switch to other travel mode or bus routes, which results in lost revenue. 

On the other hand, if the predicted value is 600 pax, then the planned number of trips becomes 12. In 

this case, one redundant trip with unoccupied seats will be induced. This indicates, from the operator’s 

perspective, the non-utilization of resources that imposes additional operating cost. Although the absolute 

error of the passenger flow forecast is identical (50 pax) for both cases, the resulting costs may be quite 

distinct, which is closely related to operational parameters such as vehicle capacity, value of waiting time, 

departure headway, and unit operating cost. Therefore, from the standpoint of bus scheduling, a critical 

issue of peak load forecast is how to achieve a cost-effective bus scheduling scheme instead of purely 

pursuing less absolute errors. In this sense, the loss function of the prediction model should be modified in 

the context of peak load prediction. To this end, we propose a modified procedure of prediction models, 

where the evaluation of loss function is associated with the transit supply and the interests of users and 

operators (Fig. 2). The stop condition can be associated with the maximum number of iterations, or the gap 

of predicted error cost between successive iterations. In this way, the peak load prediction with supply 

optimization can be achieved. 

The main assumptions of this work are: 

(1) The departure frequencies are determined such that bus load at the most heavily-used point along the 

route does not exceed the desired in-vehicle occupancy. This is a reasonable assumption since the 

overarching objective of bus transit service is to ensure adequate space to accommodate the maximum 

number of on-board passengers along the entire route over a given time period (Ceder, 1984), particularly 

for the urban areas with high level of service requirement. Nevertheless, our model can be extended to load-

profile method that takes into account load variations with the additional information provided by the load 

profile. 
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(2) In case of boarding failure, a proportion of denied boarding passengers may leave the stop for other 

traffic modes or common routes. The number of swapping passengers depends on the departure frequency. 

This assumption is to make sure that the networking effect of overlapping and crossing bus lines can be 

captured. 

(3) The model aims to predictively optimize the transit supply (the number of trips) during the planning 

horizon. In other words, the peak load of a specific period can be predicted at least one day ahead of time 

(rather than one hour ahead of time within day). This assumption is reasonable since frequency settings and 

fleet sizing are usually undertaken in the planning stage. 

3.2 A new cost-based loss function 

In this section, we introduce a new indicator for evaluating the peak load prediction from the standpoint 

of bus scheduling. By assumption (A1), the departure frequency in period 𝑡 is the ratio of the peak load 

demand to the desired in-vehicle occupancy, while not exceeding the minimum departure frequency, that 

is,     𝐹𝑡 = 𝑚𝑎𝑥 ( 𝑦(𝑡)𝑇𝑡∙𝑑0𝑡 , 𝐹𝑚𝑡)                                                                                                                     (1) 

where 𝑦(𝑡) is the peak load in period 𝑡. 𝑑0𝑡 is the desired in-vehicle occupancy, which equals to the vehicle 

capacity 𝑐 discounted by a load factor 𝛾𝑡, i.e., 𝑑0𝑡 = 𝛾𝑡 ∙ 𝑐, 0 < 𝛾𝑡 ≤ 1. This load factor in bus capacity is 

used to accommodate the randomness in passenger demand within a period. 𝐹𝑚𝑡 is the required minimum 

departure frequency in period 𝑡. 𝑇𝑡 is the length of period 𝑡, which is usually measured by 60 min in practice. 

However, the time interval can vary to deal with different granularity and demand variation, which would 

not affect the generalization of the framework. Generally, a shorter interval reduces the corresponding 

demand variability; however, it will complicate the subsequent timetabling task that involves setting 

departure times in the transition segments between adjacent intervals (Ceder, 2007). 

Rounding up the product of the departure frequency and the period duration yields the number of trips 

required in the given planning period. The formulation takes the following form: 

                   𝑁(𝑡) = ⌈𝐹𝑡 ∙ 𝑇𝑡⌉                                                                                                                    (2) 

where 𝑁(𝑡) is the number of trips required in period 𝑡. 
When the optimal number of trips resulting from the “actual” peak load is identical to the planned 

number of trips resulting from the “predicted” peak load, the predicted error of peak load is “ineffective” 

from the bus scheduling standpoint in that there will be no change of the number of trips. However, if the 

predicted error of peak load for a planning period leads to the change in the optimal number of trips, surplus 

or insufficient capacity will arise. There are two options in this case: When the fleet capacity is inadequate, 

a number of passengers will be left behind, which affects the level of transit service. By contrast, when the 
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fleet capacity is excessive, it will lead to empty seats on buses and a waste of supply. Taken together, there 

exist both effective and ineffective predicted errors in the prediction of peak load. However, the traditional 

indicators such as absolute error or relative error cannot capture such effect. 

 

Fig. 3 Diagram of the concept of predicted error costs 

     With this in mind, we propose a new cost-based indicator, which is defined as the predicted error cost 

as a result of excessive or inadequate trips. Fig. 3 illustrates the concept of predicted error cost. The 

horizontal axis represents the volume of hourly peak load, and the vertical axis represents the corresponding 

number of trips. The blue curve shows the number of trips as a function of the peak load given 𝑑0𝑡 = 80 

and 𝐹𝑚 = 6. As we can see, the number of trips increases in a stepwise manner with the increase of peak 

load. When the predicted value lies within the shaded area [𝑦𝑢−, 𝑦𝑢+], the number of trips required remains 

unchanged. In other words, the predicted error within this range will not change the number of trips, and 

thus we term it as “ineffective error”. 𝑦𝑢− and 𝑦𝑢+ denote the minimum and maximum peak load between 

which the number of trips maintains fixed, respectively. The formulations are given by Eqs. (3) and (4). 

Evidently, the desired in-vehicle occupancy is related to the range of [𝑦𝑢−, 𝑦𝑢+] (Eq. (5)).  𝑦𝑢− = ⌊𝑦(𝑡)𝑑0𝑡 ⌋ ∙ 𝑑0𝑡 + 1                                                                                      

(3) 𝑦𝑢+ = ⌈𝑦(𝑡)𝑑0𝑡 ⌉ ∙ 𝑑0𝑡                                                                                             

(4) 

 𝑦𝑢+ − 𝑦𝑢− = 𝑑0𝑡 − 1                                                                                                                      

(5) 
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On the other hand, when the predicted value lies outside the shaded area [𝑦𝑢−, 𝑦𝑢+], predicted error cost 

will arise. The total cost is made up of a shortage component (when demand is higher than capacity) and a 

surplus component (when demand is lower than capacity). We now model each component as follows. 

3.2.1 Shortage component 

     Let 𝑦𝑖 be the actual value of peak load (for the 𝑖-th experiment point), which can be obtained through 

field observations or certain approaches (see detailed discussion in Section 4.2). When the actual value 𝑦𝑖 
falls beyond the right boundary of the shaded area, i.e., 𝑦𝑖 > 𝑦𝑢+, the resultant error is positive. Under such 

circumstance, the passenger demand is higher than the fleet capacity, which results in boarding failure and 

additional waiting time cost. Then, the total error cost is dependent on the number of denied boarding 

passengers, the departure headway and value of waiting time. By definition, the predicted error 𝑦𝑖 − 𝑦𝑢+ is 

equal to the number of denied boarding passengers. As such, the error cost increases with the predicted 

error proportionally, while presenting differential growth rates with different values of passenger waiting 

time. 

Non-adaptive Adaptive

Denied boarding passengers

i u
y y 

 i u
r y y     1

i u
r y y   

 

Fig. 4 Illustration of passenger choice behaviour 

     To better reflect the reality, we assume that the passengers react to boarding failure via two travel 

strategies: non-adaptive and adaptive trips. In the first strategy, the denied boarding passengers will stick 

to the original bus route and wait for the subsequent bus; while in the second strategy, a proportion of denied 

boarding passengers would choose other traffic modes or common routes. The passenger choice behaviour 

is illustrated in Fig. 4. Similar to Hadas and Herbon (2015), the swapping proportion takes the following 

form: 

              𝑟 = 𝑟0 + 𝑟1 ( 𝑇𝑡𝑁(𝑡))𝛽                                                                                                                     

(6) 
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where 𝑟0 stands for the minimal proportion of passengers leaving the stop among the denied boarding 

passengers. The second component represents the additional proportion of passengers leaving the stop due 

to the waiting time (or headway), 
𝑇𝑡𝑁(𝑡) . The selection of coefficient 𝑟1(𝑟1 > 0)  should not cause the 

swapping proportion 𝑟 to exceed 1. 𝛽 is a parameter representing the power. As we can see, the swapping 

proportion becomes lower in a high-frequency route where 𝑁(𝑡) is relatively large. 

     Correspondingly, the error cost consists of two components, namely the additional waiting time for non-

adaptive denied boarding passengers 𝐶𝑚, and the lost revenue by adaptive denied boarding passengers 𝐶𝑡. 
      𝐶𝐸𝑖 = 𝐶𝑚 + 𝐶𝑡                                                                                                                              (7) 

     The additional waiting time for non-adaptive denied boarding passengers is related to the product of 

expected headway 
𝑇𝑡𝑁(𝑡) and the value of waiting time 𝐶𝑝. 

                  𝐶𝑚 = (1 − 𝑟) (𝑦𝑖 − ⌈ �̂�𝑖𝑑0𝑡⌉ ∙ 𝑑0𝑡) 𝑇𝑡𝑁(𝑡) ∙ 𝐶𝑝                                                                                           (8) 

where �̂�𝑖 is the predicted value of peak load. Note that the predicted value of peak load is rounded up since 

it is associated with the number of passengers. 

     The lost revenue can be simply calculated by the number of adaptive denied boarding passengers 

multiplied by the ticket price 𝑃. 

                   𝐶𝑡 = 𝑟 (𝑦𝑖 − ⌈ �̂�𝑖𝑑0𝑡⌉ ∙ 𝑑0𝑡) ∙ 𝑃                                                                                                         (9) 

3.2.2 Surplus component 

When the real value 𝑦𝑖 falls beyond the left boundary of the shaded area, i.e., 𝑦𝑖 < 𝑦𝑢−, the resultant 

error is negative. In this case, the passenger demand is lower than the fleet capacity. This results in the costs 

of empty seats and redundant trips. From the viewpoint of operator, the non-utilization of resources imposes 

additional monetary costs. Unlike the shortage cost, since the surplus cost is related to the cost of operating 

an extra bus, the error cost presents stepwise increase with the increment of the predicted error 𝑦𝑢− − 𝑦𝑖, 
that is, 

 𝐶𝐸𝑖 = ⌈𝑦𝑢−−𝑦𝑖𝑑0𝑡 ⌉ ∙ 𝐶𝑏                                                                                                                         (10) 

where 𝐶𝑏 represents the direct cost of operating a standard vehicle, which can be estimated as the product 

of the unit operating cost of a bus per kilometer and the route length. Note that 𝑦𝑢+  and 𝑦𝑢−  can be 

calculated by Eq. (3) and Eq. (4) given the predicted value of peak load �̂�𝑖, respectively. 

3.2.3 Consolidated formulation 

By combing Eqs. (7) and (10) and the “ineffective error” region as shown in Fig. 2, the predicted error 

cost can be formulated as the following piecewise function.  
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 𝐶𝐸𝑖 =
{  
  ⌈𝑦𝑢−−𝑦𝑖𝑑0𝑡 ⌉ ∙ 𝐶𝑏                       𝑦𝑖 < 𝑦𝑢−      (1 − 𝑟) (𝑦𝑖 − ⌈ �̂�𝑖𝑑0𝑡⌉ ∙ 𝑑0𝑡) 𝑇𝑡𝑁(𝑡) ∙ 𝐶𝑝           +𝑟 (𝑦𝑖 − ⌈ �̂�𝑖𝑑0𝑡⌉ ∙ 𝑑0𝑡) ∙ 𝑃           𝑦𝑖 > 𝑦𝑢+ 0                                     𝑦𝑢− ≤ 𝑦𝑖 ≤ 𝑦𝑢+

                                                                  (11)  

where 𝐶𝐸𝑖  represents the predicted error cost for the 𝑖 -th experiment point, which includes three 

components. The first component refers to the total surplus costs. The second component refers to the total 

shortage costs. The third component is related to the “ineffective error” as discussed in Fig. 3. 

In the following sections, we develop a newsvendor model and formalize the prediction problem where 

the transit operator wishes to estimate the peak load of a bus route, while minimizing the total predicted 

error costs composed of the shortage and surplus components. In Eq. (11), 𝐶𝑏 and 𝐶𝑝 can be understood as 

the penalties for lack of capacity and excess capacity, respectively. These two parameters are equivalent to 

the loss of potential revenue caused by insufficient and excess stock of newspapers in the newsvendor 

model. In practice, the parameters can be adjusted to trade off the interests between passengers and 

operators. 

3.3 Validation of the cost-based loss function  

As mentioned above, we propose a new cost-based loss function to judge on the performance in the 

context of peak load prediction. In order to demonstrate the necessity of using such an indicator, in this 

section we make a comparative analysis of traditional error-based loss function and the new cost-based loss 

function using the experimental data (Section 4). 
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Fig. 5 Comparison of the error-based and cost-based loss of assumed predict value 

The actual passenger flow of working days in a typical period (7:00 am-8:00 am) was extracted from 

the dataset. Fig. 5 shows the mean absolute error (MAE) and mean error cost corresponding to different 

predicted values. The blue curve represents the result of MAE, and the red curve represents the result of 

average error cost. The interval between the red vertical dotted lines stands for the interval with minimum 

error cost, while the blue vertical line corresponds to the minimum MAE. As we can see, there exist a 

sequence of scales and “step phenomenon” for average error cost, which is due to the presence of ineffective 

errors within a certain range of peak load. Distinctly from the symmetrical distribution of MAE, the error 

cost presents an asymmetrical distribution in that it increases at a decreasing rate when the predicted value 

shifts right. One can also see that the minimal value of MAE does not necessarily fall into the interval with 

minimum error cost. In this example, the ‘optimal’ predicted value based on MAE is larger than that based 

on error cost by approximately 40 pax. When the desired crowdedness level 𝑑0𝑡 does not exceed 40 pax, 

such a difference will result in extra trip cost of a standard vehicle. The accumulated error costs will be 

even more prominent when the operation period is longer (e.g., several months), which cannot be neglected 

in the bus schedule planning. This suggests that the bus schedule developed according to the minimal value 

of MAE does not lead to the minimum costs. Therefore, there is an imminent need to adopt the cost-based 

loss function to predict peak load to capture the real implication and reduce the system costs.  

 

4. Prediction approach 

The purpose of this study is to predict the hourly peak load of a bus route, whereas the introduction of 

the new cost-based indicator has further increased the challenges of developing a stable forecast model. As 

we can see from Fig. 5, the curve of MAE is quite smooth, whereas the introduction of cost-based indicator 

creates a discontinuity in the probability distribution. Such a discontinuity indicates the instability of 

prediction outputs. In practice, the fluctuation of predicted error costs could lead to frequent reschedule and 

operational instability. Such instability might even worsen the prediction performance of the traditional 

machine learning models. To address this issue, we propose a new interpolation forecast method to predict 

the peak load, combining the merits of multi-source data. 

4.1 Interpolation method 

The principle of interpolation forecast algorithm is that the target values with similar influential factors 

are closer to each other. Based on the similarity of influential factors, the predicted value is obtained by the 

historical data with weighted regression. Through simple approximated functions, the correlation between 

the passenger flow and its influential factors can be predicted by interpolation with known data points. The 

effect of the outliers (such as surge demand) will be weakened in the process of weighted regression of 
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historical data. Due to its inherent mechanism, the interpolation method could achieve high stability in the 

prediction. Since the relative importance of each influential factor may vary over time, the passenger flow 

can be effectively predicted through effective matching between historical data and the influential factors. 

In this algorithm, the passenger flow in each period of the target day is predicted independently by using 

the influential factors. In this sense, the passenger flow can be predicted at least one day ahead of time 

(rather than one hour ahead of time within day). By assumption (A3), this algorithm is particularly 

applicable to the transit supply optimization at the planning level, which is the center of our interest. 

The Shepard algorithm is a popular interpolation method based on similarity, which is usually used to 

interpolate the scattered experimental data and produce a continuous surface. One advantage of scattered 

data interpolation lies in the fact that the points are not required to be structured with regard to their relative 

locations, which contributes to the prediction stability. This method is based on a distance-weighted, least-

square approximation technique, with the weights varying by the distance of the data points. The closer to 

the forecasting point, the greater weight is assigned. Shepard method has been successfully applied in the 

design of composite structures (Shi and Xia, 2018), but has not been ever applied in the field of 

transportation.  

4.1.1 Scaled Shepard interpolation algorithm 

 In what follows, we propose a novel interpolation method, called scaled Shepard interpolation 

algorithm, to predict the peak load of bus routes. This method is a modification of the standard Shepard 

interpolation algorithm combining the merits of multi-source data. It contains three stages. The first stage 

extracts the influential factors and constructs the feature space. The second stage scales the feature space, 

and the third stage optimizes the weights and power parameter. According to the influential factor vectors 

of the predicted values, the predicted value is interpolated using the inverse distance weight of historical 

global sample points. The main computational steps are described as follows: 

1) Compute the weighted Euclidean distances between the influential factors of the target value and 

the influential factors of each historical value. 

2) The inverse distance weights between target values and historical values are set as the 𝑏-th power 

of reciprocals of the weighted Euclidean distance. 

3) All historical values are inversely weighted and accumulated to compute the predicted value of the 

target value. 

The framework of the scaled Shepard interpolation algorithm is shown in Fig. 6. 
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Fig. 6 The framework of the scaled Shepard interpolation algorithm 

4.1.2 Innovation in the standard Shepard interpolation algorithm 

      In a standard Shepard algorithm, the weights of different influential factors are identical, underlying 

that the difference between the target values is proportional to the Euclidean distance between these two 

vectors. This process can cause some issues to the prediction performance:  

 This will undermine the prediction accuracy of the interpolation algorithm because the contribution of 

each dimension to the distance may be distinct. In other words, the influential factors at different times 

are likely to have a different influence on the passenger flow. To resolve this issue, we design a ‘quasi-

attention’ mechanism that scales the feature space for multi-source data to automatically exploit 

different levels of importance of an influential factor sequence at different times. The scaling is then 

optimized to minimize the total predicted error cost. 

 Since the weights of different influential factors in the standard Shepard algorithm are identical, the 

relative influences of predictor variables on passenger flow could not be evaluated. The modifications 

applied to standard Shepard algorithm improve the interpretability of the prediction results: it can not 

only identify, but also rank, the relative importance of influential factors on peak load prediction.  

 

4.2 Detail of each stage in the scaled Shepard interpolation algorithm 

      In the previous sections, the tailored Shepard interpolation algorithm was described succinctly. Some 

stages need more elaboration, which are explained in the following sections. 

4.2.1 Construction of feature space for influential factors 

Bus passenger flow at a given time period is affected by a series of factors, such as date, working days, 

weather, and temperature. The impact of each factor may be quite distinct. In the era of internet-of-thing, it 

is possible to identify the passenger characteristics under a specific environment using multi-source big 
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data. In addition to the smart-card data, other attributes such as working days/holidays and school 

days/holidays can be readily collected from the announcements of relevant departments. For example, the 

historical weather information can be obtained through local historical weather records, and the future 

weather information can be obtained via weather forecasts. This opens up more opportunities to build the 

linkage between the passenger flow and influential factors.  

In order to utilize the interpolation algorithm, each influential factor should be quantified as an effective 

parameter. To this end, the influential factors are extracted and abstracted into multi-dimensional vectors, 

and the dimensional effect is eliminated by normalization. The sequence of sample influential factors is 

defined as {𝑥(𝑖, 𝑗, 𝑡)|𝑖 = 1,… , 𝑛; 𝑗 = 1,… ,𝑚; 𝑡 = 1,… , 𝑇}. The sequence of  historical peak load is defined 

as {𝑦(𝑖, 𝑡)|𝑖 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇}, where 𝑛 is the number of samples, 𝑚 is the number of influential 

factors, 𝑇 is the number of periods, 𝑥(𝑖, 𝑗, 𝑡) is the quantized value of 𝑗-th influential factor of 𝑖-th samples 

in period 𝑡, and 𝑦(𝑖, 𝑡) is the historical passenger flow data of 𝑖-th sample point in period 𝑡.  
Generally, the passenger demand presents seasonal variation pattern. For instance, during the summer, 

educational trips decrease while recreational trips increase (Amiripour et al., 2014). For this reason, we 

select the day of year (𝑋1) as the first influential factor. The working day attribute is a major influential 

factor on demand generation and distribution. The workday attribute, denoted by 𝑋2, is set as 0 for a 

weekday and 1 otherwise. The temperature may have an impact on the temporal distribution of passenger 

flows and the elastic demand. According to the period and actual conditions in the survey area (Guangzhou, 

China), the temperature range, which is represented by 𝑋3, is set in the range between 0 and 40℃. The 

weather may also exert an influence on the distribution of passenger flows and elastic demand. In this paper, 

the rainy day, denoted by 𝑋4, is classified into three categories according to the precipitation. Value 1 

indicates the weather with no rain and little rain, including sunny, cloudy and clear to light rain. Value 2 

indicates the weather with moderate rainfall, including overcast to light rain, thunder shower and light to 

moderate rain. Value 3 indicates the weather with high rainfall, including heavy rain and extreme weather. 

In practice, passenger flow usually exhibits a recurrent fluctuation within one week. Meanwhile, the 

passenger flows from Monday to Friday in the working days may be quite distinct, particularly for large 

cities. For example, in Guangzhou and Beijing, the ridership on Monday and Friday is the highest among 

the working day due to the surging demand, such as students and commuters. For this reason, the day of 

week, denoted by 𝑋5, is defined as a value ranging between 1 and 7. In addition, the air quality may have a 

certain impact on the ridership. The air quality index of the day is represented as 𝑋6, which indicates to 

what extent the air is polluted currently is or is anticipated to become. As the air quality index increases, a 

larger percentage of the population is likely to experience increasingly severe adverse health effects. The 

selection of various influential factors and their corresponding values are summarized in Table 1. 

https://en.wikipedia.org/wiki/Air_pollution
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Table 1 Selection and quantification of influential factors

Influential 

factors 

Time of 

day 𝑡 Day of 

year 𝑋1 

Working 

day 𝑋2 

Temperature 𝑋3 

Rainy 

day 𝑋4 

Day of 

week 𝑋5 

Air quality 

index 𝑋6 

Ranges 0~23 1~365 1/0 0~40 1~3 1~7 0~500 

To eliminate the dimensional effect of the influential factors, the influential factors are first normalized 

by the following formula: 𝑥′(𝑖, 𝑗, 𝑡) = 𝑥(𝑖,𝑗,𝑡)−𝐸(𝑗,𝑡)𝑆(𝑗,𝑡)                                                           (12) 

where  𝐸(𝑗, 𝑡) and 𝑆(𝑗, 𝑡) represent the mean and standard deviation of the sample series for the 𝑗-th 

influential factor in period 𝑡, respectively. 

4.2.2 Applying standard Shepard interpolation algorithm and its shortcomings 

As a prerequisite, the standard Shepard interpolation algorithm is first introduced in this section. In the 

present study, let �̂�(𝑛 + 1, 𝑡) denote the predicted value in period 𝑡 under the impact of the (𝑛 + 1)-th 

influential factor vector. According to the interpolation method proposed by Shepard (1968), the regression 

forecast value of the target value �̂�(𝑛 + 1, 𝑡) is the weighted sum of the inverse distances of historical 

values.  �̂�(𝑛 + 1, 𝑡) = ∑ ℎ𝑖𝑦(𝑖,𝑡)∑ ℎ𝑗𝑛𝑗=1𝑛𝑖=1                                                                        

(13) 

where 
ℎ𝑖∑ ℎ𝑗𝑛𝑗=1  is the normalized interpolation function with ℎ𝑖  being the weight of the 𝑖 -th (historical) 

experiment point. ℎ𝑖 is calculated as the inverse power of distance between an influential factor and the 

forecast target, that is, 

 ℎ𝑖 = 𝑑𝑖−𝑏                                                                                                          (14) 

where 𝑏 denotes the power parameter greater than 1, which may be interpreted as the contribution of the 

dissimilarity in influential factors to the target value. 𝑑𝑖 is the Euclidean distance between the influential 

factor 𝑥′(𝑖, 𝑗, 𝑡) and the forecast target 𝑥′(𝑛 + 1, 𝑗, 𝑡), which is expressed as: 

                                    𝑑𝑖 = √∑ (𝑥′(𝑖, 𝑗, 𝑡) − 𝑥′(𝑛 + 1, 𝑗, 𝑡))2𝑚𝑗=1                                                           (15) 

Nevertheless, the standard Shepard interpolation processes certain shortcomings in predicting passenger 

flow with multi-source data. In Eq. (15), the weights of different influential factors are identical, underlying 

that the difference between the target values is proportional to the Euclidean distance between these two 

vectors. This will undermine the prediction accuracy of the interpolation algorithm since contribution of 
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each dimension to the distance may be distinct. To address this issue, in the following we propose a 

modified Shepard interpolation algorithm to scale the feature space for multi-source data, followed by 

parameter optimization to prioritize the influential factors. 

4.2.3 Modification to standard Shepard interpolation: Scaling feature space for multi-source data 

The prediction accuracy largely depends on the selection of features and the correlation between the 

features and the predicted targets. In the context of multi-source data, it is likely that some of the side 

information is helpful while others are not helpful. As such, a critical challenge to leveraging multi-source 

data is to build the linkages between the features and the prediction target. The relationships between some 

features and predicted labels are clear, whereas some others are implicit or context-dependent. For instance, 

the commuting demand during peak hours will be more sensitive to the working day (𝑋2) than the rainy 

day (𝑋4). If the weights of 𝑋2 and 𝑋4 are identical, then the difference between the target values may be not 

proportional to the Euclidean distance between these two vectors. This affects the prediction accuracy of 

the interpolation algorithm. The complexity of passenger demand composition and distinctive behavior 

further complicates the linkages and bus passenger flow forecasting. 

As mentioned previously, the mechanism of the interpolation is that samples of higher similarity in 

influential factors are closer. A shorter distance between two vectors 𝑥 indicates the closer corresponding 

target values 𝑦 . However, the value of each dimension in 𝑥  contributes differently to the distance. 

Therefore, to improve accuracy, it is necessary to assign corresponding weights (i.e., the weighted 

Euclidean distance) to each dimension according to their contribution to the distance. For this reason, we 

introduce the weighting process for multi-source data. 

Let the weight of the 𝑗-th influential factor on the target value 𝑦(𝑡) denote as 𝑤(𝑗, 𝑡), which can be 

interpreted as the probability that the influential factor of period 𝑡  cause future passenger flow, or as the 

relative importance of the influential factor in this period for future forecasting. A larger value of 𝑤(𝑗, 𝑡) 
indicates the greater influence of the 𝑗-th influential factor in period 𝑡 on the target value. This process can 

be regarded as the scaling of the feature space, by which the dimension of the feature space is reduced or 

enlarged. The use of Euclidean distance weighting ensures that the samples of higher similarity are closer 

to each other in the new feature space. Afterwards, the weights for each dimension are then optimized using 

historical data.  

Fig. 7 illustrates the Euclidean distance weighting, where 𝑋𝑡′ denotes the matrix of influential factors; 𝑌𝑡′ denotes the matrix of the peak load; 𝑊𝑡 denotes the matrix of Euclidean distance weights, i.e., 𝑊𝑡 =[𝑤(1, 𝑡), … ,𝑤(𝑗, 𝑡), … ,𝑤(𝑚, 𝑡)]; 𝐷𝑡′ denotes the matrix of original influential factors and the corresponding 

peak load; 𝐷𝑊𝑡 is a matrix of weighted influential factors and their corresponding peak load. The weighting 

process is to multiply the influential factor vector of 𝑋𝑡′ by the corresponding values of 𝑊𝑡. As a result, 
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Euclidean distance weighting for each dimension can be achieved, such that the value of each dimension in 

the feature space is reduced or enlarged. By incorporating 𝑊𝑡, the target values 𝑦 of the data points with 

shorter Euclidean distance between 𝑥 will be closer in the feature space. In this way, the multi-dimensional 

passenger flow data sequences are mapped into the new feature space.  
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Fig. 7 Diagram of influential factors of passenger flow and Euclidean distance weighting process (scaling 

feature space) of each dimension 

As a result, the Euclidean distance Eq. (15) in the standard Shepard algorithm is modified as the 

weighted Euclidean distance, and the formulation takes the following form: 

                                    𝑑𝑖 = √∑ 𝑤(𝑗, 𝑡)(𝑥′(𝑖, 𝑗, 𝑡) − 𝑥′(𝑛 + 1, 𝑗, 𝑡))2𝑚𝑗=1                                                  (16) 

The optimization process of 𝑊𝑡 will be given in the following section. It is worth mentioning that, the 

optimized weights can be regarded as the relative influence of each influential factor on the passenger flow 

(see the analysis in Section 6.3). A greater weight indicates higher importance of the influential factor in 

predicting passenger flow. Therefore, through scaling the feature space, the modified Shepard interpolation 

algorithm processes strong explanatory power in prioritizing the relative contribution of influential factors 

to peak load prediction, whereas the standard version cannot. In essence, the scaling process resembles the 

attention mechanism in deep learning, with the objective to determine which part of information is more 

valuable to the prediction task. 

4.2.4 Modification to standard Shepard interpolation: Parameter optimization  

There are two conditions for the application of Shepard interpolation algorithm: (a) the correlation 

between the predictor and the target value should be statistically significant. (b) the historical sample dataset 

between the predictor and the target value should be sufficiently representative. To satisfy condition (a), in 

this study we develop an optimization model to explicitly evaluate the relative influence of each predictor 
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on the target value. The formulations are shown in Eqs. (17)-(19). For condition (b), the penetration of 

smart cards should be sufficiently high. Taking the studied bus route as an example, the proportion of 

passengers swiping smart cards accounts for 90%, where the information of the passenger flow can be fully 

reflected. In addition, the smart-card data could record the historical long-term passenger flow with fine 

time granularity. 

Another key issue in the Shepard interpolation algorithm is to determine the optimal power parameter 𝑏 based on the historical data. If the value of 𝑏 is too small, the weight of distant historical values will be 

too large, such that the fitting surface will be flat and the interpolation accuracy will be insufficient. On the 

other hand, if the value of 𝑏 is too large, the predicted value tends to be equal to the nearest historical value, 

such that the fitting surface will be rough and over-fitting will occur. The value of 𝑏 can be set as a real 

number.  

As mentioned previously, the shortage cost due to a failure to board, or surplus cost due to excessive 

available capacity are undesirable from the viewpoint of transit planners and should be eliminated as much 

as possible. The classic newsvendor model seeks to find out the optimal stock level to minimize the 

expected surplus and shortage costs. We model the peak load prediction problem herein by drawing an 

analogy to the newsvendor problem, where both surplus and shortage costs are formulated as functions of 

the predicted peak load. To this end, by integrating the proposed indicator based on predicted error cost 

with the modified Shepard interpolation algorithm, the following optimization model is developed to 

optimally find the model parameters (weights and power parameters) that minimize the total predicted error 

cost. 𝑚𝑖𝑛∑ 𝐶𝐸𝑖𝑛𝑖=1                                                                                                                     (17) 𝑠. 𝑡.       𝑏𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥                                                                                                       

(18) 

                  0 ≤ 𝑤(𝑖, 𝑗) ≤ 1                                                                                                                

(19) 

The objective function Eq. (17) minimizes the total predicted error cost. Eq. (18) represents the power 

parameter should fall within a domain. Eq. (19) denotes the weight constraint of each influential factor. The 

parameter 𝑏 determines the granularity of fitting surface, while 𝑤(𝑖, 𝑗) affects the predicted value and 

resulting error cost through Eqs. (13), (14) and (16). 

Therefore, the problem is formulated as a nonlinear programming model. The optimization model is 

non-convex and contains many non-integer decision variables, so it is difficult to find an exact method to 

solve this model in polynomial time, which is known as a NP-hard (non-deterministic polynomial-time 

hard) problem. In addition, the solution space will be increased exponentially as the number of influential 
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factors increases. In view of the NP-hardness of the model, a variety of random search algorithms, such as 

genetic algorithm, can be adopted to obtain the optimal parameters. Specifically, different populations are 

generated given various values of 𝑏. After carrying out the evolutionary process for each population, the 

optimal individuals of each population can be obtained. As a result, the optimal power parameter 𝑏 and the 

corresponding weight values of Euclidean distance 𝑊𝑡 are obtained from the optimal individuals. 

 

5 Model extensions  

In the above model, the frequency settings are assumed to be determined based on maximum loading 

point rule (Ceder, 1984). However, the resulting frequencies based only on maximum loading may be 

conservative when the temporal demand is highly heterogeneous. Our model can be retrofitted to take into 

account load variations as outlined in Ceder (2007), that is, load-profile method. 

      The additional information provided by the load profile can be used to overcome the problem of 

maximum loading point rule. As opposed to the maximum loading point method, the maximum load 𝑦(𝑡) 
is viewed as the ratio 𝐴𝑡 𝐿⁄  in the load-profile method. This method can handle demand changes without 

increasing the available fleet size. The load-profile method is expressed as follows: 𝐹𝑡 = 𝑚𝑎𝑥 ( 𝐴𝑡𝑇𝑡∙𝑑0𝑡∙𝐿 , 𝑦(𝑡)𝑇𝑡∙𝑐 , 𝐹𝑚𝑡)                                                                                                                  (20) 

where 𝐴𝑡 represents the area in passenger-km under the load profile in period 𝑡 and 𝐿 is the route length. 

The other notations were previously defined in Eq. (1). The area in passenger-km of each segment can be 

calculated as the load and the corresponding length. Summing up the area in passenger-km of each segment 

yields the total passenger-km 𝐴𝑡. 
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Fig. 8 Illustration of load profile and empty-space-km 
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  Let 𝜌𝑡 be the density of load profile in period 𝑡, which can be calculated from the total passenger-km 𝐴𝑡, divided by the product of the length of the route 𝐿 and its maximum load 𝑦(𝑡). The load-profile density 

can be used to evaluate the profile characteristics. A large value indicates a relatively flat profile, whereas 

a small value indicates low variability among the route stops. In practice, the load profile density can be 

estimated using the historical passenger flow data. If a straight line is drawn across the load profile where 

the number of passengers is equal to the observed average hourly max load, then the area below this line 

but above the load profile is the empty-space-km. Therefore, the area of empty-space-km is equal to (1 − 𝜌𝑡) ∙ 𝑦(𝑡) ∙ 𝐿, and the total passenger-km in period 𝑡 is dependent on the peak load, which can be 

estimated as follows: 

 𝐴𝑡 = 𝜌𝑡 ∙ 𝑦(𝑡) ∙ 𝐿                                                                                                                  (21) 

  As a result, the load-profile method can be rewritten as follows: 

                   𝐹𝑡 = 𝑚𝑎𝑥 (𝜌𝑡∙𝑦(𝑡)𝑇𝑡∙𝑑0𝑡 , 𝑦(𝑡)𝑇𝑡∙𝑐 , 𝐹𝑚𝑡)                                                                                              (22) 

  When the load-profile method is used to estimate the departure frequency, Eq. (1) can be simply 

replaced by Eq. (22). 

   

6. Case study 

6.1 Case description 

The model is tested using the datasets of a route on bus number 60 in Guangzhou, the capital of 

Guangdong Province in China. The reason of choosing this bus route is due to the heavy demand and 

optimal schedule requirement. The map of bus route 60 is shown in Fig. 9. There are 21 stops along the 

route and the total distance extends 16.3 kilometers. The terminals are the Airport Terminal Station and the 

Olympic Sports Center Station. The bus route passes through Tianhe, Yuexiu and Baiyun District of 

Guangzhou City. Along this route, urban functional areas such as residential areas, commercial areas, 

important transportation hubs, hospitals and schools are passed, and the passenger flow composition and 

influential factors are complex. The buses operating in this route are equipped with GPS devices and the 

operational data have been completely recorded. The proportion of passengers using smart cards reaches 

90%. The direction of the bus route discussed in this article is from the Airport Terminal Station to the 

Olympic Sports Center Station. 
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Fig. 9 A map of Bus Route 60 in Guangzhou 

The GPS data and smart-card data are collected from the local bus company. The other multi-source 

data (e.g., weather, air quality, etc) is acquired from the Internet, such as the government information and 

the China Meteorological Administration website. The dataset is collected on 1/10/2017-12/31/2017 (06:00 

am-22:00 pm) from the smart cards and the automotive vehicle location (AVL) system. The dataset is 

divided into two subsets: the data during 1/10/2017-11/31/2017 for training and the remainder for testing. 

In the base case, the length of the period 𝑇𝑡 is set as 60 min. The value of waiting time 𝐶𝑝 is set as 10 

RMB/h, and the direct cost of operating a standard vehicle 𝐶𝑏 is taken as 60 RMB per trip. The vehicle 

capacity 𝑐 is taken as 100 pax. The load factor 𝛾𝑡 is taken as 0.5. The ticket price 𝑃 is taken as 2 RMB. The 

minimum power parameter 𝑏𝑚𝑖𝑛 and maximum power parameter 𝑏𝑚𝑎𝑥 are set as 0.1 and 10, respectively. 

The other default settings are: 𝑟0 = 0.2; 𝑟1 = 0.1; 𝛽 = 0.1. These default parameters remain the same 

expect where they are the subject of sensitivity analysis.  

In what follows, we first present how data is processed in this paper. As the Euclidean distances and 

power parameter are the decision variables of our model, we proceed to present the optimized results and 

their practical implications, followed by the sensitivity analysis to model parameters. Subsequently, we 

compare our model with other traditional machine learning models. Finally, we highlight the key findings 

and managerial insights. 

6.2 Data processing 
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Fig. 10 Overview of the data processing 

The predicted results are the peak load in the target period of a target date. Fig. 10 shows how data is 

processed in this paper. The main steps are described as follows: 

1) Extract the information about the swiping card times using smart-card data, and obtain the vehicle 

ID and the departure time using GPS data. 

2) Infer the load profile and corresponding peak load by matching the smart-card data and GPS data. 

The following steps describe the detailed process:  

a. Extract the information on all trips within the time windows and OD information of each passenger 

on a designated bus trip. 

b. Compute the load profile along the bus route. The throughput at each stop in a direction is the 

number of passengers boarding before this stop (including this stop) minus the number of passengers 

alighting after this stop (including this stop). 

c. Obtain the dataset of peak load in each hour. The maximum value of the stop-specific load along 

the route in period 𝑡 is the peak load 𝑦(𝑖, 𝑡), where 𝑖 represents the 𝑖-th historical experiment point.  

3) Split the overall dataset. Match the statistics dataset of the peak load and the corresponding 

influential factors in a chronological order to obtain the training dataset 𝐷𝑡’. The influential factors of the 

training dataset are quantified to construct the feature space in the interpolation forecast algorithm. 

4) Select one time point and set the dataset before this time point as the training dataset, while setting 

the dataset after this time point as the testing dataset.  Note that the time point is a day of the year. 
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5) Use the training dataset to train the forecast model, and test the forecast model with the testing 

dataset. It proceeds to obtain the indicator results. Typically, for a bidirectional bus route, the peak load of 

upstream and downstream directions should be predicted separately. 

It is worth noting that, to obtain the historic peak load and the total passenger-km, the bus OD matrix 

and historical load profile should be acquired in advance. The load profile can be estimated given the bus 

OD matrix. Bus OD matrix can be directly obtained by automatic fare collection (AFC) system that can 

provide user information for both boarding and alighting locations. For the entry-only smart card data, a 

variety of methods in the literature could be used to forecast the destinations of smart-card users (Jung and 

Sohn, 2017). Since the smart-card data is entry-only in Guangzhou, in this study we estimate the bus OD 

matrix using the alighting probabilities estimation method following Liu et al (2013) and Chen et al (2015), 

that is, passengers boarding at a designated stop are assumed to evenly alight at the remaining stops. 

However, in principle, it can be substituted by any other methods or empirical rules, which would not affect 

the generalization of the framework.  

6.3 Euclidean distance weights optimization and interpretation 

Due to the diversity of passenger flow composition and travel behavior, each influential factor 

contributes differently to the passenger demand in different time periods. For this reason, we use the genetic 

algorithm to optimize the weights of the Euclidean distance to the target value of each attribute in each 

hour. The weight can be regarded as the relative influence of each influential factor on the passenger flow. 

A greater weight indicates higher importance of the influential factor in predicting passenger flow. The 

optimal solutions are shown in Fig. 11. Based on the optimized weights, the relative importance of each 

influential factor can be further identified and ranked, and the results are presented in Table 2. 

 

Fig. 11 Euclidean distance weights between attributes and the passenger flow
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As we can see, each influential factor contributes differently to passenger demand. During the typical 

peak hours (e.g., 7:00 am-9:00 am; 17:00 pm-20:00 pm), workday/holiday attribute is a significant 

contributing factor. This is because in the peak hours the majority of passengers are commuters who are 

quite sensitive to the working day factor. Moreover, the day of year factor plays an important role relative 

to other factors, which indicates that the peak-hour demand presents seasonal variation pattern in the long 

term. In addition, the weekday factor is also a great contributor, which suggests that the volume of peak 

hour commuters presents recurrent fluctuation within a week. 

Table 2 Relative contribution of influential factors to passenger follow in typical period 

 8:00 am-9:00 am 12:00 pm-13:00 pm 17:00 pm-18:00 pm 

Influential 
factors 

Rank 
Relative importance 

(%) Rank 
Relative importance 

(%) Rank 
Relative importance 

(%) 

Temperature 4 1.36 1 55.78 5 0.65 

Rainy day 6 0.23 2 14.86 3 21.24 

Air quality 5 0.68 5 6.96 6 0.16 

Day of week 3 11.02 6 2.46 4 3.04 

Workday 1 69.12 4 8.58 2 36.67 

Day of year 2 17.61 3 11.35 1 38.23 

 

During the off-peak period, many factors affect the passenger flow. This is because the demand 

composition during this period is rather complex and the travel patterns are diverse. For example, during 

6:00 am-7:00 am, the temperature and air quality considerably contribute to the passenger demand apart 

from the workday/holiday attribute. This implies that in addition to the morning commuters, the passengers 

who are sensitive to temperature and air quality will make their trips collectively in the early morning. 

Temperature contributes most to the passenger demand during some off-peak hours at noon and afternoon 

(e.g., 12:00 am-13:00 pm; 16:00 pm-17:00 pm). The reason is that the high temperature during the mid-

afternoon off-peak hours largely affects the elastic demand. The impact of influential factors on passenger 

flow during 19:00 pm-22:00 pm is rather complex. This is because the complexity of demand composition 

and travel behavior during this period are the highest throughout the day. Each influential factor fairly 

contributes to the generation of the passenger flow. 

 

6.4 Optimization of the power parameter 

As the power parameter represents the relative effect of the dissimilarity in influential factors on the 

target value, it is interesting to explore how the value of 𝑏 changes with time periods and how the value of 𝑏 impacts the error cost. To optimally find out the values, different populations are developed under various 
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values of power parameter 𝑏 for given time period. That is, each population evolves separately, and the 

solution of each population is taken as a local optimal solution. Finally, the optimal solution is selected 

from the local optimal solutions. The population size for the genetic algorithm is taken as 200. The 

crossover and mutation probability in genetic algorithm are taken as 0.6 and 0.2, respectively. The 

maximum evolutionary iteration is set as 200. Since the departure time of first bus and last bus of this route 

is 6:00 am and 22:00 pm, we only provide the results during 6:00 am-22:00 pm. 

 

Fig. 12 Cost profile and the minimum cost under different values of 𝑏 
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Fig.13 Cost convergence curves with optimal 𝑏 

Fig. 12 presents the minimum error cost under various values of 𝑏 for different time periods and the 

corresponding optimized values. One can see that the optimized value of 𝑏 differs in each time period. 

Generally, the minimum error cost first decreases then increases as the value of 𝑏 grows. This is because, 

as mentioned in Section 3.4.2, this parameter determines the granularity of fitting surface. A value too large 

or too small may cause under-fitting or over-fitting problems, which results in poor performance of the 

prediction model. There exists an optimal value in the range between 1 and 10, and the majority of the 

optimized values are smaller than 5. The error cost profiles of the off-peak hours (e.g., 10:00 am-15:00 pm; 

19:00 pm-22:00 pm) appear to fluctuate more remarkably than those of peak hours. This is due to the 

complex interactions between the power parameter and Euclidean distance weights in the optimization of 

loss function. More specifically, as discussed in Section 6.3, the working day attribute is dominant among 

the influential factors in the peak hours, whereas in the off-peak hours the influential factors vary as a result 

of complex passenger flow composition. 

Fig.13 shows the curves of cost convergence in each period under optimized value of 𝑏. The result 

shows that the evolution converges rapidly (before 100 generations) for typical periods of morning and 

evening peak hours (e.g., 7:00 am-8:00 am; 9:00 am-10:00 am; 13:00 pm-14:00 pm; 17:00 pm-18:00 pm) 

where the passenger flow is greatly affected by the working day factor. On the other hand, the evolution 

converges slowly (after 100 generations) in other time periods (e.g., 6:00 am-7:00 am; 12:00 pm-13:00 pm, 

21:00 pm-22:00 pm). This is due to the interactions between many influential factors in the presence of 

complex passenger flow composition. 
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6.5 Sensitivity analysis 

In this section, we conduct a sensitivity analysis of three key parameters (𝐶𝑏, 𝐶𝑝 and 𝑑0𝑡) in our model. 

Fig. 14 presents the sensitivity to the trip cost 𝐶𝑏 and the value of waiting time 𝐶𝑝. The parameters 𝐶𝑏 and 𝐶𝑝  can be interpreted as the penalties for insufficient and excessive capacity. Fig. 14(a) shows the 

cumulative probability of predicted error cost under different values of 𝐶𝑏. A steeper slope in the cumulative 

probability distribution indicates a narrower error distribution and thus better worst-case forecast. The first 

observation is that as the trip cost 𝐶𝑏 increases, the cumulative probability converges to one more slowly 

(and thus the predicted error cost becomes larger). This is expected since the error cost is positively related 

to the passenger waiting time costs (Eq. (8)). Moreover, there exists “step phenomenon” for the cumulative 

probability. The curve jumps vertically at the integer multiples of 𝐶𝑏 , and the jump amplitude is 

considerably reduced as the error cost increases. This is because the error cost of operating an extra bus is 𝐶𝑏, and most of the error costs of this model are concentrated in the range with low predicted error costs. 

However, the vertical jump when the multiplier of 𝐶𝑏 is greater than 1 is not significant because the model 

accuracy is sufficiently high, such that a very limited number of predicted error costs reach an integer 

multiple of 𝐶𝑏. The increase in error cost between the integer multiples of 𝐶𝑏 is mainly due to the increase 

of additional waiting time cost. 

 

(a) 𝐶𝑏                                                                                (b) 𝐶𝑝 

Fig.14 Sensitivity analysis to 𝐶𝑏 and 𝐶𝑝 

Fig. 14(b) shows the cumulative probability of error costs for different values of waiting time 𝐶𝑝. It 

can be seen that a lower value of 𝐶𝑝 leads to better performance as the curve of cumulative probability 

converges faster between consecutive jumps. This is because the error cost is proportional to the passenger 

waiting time costs (Eq. (8)). Interestingly, the jump of the cumulative probability curve still occurs at the 



 

31 

 

integer multiples of a standard trip cost 𝐶𝑏, and the jump amplitude is reduced with the increase of error 

costs. 

Next we investigate the effect of vehicle capacity on prediction performance. Generally, the trip cost 𝐶𝑏 increases with the bus size or vehicle capacity. To evaluate the independent effect of desired in-vehicle 

occupancy, we first conduct sensitivity analysis via keeping the trip cost constant and varying only the 

desired in-vehicle occupancy. Subsequently, the trip cost is assumed to vary proportionally with the bus 

size so as to analyze the trade-off between desired in-vehicle occupancy and trip cost. 

Fig. 15(a) shows the sensitivity to the in-vehicle occupancy 𝑑0𝑡 with the base trip cost. Similar to Fig. 

14(a), the curve jumps vertically at the integer multiples of 𝐶𝑏, and the jump amplitude is reduced with the 

increase of the error cost. One can see that the predicted error cost decreases as the desired in-vehicle 

occupancy increases. When the in-vehicle occupancy increases from 50 to 150 pax, the percentage of 

forecast results without the error costs increases from 57% to 83% (26% improvement), while that with the 

error cost of 𝐶𝑏 increases from 92% to 96% (4% improvement). This suggests that with higher capacity, 

the predicted error costs can be reduced, and the model is more robust to predicted errors. The reason is 

that, as indicated in Fig. 3, larger vehicle capacity means a wider range of ineffective errors and greater 

tolerance for the predicted errors. In other words, the predicted errors in the peak load are less likely to 

affect the optimal number of trips when the vehicle capacity is larger, thereby reducing the cost loss by the 

predicted errors. 

 

(a)   Independent with trip cost                                         (b) Dependent with trip cost 

Fig.15 Sensitivity analysis to the desired in-vehicle occupancy 𝑑0𝑡 
The independent effect of in-vehicle occupancy shows that the predicted error cost decreases as the 

vehicle capacity increases (given the load factor), whereas a larger vehicle capacity also indicates higher 

trip cost. As concluded from Fig. 15(a), as the trip cost 𝐶𝑏 increases, the predicted error cost becomes larger 

since the cumulative probability converges to one more slowly. Therefore, a trade-off may exist between 
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prediction quality and additional operation cost associated with the vehicle size (such as additional fuel 

consumption due to greater weight and additional parking areas). 

To further verify such a cost trade-off, let us assume the trip cost vary proportionally with the bus size, 

that is, the trip cost  𝐶𝑏 equals to 60, 70, and 80 RMB when the desired in-vehicle occupancy is 50, 100, 

and 150 pax, and the result is shown in Fig. 15(b). As we can see, the percentage of forecast results without 

the error costs increases when the desired in-vehicle occupancy increases, which is consistent with Fig. 

15(a). However, the curve jumps vertically at the integer multiples of 𝐶𝑏, which is in line with Fig. 14(a). 

This suggests that a higher capacity could also make the cumulative probability converge to one more 

slowly (and thus the predicted error cost may become larger). As a result, the increase in desired in-vehicle 

occupancy (or vehicle capacity) can either increase or decrease the predicted error cost, depending on the 

relationship between the bus size and direct trip cost. 

 

6.6 Model comparisons 

To evaluate the forecasting performance of the proposed model, a set of traditional error-based machine 

learning models are adopted for comparisons using the same dataset, i.e., Decision Tree (DT), Neural 

Network (NN), Random Forest (RF), K-Nearest Neighbors (KNN), and Linear interpolation (LI), where 

KNN and LI belong to interpolation methods. The proposed model, KNN, and LI are deterministic models 

in that the prediction output is unique, whereas the others are stochastic models where prediction output 

may differ in each simulation run. 

Table 3 Model characteristics 

Model  Prediction output Hyper parameters Model parameters 

Proposed  Deterministic - b, w  

DT Stochastic Minimum number of leaves - 

RF Stochastic 
Number of trees 

Minimum number of leaves 
- 

NN Stochastic 

Number of hidden layers 

Number of hidden layer nodes 

Number of input layer nodes 

Number of output layer nodes 

Weights 

KNN Deterministic Number of nearby points - 

LI Deterministic - - 

 

To begin with, the hyper parameters and (if any) model parameters are optimized by grid search, which 

is to manually specify the subset of parameter space and explore the optimal combination of parameters 
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(Lin et al., 2018). The specified hyper parameters and model parameters of each model are presented in 

Table 3.  

Since our model is cost-based, to conduct a comprehensive and fair comparison, the comparative 

experiment is performed in two dimensions: a) comparison between the proposed model and traditional 

error-based models; and b) comparison between cost-based models. In the second dimension, the loss 

functions of traditional error-based models are replaced by cost-based indicators in the optimization of 

hyper parameters and model parameters. Each experiment is repeated by 20 times, and the results are shown 

in Table 4, including MAE and sum of error cost. As we can see, our model outperforms other models in 

terms of the sum of error cost. Meanwhile, the MAE of our model is close to those of DT and RF, while 

lower than those of other models.  

Table 4 Comparative results of different models

  Error-based Cost-based 

Model MAE Sum of error cost (RMB) MAE Sum of error cost (RMB) 

Proposed  - - 30.01 6741.39 

DT 29.54 16891.58 29.44 16651.16 

RF 29.56 16542.81 32.91 19657.40 

NN 63.26 54981.92 79.63 82921.87 

KNN 52.71 31918.99 52.67 31882.55 

LI 108.08 129237.57 29.98 9365.75 

 

After replacing the loss function, the changes of MAE are trivial for DT and KNN, while the sum of 

error cost is reduced. However, the sum of error cost for RF and NN increase in turn. The possible reason 

is that the standard RF and NN are stochastic models which are easy to be trapped to local minima (thus 

result in the instability), while the “step phenomenon” of error cost worsens the instability of prediction 

outputs. This reinforces the message that our model presents superiority over traditional machine learning 

models for predicting peak load of bus routes. 

Fig. 16 presents the distributions of accumulated absolute errors and accumulated predicted error costs 

of each model. Note again that a steeper slope in the cumulative probability distribution is an indication of 

narrower error distribution and better worst-case forecast. The modified models in the figures represent 

those with cost-based indicators. As shown in Figs. 16(a) and (b), the error distribution of our model appears 

to be close to DT and RF, while presenting narrower error distribution as compared to KNN, LI and NN. 

With respect to error cost (Figs. 16(c) and (d)), our model has the fastest slope change rate and the narrowest 

error distribution, and the worst-case forecast of our model is considerably better than those of other models. 
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The error costs of our model are more concentrated in the range of lower costs. More specifically, about 

81% of the predicted error costs of our model are lower than 60 RMB. There are two reasons for this. First, 

our model can make a cost trade-off between the shortage component and the surplus component to reduce 

the total error cost. Second, given the desired in-vehicle occupancy 𝑑0𝑡 = 100, most of prediction errors 

are distributed in the non-effective region. In other words, predicted errors exist in most of the forecasting 

results but without additional error costs. These results further verify that our model can provide relatively 

more accurate and robust prediction than its alternatives. 

 

                                                 (a)                                                                                 (b) 

 

            (c)                                                                                   (d) 

Fig. 16 Distributions of cumulative predicted error (cost) for different models: (a) predicted errors of error-

based models; (b) predicted errors of cost-based models; (c) predicted error cost of error-based models; (d) 

predicted error cost of cost-based models 
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Fig. 17 Relative size relationship of transit supply over different time of day for the testing set 

As the predicted peak load is used to predictively optimize the transit supply (number of trips) during 

the planning horizon, the relationship between the ‘real’ supply and ‘predicted’ supply deserves some 

discussion. To this end, we compare the hourly number of trips for the testing set. According to Eq. (2), the 

values of real (the predicted) number of trips per hour are calculated using the real (the predicted) peak load 

data in the testing set. Fig. 17 presents the aggregated relative size relationship between the predicted values 

and real values over time of day for the testing set using the scaled Shepard interpolation algorithm. The 

height of the orange bar chart indicates the number of times that the predicted number of trips equals to the 

real number of trips. The height of the grey bar chart and blue bar chart indicate the number of times that 

the predicted number of trips is higher and lower than the real number of trips, respectively. As we can see, 

during the peak hours (e.g., 7:00 am-11:00 am; 16:00 pm-20:00 pm), the predicted number of trips tend to 

be higher than the real values. During the off-peak hours (e.g., 12:00 pm-16:00 pm; 20:00 pm-23:00 pm), 

the predicted number of trips is likely to be either lower than or equal to the real values. These results are 

associated with the cost trade-off between the surplus component and shortage component. This suggests 

that, during the peak hours, to achieve the minimum total cost, a larger number of departure trips are 

expected to reduce the passenger waiting time and the resulting shortage cost due to the heavy demand. On 

the other hand, the number of trips lower than the real values indicates that the surplus cost is dominated in 

the system cost. 

Given the relative size relationship between predicted supply and real supply, their discrepancy of 

quality also deserves some discussion. Fig. 18 shows the comparison between Shepard interpolation and 

traditional models in the quality of trip supply determination for the testing set. The quality is measured by 

the resultant predicted error cost. The green dashed line represents an instance where the error cost of the 

proposed model is lower than that of the traditional model. The upper end corresponds to the error cost of 

the traditional model, while the bottom corresponds to that of the traditional model. The length of the dashed 

green line represents the gap between the proposed model and traditional model. Conversely, the red solid 
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line represents an instance where the error cost of the proposed model is higher than that of the traditional 

model. The upper end corresponds to the error cost of the proposed model, while the bottom corresponds 

to that of the proposed model. The blue dot represents an instance where the error cost of the proposed 

model is equal to that of the traditional model. Counting the respective instances yields the quality 

distribution of trip supply determination shown in Table 5. The results show that the proposed model 

outperforms its counterparts in producing a larger number of better trip supply plans in that the proportion 

of better cases exceeds those of worse cases. The advantages are more obvious when compared to the KNN 

and NN, which is consistent with the gaps of predicted error costs as shown in Table 4. 

 

(a) Shepard vs DT                                                           (b) Shepard vs RF 

 
      (c) Shepard vs KNN                                                               (d) Shepard vs NN 
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(e) Shepard vs LI 

Fig. 18 Comparison between Shepard interpolation and traditional models in the quality of trip supply 

determination for the testing set 

Table 5 Quality distribution of trip supply determination for the testing set 

Counterpart Better (%) Worse (%) Same (%) 

Shepard vs DT 23.71 10.81 65.46 

Shepard vs RF 23.14 13.85 62.99 

Shepard vs NN 53.32 14.61 32.06 

Shepard vs KNN 46.47 11.38 41.93 

Shepard vs LI 11.38 5.50 83.11 

 

6.7 Frequency settings considering load variations 

As discussed in Section 5, our model can be also applicable for the load-profile method that takes into 

account load variations. In this case, the values of departure frequencies are calculated by Eq. (22). Using 

the historic load data and the length of each route segment, the average load profile density at different time 

of day can be calculated, and the results are shown in Fig. 19. Fig. 20 shows the number of trips per hour 

for different methods for the testing set, where the frequencies of max-load method are calculated by Eq. 

(1). As we can see, the frequencies of load-profile method are generally lower than those of max-load 

method. This results from the trade-off between the load variations and max load in the load-profile method. 
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Fig. 19 Load profile densities at different time of day 

 

Fig. 20 Number of trips per hour for different methods for the testing set 

 

7. Concluding remarks 

The level of service on public transit routes is directly affected by the frequency and resultant number 

of trips in the planning horizon. Unlike general demand forecasts in other field, in the context of peak load 

prediction, there exists non-effect region for predicted errors within which the optimal number of trips 

remains unchanged, while the effective errors (positive and negative errors) contribute differently to the 

costs associated with the inadequate and excessive available capacity. The main contribution of this paper 

is a new framework for predicting the peak load of bus routes that explicitly combines demand prediction 

with supply optimization. We introduce a new cost-based indicator in the context of peak load prediction, 

which is able to comprehensively capture both shortage and surplus costs due to the effect of insufficient 

or excessive trips. Another key contribution is a scaled Shepard interpolation algorithm that can resolve 

discontinuities in the probability distribution of prediction errors arising from the new indicator, while 
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leveraging the potential efficacy of multi-source data through a novel quasi-attention mechanism (scaling 

feature space and parameter optimization). The cost-based indicator is coupled with the modified Shepard 

interpolation algorithm. Our model is scalable and can be extended to other frequency setting method (load-

profile method) that takes into account load variations. 

The proposed model was tested using the data of a real-world bus route in Guangzhou, China. We 

analyzed the sensitivity of model performance under different operational settings. Interestingly, the error 

cost profile exhibits step phenomenon. The performance of the proposed method showed a clear 

improvement in the accuracy and stability of predicted error costs as compared to the state-of-the-art 

methods. Our method can also produce a larger number of better trip supply plans as compared to traditional 

methods. More importantly, unlike traditional machine learning approaches usually applying “black-box” 

procedures, our method has superior performance in model interpretation power, where the relative 

influences of influential factors on peak load prediction can be identified and ranked. 

Based on the key findings described above, the following practical insights and recommendations can 

be drawn. 

(a) Bus scheduling (re)design. Although the increase in vehicle capacity can enhance the model 

robustness, it can also either increase or decrease the predicted error cost, depending on the relationship 

between the bus size and direct trip cost. Therefore, in the design or redesign of bus scheduling, transit 

planners should make a trade-off between the prediction quality and additional operation cost associated 

with the vehicle size (such as additional fuel consumption due to greater weight and additional parking 

areas) and possibly introduce the vehicle with higher capacity. 

(b) Prediction philosophy and parameters determination. As there will be both ineffective and effective 

errors in the prediction of peak load, from the standpoint of transit authorities, it is not necessary to pursue 

only the accuracy in terms of the volume. Instead, it makes sense to pursue the minimization of predicted 

error costs, which involves a trade-off between economic viability of the system and maintaining good 

service for passengers. This can be done by defining different ratios of 𝐶𝑏 𝐶𝑝⁄  for different time periods 

according to the scheduling philosophy of bus operators. For example, during the peak hours, the additional 

waiting time cost is more detrimental to the system than the extra operation cost due to the heavy demand. 

As poor service quality indicates a drop in demand and possible loss of route operating franchise, it would 

be helpful to decrease the ratio of 𝐶𝑏 𝐶𝑝⁄  to reduce the shortage cost. On the other hand, during the off-peak 

hours, the extra operation cost may be more harmful than the additional waiting time cost. Then it is rational 

to increase the ratio of 𝐶𝑏 𝐶𝑝⁄  to reduce the surplus cost. 

It is generally expected that the emergence of “big data” can help build better prediction models. Due 

to limited resources, the selected influential factors in this article are mostly external factors, such as 
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temperature and weather. However, in practice, internal factors such as passenger attributes and external 

influences may interact with each other. In the future, we will collect and fuse more datasets to improve the 

performance of prediction model.  
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