
This is a repository copy of Simulating student mistakes to evaluate the fairness of 
automated grading.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/163399/

Version: Accepted Version

Proceedings Paper:
Clegg, B., North, S. orcid.org/0000-0002-8478-8960, McMinn, P. 
orcid.org/0000-0001-9137-7433 et al. (1 more author) (2019) Simulating student mistakes 
to evaluate the fairness of automated grading. In: 2019 IEEE/ACM 41st International 
Conference on Software Engineering: Software Engineering Education and Training 
(ICSE-SEET). 41st International Conference on Software Engineering: Software 
Engineering Education and Training (ICSE-SEET), 25-31 May 2019, Montreal, QC, 
Canada. IEEE , pp. 121-125. ISBN 9781728110011 

https://doi.org/10.1109/ICSE-SEET.2019.00021

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Simulating Student Mistakes to Evaluate the

Fairness of Automated Grading

Benjamin Clegg∗, Siobhán North†, Phil McMinn‡

Department of Computer Science

University of Sheffield

Sheffield, United Kingdom

Email: ∗bsclegg1, †s.north, ‡p.mcminn@sheffield.ac.uk

Gordon Fraser

Faculty of Computer Science and Mathematics

University of Passau

Passau, Germany

Email: gordon.fraser@uni-passau.de

Abstract—The use of autograding to assess programming
students may lead to unfairness if an autograder is incorrectly
configured. Mutation analysis offers a potential solution to this
problem. By simulating student coding mistakes, an automated
technique can evaluate the fairness and completeness of an
autograding configuration. In this paper, we introduce a set
of mutation operators to be used in such a technique, derived
from a mistake classification of real student solutions for two
introductory programming tasks.

Index Terms—automated grading; mutation analysis; pro-
gramming mistakes;

I. INTRODUCTION

Recent years have seen an unprecedented growth in the

enrollment of students in higher education Computer Science

degree programs [1]. This surge of students has placed sig-

nificant pressure on institutions and educators, particularly for

the assessment of learning outcomes. Educators often turn to

automated grading and feedback systems in order to reduce the

time and resources required to perform such assessments [2].

Educators deploying autograders must configure them for

each assessment, such as through the definition of test suites

and static analysis tools. If a grading configuration tests for

knowledge outside a task’s learning objectives, students may

be unfairly graded for a lack of knowledge that they have

not yet been provided with. Moreover, a student will get an

unfair grade if they make a minor mistake that is detected

by disproportionately many similar tests. Also, inaccurate

grading unfairly impacts students that are correct, failing to

reinforce desirable practices. Furthermore, incomplete grading

configurations prevent students’ mistakes from being identi-

fied, reinforcing negative behavior, rather than correcting it.

These problems are likely to occur in existing autograded

programming tasks, since educators may have limited or

even incorrect knowledge of mistakes that students make [3].

The complexity of configuring an autograder may exacerbate

these issues. For example, when using multiple grading tools,

educators must define weights for each [4].

We contend that mutation analysis can be employed to

inform educators of potential inaccuracy, incompleteness, and

unfairness of an autograding configuration. Mutation analysis

involves making changes to a correct program based on

a set of mutation operators, which have proven to be an

effective means of simulating real faults in software [5]–[7].

Existing mutation operators do not entirely encapsulate the

coding mistakes that students make, so new operators must be

introduced. By identifying the types of mistakes that students

make when writing software, we are able to define a set

of mutation operators that simulate them. These simulated

mistakes can be executed by a grader. Their detection reveals

which mistake types an autograder misses, and those that

may be unfairly punished. In conventional mutation analysis,

functionality is the only focus. In education, we transform

students into competent software engineers, so the style and

quality of code must be considered, and such mistakes should

also be simulated.

In this paper, we present two key contributions:

• A classification of student mistakes derived from an

analysis of 126 solutions submitted by students for two

introductory programming tasks, presented in Section II.

• 18 identified mutation operators that simulate each of

these mistake classes, presented in Section III.

These mutation operators are required to realize a technique

to evaluate autograding configurations and inform tutors of

potential improvements, which we propose in Section IV.

This technique would also weight individual components

of a grading configuration (e.g., unit tests), using a metric

that balances the impact of individual mistake classes. This

improves fairness, as different types of mistakes will not

disproportionately affect grades.

II. INITIAL INVESTIGATION

In order to derive appropriate mutation operators, we con-

ducted a qualitative analysis targeting mistakes present in

programs written by students for an introductory programming

course. We identified not only faults that impact functionality,

but also violations of style and code quality guidelines, to fully

capture the coding mistakes made by students.

A. Dataset

In this study we use real solutions written by 63 students

for two separate tasks in an introductory Java programming

module. Both assignments require the students to use a course-

specific library for handling input and output. Students were

graded on functionality, style, and code quality.



TABLE I
OBSERVED STUDENT CODE MISTAKES

Observed Mistake Class Description Frequency

Task 1 Task 2 Total

Count % Count % Count %

Literal Value Repetition Non-zero literal values repeated where constants can be defined. 55 87.3 45 71.4 100 79.4
Statement Repetition A statement is repeated unnecessarily. 44 69.8 34 54.0 78 61.9
Poor Indentation Misaligned indentation, or no indent after a brace. 20 31.7 31 49.2 51 40.5
Constants Defined as Variables Constants are defined without the use of final. 9 14.3 31 49.2 40 31.7
Overly Long Lines Any line of code exceeds 100 columns in width (c.f. [8]). 22 34.9 17 27.0 39 31.0
Incorrect Identifier Style Not as variableName, CONSTANT_NAME, ClassName. 15 23.8 20 31.7 35 27.8
Incorrect Calculation Implemented calculation yields an incorrect result. 21 33.3 13 20.6 34 27.0
Poor Identifier Names Uninformative or confusing names are used for identifiers. 5 7.9 13 20.6 18 14.3
Incorrect Values Incorrect values used as literals or in definitions. 4 6.3 7 11.1 11 8.7
Incorrect Classname Class definition and/or filename does not match specification. 3 4.8 4 6.3 7 5.6
Exceeds Range Index can exceed range of an array, list, or file. 3 4.8 4 6.3 7 5.6
Incorrect Input Validation Enforces validation that rejects valid user inputs. 3 4.8 N/A N/A 3 4.8
Misspellings in Strings String literals and definitions contain misspellings. 6 9.5 0 0.0 6 4.8
Lack of Comments Informative comments not included to explain some procedures. 3 4.8 2 3.2 5 4.0
Incomplete Implementation Some requirements of the task are not implemented. 2 3.2 3 4.8 5 4.0
Incorrect Filename Attempts to read file with incorrect name. 1 1.6 2 3.2 3 2.4
Missing Syntax Elements Syntax elements (braces, string concatenations, etc.) are missing. 2 3.2 0 0.0 2 1.6
Logic Flow Error Statements used in incorrect parts of an if-else statement. 2 3.2 0 0.0 2 1.6

Task 1 (T1) required the students to perform calculations

on user input, process the contents of a text file, and print

the results to the terminal in a column-based format. This

task assesses a student’s ability to implement simple input and

output, along with developing a simple algorithm to perform

a calculation. Task 2 (T2) had students render a 2D image

consisting of various elements. Some elements were specified

to be statically defined. Another was to be read from a file

containing unicode characters representing pixel values, and

rendered alongside a mirrored copy. Additionally, pixels were

to be randomly set in part of the image. The task evaluates a

student’s usage of datatypes, loops, arrays and library calls.

Students were required to submit executable main classes

named Assignment1.java and Assignment2.java

respectively, in order to simplify the marking process.

We also had access to the test data and model solutions

written by the course’s leader. For T1 we augmented this

with manually defined inputs for specific edge cases, alongside

randomly generated inputs within the task’s domain.

B. Methodology

In order to identify mistakes that cause failures for both

tasks, our script compiled and executed each student and

model solution with the appropriate set of test data. Some

solutions would not compile, or would encounter a runtime

exception. In these cases, we noted the cause of the error,

added a repaired variant to the solution set, and restarted the

script. Our script stored the output of every execution, and

compared it to the output of the corresponding model solution.

We recorded notable differences between these outputs which

suggested that a solution was not correct. In these cases, the

solution contains a mistake that causes a failure.

We performed a manual analysis on each solution’s source

to locate mistakes which either cause the observed issues, or

directly violate Java programming guidelines. When a new

type of mistake was located, we checked previously analyzed

solutions for it, in order to ensure that no instance of a given

mistake class was missed. For each instance of a mistake,

we recorded observations of the nature of its manifestation.

These observations were used to inform our construction of a

mutation operator to simulate the mistake.

C. Discussion

Table I shows the mistake classes that we observed in our

dataset. The clearest observation that can be made from our

classification is that there is a broad frequency range for the

identified mistake classes. Our results show that there are

considerably more code quality and style issues in submitted

student solutions than faults that directly impact functionality.

This supports the findings of Keuning et al. that quality issues

tend to go unrepaired [9], indicating that these style and quality

mistakes should be considered in autograding.

Our analysis differs from previous work on identifying stu-

dent code mistakes via static analysis and compiler results [3],

[9], since we consider each student’s program individually,

with knowledge of a correct solution’s behavior and qualities.

The dataset used in the previous work contains incomplete

programs with mistakes that students may eventually fix. Con-

versely, our dataset consists of only final student submissions,

revealing only mistakes that students have missed.

Our data shows that each mistake class tends to have a

significantly different frequency for each task. It is likely

that these frequencies are affected by both the nature of the

task itself and the experience of the students, which they

gain through feedback. The frequency of different mistakes

in a task’s solutions may inform a tutor when giving general

feedback to students, and when developing other programming

tasks to evaluate students for improvement in these areas.

Some mistake classes may require additional consideration

when using an autograder. Solutions we observed that had

“Missing Syntax Elements” (Table I) were not compilable,

which should be reported during the grading process. However,



TABLE II
PROPOSED MUTATION OPERATORS FOR EACH MISTAKE CLASS

Citations indicate existing similar or equivalent mutation operators already proposed in the literature.

Mistake Class Mutation Operator Example Mutant

Pre-Mutation (Correct) Post-Mutation (Simulated Fault)

Functional

Incorrect
Calculation

Replace arithmetic operators, or add
new operators and values [5].

n = 1 + 2; n = 1 - 2;

Incorrect
Values

Replace a literal value with another
value of the same type [5].

double pi = 3.1416; double pi = 4.7412;

Exceeds Range Modify the index when reading an
array/list [5], or change the limit of
a for loop that references an array.

int[] array = new int[11];

int n = array[10];

int[] array = new int[11];

int n = array[11];

Incorrect Input
Validation

Add an if statement that calls
System.exit() if a random vari-
able satisfies a random condition.

int x = 100; int x = 100;

if (x > 8) {
System.exit(0);

}

Misspellings in
Strings

Add, remove, replace, or transpose
characters in strings (either literals or
variables).

String s = "hello world"; String s = "hello wolrd";

Incomplete
Implementation

Remove (or comment out) an output
statement [5].

System.out.print("Correct");

System.out.println("Output");

//System.out.print("Correct");

System.out.println("Output");

Incorrect
Filename

Add, remove, replace, or transpose
characters in the argument of a file
reading method call.

FileReader f = new FileReader(

"filename.txt");

FileReader f = new FileReader(

"File.txt");

Incorrect
Classname

Add, remove, replace, or transpose
characters in a class’s declaration
and/or filename.

public class ClassName { ... } public class classname { ... }

Missing Syntax
Elements

Remove a syntax element (string
concatenations, braces, operators,
comparators, parentheses, etc.)

s = "concatenated" + n +

"string";

s = "concatenated" + n

"string";

Logic Flow
Error

Move lines out of or into if/else
blocks.

if (cond) {

n = 2;

}

if (cond) {

}

n = 2;

Quality

Literal Value
Repetition

Replace constant references with its
value as a literal.

final int WIDTH = 10;

padString(forename, WIDTH);

padString(surname, WIDTH);

padString(forename, 10);

padString(surname, 10);

Statement
Repetition

Replace a method call with its con-
tents, expand a loop, or move a state-
ment to each branch of a conditional.

for (int i = 0; i < 3; i++) {
methodCall();

}

methodCall();

methodCall();

methodCall();

Constants
Defined
as Variables

Remove the final keyword from a
constant definition.

final int CONSTANT = 8; int CONSTANT = 8;

Poor Identifier
Names

Replace an identifier’s name with an
uninformative word.

int length = 4; int value = 4;

Lack of
Comments

Remove a comment line, multi-line
comment, javadoc comment, or a
comment at the end of a line.

// Description of procedure

...

...

Style

Poor
Indentation

Add or remove a random number of
indents before a line. Replace some
tabs with spaces, or vice-versa.

if (cond) {

methodCall();

}

if (cond) {

methodCall();

}

Overly
Long Lines

Remove new-lines from a multi-line
statement, or move a line to the end
of the line preceding it.

s = "long" +

... +

"string";

s = "long" + ... + "string";

Incorrect
Identifier Style

Change an identifier’s capitalization,
and/or remove or add underscores
between words.

int columnHeight = 24; int Column_Height = 24;



Fig. 1. Proposed evaluation approach overview

tests used to grade other functionality would also fail, such as

those covering “Incorrect Calculation”, resulting in an unfair

grade if the missing syntax was the only actual mistake.

We observed that some mistakes contributed to the preva-

lence of others. For example, some cases where an array’s

index “Exceeds its Range” were caused by an “Incorrect Cal-

culation”. Another solution had “Poor Indentation” in a nested

if-else, likely causing the student to make a “Logic Flow

Error”. This case illustrates the importance of encouraging

adherence to style guidelines.

III. MUTATION OPERATORS

Table II shows the mutation operators that we defined using

our observations and mistake classes. Each operator is listed

with a description of the mutation process, and an example of

the operator’s effect on correct code. Some of these operators,

such as introducing “Incorrect Calculation” (Table II), can

be implemented using existing mutation operators [5]. This

does not apply to the majority of our operators. Some of

our operators uniquely impact functionality, such as that for

“Missing Syntax Elements”, which will cause a compiler error.

This is not present in conventional operators, since detecting

compiler errors is not necessary when evaluating a test suite,

yet it should be considered when evaluating the fairness of

autograding. Our other operators introduce poor style and code

quality, which are not present in existing mutation operators

that only focus on functionality.

IV. PROPOSED TECHNIQUE

Figure 1 shows an overview of our proposed technique to

apply these mutation operators in the evaluation of autograding

configurations. A “Mutation Tool” (Figure 1) would apply our

mutation operators to a task’s tutor defined model solution,

creating a set of “Mutants” for each simulated mistake class.

The task’s grader is executed on each of these mutants. This

grader can be modeled as a set of individual “Grading Com-

ponents”, comprising of tests and static analysis processes.

Every component that reports an error (e.g., a failing test) for

a mutant is marked as “killing” the mutant [10].

An “Evaluator” (Figure 1) will provide the tutor with a

“Report” based on the results of executing grading compo-

nents with mutants. First, the evaluator lists mutants that are

not killed by any components. This provides the tutor with

knowledge of mistake classes that are potentially not covered

by the grading configuration, allowing for such an issue to be

resolved. Mutants of mistake classes that are not required for

the task’s learning objectives can be safely ignored.

Our evaluator would also provide a “Suggested Weight” for

each grading component, so that each component appropriately

influences the grade that a student receives. Conventional

mutation analysis uses a mutation score of the percentage of

mutants that are killed [7]. However, if several components

each cover multiple mistake classes, an individual mistake

class cannot be assessed. This leads to unfairness if every

component is weighted equally or by a simple mutation score,

since a student that makes one of these mistakes would be

punished by all of these components failing. Instead, we will

define a metric that favors grading components which only

detect mutants of the same mistake class, rather than broad

components that detect many. The weight of a component

would be determined by the classes of mutants that it kills, the

number of mutants in these classes that are killed, and how

many other components kill the same mutants. This approach

improves the fairness of the grading configuration, since it

accounts for the differences between grading components.

The educator should also be able to flag some mistake

classes as out of scope for a task, indicating knowledge that

students have not yet been taught in the course. These flagged

mutants can be considered in the weighting metric to reduce

the impact on a student’s grade when making a mistake of the

same class.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have identified various student mistake

classes through the observation of real student assignment

solutions. We defined mutation operators that simulate each

of these mistake classes. We also proposed a technique that

applies mutation to improve the fairness, accuracy and com-

pleteness of autograding in beginner programming courses.

Our future work will be focused on developing this tech-

nique, including the implementation of our mutation operators

and the evaluator itself. We plan to evaluate our technique by

generating weights for each task in our dataset, and comparing

the grades produced with and without these weights against

the manually derived real grades of the dataset. We will also

add operators for other mistake classes that are identified in

existing work [3], [9], alongside any classes that we identify

in future studies.

ACKNOWLEDGMENT

Phil McMinn is supported in part by the Institute of Coding,

funded by the Office for Students (OfS), England.



REFERENCES

[1] National Academies of Sciences, Engineering, and Medicine, Assessing

and Responding to the Growth of Computer Science Undergraduate

Enrollments. The National Academies Press, 2017.
[2] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based assess-

ment of programming: A review,” J. Educ. Resour. Comput., 2005.
[3] N. C. C. Brown and A. Altadmri, “Novice Java programming mistakes:

Large-scale data vs. educator beliefs,” Trans. Comput. Educ., 2017.
[4] J. Breitner, M. Hecker, and G. Snelting, “Der grader Praktomat,”

Automatisierte Bewertung in der Programmierausbildung, 2017.
[5] R. A. DeMillo, D. S. Guindi, W. McCracken, A. J. Offutt, and K. King,

“An extended overview of the Mothra software testing environment,” in
Workshop on Software Testing, Verification, and Analysis, IEEE, 1988.

[6] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?,” in ICSE ’05, pp. 402–411, ACM, 2005.

[7] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?,” in
FSE 2014, pp. 654–665, ACM, 2014.

[8] Google, “Google Java style guide.” https://google.github.io/styleguide/
javaguide.html#s4.4-column-limit. [Online; accessed 27-Sept-2018].

[9] H. Keuning, B. Heeren, and J. Jeuring, “Code quality issues in student
programs,” in ITiCSE ’17, pp. 110–115, ACM, 2017.

[10] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
pp. 649–678, Sept 2011.


