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Use of Artificial Intelligence in Diagnosis of Head and Neck Precancerous 

and Cancerous Lesions: A Systematic Review 
 

ABSTRACT 
This systematic review analyses and describes the application and diagnostic accuracy of Artificial Intelligence 

(AI) methods used for detection and grading of potentially malignant (pre-cancerous) and cancerous head 

and neck lesions using whole slide images (WSI) of human tissue slides. Electronic databases MEDLINE via 

OVID, Scopus and Web of Science were searched between October 2009 - April 2020. Tailored search-strings 

were developed using database-specific terms. Studies were selected using a strict inclusion criterion 

following PRISMA Guidelines. Risk of bias assessment was conducted using a tailored QUADAS-2 tool. Out of 

315 records, 11 fulfilled the inclusion criteria. AI-based methods were employed for analysis of specific 

histological features for oral epithelial dysplasia (n=1), oral submucous fibrosis (n=5), oral squamous cell 

carcinoma (n=4) and oropharyngeal squamous cell carcinoma (n=1). A combination of heuristics, supervised 

and unsupervised learning methods were employed, including more than 10 different classification and 

segmentation techniques. Most studies used uni-centric datasets (range 40-270 images) comprising small 

sub-images within WSI with accuracy between 79-100%. This review provides early evidence to support the 

potential application of supervised machine learning methods as a diagnostic aid for some oral potentially 

malignant and malignant lesions; however, there is a paucity of evidence using AI for diagnosis of other head 

and neck pathologies. Overall, the quality of evidence is low, with most studies showing a high risk of bias 

which is likely to have overestimated accuracy rates. This review highlights the need for development of 

state-of-the-art deep learning techniques in future head and neck research. 
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INTRODUCTION 
Head and neck cancers (HNC) encompass a large group of cancers, most commonly squamous cell carcinomas 

(SCC) (90%) of the oral cavity, nasal cavity, sinuses, salivary glands, pharynx and larynx. Primary risk factors 

include tobacco and betel nut use1, alcohol consumption2, radiation3, immunodeficiency4 and specific viruses 

including Human Papillomavirus (HPV) 16 and 18 (for oropharyngeal squamous cell carcinoma, OPSCC)5 and 

Epstein-Barr virus (for nasopharyngeal squamous cell carcinoma, NPSCC)6,7. Chronic exposure to these 

carcinogenic factors and/or infection status can result in dysplastic changes in the oral, oropharyngeal, nasal 

or nasopharyngeal mucosa, which may lead to the development of HNC. The incidence of HNC continues to 

rise, making it the sixth leading group of cancers worldwide8,9.  In 2018, HNC accounted for more than 

650,000 new cases and 33,000 deaths annually worldwide10. In the UK, the number of new patientshas 

increased by 22% over the last decade, with almost 12,000 new diagnoses every year (33 every day)11.  

Despite advancements in medical and surgical techniques, prognosis of HNC remains poor with a five-year 

survival rate between 28-67%11. Due to late presentation, even successful treatment of HNC is associated 

with multiple functional problems including masticatory, speech and swallowing impairments which can 

significantly reduce the quality of life12. Early diagnosis of potentially malignant head and neck lesions can 

prevent cancer development in up to 88% of cases11, however most patients are diagnosed at a late stage of 

disease (62% diagnosed at stage III or IV)13. The conventional diagnosis of suspicious head and neck lesions 



involves clinical, radiological and histopathological assessment. The latter is the gold standard providing 

important prognostic information (i.e. grade for dysplasia and cancers) which can guide clinical treatment 

decisions14,15. However, histological interpretation can be subjective with differences in interpretation16, 

variation in consistency17 and may not provide effective risk stratification or management guidance. This 

highlights the importance of novel methods and technologies for more consistent, efficient and accurate 

diagnosis to aid clinical decision-making and to improve HNC related patient survival.  

Over the past decade, Artificial Intelligence (AI) has gained popularity in cancer research where it has been 

shown to increase diagnostic accuracy and efficiency by providing quantifiable outputs to predict cancer 

behaviour and prognosis18,19,20. Machine learning (ML), a branch of AI, has been shown to reduce variability 

in grading of dysplasia and cancers by ensuring standardisation and consistency in addition to informing 

treatment decisions21.  ML uses computational methods to ‘learn’ information and patterns directly from 

data. This learning can be supervised (involving training of ML models on a known data input and output i.e. 

histology slides with associated diagnostic annotations) or unsupervised (which involves mining and 

extraction of hidden patterns from input data without any pre-defined information). ML algorithms 

adaptively improve their performance with an increasing number of ‘learning or training’ samples, enabling 

the computer to essentially ‘learn from experience’.  Classical supervised ML approaches include semantic 

segmentation and classification. Segmentation involves dividing high-resolution digital whole slide images 

(WSI) of human tissue into regions of clinical relevance followed by deconstruction of the WSI into smaller 

patches (sub-images) by a process known as ‘patch extraction’. This enables ML algorithms to compute local 

and global features which can be explored for significance during the ‘learning or training’ phase. 

Classification involves organising and classifying new observations based on specific attributes (e.g. 

morphology of nuclei) learnt from previous data input. Both techniques are commonly used approaches in 

cancer research, providing useful diagnostic and prognostic outputs. Other relevant computational pathology 

terms have been described in Table 1.  

With the evolution of computational power and image analysis algorithms, there is now an increasing amount 

of evidence demonstrating the success of AI-based image analysis from WSI of human tissue slides22. Several 

studies have demonstrated the potential for AI-based methods to reliably predict diagnosis, prognosis, 

mutational status, and response to treatment in a range of cancers including colorectal, lung, skin and breast 

malignancies23,24,25,26,27. These studies highlight the potential for AI-based methods in provision of faster, 

consistent, accurate and reproducible information regarding cancer diagnosis and prognosis which can 

complement the conventional (and largely subjective) light microscopy analysis by experienced pathologists.  

The alarming rise in global HNC incidence and its poor prognosis makes it ideally suited for application of AI-

based methods to aid objective diagnosis and provide valuable prognostic information. We performed a 

systematic review of literature published in the last ten years, to assess the application and diagnostic 

accuracy of AI/ML methods for detection and grading of potentially malignant and cancerous head and neck 

lesions. To the best of the authors’ knowledge, this is the first study reviewing the use and application of AI-

based methods for head and neck lesions.   

MATERIALS AND METHODS 
The systematic review was conducted using a predetermined protocol which followed the recommendations 

of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and 

checklist28. The protocol was registered in the International Prospective Register of Systematic Review 

(PROSPERO) database, CRD42019153023.  



Outcome definitions 

The primary outcomes were the specific histopathological features used for diagnosis and grading of the 

head and neck lesion under study, in addition to the methods and performance of the proposed AI/ML 

techniques. Descriptive analysis was conducted on these outcomes and the reported diagnostic performance 

measures (i.e. sensitivity, specificity, accuracy, F1-score) where possible.  

Literature search  

Electronic databases search of MEDLINE via OVID, Scopus and Web of Science was conducted to retrieve 

articles published in the English language between October 2009 and April 2020. The Cochrane library was 

also consulted. This time period was chosen due to the rapid evolution of AI methods and their application 

to cancer diagnostics over the last decade.  

The search strategy was jointly developed by the multidisciplinary authorship team in collaboration with a 

medical information specialist (librarian from University of Sheffield, UK). Input from an expert Oral and 

Maxillofacial Pathologist (SAK, University of Sheffield, UK) and a Professor of Computational Pathology (NMR, 

University of Warwick, UK) ensured adequate selection of clinical and technical terms and controlled 

vocabulary for optimal identification of articles.  

Tailored search strings containing keywords and database-specific medical subject headings (MeSH) for the 

two major topics (AI/ML and potentially malignant or cancerous head and neck disorders/lesions) were 

developed.  Multiple variations of search terms were combined to produce different sets of results and the 

final search strategy was pilot-tested and modified accordingly (Appendix 1). Grey literature and the 

reference lists of selected articles were also screened for relevant studies that may not have been identified 

through the database searches. The electronic databases search was conducted with assistance from an 

experienced Librarian at the University of Sheffield, UK. Article citations were exported to EndNote® 

reference manager software (Clarivate Analytics, Philadelphia, USA) and duplicate articles were removed. 

Study selection  

Two independent reviewers (HM, MS) retrieved the literature, and screened titles and abstracts.  Where 

insufficient information was available to determine eligibility, the full report was obtained for further 

assessment. Articles that did not meet the eligibility criteria were excluded. In the second stage of study 

selection, the same two reviewers (HM, MS) independently assessed the full-text reports to obtain a shortlist 

of relevant articles. The shortlists were compared, and differences discussed, obtaining a final selection of 

studies. In case of any discrepancies in article selection, a discussion with senior members of the review team 

(NMR, SAK) took place to reach a mutual final decision. For relevant articles with overlapping datasets or 

results, the most recent publication was included.  

The following criteria were applied for the selection of eligible studies for this review:  

Inclusion criteria: 

• Studies using AI for automated detection, grading and classification of potentially malignant and 

cancerous head and neck disorders/lesions. 

• Studies exploring diagnostic accuracy of the applied AI/ML method providing sensitivity, specificity, 

accuracy, F1-scores as outcome measures. 

• Studies published in indexed journals between October 2009 - April 2020. 

Exclusion criteria: 

 



● Studies not using WSI of human tissue slides. 

● Studies not using histological image modalities (e.g. radiographic, photographic, cytology, genomic 

data etc.).  

● Studies using AI/ML to predict disease progression, prognosis, metastasis, recurrence, survival or 

treatment efficacy (i.e. those not primarily investigating detection, grading and classification of head 

and neck lesions).  

● Studies using AI/ML for detection and diagnosis of thyroid or oesophageal cancer.  

● Narrative reviews, letters to editors, commentaries and conference abstracts. 

● Studies not available in the English language. 

 

Data extraction  

Relevant data from selected articles was extracted, processed and tabulated into a pre-developed data 

collection form in Microsoft Excel® (Microsoft Corporation, Washington, USA) by two reviewers (HM, MS). 

The following information was recorded:  

● Study details (authors, year and country of publication, aims) 

● Study methods (design, dataset size and selection)  

● Description of outcome variables (AI/ML methods used, head and neck lesion and histological 

parameter under study, training and validation sample details) and its outcome measures (reported 

diagnostic accuracy, effect measures)  

● Other relevant details (funding information, sources of support, conflict of interest disclosure) 

 

Methodological quality and risk of bias assessment  

The methodological quality of individual studies and risk of bias was assessed using the Quality Assessment 

of Studies of Diagnostic Accuracy – Revised QUADAS-2 tool29. This tool is designed specifically for use in 

systematic reviews to evaluate the risk of bias and applicability of the primary diagnostic accuracy studies. 

The tool was adapted with input from an Oral and Maxillofacial Pathologist (SAK) and a Professor of 

Computational Pathology (NMR) to ensure relevant signalling questions were included to reliably and fairly 

assess the quality of included studies in relation to: 1) sample selection 2) index test and 3) reference 

standard. The tailored QUADAS-2 tool was piloted on five studies by two independent reviewers (HM, MS) 

and differences were resolved with consensus. The overall score for each study was determined by combining 

the number of satisfied criteria, with a higher score representing higher methodological quality. The outcome 

of the methodological quality assessment is presented graphically in Table 3 and the influence of bias risk on 

our results was discussed where applicable. 

Data synthesis 

A narrative synthesis of the main study findings is presented. Due to the large variation in outcome definitions 

and heterogeneity of retrieved data, a meta-analysis for calculation of adjusted pool estimates was not 

carried out.   

RESULTS 

Search results 

The electronic database search retrieved a total of 314 articles (MEDLINE via OVID: 154, Scopus: 81 and Web 

of Science: 79). In addition, one article was identified through citation searching. Following removal of 

duplicate studies, 288 articles were selected. After the first screen based on title and abstract, 259 articles 

did not satisfy the inclusion criteria and were therefore excluded. A comprehensive full-text examination of 



the remaining 29 articles excluded a further 18; resulting in 11 eligible articles for inclusion in this review 

paper (Figure 1). 

Out of 315 articles, 277 were excluded, with a large proportion not eligible due to the use of imaging 

modalities other than histology (n=157). Many studies did not address the research question directly (n=67) 

as they focussed on the application of AI algorithms to predict disease prognosis, recurrence, metastasis or 

treatment success. Other reasons for exclusion included studies which did not use AI based methods (n=52) 

or human tissue (n=1).   

Description of studies  

Table 2 summarises the main findings for the included studies. In six studies, AI-based methods were used to 

detect oral potentially malignant disorders (OPMD)52,54,55,57,58,62 with five of these  focussing on the detection 

of oral submucous fibrosis (OSF) specifically. Four studies aimed to detect oral squamous cell carcinoma 

(OSCC)53,56,59,60 and one study aimed to classify OPSCC61. Overall, seven studies were conducted in 

India53,54,55,57,58,59,62, two in China60,61, one in USA52 and one in Germany56. Eight studies were published 

between 2009 and 201552,54,55,57,58,60,61,62 and three were published after 201553,56,59.  

Results of the selected studies have been presented based on the type of head and neck lesion being 

analysed, which includes OPMD, OSCC, and OPSCC. Following this, the methods used in the selected studies 

will be presented, which will describe the type of AI/ML technique, dataset sample and the diagnostic 

performance for each.  

Detection of OPMD 

Baik et al.52 quantified nuclear phenotypic changes in oral epithelial dysplasia (OED) lesions using an 

automated nuclear phenotypic score (a-NPS). The a-NPS was used to classify suspicious oral lesions based on 

the risk of progression to OSCC. The tissue samples used for algorithm training compared relatively normal 

oral mucosa (i.e. amalgam tattoo or melanotic macule, 34%) to OSCC from high risk intra-oral sites (floor of 

mouth and lateroventral tongue, 66%). Following training, the algorithm was tested on biopsies diagnosed 

as hyperplasia, mild or moderate dysplasia including almost an equal representation of transformed and 

untransformed lesions. The study used a robust experimental design to produce good accuracy (78% 

sensitivity and 71% specificity) highlighting the a-NPS as a potentially useful prognostic adjunct.    

Five other studies focussed on detection of OSF54,55,57,58,62 using a variety of supervised ML methods to 

differentiate between normal tissue, OSF with dysplasia or atrophy and OSF without dysplasia or atrophy 

(Table 2). Krishnan et al.57 classified the number of sub-epithelial connective tissue (SECT) cells (excluding 

endothelial cells) in oral mucosa of normal and OSF tissue. Specific histological features including SECT cell 

shape, size and dimensions were evaluated with focus on round shaped cells (e.g. macrophages, 

lymphocytes, mast cells and neutrophils) and spindle shaped cells (fibroblasts, fibrocytes, histiocytes and 

endothelial). In addition, geometric properties such as the compactness and eccentricity of these cells were 

considered for classification. The results demonstrated a classification accuracy of 88.69%, although this was 

based on a small dataset.  In another study, Krishnan et al.58 used a texture-based method for segmentation 

of the constituent layers of the epithelium in OSF tissue (based on density and thickness of individual layers) 

to distinguish it from normal tissue. The standard performance measures were not reported in this study 

(Table 2).  

Detection of OSCC 

Das et al.53 aimed to detect OSCC using a two-stage approach. This involved segmentation of constituent 

layers of the oral mucosa (into epithelial, subepithelial and keratin layers) followed by texture-based 

classification of keratin pearls from segmented keratin regions. The detection accuracy for keratin pearls was 



reported as 96.88% however this was based on a small dataset comprising small patches (sub-images) within 

WSI.   

Rahman et al.59 used a texture-based classifier to distinguish between normal and cancerous cells achieving 

an accuracy of 100% using small patches within WSI. In another study, Sun et al.60 developed an automated 

colour-based feature extraction system to segment and classify OSCC stained with anti-CD34 antibody. 

Specific histological features (vessel area/number/density and nuclei area/number) were computed to 

enable quantitative differentiation between different OSCC stages. Results demonstrated sensitivities of 

49.11%, 64.17%, 58.55%, 79.60% for OSCC stages I-IV, respectively.  

Detection of OPSCC  

Fouad et al.61 used unsupervised ML methods for automated identification of specific tissue compartments 

(cells and nuclei) in OPSCC tissue microarrays. Measurements of cell and nuclei colour and morphology were 

used for classification of epithelial and stromal tissue. This study compared their results with other standard 

segmentation methods and reported relatively low recognition accuracy (pixel-level F1 score of 80-81%) 

attributed to the lack of pre-defined manual annotations often used in supervised learning methods.  

ML methods used in selected studies 

ML algorithms can be divided into two groups: classical and modern. The classical methods require small 

amounts of training data and computational resources for pattern recognition in comparison to modern 

methods. However, modern methods often outperform classical methods in addressing most ML problems. 

Deep learning is a modern ML approach, in which algorithms mimic the brain’s neural networks to learn 

without supervision however it can suffer from the ‘black box’ problem, unlike classical ML methods which 

are easier to interpret. A hierarchical classification of ML methods used in the selected studies is presented 

in Figure 2. 

In most of the selected studies, classical supervised ML approaches have been used although three classical 

unsupervised methods have also been employed, including Otsu and Watershed (for image segmentation 

into two or more classes) and Clustering (e.g. K-Mean and Agglomerative Hierarchical Clustering). The most 

frequently applied ML methods were from the classical supervised group, which included nine different 

techniques (Figure 3).  The majority of these supervised methods belong to the handcrafted feature-based 

classical ML group, although in four studies53,54,55,62 modern ML methods (neural networks) were employed. 

These nine methods differ significantly in their learning strategies, as outlined below: 

▪ Sugeno Fuzzy30 involves ML of fuzzy rules from the training dataset. 

▪ Decision Tree31 generates a binary tree based on training features for classification.  

▪ Random Forest32 builds a classification model using a set of decision tree-based classifiers.  

▪ K-Nearest Neighbour33 classifies an input image based on its similarity with other training set images, 

which enables the most dominant class of K to be assigned to the input image. 

▪ Bayesian Classifier34 use the Bayes rules to calculate the probability of an input sample to be a 

member of a specific class where the final label is assigned to the most probabilistic class for the 

given input image. 

▪ Linear Discriminant Analysis35 learns a linear combination of the features from training images to 

predict the label of test images.   

▪ Support Vector Model (SVM)36 learns a set of parameters from the training image to find a hyperplane 

which splits the training images into two classes. Same parameters are then used to classify test 

images.  



▪ Gaussian Mixtures Model37 learns multiple models from the training images to classify it into multiple 

classes.  

▪ Neural Network38 methods learn the representation of the training images using a gradient descent-

based learning method. These methods require large training datasets compared to other 

aforementioned supervised based learning methods. 

A combination of classification and segmentation methods were used to detect potentially malignant and 

cancerous head and neck lesions (Figure 3). Overall, five studies used AI based classifiers52,54,56,59,62, four 

studies used segmentation methods53,58,60,61 and two studies used a combination of classification and 

segmentation methods55,57. The most frequently used methods included SVM36, Neural Network38, Random 

Forest32 and clustering. In the majority of studies, multiple methods were used for intermediate and final 

stages of the proposed AI framework, although there were considerable variations in the overall number of 

methods used between studies. For example, in one study Krishnan et al.54 compared five different 

classification approaches to obtain the best performing method, whereas in another study  only two methods 

were trialled.58  

Image datasets used in the selected studies 

Figure 4 illustrates the dataset sizes (for training and validation) and spatial dimensions of images (in pixels) 

for the selected studies.  

 

There is apparent variability in sample sizes, with training samples ranging from 8 to 216 images and 

validation samples ranging from 0 to 208 images. The overall dataset size (including both training and test 

samples) ranges from 40 to 270 images (mean ~139 images).  

 

The spatial dimensions of images ranged from 262,144 to 10,890,000 pixels; this excludes three studies 

where the image dimensions were not described52,56,62. Although the image sizes are measured in pixels, the 

actual size of the tissue sample (in microns) will differ due to the varying resolutions of different scanners 

and the magnification level chosen for the images. However, in five studies54,55,57,58,62 the dataset samples 

were obtained from the same centre and in two studies54,58 the same dataset was used.   

 

Quality appraisal assessment  

The quality of selected studies was assessed using a tailored QUADAS-2 tool. The overall score for each study 

was determined by combining the number of satisfied criteria, with a higher score representing higher quality 

evidence (Table 3).  There was considerable variability in the methodological quality of included studies. Baik 

et al.52 scored the highest for including the use of a separate validation and test set for optimal model 

selection and evaluation52, whereas Sun et al.60 scored the lowest across the 13 areas of assessment, largely 

due to the description of their approach without the use of reasonable dataset and results60. In all applicable 

studies, except for Lorsakul et al.56, the methods and intermediate results were clearly presented. Rahman 

et al.59 was the only study to have used a multi-centric dataset59.  

DISCUSSION 
In order to safely and effectively implement automated AI-based methods in diagnostic and clinical practice, 

it is vital to validate these algorithms using a robust and fair experimental setup. This setup should include a 

clinically representative dataset and suitable evaluation metrics for validation. 

The ideal dataset should represent clinical practice and take into account the whole tissue section. Tissue 

samples from multiple centres will enable greater diversity and biological variance through inclusion of cases 

from different geographical locations, patient populations and demographics. Furthermore, the ground truth 

should include meticulous annotations from multiple pathologists to minimise subjectivity and take into 



account inter-pathologist variation. In this review, seven studies described more than one expert to be 

involved in providing ground truth, however it is not clear whether these refer to experienced pathologists, 

trainees, non-clinical researchers or other allied healthcare professionals. In most cases, the number of 

experts involved has also not been clearly stated. Furthermore, multi-centric data and WSI were  used in only 

two studies (Rahman et al.59 and Lorsakul et al56 respectively). The majority of studies therefore used uni-

centric datasets mostly comprising smaller sub-images within WSI, which may have introduced bias and 

would offer limited applicability.  

In supervised ML methods, the ideal dataset should be divided into three groups for 1) model training 2) 

optimal model selection and 3) validation or evaluation. In this review, most of the assessed studies used the 

same dataset for both optimal model selection and evaluation. This indicates a high risk of bias which is likely 

to have contributed to the high accuracy rates (ranging from 79-100% across all studies). This bias could have 

been easily avoided by dividing these datasets into the three defined sub-sets or adding more unseen cases 

to the test and validation sets. The overall size of a dataset mainly depends on the type of AI method used. 

Traditional AI methods require small datasets whereas modern machine/deep learning methods require a 

larger dataset for model training. This concept is also known as the model generalisability and is concerned 

with the replication of model accuracy when applied to a new and diverse cohort of cases.   

Most of the reviewed studies used AI methods which were regarded as the state-of-the-art at the time of 

publication and described these in sufficient detail to ensure reproducibility. Various evaluation metrics were 

utilised (accuracy, sensitivity, specificity etc.) to report the overall performance on the test set. However, in 

one study (Krishnan et al.55) the performance of individual images was measured, which makes it difficult to 

gauge the overall average performance of the entire test set. In four studies53,54,58,61 a direct comparison of 

proposed techniques has been made to existing methods which should give some credibility to their 

proposed techniques. However, only three studies53,54,61 compared their methods with the best performing 

methods at the time of publication.  

Most of the selected studies were published before 2015, therefore, the methods employed were mainly 

classical ML methods32,33,36. This was somewhat surprising as the ML and AI fields have significantly 

progressed in the last decade, resulting in the development of numerous state-of-the-art algorithms for 

different real-world problems such as object detection in natural images39,40,41, human voice recognition42 

and natural language processing43. These methods have multiple applications including medical image 

analysis which have been used to reliably predict diagnosis18, mutational status44 and treatment response45 

in a range of malignancies including breast, lung and colorectal cancers. However, our review shows that 

these latest AI methods have not been applied for detection of head and neck lesions, despite the ever-

increasing global incidence and poor prognosis of HNC.  

Our review highlights that  a huge opportunity (and need) for medical image analysis and computational 

pathology researchers to develop novel methods to aid HNC diagnosis using modern AI approaches such as 

deep learning. Early work in this field appears to show potential for reliable detection between normal, 

potentially premalignant and cancerous lesions from histology WSI using classical classification methods46,47. 

Customised deep learning techniques have been used for segmentation of the epithelium48,49 and cell 

segmentation has shown successful morphological analysis in HNC50,51. 

CONCLUSION  
This review provides early evidence to support application of supervised ML methods as an aid to detection 

and grading in a limited number and types of OPMD. Furthermore, there is limited evidence exploring the 

use of AI to aid diagnosis of other potentially premalignant and cancerous head and neck lesions. Having said 



this, most of the described AI/ML methods have the potential be modified for application to other clinical 

sites, including other head and neck lesions. The overall performance of the AI methods appears comparable 

to conventional light microscopic histopathological assessment but with added advantages of a faster, 

objective and reproducible evaluation. However, integration of these methods in the digital pathology 

workflow requires comprehensive evaluation of each method based on large multi-centric datasets. Future 

avenues include the use of deep learning methods for development of digital biomarkers and discovery of 

novel predictive features which will aid early detection of HNC and improve patient stratification. Ultimately, 

this will aid the development of targeted, patient-specific diagnostics and therapeutics to reduce HNC 

associated mortality.  

Disclaimer: The content of this article represents the personal views of the authors and does not represent 

the views of the authors’ employers and associated institutions. Where authors are identified as personnel of 

the International Agency for Research on Cancer/World Health Organization, the authors alone are 

responsible for the views expressed in this article and they do not necessarily represent the decisions, policy 

or views of the International Agency for Research on Cancer/ World Health Organization. 
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Figure Captions: 

Figure 1 – PRIMSA flowchart (diagram adapted from PRISMA group, 200928) demonstrating the study 

selection process. (Colour not required) 

Figure 2: Hierarchical classification of the methods used in the selected studies. (Colour not required) 

Figure 3: A bar chart representing the frequency of different methods used in the selected studies. The colours 

correspond to the individual studies (as per key on right). (Colour required) 

Figure 4: Graph demonstrating dataset sizes for selected studies.  The area of the circle represents the spatial 

dimensions (in pixels) of the images used within the dataset whereas horizontal and vertical axis represent 

the number of images used for training and validation, respectively. Studies in which the image dimension is 

not provided have been marked as ‘unknown’. (Colour required) 

 

 

 

 

 

 

 

 

 

 



Table captions: 

Table 1 – Glossary of relevant computational pathology terms. (Colour not required) 

Table 2 - Summary of findings for selected studies. (Colour not required) 

Table 3 – Quality assessment of the selected studies using modified QUADAS-2 tool. The ‘✔’ demonstrates 
a favourable response to the question and the ‘X’ demonstrates an unfavourable response to the question. 

The overall score reflects the quality and risk of bias for each study. (Colour not required) 

 

 

TERM DESCRIPTION 

Artificial Intelligence (AI) A branch of computer science concerned with building smart machines that 

can perform tasks which typically require human intelligence. 

Machine Learning (ML) The ability for machines to ‘learn’ information and patterns directly from 

data without being programmed explicitly.  

Supervised Learning Training of ML algorithms from labelled (e.g. annotations) input and output 

data.  

Unsupervised Learning Training of ML algorithms by mining and extracting hidden patterns from 

input data that has not been labelled.   

Deep Learning (DL) DL is a subfield of ML in which algorithms learn from input data through 

example (without supervision). 

Neural Network A highly structured set of algorithms which models the brain’s neural 
network system (deep learning) designed to recognise patterns from input 

data.  

Whole slide image (WSI) A high-resolution microscopy image of human tissue section. 

F1 Score A statistical analysis of binary classification to measure the accuracy of a test, 

considering the weighted average of the precision (p) and recall (r) of the test 

to compute the overall score. 

Precision (p) The number of correct positive results divided by the number of all positive 

results returned by the classifier 

Recall (r)  The number of correct positive results divided by the number of all relevant 

samples (all samples that should have been identified as positive 

Classification A ML technique which categorises a set of data (structured or unstructured) 

into classes based on certain attributes.   

Patch extraction Deconstruction of a WSI into smaller pixelated patches known as ‘sub-

images’.  
Semantic segmentation The process of dividing WSI’s into regions of interest and clustering data into 

distinct groups based on similarities.  

Table 1 

 

 



Study Study 

Reference 

Study Aims AI/ML Methods and 

 Image Dataset 

Reported Diagnostic 

Performance (%) 

Risk of 

Bias 

1 Baik et al.52 Classification of oral precancerous lesions into low and high-

risk groups of progression into OSCC using a nuclear 

phenotypic score. 

Methods: 

 Random Forest 

Datasets: 

 Training: 62 

 Test: 71 

 Sensitivity: 78% 

 Specificity: 71% 

9 

2 Das et al.53 Segmentation of OSCC histology images into epithelial, sub- 

epithelial, and keratin layers. Detection of keratin pearls from 

the segmented keratin layer. 

Methods: 

 Random Forest 

 Neural Network 

Datasets: 

 Training: 80 

 Test: 20 

 Sensitivity 97.7%  

 Dice-coefficient 

95.3% 

4 

3 Krishnan et al.54 Classification of oral precancerous lesions into normal, oral 

sub-mucous fibrosis without dysplasia, and oral sub-mucous 

fibrosis with dysplasia. 

Methods: 

 Sugeno Fuzzy 

 Decision Tree 

 K-Nearest Neighbour 

 Gaussian Mixture Model 

 Neural Network 

Datasets: 

 Training: 158 

 Test: 0 

 Sensitivity: 94.5%  

 Specificity 98.8% 

7 

4 Krishnan et al.55 Classification of oral precancerous lesions into normal and oral 

submucous fibrosis through segmentation of collagen fibres in 

the subepithelial connective tissue. 

Methods: 

 Bayesian Classifier 

 Support Vector Machine 

 Neural Network 

Datasets: 

 Training: 89 

 Test: 30 

 Accuracy: 91.70% 2 

5 Lorsakul et al.56 Spatial quantification of brightfield-multiplex 

immunohistochemistry stained imaging for epithelial tumour 

cells and carcinoma-associated fibroblasts in tumour-

associated stroma, through detection and classification of cells 

and segmentation of fibroblasts. 

Methods: 

 Random Forest 

 L1-Logistic Regression 

 Support Vector Machine 

Datasets: 

 Training: 135 

 Accuracy: 91.64% 2 



 Test: 35 

6 Krishnan et al.57 Segmentation of sub-epithelial connective tissue cells followed 

by cell classification into normal and oral submucous fibrosis 

tissue. 

Methods: 

 Support Vector Machine 

Datasets: 

 Training: 20 

 Test: 20 

 Sensitivity: 90.46% 

 Specificity: 87.54% 

 Accuracy: 88.89% 

3 

7 Krishnan et al.58 Segmentation of the epithelial layer in normal and oral sub-

mucous fibrosis histological images. 

Methods: 

 Watershed 

 Otsu 

Datasets: 

 Training: 158 

 Test: 0 

Standard performance 

measures not reported. 

4 

8 Rahman et al.59 Classification of oral histology images into normal and oral 

squamous cell carcinoma. 

Methods: 

 Support Vector Machine 

Datasets: 

 Training: 216 

 Test: 54 

 Accuracy: 100% 5 

9 Sun et al.60 Segmentation of tumour in anti-CD34 antibody stained oral 

cancer histology images. 

Methods: 

 Clustering 

Datasets: 

 Training: 8 

 Test: 208 

Standard performance 

measures not reported. 

1 

10 Fouad et al.61 Segmentation of oropharyngeal cancer tissue into epithelial 

and stromal regions. 

Methods: 

 Clustering 

Datasets: 

 Training: 10 

 Test: 45 

F1-Score: 81% 5 

11 Krishnan et al.62 Classification of oral premalignant lesions into normal, oral 

sub-mucous fibrosis with atrophy. 

Methods: 

 Otsu 

 Linear Discriminant Analysis 

 Neural Network 

Datasets: 

 Training: 84 

 Test: 28 

 Sensitivity: 92.31%  

 Specificity: 100 

3 
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Appendices 

 

Appendix 1 - MEDLINE via OVID search strategy 

 

1. artificial intelligence.mp. or exp Artificial Intelligence/  

2. machine learning.mp. or Machine Learning/  

3. deep learning.mp. or Deep Learning/  

4. Image Processing, Computer-Assisted/ or automated detection.mp. or Diagnosis, Computer-Assisted/  

5. "Neural Networks (Computer)"/ or neural networks.mp.  

6. automated image analysis.mp.  

7. digital image analysis.mp.  

8. 1 or 2 or 3 or 4 or 5 or 6 or 7  

9. Mouth Neoplasms/ or oral epithelial dysplasia.mp. or Leukoplakia, Oral/  

10. oral leukoplakia.mp.  

11. oral neoplasm.mp.  

12. oral precancer.mp.  

13. oral cancer.mp.  

14. "head and neck cancer".mp. or "Head and Neck Neoplasms"/  

15. "head and neck malignancy".mp.  

16. 9 or 10 or 11 or 12 or 13 or 14 or 15  

17. Diagnosis/ or diagnosis.mp.  

18. diagnostic performance.mp.  

19. 17 or 18  

20. 8 and 16 and 19  

21. limit 20 to (english language and humans and last 10 years) 


