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Exact asymptotics of component-wise extrema of
two-dimensional Brownian motion
Krzysztof Debicki!, Lanpeng Ji%? and Tomasz Rolski?

Abstract: We derive the exact asymptotics of

P {sup(Xl(t) — ,ult) > u, sup(Xg(s) - ,ugs) > u} , U — 00,

>0 5>0

where (X7 (t), X2())1,s>0 is a correlated two-dimensional Brownian motion with correlation p € [—1,1] and p1, o >
0. It appears that the play between p and p1, e leads to several types of asymptotics. Although the exponent in
the asymptotics as a function of p is continuous, one can observe different types of prefactor functions depending
on the range of p, which constitute a phase-type transition phenomena.
Key Words: Two-dimensional Brownian motion; exact asymptotics; component-wise extrema; quadratic pro-
gramming problem; generalised Pickands-Piterbarg constants.

AMS Classification: Primary 60G15; secondary 60G70

1. INTRODUCTION

Distributional properties of component-wise extrema of stochastic processes attract growing interest in recent liter-
ature. On one side, it is a natural object of interest in the extreme value theory of random fields. On the other side,
strong motivation to investigate component-wise extrema stems for example from multivariate stochastic models
applied to modern multidimensional risk theory, financial mathematics or advanced communication networks, to
name some of the applied-probability areas.

We consider a standard correlated Brownian motion (X1 (t), X2(t)):>0 with constant correlation p € [—1,1], and

let (X1(¢), X2(5))t,s>0 be its two parameter extension, where
E{X:(t)X2(s)} = pmin(t, s).
The aim of this paper is to find exact asymptotics of
(1) P(u) :=P{Q1 > u,Q2 > u}, u — 00,
where Q; = sup;>q(X;(t) — p;t) with pg; >0, j =1,2.
Due to its importance in, e.g., quantitative finance or ruin theory, the component-wise maxima

(Q1(T), Q2(T)) = ( sup (X1(t) — put), sup (Xa(s) —u28)>

te[0,T] s€[0,7

"Mathematical Institute, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland;  Email:
Krzysztof.Debicki@math.uni.wroc.pl
2School of Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom; Email: 1.ji@leeds.ac.uk

3Corresponding author
4Mathematical Institute, University of Wroctaw, pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland; Email:

Tomasz.Rolski@math.uni.wroc.pl



2

have been studied extensively; see, e.g., [4, 12, 15, 19, 23, 24]. In particular, some formulas for the joint distribution
of (Q1(T), Q2(T)) are known. Unfortunately, they are in the form of infinite-sums of integrals of some special
functions, which makes them of limited use in drawing out asymptotic properties of P(u) as u — oc.
Interestingly, in [15] it was worked out a formula for joint survival function of (Q1(&p), Q2(&,)), where &, is an
independent exponential random variable with parameter p > 0. Vector (Q1(&,), @2(&,)) as well as (Q1,Q2) have
bivariate exponential distribution (BVE) in the sense of the terminology of Kou and Zhong [15], that is: (i) it has
exponential marginals and (ii) it is absolute continuous with respect to two-dimensional Lebesgue measure. The
later property for (Q1,Q2) follows from Theorem 7.1 in [2] combined with the fact that P{Q; = 0} = 0, see also
related Lemma 4.4 in [7]. We remark that requirement (ii) implies that (Q1,Q2) does not belong to the classical
examples of Marshall-Olkin-type BVE; see [18]. Since there are no results in the literature on qualitative properties
of our BVE distribution, as a by-product of the results of this contribution, we analyze the dependence structure
of @1 and @2 in an asymptotical sense of Resnick [22]; see Remarks 2.2 (b) and Remarks 2.4 (b) for more details.
We refer also to a related work of Rogers and Shepp [23] who considered correlation structure of (Q1(7"), Q2(T))
for two Brownian motions without drift.

A need to consider the joint survival function for (Qi,Q2) appeared also in Lieshout and Mandjes [16] who
considered two parallel queues sharing the same Brownian input (which is the case of p = 1) and also a Brownian
tandem queue. We refer to [17] for further discussions on Gaussian-related queueing models and to [3, 6] for the
analysis of a related simultaneous ruin problem for the correlated Brownian motion model.

It is worth noting that in recent papers [26, 13], the component-wise maxima in discrete models defined by

(max X}, ..., max X%,
1<i<n 1<i<n
with (X},...,X%) (i = 1,2,...) independent and identically distributed Gaussian random vectors, were discussed.

The first step in understanding the asymptotics of (1) is to find its logarithmic asymptotics. This was done
recently in [8], in an insurance context, where P(u) was interpreted as the probability of component-wise ruin.

More precisely, by an application of Theorem 1 in [9]

(2) IHJZ(U) ~ _g(;O)’ U — 00,

where (with ¢t = (¢,5) " a column vector and T denoting the transpose sign)

. . _ T
(3) g(to) = inf inf (2,y) B! (2,y)
y21+p2s
L : t p(ths) : . . -
and X, is the inverse matrix of X5 = , with t A s = min(¢, s). The main contribution
p(tAs) 5

of [8] includes the detailed analysis of the two-layer minimisation problem involved in g(tg), which results in an
explicit logarithmic asymptotics of P(u); see also Proposition 3.1 below.

In order to get the exact asymptotics of P(u) as u — oo, we employ a modification of the double-sum technique,
accommodated to the analysis of multivariate extremes investigated in this contribution; see Theorems 2.1 and

2.3, which constitute the main results of this paper. It appears that the play between p and p1, o leads to several
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types of asymptotics. Although in [8] it was noticed, that the exponent in the asymptotics as a function of p, called
therein an adjustment coefficient, is continuous, one can observe different types of prefactor functions depending
on the range of p. This phase-type phenomena has no intuitive explanations.

In the rest of the paper we assume that p € (—1,1) and without loss of generality suppose that 1 < ps. Note that

for p =1,
Pu)=P {s1>118(X2(s) — fl2s) > u} =e 2t Yy >0
and, for p =0,
(4) Plu)=P {igg(Xl(t) — pit) > u} P {Sg}g(XQ(S) — p2s) > u} = e 2mtn2)u vy, 0,
To work out the case p = —1, one can use a result from [25], to show that
(5) Pu) ~ e Gratmuore oy + Tn<pmy),  uw— 00,

where I is the indicator function.

The rest of this paper is organised as follows. In Section 2, we present the exact asymptotics of P(u), given in
Theorems 2.1, 2.3. Section 3 recalls the explicit expressions for g(¢) and ¢y derived in [8]. The main lines of proofs
are displayed in Section 4 and Section 5, respectively, followed by the Appendix consisting of technical calculations.
We conclude this section by showing some notation and conventions used in this work. All vectors here are 2-
dimensional column vectors written in bold letters. For instance o = (a1, a2)". Operations with vectors are
meant component-wise, so Ax = £\ = (A1, Azs) | for any A € R,z € R2. For any set D C [0,00)2, any A > 0 and

any (a1, az) € [0,00)? denote
AD = {(\t,Xs) : (t,8) € D}, (a1,a2)+ D ={(a1 +t,aa+5s):(t,s) € D}.

Next, let us briefly mention the following standard notation for two given positive functions f(-) and h(-). We write
f(z) = h(z)(14+0(1)) or simply f(x) ~ h(z), if lim,_,, f(z)/h(z) =1 (a € RU{o0}). Further, write f(z) = o(h(z))
if limg 4 f(2)/h(x) =0, and write f(z) < h(x) if lim,_,, f(z)/h(z) < 1.

2. MAIN RESULTS

In this section we present the exact asymptotics of P(u), for which we need some additional notation. First, define

e — (At pe)? — A (pe — ) 1 A M1t
(6) pP1L= \/ €1[0,3), P2 = .
4/,&1 2 2”2

These are key points, based on which we consider different scenarios of p. Next, let

t* ps*
(7) Z* = ) b* = (1 + :U’lt*7 1 + MQS*)T7

2(1—p)
13+ p3 — 2ppafia

) P =) =t = 5 (p) = V



Moreover, denote, for any fixed T, S > 0,

(9) Aps={(ts):t€[0,T],s€[t,t+S]}U{(t,s):s€]0,T],t¢€[s,s+ 5]},
and define
Tt Xi(t) —uit >x
H(T, S) ;:/ @ b 3 1(f) =t > o dw1dzs € (0,00),
R2 (t,s)eEAT, s XQ(S) — [12§ > Ty

where the finiteness can be proved by following a standard argument in proving the finiteness of Pickands and

Piterbarg type constants; see, e.g., [20] (or Lemma 4.2 in [3]). Interestingly, a new Pickands-Piterbarg constant

H:= lim lim %’H(T, S) € (0,0)

S—o00 T—o0

appears in the scenario p; < p < po; the existence, finiteness and positiveness of this constant are proved in
Theorem 2.1 below.
We split the statement of the main results on the exact asymptotics into two scenarios: p; < po and g1 = o

respectively.

Theorem 2.1. Suppose that p1 < po. We have, as u — oo,

e~ 2(p2t+(1=2p)p1)u if —1<p<py;
P(U) ~ % €~72(H2+(172ﬁ1)mi:luzm/t* Zf - ﬁl"

% wPeT TR iy < p < o

e~ 2K2u if p2<p<l,

where
t*HT 2:1 b*

0< ——H—* " <H <o
16 Hi:l(z* b*)i

Remarks 2.2. (a). It turns out that the special scenario p = po is of different nature than the scenarios analyzed
in Theorem 2.1. Note that in this case we have by = by = 0 in Lemma A.1, which implies that around its optimizing
point (t*,8*) = (1/p2, 1/ pe) function g(t,s) defined in Section 3 takes different form than for other scenarios. This
makes its analysis go out of the approach that works for the other scenarios. In Section 4.4, following the same

lines of reasoning as given in the proof of case py < p < 1 in Theorem 2.1, we find the following bounds for the

case of p = ps

(10) e7u < Py) < emH2Uas u— oo.

N |
2

(b). It follows from Theorem 2.1 and (5) that for any —1 < p < po

_ P{Q1(00) > u,Q2(00) > u}
P{Q2(c0) > u}

According to the terminology from [22], this means that Q1(00) is asymptotically independent of Q2(00). Similarly,

P{Q1(c0) > u|Q2(c0) > u}

-0, u— .

one can see that Qa(00) is also asymptotically independent of Q1(cc) (note that the notion of asymptotically
independence is not symmetric). Furthermore, for ps < p < 1, we have that Qa(00) is asymptotically independent

of Q1(00), but Q1(c0) is asymptotically dependent of (equivalent to) Qa(00).



Next we give the result for the case where p := 1 = po. In this case, we have t* = s*=1/p and

~ 1 L Xi(t) —ut>x
H:= lim lim —/ eTHs (@1+a2)p 3 1) = n ! dxidzs.
S—00 T—00 R2 (t,s)EAT,s Xo(8) — s > o

Theorem 2.3. Suppose that 1 = pe. We have, as u — oo,

2 e~ 41=p)uu, if —1<p<0;
P(u) ~ e~ dnu if p=20;
H 11’1/26_14-7“0“7 if 0<p<l,

2¢/mu(l—p)
where (1 + p)/16 < H < cc.

Remarks 2.4. (a). Note that comparing scenario —1 < p < 0 of Theorem 2.3 with —1 < p < p1 of Theorem 2.1,
there is an additional 2 appearing in the asymptotics. The reason for this is that there are two equally important
minimizers of g(t, s), (t,s) € (0,00)% in the case of p1 = pa.

(b). For any —1 < p < 1, we have that Q1(c0) and Q2(c0) are mutually asymptotically independent.

3. ANALYSIS OF THE TWO-LAYER MINIMIZATION PROBLEM

In this section, for completeness and for reference we recall some notation and the result on the two-layer mini-

mization problem (3) derived in [8]. Recall that

R —1 T
g(ta S) T :EZIIIJlrfult (:Evy) Zts (fﬂ, y) ’ t» 5> 0.
y>1+pzs
Function g(t, s) has a natural interpretation as g~1(t, s) plays the same role as variance of one-dimensional centered

normal random variable, in the sense that according to [10]

s)u

InP{X1(t) > (14 pt)vVu, Xo(s) > (14 pos)Vu} ~ _gths) U — 00;

t
5 W
see also (15) below. Properties of g(t, s) play crucial role for the asymptotics of P(u) as u — co. In particular, as
mentioned above we know that

In P(u) ~ —%to)u,
where g(to) = inf(; 5)e(0,00)2 9(t, 5). We refer to [9] for more detailed and general discussions on the logarithmic
asymptotics of supremas of multidimensional Gaussian processes and fields. We refer also to [3, 7] for analogs of
generalized variance function in the context of extremes of vector-valued Gaussian processes.

For the exact asymptotics of P(u) as u — oo, the local behaviour of ¢(t, s) around point ¢y has to be analyzed.

For this we define for ¢, s > 0 the following functions:

(1 + :ult)2 92(8) _ (1 + /U‘QS)Q

t =
gl() t ) s

g3(t,s) = (1 + pat, 1 + pos) Bt (14 pat, 14 ps) '

Since t A s appears in the above formula, we shall consider a partition of the quadrant (0, 00)2, namely

(11) (0,002 =AULUB, A={s<t}, L={s=t}, B={s>t}.
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For convenience we denote A = {s <t} = AUL and B = {s > t} = BU L. Hereafter, all sets are defined on
(0,00)2, so (t,5) € (0,00)% will be omitted.

Note that g3(t, s) can be represented in the following two different forms:

2 2 J—
gA(t,S) — (A+pat) S*st(1:;#_1;)2(8124’,“28)4’(1*‘1’#28) t7 if (t, 5) c A

(12) gs(t,s) = B
gp(t, 5) = (a2t Lbm 0 e HLbmaet i (1, 5) € B
() | (b —p(ltps)® 4 (4 ) € A

(13) - : e
tmt)? | <<1+uzs;:2g1+mf>> , if (t,s) € B.

Denote further

(1+ p18)* + (1 + pos)* = 2p(1 + purs) (1 + pios)
(1=p?)s ’

(14) gr(s) := ga(s,s) = gp(s,s) = s> 0.

The following result gives a full analysis of the two-layer minimization problem (3), which is crucial for our derivation

of the exact asymptotics of P(u). We refer to [8] for its detailed proof.

Proposition 3.1. (i). Suppose that —1 < p < 0.
For p1 < pe we have
g(to) = ga(ta,sa) = 4(u2 + (1 — 2p) 1),

where, (ta,sa) = (ta(p),sa(p)) = (1;12p, urlZmp) € A is the unique minimizer of g(t, s), (t,s) € (0,00)%.

For py = po =: 1 we have

g(to) = ga(ta,sa) = ga(ts,sp) = 8(1 — p)u,

where (ta,s4) = (%, m) ,(tg,sp) == (m, %) € B are the only two minimizers of g(t, s), (t,s) €
(0, 00)2.

(ii). Suppose that 0 < p < p1. We have

g(to) = ga(ta,sa) = 4(u2 + (1 — 2p)p1),

where (ta,s4) is the unique minimizer of g(t, s), (t, s) € (0,00)2.

(ii). Suppose that p = p1. We have

g(to) = ga(ta,sa) = 4(u2 + (1 = 2p)1),

where (ta,sa) = (ta(p1),sa(p1)) = (t*(p1),s*(p1)) € L, is the unique minimizer of g(t, s), (t,s) € (0,00)?,
with (t*,s*) = (t*(p1),s*(p1)) defined in (8).

(iv). Suppose that p1 < p < p2. We have

2
to) = ga(t*, s*) = gr(t*) = —— (1 + po + 2/t*),
9(to) = ga( ) =gL(t") 1+p(ul p2 +2/t7)

where (t*,5*) = (t*(p), s*(p)) € L is the unique minimizer of g(t,s), (t,s) € (0,00)2.



(v). Suppose that p = pa. We have t*(p2) = s*(p2) = 1/p2, and

g(to) = ga(1/p2,1/p2) = gr.(1/p2) = g2(1/p2) = 4pa,

where the minimum of g(t,s), (t,s) € (0,00)? is attained at (1/p2,1/p2), with g3(1/pa, 1/ps) = g2(1/p2),
and 1/pg is the unique minimizer of g2(s), s € (0,00).

(vi). Suppose that ps < p < 1. We have

to) = inf = go(1/t2) = dpua,
g9(to) (t’;§1€D292(8) 92(1/p2) = 4z

where the minimum of g(t, s), (t,s) € (0,00)? is attained when g(t,s) = ga(s).

4. PROOF OF THEOREM 2.1

Note that, by a change of variables and the self-similarity of Brownian motion,

P(u) P{3; 50 (X1(ut) > (1 + prt)u, Xa(us) > (14 pas)u)}

(15) = P{39e0002 (Xi(t) > 1+ mt)Vu, Xo(s) > (1+ p2s)Vu)},

and recall the notation for the optimizer points (¢4, s4) as introduced in Proposition 3.1.

The proof of Theorem 2.1 will be presented in the order of cases (i) —1 < p < py, (ii) p1 < p < po, (iii) p = p1,
(iv) p2 < p < 1 in the following subsections.

For each of these cases (particularly for cases (i)-(iii)), we employ a modification of the double-sum technique. The
idea here is first to split the region (0, 00)? into several subregions; see sections Splitting on subregions below. Then
we can show that the main contributor to the exact asymptotics of P(u) is the maxima on a small, appropriately
chosen region which includes the optimizer point (t4,s4) or (t*,s*), since the contributions of the maxima on
other regions are negligible; see sections Upper bounds and estimates. The derivation of the asymptotics for the
contributing region follows by an application of the double-sum method, where we use that asymptotically the
probability of interest behaves as a sum of tail probabilities of maxima over sets of even smaller size, which in the

literature on extremes of Gaussian processes is referred to as the Pickands’ size.

4.1. (i) Scenario —1 < p < p1.

4.1.1. Splitting on subregions. We first split the region (0,00)? into the following two parts:
Uy :=[ta—00,ta +00] X [sa — 00,84+ 0] CA. Us:= (0, 00)? \ Uy,

where 6y > 0 is some small constant which can be identified later on. It follows from (15) that

Po(u) :=P {3 ev, Xi(t) > Vu(l + pit), Xa(s) > Vu(l + pas)}
(16) < P(u) <P{3¢ev, Xi(t) > Vu(l + pt), Xa(s) > Vu(l + pas) }
+P {3t,9)ev, X1(t) > Vu(l + pat), Xo(s) > Vu(l + pos) }

= PQ(U) + To(u)
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Furthermore, we have, for all large u,
(17) p(u) < Po(u) < p(u) + 71 (u),
where

p(u) =P {H(t,s)eAgprgbz) X1(t) > Vu(l + pat), Xa(s) > vau(l + st)} )

ri(w) =P{3, | amae Xi(t) > Vall + ), Xa(s) > Va(l + ps) |

with

A = [ea =20 4 BT [, ) 0]

Next, we further split the rectangle Ag) X A,(LZ) into smaller rectangles. To this end, we denote, for any fixed

T,5>0
A = ARNT) = [ta+JTu " ta+ G+ DTu™Y, —ND <5 < N,
A = AZNS) = [sa+1Su™ sa+ (1 +1)Su™], —NP <1< NP,

where NV = | T~ In(u)/ul, N = | S~ In(u)y/u] (we denote by |a] the smallest integer that is larger than a).
Define

Pjtu =P {3@78)6&3) <A@ Xa(t) > Vu(l + pt), Xo(s) > Vau(l + NZS)}

u

and

1)X1(t) > \/ﬂ(l + /th), 356A§2) XQ(S) > \/ﬂ(l + [LQS), ESEA§2) X2($) > \/ﬂ(l + ‘LLQS)}
“ 15w 2;u

(.
Jin

Djiylou =P {ﬂteA

pjl,jg,l;u =P {HtEA;i);qu(t) > \/E‘(]‘ + :U/lt)a HteAg{qu(t) > \/ﬂ(l + Mlt)a HseAﬁiXZ(s) > \/ﬁ(l + NQS)} :

We have from the generalized Bonferroni’s inequality (see Lemma A.2 in Appendix A)

(18) pi(w) = p(u) = pa(u) = i (uv) — Ha(u),
where
N N® NP-1 NP1
pw) = > > D p2(w)= Y > Pt
j==N{ 1=—N{ j==NP+11=—NF +1
N N

Hl(u) = Z Z Pjlylasus HQ(U) = Z Z ﬁjl,jzal;u'

i==N —NP <l <l <N 1= N —NP <1 <ja <N
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4.1.2. Upper bounds and estimates. In what follows, we shall derive upper bounds for ro(u),r1(v) in Lemma 4.1,
the exact asymptotics of p;(u), p2(u) in Lemma 4.2 and asymptotic behaviour for Iy (u), 3 (u) in Lemma 4.3. The

proofs of the lemmas are displayed in Appendix A. Recall that we assume —1 < p < py.

Lemma 4.1. For any chosen small 6y > 0, we have, for all large u,

_u-Co)® . —~ .
ro(u) <e 9, with g= inf g(t,s) > ga(ta,sa),
(t,s)€U2

ri(u) < C’1u3/2e*%g“(t“’S‘/“)J{l(l“(“))2
hold for some constants Cy,C1, K1 > 0 not depending on u.
Below we discuss the asymptotics of py(u), p2(u). Define
H(w; T) := /Rez‘““IP’ {Zeepo, ) Bi(t) — pt > @1} day.

Lemma 4.2. We have, as u — oo,

H(pr; T)H(p2 — 24105 5) 1 JEEVICEYIN
s p1(p2 — 2p1p) '

pr(u) ~ pa(u) ~
The last lemma is concerned with the asymptotic behaviour of IT; (u), IIa(u).
Lemma 4.3. It holds that

I II
lim sup limsup lim 1 (1) = lim sup lim sup lim 2(v) = 0.

S—o00 T—oo U0 eXP(—gA (tA» SA)U/2) S—o00 T—o0 U0 eXp(—gA(tA, SA)U/Q)

4.1.3. Asymptotics of P(u). By Lemmas 4.1, 4.2, 4.3 applied to (16) - (18) we obtain that

;T — 201 p; 1 9A(ta.s
P(u) ~ lim lim Hpa; TYH (2 = 213 9) P
S—o0 T—o0 TS ,ul(,ug — 2/11[))

9A(tassa)
= 67 2 ’u”

where we used that, for any u > 0
.1
(19) H(p) = lim —H(wT) = p,

see, e.g., [3]. Hence, using that ga(ta,s4) = 4(pu2 + (1 — 2p)p1) (see (i)-(ii) of Proposition 3.1) we conclude the
g [ g g I P P

proof for scenario —1 < p < p; in Theorem 2.1. |
4.2. (ii) Scenario p; < p < pa.

4.2.1. Splitting on subregions. We split the region (0, 00)? into five pieces as shown in Figure 1 (left). Namely, with

some small §y > 0 and u large, let
Do ={(t,s) : t* —In(u)/vu <t < t* +In(u)/vau, 0<s—t<In(u)?/u}U
{(t,s) : s* —In(u)/Vu < s < s* +In(u)/vVu, 0 <t—s<In(u)?/u},
Dy ={(t,s) : t* +In(u)/vVu <t <t*+6p, s*+In(u)/vVu<s<s*+0,},
Ds={(t,s): s* —In(u)/vu < s < s* +In(u)/Vu, s+In(u)?/u<t<t*+ 6},
Dy={(ts): " —In(u)/vVu <t <t +In(u)/vau, t+Inu)?/u<s<s*+6,},

Dy = [t* — oo,t* +00] X [5* 790,5* +00] \ (DO U Dy UD3 UD4),
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t* + 0o

+*

In(u)/va =

t* — 9()

Clearly, we have the following bounds

(20)

where

FIGURE 1. Partition of (0,00)%: Left for p; < p < po; right for p = p;

t
,
PASTIP S ERERPRRPRRY ~~
B, s
[ e ~
Dy
In(u) /i = g
SREEERREE RR™ d=mm o - 55
7 1Dy
7 1
AN [RRRRTRRRR B ;
// : 1
, :
4 1
’ 1
e : [ | :
N PR
s* *00 1 s* s* +90 S
In(u)?/u

D5 = (0,00)%\ [t* — 0o, t* + 0] x [s* — o, s* + o).

p(u) < P(u) < p(u) +r1(u) + ra(u) + r3(w),

p(u) =P {3 9ep, X1(t) > Vu(l + mt), Xo(s) > Vu(l + p2s)}

r1(w) = B{Jepy Xa(t) > Va(l + mt), Xa(s) > vVa(l + p2s)}

ra(u) :=P{ It s)ep,up, X1(t) > Vu(l + pat), Xo(s) > vVu(l + pas)},

7’3(’&) = P{a(t7s)€D3uD4 Xl(t) > \/ﬂ(l + ,U,lt),XQ(S) > \/ﬁ(l + /JgS)} .

Next, we consider a further partition of Dy. Recall A g given in (9). Denote, for any T, S > 0 and v > 0,

AL = A(T) = [t + jTu 't + (G + DTu™Y, N <j < N,

A(z) _

Lyu

where Nqsl) = | T~ In(u)\/u), Nf) = |S71In(u)?]. Define further

AP(S) = [1Su™ (1 +1)Su™Y], 1<I< NP,

Pju = P{a(t,s)e(t*+%,s*+%)+u—1AT,s X1(t) > Vu(l + pat), Xa(s) > Vau(l + Mzs)}7
Dite = P{HteA;}g,s_teA;;ij X1(t) > Va(l + pit), Xa(s) > vVa(l + ugs)} :
Pirw = P{Icnt sentn Xil) > Va(l+ i), Xals) > Va(l + pas) |
and
G gaa = P El(t,s)e(t*+¥,s*+¥)+quaﬁs Xi(t) > \/E(l + pit), Xo(s) > \/ﬂ(l + p2s)

El(t,s)e(t*+$,s*+%)+u_lAT75 Xl(t) > \/a(l + }th), XQ(S) > \/’(7(1 + IUQS)
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Thus, it follows from the Bonferroni’s inequality that

(21) I (u) + 11y (w) + p1(u) > p(u) > p2(u) — Ha1(u) — Haz(u),
where
N N1 N
prw)= > piw p2W= > piw M@= > Y D
j=—N j=—N{M 41 j=—NM 1<i<N®
N N N
W)= > > P Taa@i= D> > gjpw Hoaw)i= > ¢t
j=—N® 1<i<N® Ji=—ND J2>51+l ji=—N

4.2.2. Upper bounds and estimates. In what follows, we shall derive upper bounds for r;(u),i = 1,2,3 in Lemma
4.4, the exact asymptotics of py(u), p2(u) in Lemma 4.5 and asymptotic behaviour for II; (u), ITy (u), Haq (w), Mo (u)

in Lemma 4.7. The proofs of the lemmas are displayed in Appendix A.

Lemma 4.4. For any chosen small 8y > 0, we have, for all large u,

u-cp?. . .
ri(u) <e = : 9, g= inf g(t,s) > gr(t%),
(t,s)€Ds5

ra(u) < Coud/2e390(t)—Ka(In(w)?

ra(u) < C':>,u3/26_%gL(f’*)_K'&(ln(“))2
hold for some constants C1,Cs,Cs, Ko, K3 > 0 not depending on u.

Lemma 4.5. For any T,S > 0, we have, as u — o0,

H(T, S NG _ ugp(t%)
pr(u) ~ pa(u) ~ (T )2 7r(1fp)uu26 o

Below, we show, for any fixed S > 0, the sub-additivity property of H(T, S) as a function of T' > 0.
Lemma 4.6. Let S > 0 be fized, we have for any Ty, T, >0
H(Ty + Tz, S) < H(T1, S) + H(T>, S)

and further,

tu'271b, 1 1
« B 2 o im —H(T,S) = inf —H(T,S) < oo
16 Hi:l(Z; b.); T T 7>0T

The last lemma gives some asymptotic results for TI; (u), IT; (u), Hag (u), Mg (u).

Lemma 4.7. For anyT > S > 1,

-~ max(ITy (u), I (u)) < Cy|S] 267K0l87

u—oo u~ /2 exp(—gr (t*)u/2) I>1

) Hzl(u) —KqlT
< 1
ulggo w2 exp(—gr(t*)u/2) ~ G ; ’ 7

and

T T

lim =

oo (u) Vit <2H(T7S) H(2T»S))
uoe u=1/Zexp(—gr(t)u/2)  2,/x(1—p) ’
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where Cy, Ko, K1 > 0 are three constants which do not dependent on T, S, u, and C1(S) does not dependent on T, u.
4.2.3. Asymptotics of P(u). Combining (20)-(21) and the results in Lemmas 4.4, 4.5 and 4.7, yields that, for any
large 17,75, 51,52 such that S; < T;,i =1,2,

Vit H(T1, S1) _K,lS
+2Cy|S 0to1
2/r(1—p) T ol 1JZ€

1>1

> lim su P(u) > liminf P(u)
= T R exp (g (t)u/2) T NS w1 exp(—gn()u/2)

VE WIS xurs __ VE 2H(Th.S2)  H(2Th,5))
2 A & C1(52)[12] ]; om0 =) ( ) :

T T
Letting first 7o — oo and then Sy — oo, we have from the above formula, (19) and Lemma 4.6 that

lim lim L(T’ 5)
S—o00 T—00

€ (0,00).

The proof for scenario p; < p < po in Theorem 2.1 follows then by letting T3 — oo and then S; — oo, and (iv) of

Proposition 3.1. (Il

4.3. (iii) Scenario p = py. Since the idea of the proof of this case is similar to that of scenarios (i) and (ii), we
present only main steps. We split the region (0,00)? into five pieces as shown in Figure 1 (right). Namely, with

some small 6y > 0 and u large, let

Do ={(t,s) : t* —In(u)/vu <t <t*+In(u)/vVau, 0<s—t<In(u)?/u}U

{(t,s): s* —In(u)/vu < s < s* +In(u)/vVu, s <t<t*+In(u)/vu} = Dop U Dya,
53:{(t,s):s*—90§s§5*+90,s<t§t*+90}\]50,4,
Di=DiNB, Dy=DsNB, Dy=D, Ds=Ds.

Clearly, we have the following bounds

(22) p(u) < P(u) < p(u) + Fo(u) + 71 (u) + 72(u),

where

p() =P {3, Xi(t) > Vil + mt), Xa(s) > Vu(l + pis) }

Fo(w) =P {3,y X1(6) > Va(l + ut), Xa(s) > V(1 + pas) }.

Fi(u) =P {3(t75)€51U52U54U55 X1(t) > Va(l + pit), Xa(s) > vVa(l + uzs)} ,
Folu) = P {a(t,s)eﬁ?’ X1(t) > Va(l + put), Xa(s) > va(l + ,UQS)} .

Similar arguments as used in scenarios (i), (ii) give that

/

-2 —(a7:—2a ziwo+agwd)

(23) lim p(v) = (2 — 21p)° // ' T dryda,
u—o0 exp (—ga(ta,sa)u/2) 27r\/,u2 —2(p1 + p2)p + 3u1p? Jr Ja,

and

(24) lim To(u) < HVE )
u—oo u~/2exp (—ga(ta,sa)u/2) ~ 2/7(1— p)
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and the asymptotically negligibility of 7 (u),72(u). Note that in proving the bound for 73(u), in addition to (33)
as in the proof of Lemma 4.1, we also need the fact that (for ¢ > s)

p2 = 2p1p )2
P2 —2ip

a
galta+t,sa+s) > gA(tAasA)+21(1_5)<(t+ p
1

I

. <(u2 — 2411p) (2 = 2 + pa)p + 3#1/32)) )
Consequently, the claim follows by formulas (22)-(24) and the asymptotically negligibility of 71 (u),72(u). This

completes the proof of scenario p = p; in Theorem 2.1. (Il
4.4. (iv) Scenario ps < p < 1. First note that

e 2H2u = P {sup(Xg(s) — fi2s) > u} > P(u) > P{3>0 X1(t) — pat > u, Xo(t) — pot > u} =: w(u).
s>0
Furthermore, the exact asymptotics for 7(u) has been discussed in Corollary 4.3 in [14] (where we take r = 0).

Thus, we have, for p = po,

1

m(u) ~ 56_2”2", u — 00,
and for py < p < 1,
m(u) ~ e 2124y — oo.
Therefore, the claims in scenario p2 < p < 1 of Theorem 2.1 and ps = p in (a) of Remark 2.2 follow. ]

5. PROOF OF THEOREM 2.3

For pu1 = pe = p, we have that p; = 0,p2 = 1. The case p = 0 follows from (4). Thus the interesting scenarios
include (i) =1 < p < 0 and (ii) 0 < p < 1. The claim for (ii) 0 < p < 1 follows directly from (iii) in Theorem 2.1,
with ¢t* = 1/u. Next, we shall focus on the proof for (i) —1 < p < 0. The proof goes with the same arguments as in

the proof of scenario (i) in Theorem 2.1, but now there are two minimizers of the function g(t, s), (¢, s) € (0, 00)?2,

namely, (ta,s4) = (to,50) € A, (tB,s5) = (s0,t0) € B, with ty = %,so = m.

We first split the region (0,00)? into three parts. Namely, with some small > 0, let
Ui1 = [to — 6o, to + 0] X [so — B0, 50 + 6] C A,
Uiz = [s0 — 0o, 50 + o] x [to — 6o, to + 6] C B,
Uz = (0,00) \ (U1 U Us2).

As in the proof of scenario (i) of Theorem 2.1, the main contribution of the asymptotics comes from Uy; U Uss.

Note further that
P{3(t.s)enuvi) X1(t) > Vu(l + pit), Xo(s) > Vu(l + pos)}

= P{3usev, Xi(t) > Vu(l + mt), Xa(s) > Vu(l + pas) }

+P {Fgevns Xilt) > Va(l + ut), Xa(s) > Va(l + izs) )
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E|(751,s1)6U11 Xl(tl) > \/a(l +,u1t1),X2(51) > \/a(]‘ + qul)
EI(t27S2)GUlz Xl(tQ) > \/E(]- + :ultZ)aXQ(sZ) > \/’lj(l + /1'252)
=t Pyo,1(u) + Py 2(u) — Pog0(u).

—-P

By symmetric property of the model we know that Py, 1(u) = Pa, 2(u). Next, we show in Lemma 5.1 that Py, o(u)

is asymptotically negligible compared with Py, 1(u). The proof of it is displayed in Appendix A.

Lemma 5.1. For any chosen small 6y > 0, we have for all large u

_ (Wa=C0)%g4(tasa)
WuzCo) 54l4:04)
Py, o(u) < e Bt

holds for some constant Cy > 0,03 € (0,1) which do not depend on u.

The rest of the proof is the same as those in the proof of scenario (i) in Theorem 2.1, and thus omitted. This

completes the proof. O

APPENDIX A. PROOFS OF LEMMAS 4.1-5.1

In this section we give proofs of Lemmas 4.1-5.1 that are the building blocks of the proofs of Theorems 2.1 and 2.3.
We begin with the analysis of the local behaviour of function g(t,s), (¢,s) € (0,00) at its minimizer in scenarios

(i)—(iv) of Proposition 3.1, respectivelly.
Lemma A.1. Assume that uy < pe. We have
(). If =1 < p < p1, then as (t,s) — (0,0),
- aq 2 as 2
g(ta+t,sa+s)=gal(ta,sa) + 5t (14 0(1)) — azts(1 +o(1)) + 55 (1+0(1)),
where, with h(p) := ps — 2(p1 + p2)p + 3p1p? > 0,

—2p113 (12 — 241p)? 2z — 2p1p)*(1 - 2
S0, ayi= i1 (p ulp), 0y = (2 =2mp)'1=20) _

h(p)

_ 203 (p2 — 2pup)
h(p)

(ii). If p1 < p < p2, then

ajp :

— (#.1), as (t,s) = (0,0), with s <t (i.e., (t*+t,s"+s) € A),

gt +1,5" +5) = gr(t*) + by (t — s)(1 + o(1)) + %32(1 +o(1)),

where
by o (P1=200) 4 2002 = mp)s” + (Lt p)ids™
' (1= p)(1+p)2s*? ’
2 p*(p(L = p) = (2 — pap)s*)?
= 1 > 0.
“ s*° ( " (1—p?)3

— (#.2), as (t,s) = (0,0), with s >t (i.e., (t* +1t,s*+s) € B),
9t 1,57 +5) = gu(t) +bo(s — ) (1 + (1)) + TE(1 +0(1)),
where

o (p=1=2p") + 2p(p1 — pop)t* + (1 + p)udt™”
by = >0,

(1= p)(1+ p)2t+?
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2 P> (p(1 = p) — (u1 — pap)t*)?
Ccy = t*?’(lJr (1= 2P > 0.
— (#.3), as (t,s) = (0,0), with s =t (i.e., (t*+t,s"+s) € L),
b
g(t* + 1,5 +1) = gr(t*) + 5":52(1 +0(1)),

o 4
where bO = W

(iii). If p = p1 (in this case ty = s4 =t* = s*), then
— (i1i.1), as (t,s) — (0,0), with s < t,

gta+t,sa+5s)=ga(ta,sa)+ %F(l +0(1)) — agts(1 +o(1)) + %52(1 +0(1)),
— (iii.2), as (t,s) — (0,0), with s > t,
gt +t,5" +8) = gr(t*) + ba(s —t)(1 +o(1)) + %th(l +0o(1)).
— (iii.3), as (t,s) — (0,0), with s =t,
gt +t,s" +t)=gr(t*) + %0152(1 +0o(1)).

The proof of Lemma A.1 is tedious but only involves basic calculations using Taylor expansion, and thus it is
omitted.

Next we present below a generalized version of the Bonferroni’s inequality. The proof can be found in, e.g., [11].

Lemma A.2. Let (2, F,P) be a probability space and Ai,---,A, and By, -+, By, be n+ m events in F with

n,m > 2. Then

ZZP{AkﬁBl}ZP U (AkﬂBl) > P{AkﬂBl}
=1 1=1 k=1,..n k=1 =1
1=1,....m
72 Z ]P){AkﬁBllﬂBlz}fz Z P{AklﬂAkzﬂBl}.
k=11<l1 <la<m =1 1<k; <ka<n

A.1. Proof of Lemma 4.1. Let Tj > 0 be a fixed large constant (will be determined later). It is easily seen that
ro(u) < P{3uqepmpv, X1(t) > Vau(l +pt), Xo(s) > Vu(l + pas)}
TP {Fiom, Xi(t) > Vu(l + mt)} +P{3em, Xo(s) > Vu(l + pos)} .
Next we consider upper bounds for each term on the right-hand side. According to Lemma 5 of [8], for any fixed
t, s, there exists a unique index set
I(t,s) C {1,2}
such that

(25) g(tv S) = (1 + lulta 1+ /’LQS)I(t,s) (Zts)]_(];g7s),[(t7s) (1 + /’tha 1+ :LI/?S)IT(t,s)a

and

(26) (Zts)j_é,s),l(t,s) (L+pat, 1+ MZS)}r(t,s) > 01(t,5)-
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In the above, we use notation that if I C {1,2}, then for a vector a € R? we denote by a; = (a;,i € I)
a sub-block vector of @. Similarly, if further J C {1,2}, for a matrix M = (my;); jeq1,2) € R?*2 we denote by
My ; = (mij)ier jes the sub-block matrix of M determined by I and J. Furthermore, we write M;;' = (M;;)~*

for the inverse matrix of M;; whenever it exists.

Thus,
P {3t,0)e0.m02\07 X1(t) > Vu(l + pt), Xa(s) > Vu(l + p2s) }
() = P{H(t’s)e[o’T‘]P\Ul (14 pt, 1+ p28) 1(1,5) (Ets)l_é,s)vl(t,s) (Xl(t)aXQ(S))}r(t,s) > \/ﬂg(t,S)}
Z(t,s)
= IP’{H(t,s)E[o:To]Z\Ul 969 > \/a} ,
where
(28) Z(t,s) = (L4 pts L+ p28)1(t,) (Bes) .0 1ty (K1) X2(5)) 1,09
Note that
Z(t 1
(20) Var( <,s>>: |
g(t, s) g(t, s)

In order to apply the Borell-TIS inequality, we first show that

: 1Z(t, )|
lim sup
(t,5)=(t0), sy 9(t,S)

< 00, almost surely

holds for any (t®),5(*)) on the boundary {(t,s) : t > 0,5 =0} U{(t,s) : t = 0,5 > 0}.
In fact, if the above does not hold for some boundary point (t(b), 5(®)), then for any M > 0 there exist a sequence

{(tr, sx)}72, and some measurable set E such that (tg,s;) — (t®,s®), P{E} > 0 and

|Z (tk, s)| >M onE
g(tk, sk)
for all large enough k. Then we have
Z(t
(30) Var (“S’“)> > M?P{E} > 0.
g(tkv Sk)

On the other hand, by Lemma 6 of [8] we have g(t,s) = g3(t,s) for all (¢t,s) € {(t,s) : t > 0,s = 0}y U {(¢,s) :

t =0,s > 0}, and thus by (29) and (13) we have limy_, Var (j((::::))) = 0. This is a contradiction with (30).
Z(t,s)

GOk (t,s) € [0,Tp)? \ Uy is almost surely bounded. Consequently, by the Borell-TIS inequality (see,

Therefore
e.g., [1]) we have, for any fixed small constant 6y > 0

Z(t,s)

g(t,s)

P {3<t,s>e[o,ToP\U1

holds for all w such that

Vu > Cy :—IE{ sup Z(t,s)}'

(t.)el0, 1012\, 9(,8)
Moreover, since X; is the standard Brownian motion,

X (t)

im ———— =0 almost surely,
t—oo 1 + it
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()
T+

showing that the random process ,t > T has almost surely bounded sample paths on [Tp, 00). Again by the
Borell-TIS inequality
Wu=0y)? (+p;T0)?

P{3i>m, Xi(t) > Vu(l+ pit)} <e” 2 7o

holds for all \/u > C; :=E {supte[TO Oo) } Since for all large enough T} it holds that % > g, the claim

for ro(u) is established.

Below we consider 71 (u). Since (ta,s4) € A, we have from Proposition 3.1 that for any chosen small 6
g(t,s) =gal(t,s), (t,s)eU; C A,
and further (cf. (28))

Z(t,s) = (14 p1t, 1+ pas) Et_sl (Xl(t),Xg(s))T =: hy(t,8)X1(t) + ha(t, 8) X2(s), (t,s) € Uy,

with
1 t)s — 1 1 t— t
hits) = (L+ pmt)s = ps(l+ pas)) ho(t, 5) = (1 + p2s)t — ps(1 + put))
ts — p2s? ts — p2s?
Thus, similarly to (27) we conclude that
Z(t,s)
(31) rl(u) S ]P {H(t,s)EUl\AS})XAS) m > \/’lj} .

Since hi(t,s), ha(t,s),ga(t, s), (t,s) € Uy are all smooth functions and
E{(X;(t1) — Xi(t2))?} = |ti — ta|, i=1,2

one can check that, for all (¢1,s1), (t2, s2) € Uy,

2
E{(Z(t1,81> _ Z(t2,52>> }SConSt~(|ﬁ1—t2|+|51_32)'

ga(ty,s1)  ga(tz, s2)
Therefore, an application of the Piterbarg’s inequality in [5][Lemma 5.1] (see also [20][Theorem 8.1] or [21][Theorem
3]) yields that

Z(t,s)

_— > \/ﬂ} < C’3u3/2€7%§“,
gal(t,s)

(32) ri(u) <P {H(t,s)eUl\Agp W A®

where C'5 > 0 is some constant which does not depend on w and

Ju = inf ga(t,s).
U teerna®xa®

Moreover, we have from (i) of Lemma A.1 that for all (t4 +¢,54 + s) € Uy

t t a1 2
gA SA + t e ] 2 //CZ _2 1

M1
—2mp\* (2 —2
(33) + <H2 ,u1p> <M2 Hll)(l —2p) — 1) SQ)
H1 H1
holds with some small € > 0, where for all —1 < p < py (see also the proof of (b).(i) in Lemma 9 of [8] for p > 0)
-2
H2 7 2MP 1 _9p) 1> 0.

H1



18

Thus

Gu > ga(ta;sa) + 5 (1 —)min <(1 e (“2 _AL12MIP> (Mz —u?um(l 9p) - 1)) (In(u))*

Inserting the above to (32) completes the proof. (Il
A.2. Proof of Lemma 4.2. We first analyze the summand p; ;... We set

(34) bt = (Qju, bl;u)Ta aju =1+ p1(ta+ %)» biw =1+ p2(sa + %)

It follows that

u

Xi(ta+ 2L + ) > aj/u+ L2t
Pjlu = P EltE[O,T] s Vu
el Xasa+ 5+ 5) > b+

) = Xi(ta+L5) > ajuv/u+ LLt
) — XQ(SA + %) > bl;u\/’ljﬁ- %S

(35) P EIzte[O,T]

s€0.5] Xo(sa+ )+ Xo(sa+ 2+

t
u u
S
m
Since (ta4 + %, sS4+ %) € A for all large u, the covariance matrix of Z; ;.,, 1= (X1(ta + %), Xo(sa+ %))T is given
by
5 ta+iE p(sa+)
Jlu =
p (SA + %) SA+ %
Thus, the density function of Z; ;. is given by

1

() E———
@7 50

1 _
exp (_QwT(EjJ;u) 1w> , w = (wy,ws) .
By conditioning on the value of Z,,, we rewrite (35) as

Xi(ta+E+ L) — Xi(ta+ L) > ajv/u+ L2t —wy
Djlu = /2 b5, 4. (W)P S eepo,m) ! v
R

Zju=w p dw,
s€0,5] Xo(sa+Z +2)— Xo(sa+ ) > by y/u+ %S — wa

Using change of variables w = \/ubj ., — x/+/u we further obtain

Pjlsu = u! /2 ¢Ej,l;u(\/abj7l§u - m/\/a)PjJ;u(m) dz,
R

where
Xi(ta+ I+ 5 — X (ta+L5) > £y 4 2L -
Pjiu(@) =P 3tE[OaT] 1S IS Ve Ve Zjiu = \/’Ttbj;l;u - ﬁ
s€0.5] Xo(sa+ 7 +5) = Xa(sa+ ) > JRs+ &

Now, we analyse P; ., (). Due to the fact that (t4,s4) € A, we have for all t € [0,T7], s € [0, S], and large enough

u

S s

gr t T 1S
ta+—+—2ta+— >54+ > 854+ —.
u u u u

R + —
U u
Thus, by the properties of Brownian motion

Piiu(x) = P{Jepr X1(t) — pat > z1}

S s 1S T x
x P {356[075] XQ(SA + ; + a) — XQ(SA + ;) > %S + 7217, Zj,l;u = \/abj,l;u — \/E} y
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Next we have

b5, (Vubj 1 — x//u) = (27r)21|231u| exp (_;(\/abj,l;u —x/Vu) " (Z)00) " (Vubj i — w/ﬁ)) ,

where the exponent can be rewritten as
(Vubj .y — m/\/a)T(Ejyl;u)il(\/abj,l;u —z/Vu)

1 _
= u(ijlm) E] llubJ Liu 2:1: E] llub] Liu + wTEj,ll;uw

= -]T LS Ty —1 1 To—
_ugA(tA—F?,SA—F u) 2x Ejlubhlu_" —x Ejlu

Define

_ 1 _
fitu(x) :=exp (m o ubj7l,u — Ma:TEle;ua:) ., xeR%

Thus, it follows that

. N(l) N(2) 1 T lS
p1( Z Z exp( ugA(L‘A—F , 84+ — >/ Fitu(®) Py () de.
— N N \/m

Further, we obtain from (i) of Lemma A.1 that, for all large enough wu,

(tA+£ sa+ lS) NgA(tA’SAH% <a1 (j;F)Q_Q “ ( u ) (lj) I <l5)2>

holds uniformly for —Nl(bl) <j< ngl), —Nf) <Il< N152)-

Consequently, by Lemma A.3 below we obtain

lim p1(u) L Hps T)H(p2 — 2ump;S) / Rt S
u—00 eXp (—gA(tA,sA)u/Q) 27r,/|20| TS R2 ’
which gives the result for p;(u). The claim for ps(u) follows with the same arguments. (]

Lemma A.3. For anyT,S >0
ulLHSO/Q Fiis(®) Py (@) dao = H(py; T)H (2 — 200105 S)
holds uniformly for —Nél) <5< Nl(Ll)7 —N,Sz) << N752).

We omit the tedious proof of Lemma A.3 since its idea is standard, i.e., it is based on finding a uniform integrable

bound for the integrand and then using the dominated convergence theorem.

A.3. Proof of Lemma 4.3. Let us begin with IT; (u). It follows that

N
My(u) = Z Z Pyl lasu
j==N —NP <h <l <N
N NG N N N
= > D bt Y. D D Pidnis = Min(u) + s (uw).
j==N 1=—N{ j==N =N l2=h+2

In order to deal with II1;(u) we note that

Dj L+ 1u = Pjliu T Pji+lu — Pilus
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where
ﬁj,l;u = IED {3(t7S)EA‘J(';11)LX(Al(izUAl(i)l;u) Xl(t) > \/ﬂ(l + Mlt)7X2(S) > \/ﬁ(]‘ + /’L2S)} .

Then we have

N N

Hll Z Z p]lu+pjl+1u pjlu)

j=—NM 1=—N

Using the same arguments as in the proof of Lemma 4.2 we obtain

fig (W) 1 2H (pa; T)H(p2 — 2p1p;S) — H(pa; T)H(pa — 2p1p; 25)
u—rco e=94(ta54)u/2 1 (g — 2pu1p) TS TS ’
which gives that
II
lim sup lim sup lim 1 () =0.

S—oo T—oo W e—9ga(ta,sa)u/2

Next we consider IT;2(u) which is more involved. We have (recall (34) for aj,y, b.1,)

Xu(ta+ L5+ L) > aju/u+ Lit
Pittsw = F te[%,T] Xa(sa+ 52+ 31) > by u/u+ s
s1€[0,5] 1S s ™
$2€[0,9] X ( + u + u) > blz,u\["‘ 82
Xi(ta+ 35+ 1) > aju/ut it
(36) S S - . 1(ta | )S JuV/u o
teo, s
51€[0,5] §(X2(5A+1T+ 1)+X2(5A+ 2o 4 8 )) >bl1,l2, (51+52)
526[075]
with
ly S la —11)S
bl1,l2;u:1+,u2 <5A+ (21))
U 2u
For notational simplicity, we shall denote
o T IS (- 1)S —  _  (b-1)S
LA SO U S C Rl DS S C Rl Vo)
u u 2u du

Again by conditioning on the event

Eji po(®1,12) = {Xl(tfi) = aju\V/u — %, % <X2(§Z) + Xo(sa + ZZUS)) = by tou VU — 3%} ;
we have
Pty e =u"! /R2 D551, g (VUG 1 1y — T /U F (5,11, 125 u, x) dee,
where

-
i losu = s bitn o = (Qgsus biy o)
and

F(j,l,losu, ) =P {3 X1(t) —pat > a1} P e?o S]Yj,ll,lz;u(81,82) > 22 [ Ejy (T, 22) 0
S1 s

SQG[O,S]



where
u s _ 19SS s 15S
Vintma(s152) = %2 (X203 4+ 22) = Xa(50) + Xalsa + 22 +22) = Xg(sa + 22)) = #2051 4 50)
2 u u u u 2
Similarly as in the proof of Lemma 4.2, we obtain
Vb Vau) = ! L o, Tyt b ;
¢2j,l1,12:u( UG,y losu — :l:/ u) = (271_)2 |Zj,l1,l2;u exp _§u ( J,ll,lz;u) Gl1,l2u s 25u ijll,lz;u(w)a

where

1
— Ty-1 ) L Ty
fititosu (@) 1= exp (93 Ej,zl,lz;ubj,ll,b;u 2uf‘3 Ej,ll,lg;ux :
Next, some elementary calculations give that

taga(ta,s2) — a2, (I, —1)S
4(tasa — p?52°) u

Two—1 ]T llS (ZQ - ll)S
(bj 11, 12:u) X i Didadasu = ga(ta+ %A + o + ou )

Further, note that

hS , (b—1h)S

l15 agA(t, S) (lg —ll)S
— — )+ e 7
U 2u

_ iT
) - gA(tA + Za SA+ U ) T |(57§;+9l1,12;u (12;’111)5) 2

T
ga(ta+ oAt

holds for some 0y, 1,., € (0,1) and

dga(t, s)

A _ — 0 U — 00
ot |(tA7SA+911,12:u%) ’
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holds uniformly for j,11,ls (hereafter when we write j,11,lo we mean le(Ll) <j< Nq(tl), qu(LZ) <li,lp < Nl(LQ))).

Consequently

LS

1 _ 1 ¥ _ _
(37) exp <2u (bj’ll’lz;u)—rzj,lll,l2;ubjyllyl2;u) ~ €xXp (2u gA(tA + %7 sA+ U)) € Qo(l2=0)$§

holds uniformly for j,11,l3 as u — oo, where (by (b).(i) of Lemma 9 of [8] or Lemma A.1.(i) with a; > 0)

tagata,sa) — (1+ pita)?

= > 0.
Qo 8(tasa — p*s?)
Next, we consider the uniform, in 7,1y, [, limit of the following:
P 3 Yj,lhlz;u(slﬁ 52) > T2 EjJle;u(xl’xQ) ;U= 00
516[0,5]
SQG[O,S]

For the conditional mean we can derive that
K2
E Y tau(s1, s2)| Bty o (@1, 22) ) = = (s1+ 52)

p(s1+82) s1 _
+ (2\/5’ 4\/5) S0t (Bid tow — @/ V),

which further gives that
2paj;u8A — pa;juSA — 2P2bjyl1,lz;u§ + ijllyl%uas
45— p?50)
PajiuSA = p2bjty oS A G 2054(s1 +52) w1 | 2p*Sa(s1+ s2) —las1 w2
2(tasa — p?54°) 4(tasa — p?5a°) u A(tasa —p*sa®) u

E{Y 1 tasu (51, 82 By s (1, 2)} = =552 (1 + 32) + ;

1
-3 (H2 = 2p1p) 82, u — o0
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For the conditional variance of the increments we have

_ [s1 = s+ s2 — 55
4
n p(s1— st + 52— 85) 51— 5] $-1 plsi— s, +s2—sh) s —s1)
2\/u " 4u Jhlasu 2\/u " 4/u
|s1 — 51| + [s2 — 5]
4 9

Var {YleJz;u(sla 32) - Yj7l11l2;u(3/17 5/2)|Ej,l1752;u(x17 562)}

u — Q.

Therefore, similarly as in Lemma A.3 we can show that as u — oo

1 1
P 316?075]3/},11,12;11(81, s2) > x2 |Ej1y pw(T1,2) ¢ — P 316[0,515(31(81) + Ba(s2)) — 3 (2 —2p1p) 52 > T2
SQE[O,S] SQE[O,S]
Consequently, the dominated convergence theorem gives
| Bt @F 1 1z 0,2) do
R
— / eZTp {Hte[O,T] X4 (t) — it > 331} dxq
R
2(p2—2p1 p) 1 1
(38) X e\ atp)r2p = *(Bl(sl) + BQ(SQ)) - = ([LQ — 2,U,1p) S9 > xo p dxo
R 516[075] 2 2
SQE[O,S]

=: H(p1;T) H(p, p2; S)

holds uniformly for j, 11,12, as u — oo.

Next we derive a useful upper bound for H(u1, p2;5), S > 0:
(39) H(prs pz; S) < ([S])2e% H (1, pai 1) < oo

In order to prove (39), by taking j =13 = 0,ly = 1 we arrive at

Xi(ta+ §) > aouv/u+ LEt

PO,O,I;u = P 3
Stlee[([)é:":g]] $(Xa(sa+ %) + Xo(sa + % +22)) > bo,1;u/u + 2‘%(51 + s2)
SQE[O,S]
u! 1 —QoS
(40) Y T RdUrs ga(ta,sa) | e =" H(p1; T)H (pa, p23 5).
0,0,0;u

Define, for any integers 0 < m,n < |.S],

. _pl) 3 Xi(ta+ ) > aouv/u+ LEt
m,nu s

tee[([)(ﬁ]] %(X2(SA + a5+ %1) + Xa(sa + % + %2)) > gm,nmﬁ"‘
s1€[0,

326[071]

7 (51 + 52)

with

m S+n—m
bm,n;u:1+ﬂ2 S(]+E+7 .

2u

Using the same arguments as in the derivation of (40) one can show that

u~! 1 _ n—m
) RERV/CTS RN P <_2“ ga(ta, SA)) e @Y (s TYH (ua, p231).
0,0,0;u
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Comparing (40) and (41) we derive

[S]-1[S]-1

H(pr, po;S) < Z Z H(p1, pr2; 1)

IA

(LS] )26@057‘(#1, p2; 1).

The finiteness of H(u1, pe; 1) can be proved by using the Borell-TIS inequality. This justifies bound (39).
Now, we are ready to analyse the triple sum IT;5(u). We have

N N2 N2

Mo(w) = 3 D> D

]:71\/’721) lliqu(f) lo=l1+2

1 _ .
X exp <2u (bj7l17lg;u)—r2j7lll,l2;ubj7l17l2;u) /R2 fiw(@)F (4,1, lo; u, @) dee.

)2 2500 100l

Therefore, we can derive from (37)-(38) and (39) that

I > ;T ;1)(1S])?
lim 12(w) < Const Ze_onsH(Mh VH (11, po; 1)(1S]) _
u—oo exp(—uga(ta,sa)/2) = TS
Consequently, the above implies that
II
limsup limsup lim 12(v) = 0.

S—o00  T—oo w0 exp(—uga(ta,sa)/2)
Thus, the claim for IT; (u) is established. Using similar arguments, one can further show that the claim for 5 (u)

holds. O

A.4. Proof of Lemma 4.4. The claim for  (u) follows from the same arguments as that for ro(u) of Lemma 4.1.

Next, as in the proof of Lemma 4.1, using the Piterbarg’s inequality we can show that
ro(u) < Cou/?e=39u,

where Cy > 0 is some constant which does not depend on u, and thus the claim for ro(u) follows since

Ju = inf t,s) = in s
Gu (t,s)eDlung(’ ) se[so—ao,so—1n(u)/mu[so+1n(u)/ﬁ,so+90]gL

bﬁ(l _ 5) (1n(u))2 ,

> gr(s) + 9 "
where the last inequality follows by (ii.3) of Lemma A.1. Finally, the claim for r3(u) can be proved similarly, by

using Piterbarg’s inequality and (ii.1)-(ii.2) of Lemma A.1. O

A.5. Proof of Lemma 4.5. We first analyse the summand pj.,,. Let
. JT . JT
b = (@jusbj) Ty g =14+t + %), bju =1+ pa(s™ + %)
Then

X (" + 5 4 Ly > a0 /u + LLt
p_hu:HD 3 1( u u) 75 \/> Vu
O Xofst + 4 E) > b+

Define Zj,, := (X1 (t* + ZI), Xo(s* + LL))T, whose density function is given by

1 ( 1+ 1 ) T
———————exp| —zw (E) w], w=(w,ws) ,
|Ej;u| 2 !

¢5;., (W) = (2n)2
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with the covariance matrix given by

. t+ L p (415
Jiu T . .
p (" +55) S

By conditioning on the value of Z ., and using change of variables w = \/ubj,, — x/+/u, we further obtain

Xi(t) — prt > x
_ u—l/ b5, (Vubj. — T/ V)P 3 ) mmt>o
RQ

(t,8)ENT,s X2(5) — 28 > To

Consequently, similar arguments as in the proof of Lemma 4.2 yield

N N

H(T, S)u o
pi(u) ~ pa(u) ~ D piu ( S et +iT)
o \/27rt*— o
Jj=—Nuy j=—N,,

~1/2
H(T, S)u” e_%gL(t*)/e_%Og“jdx.
R

T\/@rt )2 (L — %)

This completes the proof.

A.6. Proof of Lemma 4.6. First note that

P {El(t,s)e(t*75*)+u_1AT1+T2YS Xl(t) > \/E'(]- —I-[th),XQ(S) > \/ﬂ(l + /1‘28)}
<P {H(t,s)e(t*,s*)—i—u*lAles X1(t) > Vu(l 4 pat), Xa(s) > Vu(l + M2S)}

+P {El(t s)e(t*+IL s +T1 JHu—tAr, s Xl(t) > \/a(l + /’l’lt)aXQ(S) > \/a(l + /1‘25)} :
Using the same arguments as the proof of Lemma 4.5, we conclude the sub-additivity of H(T,S),T > 0. Thus

.1 !
lim f"H(T7 S) = %I;fo ?’H(T, S) < o0

T—o0

follows directly from Fekete’s lemma. Moreover, since by definition

_ Xi(t) — it >z
H(T,S) > / olsTep) 5 Ml mmi>m dz1dzs,
R2 €[0.7] Xg(t) — ot > x9

the positive lower bound follows from Lemma 4.7 in [3]. This completes the proof.

A.7. Proof of Lemma 4.7. We begin with the analysis of IT; (u). We first look at p; ;... Denote
by = bj1mmnu = (ajﬂn;w ij,mJL;U)T

JT'+m

)

jiT+m 1IS+n
+ u

A5 msu = 1+ ﬂl(t* + )a bj,l,m,n;u =1+ N2(t* + )

It is derived that

|T]—1]5]-1
Ditu < P ER X1(t) > Vu(l + pat), Xo(s) > Vu(l + pos
i mz_: Z: e 4Ty e 2T 1) 1(t) (14 put), Xo(s) (14 p2s)
s—te[LS 4 717ZS+”+1]
e Xi(t* + 5 4 5 > a /U + LRt

= 2 2 B2
— — t€(0,1] * JT+m IS+n 4 t+s . oy
m=0 n=0 o] Xo(t* + + =54 50 > bjimnaVu+ L2 (E+ s)
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|T|—1|5]—1

= E E pj,l,m,n;u-
m=0 n=0

Next, we look at pj i m.nu- We define

iT + iT+m  1S+n )\
zo = (e T, x4 T B
. JT4+m t . JT+m
Yiu(t) = <X1<t +2 ) - X+ ))f—ult,
u u u
., JT+m 1S+n t+ o dT+m 15+
Yoult,s) = (XQ(t P T ) Xl 4 T ”))\f—u2<t+s>

Consider the conditional process

S) = L1ull), Yo;u aST u = uu_i-
Wu(t,s) = (Yiu(t), Yow(t, 5)) | Zu = vub NG

We have that (Y1..(t), Ya.u(t, ), Z. ) is a normally distributed random vector, with mean
l/j’(t7 S) = (_lulta _M2(t + S)a 0, O)T

and covariance matrix given by (suppose S > 1)

_t
t 0 0 P
~ 0 t+s 0 0
Yu(t,s) = _ '
0 0 +* + ]T’jm ) (t* + ]T;rm>
pﬁ 0 P (t* + jT:m) t* + jTl:m + lS;rn
Thus, for the mean
-1
0 _t t* 4 JjT+m t* JjT+m
E{W.(t.s)} = (—mt,—p2(t+s))+ P o g (, +) <\/quu - x)
0 0 p (t* + ILmy px g iTEm | 15+n vV

p(bj I,m,nu — PAj m~u)t — ptw
= (—pt,—pa(t +5)) + Lm s m: Ty
! (t*+ﬂ$+ls#)—p2(t*+ﬂj%)

P> = p+ (u1 — pap)t*
t(1—-p?) ’

- (_V(p) ta —,UQ(t + 3))T s V(p) =

as u — 00, where the convergence is uniform for —Nﬁl) <ji< ngl), 1<1< NI(L2). Similarly, we can derive that,

for any t1,ts € [0,77, 51,52 € [, 5],
COV(Wu(tl, 81) — Wu(tg, 82)) — COV((Bl(tl) — Bl (tz), Bg(tl + 81) — Bg(tz + SQ))T)
as u — 0o, uniformly for qu(Ll) <5< N51)7 1<1< Nq(f). Consequently, we have, as u — oo,

Yi.(t) >z
P{ 3 tult) > o Z = Jub, —

te[o,l]
5€[0,1] Yo,u(t,s) > 2

x
\/>
L p 3 Bl(t) t>SC1 }

te[0,1]
eco1] By(t+s) — pa(t+5) > x2
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Similar arguments as those in the proof of Lemma 4.2 gives that

Dyt ~ H(l, l)u_l _%gB(t*_i_jTIm7S*+jTIm+ls;¢-n)
T (2m)? | E.]

where (recall notation in (7))

~ - Bi(t) —v(p)t >z
H(1,1) :/ e® B.'bap 3 1{£) = vip) ' dzidzs € (0,00).
R? ti[[g 1]} Bo(t+s) — u(t+s) >z

It follows further from (ii.2) of Lemma A.1 that there exists some ¢ > 0 such that, for all ¢ < s small,

1-¢
g5 + 407 ) 2 o) 4 (1~ 2)(s — 1)+ 22Dz
thus, for u sufficiently large
PN
T+ iT+m 1S+ IS | ea(l—2) (JT
gt + I 4 um+ un)Zg( )+ ba(l—e)— 2(26)<Ju>

holds for all — N < j < NV, 1 <1< NP 0<m < |T]-1,0<n < [S] -1, where j = jl{;50; + (j + 1)Ij<03-

This implies that, for u large

wy jT+m % jT+m u (g% (-e) (T )? -
e~ $oa(EHITER AT LIS gy (17) VU (e 2= (%) L )e—bz%f)zs,

T Vi

Based on the above discussions we obtain

I (w) H(1,1) [T]|S] —7*’2“*5’15/ —e20=e) 2
lim < e 2 e T T dx.
A T gy = amre] T 8

Similar bounds can be found for IT; (u), and thus the first claim follows.

Next we consider ITg; (u). For any jo > j1 + 1 we have

a(t,s)e(t*Jrle *+71T)+u’1AT,s Xl(t) > ﬂ(l + ,ult)7X2(s) > \/E(l + MQS)
2T an o X1(t) > V(L4 ), Xa(s) > Va(l + izs)

P

dj1,525u
3 +]2T

(t,s)e(t*+225 s

71/ ¢E71 Joiu J1 J2iu T m/\[) (Jl,j2§ u, :B) dr =: th]é;u’

where, with a;,, =1+ p1 (t* + %),bj;u =1+ po(s*+ %),

T (2 —51)S L op Qjrow+ Qo bjyow + bjne
L1 g = (t e E Ty - s bjy o = | 2 5 2 A 5 222

Yl;u(t, tl) > T

(t,s)EAT, s YQ;U(S,S/) > Zo

F(jlaj?;uﬂm) =P

Y- Qjqiutjosu T
3u f\/ﬂ Vu

(ljl;u"r(ljz;u, T2
Vi = St fy — 5

(GRERISTAY
with

U T t 1T Tt T
Yl;u(tyf’)ZL X (t +L+ )= X+ D)+ X+ 2 D) - Xy +32—) ~ B4,

2 u U U 2

U T s i T jor & T
Yau(s,s') = L (X2(8*+j1+)—X2(8*+J1)+X (s + 25 4+ 2) - Xo(s” +92 >) B4 ),

2 Uu u u u 2

1 1T T 1 i\ T i T

Y3?“_§ <X1(t + )+X1( ]2 )) ’ Y4;u:§ <X2(3*+‘7L)+X2(8*+]2)> .
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Next we have that (Y1,,(¢,t'), Ya,u(s,s), Y3.u, Yau) is a normally distributed random vector, with mean
T
w(t,t, s s) = (7%@ +1t), —%(s +5'),0, 0)

and covariance matrix given by (suppose T > S)

tt! p(tAs+t' As') bt _pt_
4 1 1/u i/u
p(t/\s-‘,—t'/\s') s+s/ _ps_ s
f]u(t s) = 1 4 m 1/u
’ t * 1 T (J2—3)T * j1 T (J2—g)T
Ve iva T P(t + A )
ﬁ 4% P (t*+%+ (jQZil)T) S*Jr%Jr (m;il)T

Similarly as before, one can get

77 “22“)T « 4 T (Go—3)T
H(T7 S)uil ) 1+t*+7j1T+7zj2*j1)T gr(t™+ T 2u )
—_— u 4u

g e
Qi o 225

b
as u — oo, where

AT, ) '*/ erep) g KOFXE) STt [ 0s)

’ o 16442 3 3
R2 (t7S)EAT,S 1 / _ ,UQS**l M2 ot

(t',seAD.s 2(X2(S) + X2(8 )) As* S 2 S > T2

with ()?1,)22) an independent copy of (X1, Xs). Particularly, letting j; = 0,72 = 2 we can show, similarly as in
(39), that

QL(ﬂ*)T

(T, S) < H(1,8)(|T])% 5

Therefore, as u — 00,

N

H(T, S)u V2, o (nr) T Ty
H21(u) 5 —F————€ QQL(t) Z e 4 \Vvu P Z e FYEd (j2—71)
T/ (27)2 |2, e N W5
T T(2n)? 8. R

Finally, we consider ITgs(u). Note that
N
H22(u) - Z DPjsu +pj+1;u - ﬁj;ua

j==N{

where
Biw =P {30+ 20 1+ 7y s X1(8) > V(L4 pi1t), Xa(s) > V(1 + pas) }

Consequently, the claim for IIos(u) follows directly by using Lemma 4.5. O
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A.8. Proof of Lemma 5.1. Similarly as in (27) we obtain

PHO,O(U‘)

IN

P {3t s)evm Z(t1,51) > Vug(ts, s1), Jia,se)etnn Z(t2,52) > Vug(ta, s2)}
P {3(t1,51)€U11 Z(tla 81) > \/a\/ g(tO? 80)7 H(tz,sz)GUlz 7(t27 52) > \/17'\/ g(SO?tO)}
]P) {a(tl,S1)EU11,(t2,32)€U12 7(t17 81) +7(1’2) 82) > 2\/av g(t07 SO)} )

IN

IN

where, we used the fact that g(to, s0) = g(s0,t0) < infy ey, uv10) 9(t, 8), and

— Z(tl‘,Si) Z(ti,si) .
A iySi) = - ) 22172'
(ti,5:) \/Var(Z(tl-,si)) \/g(ti, Si)
Further note that
E{Z(to50)Z(s0,t)} = E{(2uX1(to) +2(1 — 20)Xa(s0)) (2(1 — 2p)uX1(s0) + 21 Xa(t0))}
= 8(1+2p)(1—p)p.
We obtain
E {(Z(to, SO) + Z(So, to))Q} = 2+42E {Z(to, 30)7(80, to)}
_ 2+2E{Z(t0,80)Z(807t0)}
g(to, s0)

= 242(1+2p) <4
Thus, for sufficiently small 6y > 0,

o= sup E{(Z(t1,s1) + Z(t2,52))*} <4,
(t1,81)€U1
(ta,82)EU12

where we use continuity of the functions involved. Again, using the Borell-TIS inequality we obtain

_ _ _ (2va/9(tg,50)—Co)?
IED {H(tl,sl)EUll,(t2,52)€U12 Z(t17 81) + Z(t27 82) > 2\/6\/ g(t07 80)} S € 202

holds for all large w such that

2ﬁx/g(t0, 50) > C() =K sup (7(t1, 51) +7(t2, 52))
(t1,51)€U1
(t2,s2)€U12

Thus, the claim follows. O
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