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Abstract 8 

Natural soil pipes are recognised as a common geomorphological feature in many peatlands, and they 9 

can discharge large quantities of water and sediment. However, little is known about their 10 

morphological characteristics in heavily degraded peat systems. This paper presents a survey of pipe 11 

outlets in which the frequency and extent of natural soil pipes are measured across a heavily gullied 12 

blanket peat catchment in the Peak District of northern England. Over a stream length of 7.71 km we 13 

determined the occurrence and size of 346 pipe outlets, and found a mean frequency of 22.8 km-1 14 

gully bank. Topographic position was an important control on the size and depth of pipe outlets.  15 

Aspect had a large influence on pipe outlet frequency, with southwest and west- facing gully banks 16 

hosting more than 43% of identified pipe outlets. Pipe outlets on streambanks with signs of headward 17 

retreat were significantly larger and closer to the peat surface compared to pipe outlets that issued 18 

onto uniform streambank edges. We suggest that larger pipe frequencies are observed on gully banks 19 

that are more susceptible to desiccation cracking, and propose that future peatland restoration works 20 

could prioritise mitigating against pipe formation by revegetating and reprofiling south and west 21 

facing gully banks. 22 

Keywords: piping, peatland, geomorphology, desiccation, degradation 23 
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Highlights: 24 

- Pipe outlets mostly occur on streambank edges parallel to the stream 25 

- At gully head retreat points, pipe outlets are large and close to the surface  26 

- Aspect is a strong control on pipe outlet frequency in degraded blanket bog 27 

- Pipe outlet frequency is associated with desiccation on gully edges 28 

 29 

1. Introduction 30 

Natural soil pipes have been recognised as common geomorphological and hydrological features of 31 

many environments (Baillie, 1975; Bryan and Jones, 1997; Chappell and Sherlock, 2005; Diaz, 2007; 32 

Verachtert et al., 2010). Soil pipes can sometimes transport large volumes of water, nutrients and 33 

sediment through hillslopes (Holden et al., 2012b; Nieber and Warner, 1991; Sayer et al., 2006). When 34 

pipes erode into large tunnels they can cause surface collapse and gullies can form along former pipe 35 

drainage lines (Bernatek-Jakiel and Poesen, 2018; Bryan and Yair, 1982; Marzolff and Ries, 2011; 36 

Valentin et al., 2005). Pipes have often been reported to occur at the head of gullies (Frankl et al., 37 

2012; Leopold, 1964) but pipe outlets can also be seen along streambanks (Jones and Cottrell, 2007). 38 

In the temperate humid zone, one of the most susceptible soils to piping is blanket peat (Jones, 1990). 39 

Peatlands are globally important carbon stores, holding up to one third to half of the world’s soil 40 

carbon (Yu, 2012). Most peatlands occur on very gentle gradient landscapes, but blanket peatlands 41 

can occur on terrain with slopes up to 20o and mainly occur in hyperoceanic regions such as eastern 42 

and western Canada, southern Alaska, southern New Zealand, Falkland Islands and the British Isles 43 

(Gallego-Sala and Prentice, 2013). Their sloping nature, coupled with a plentiful rainfall supply, makes 44 

blanket peatlands prone to rapid degradation and gully development if the surface vegetation is 45 

damaged (Bower, 1961; Evans and Warburton, 2007). 46 

Blanket peat covers 8% of the UK, mainly in the uplands, and is often found to depths of several 47 

metres. However, a significant portion of this peat cover is deeply eroded with extensive gullying 48 
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similar to badland erosion (Tallis, 1997). Possible causes of erosion include cutting of drainage ditches, 49 

overgrazing and prescribed rotational vegetation burning for the gun-sports industry (Parry et al., 50 

2014). However, in the southern Pennines of England, widespread peat erosion is most commonly 51 

ascribed to atmospheric deposition of acidic pollutants which, since the Industrial Revolution, has 52 

severely damaged peat forming mosses (Yeloff et al., 2006). The extent and severity of this erosion is 53 

high compared to elsewhere in the UK uplands, represents the loss of a major carbon store (Evans et 54 

al., 2006), and causes problems downstream including reservoir sedimentation (Labadz et al., 1991) 55 

and enhanced water discolouration, increasing treatment costs for potable supplies (Chow et al., 56 

2003; Fearing et al., 2004; Wallage et al., 2006).  57 

 58 

Due to concerns about habitat loss, downstream water quality and carbon loss, peatland restoration 59 

agencies have been actively undertaking measures to stabilise the peat, reduce erosion and re-60 

establish vegetation (O’Brien et al., 2007; Parry et al., 2014; Shuttleworth et al., 2015). However, there 61 

have been no adequate assessments of the role of piping in this context. In order to support peatland 62 

restoration decision-making, a better understanding of the frequency and characteristics of peat pipes 63 

in these severely degraded systems is required. Such information would be useful to peatland 64 

protection organisations who are considering whether and how to locate and block pipe outlets as an 65 

erosion control mechanism.  66 

 67 

Ground penetrating radar surveys conducted by Holden (2005), in a range of blanket peat catchments 68 

across the UK, suggested that the frequency of large pipes (>10cm diameter) was greater on flatter 69 

areas near summits and hillslope toes compared to steeper midslopes sections. These differences 70 

were attributed to the variability in the accumulation of peat across hillslopes, providing flatter 71 

surfaces with more heterogenous peat which may promote wandering pipe development. Such a 72 

pattern was unlike the distribution found in other piped environments where steeper slopes have 73 

been associated with enhanced piping due to larger hydraulic gradients (Gutierrez et al., 1997; Jones, 74 
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1981). However, it is not clear which patterns are found in extensively eroded and gullied peatlands. 75 

Holden (2005) found that pipe density was greater where ditch drainage occurred possibly due to 76 

locally enhanced hydraulic gradients (Terzaghi, 1943) and exposure of ditch edges to desiccation 77 

processes. Hence, it is thought that pipe density might be high in densely gullied blanket peat 78 

catchments. Soil cracking as a result of desiccation during dry summer periods has been considered a 79 

driver of pipe development (Gilman and Newson, 1980; Jones, 2004). Exposed blanket peat gully walls 80 

can frequently become cracked and desiccated (Burt and Gardiner, 1984). Given that gully incision in 81 

the south Pennines has been relatively recent, it may be possible to test for the desiccation effect by 82 

establishing whether there is more piping on south or westerly facing gully banks compared to the 83 

opposite side of the gully walls that face north or east. 84 

 85 

Soil pipes in blanket peatlands can occur at varying depths (Holden and Burt, 2002), where they can 86 

form complex undulating networks connecting shallow and deep sources of water (Holden, 2004). In 87 

peatland gully landscapes it is not yet known whether pipes are randomly distributed with peat depth, 88 

whether more occur near the peat surface or whether more pipes occur near the base of the peat at 89 

the interface between peat and the underlying substrate. Anderson and Burt (1982) reported the 90 

existence of deep and shallow pipes in the eroded Shiny Brook catchment of the south Pennines, but 91 

there was no systematic survey of pipes in the system. They also reported pipe diameters up to 50 92 

cm, but it is not clear whether heavily gullied peat systems are dominated by a few large diameter 93 

pipes, many smaller ones, or a mixture of both. Previous unpublished survey work on piping, 94 

conducted in part of the Upper North Grain catchment, a small peatland headwater catchment in the 95 

southern Pennines of England, identified pipes discharging water and dissolved organic carbon 96 

actively to streams, but there was not a complete picture of piping activity in the whole catchment 97 

(Goulsbra, 2010; Wallet, 2004). For peatland conservation practitioners such information would 98 

support their planning process and help with decision-making about the feasibility of carrying out 99 

targeted pipe blocking work as part of peatland restoration practice. 100 
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This paper reports on a survey of pipe outlets in a heavily degraded blanket peatland in the southern 101 

Pennines of England. It aims to: (1) determine the extent and size of soil pipe outlets found along 102 

gullies; (2) examine the relative roles of topographic position and stream bank aspect on pipe outlet 103 

frequency and pipe outlet characteristics; (3) suggest process mechanisms associated with controls 104 

on pipe outlet frequency that can be examined by further research; and (4) discuss the implications of 105 

findings for peatland restoration management.  106 

2. Methods 107 

2.1 Study site 108 

This research was conducted within the southern Pennines, on part of the National Trust High Peak 109 

Estate in the Peak District National Park, in northern England. The study catchment, Upper North Grain 110 

(UNG), is a small (0.49 km2) headwater catchment of the River Ashop which drains the slopes of both 111 

Bleaklow and Kinder Scout (Figure 1).  112 

 113 

Figure 1. Location of Upper North Grain catchment (red boundary) east of Manchester. The catchment drains into the river 114 

Ashop, along which the A57 road runs. 115 
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Upper North Grain has a mean annual rainfall of 1313 mm and a mean annual temperature of 6.9 °C 116 

(Clay and Evans, 2017), which fits a sub-Arctic oceanic climate. Located at an altitudinal range of 117 

between 467 and 540 m above mean sea level, with an overall south-southwest facing aspect, the 118 

pedology of UNG is dominated by blanket peat, being 4 m thick in places. Slope angles within the 119 

catchment vary between 0 and 15o, with the majority of the catchment (>80%) being between 0 and 120 

7o. Catchment aspect is dominated by southeast to northwest facing slopes, with the main surface 121 

water course flowing in a southwest direction. The vegetation is dominated by Eriophorum vaginatum, 122 

Eriophorum Augustifolium, Calluna vulgaris, Erica tetralix, Vaccinium myrtillus, Empetrum nigrum and 123 

patches of Sphagnum spp. The peat overlies sandstones of the carboniferous age Millstone Grit Series 124 

(Wolverson Cope, 1998). Separating the peat from the solid geology is a thin, discontinuous periglacial 125 

head deposit. The Bleaklow and Kinder Scout upland plateaus are amongst the most severely eroded 126 

peatland sites in the UK (Evans and Lindsay, 2010), and UNG is characterized by an extensive network 127 

of deep gullies which, in the lower reaches, cuts into the underlying bedrock. Peat deposition records, 128 

illustrating the growth behaviour of Racomitrium lanuginosum and Sphagnum spp. on both Holme 129 

Moss and Over Wood Moss, blanket peat catchments neighbouring UNG, indicated that the initial 130 

onset of erosion predates recent damage done by air pollution, land-use pressures and climate change 131 

and the peat system in the southern Pennines was already set in an 'erosion mode' (Tallis, 1995). The 132 

onset of peatland gully erosion in the southern Pennines correlates closely with climatic fluctuations 133 

in the Early Medieval Warm Period, when Racomitrium lanuginosum and Sphagnum spp. deposits first 134 

differed between uneroded and eroded sites (Tallis, 1995; Tallis, 1997).  135 

2.2 Data collection  136 

The primary goal of the survey was to assess the distribution of pipe outlets across the catchment and 137 

to collect data to determine spatial distributions of pipe outlet characteristics. Surveyors walked in 138 

pairs along the streambed of each gully in the upslope direction and identified pipe outlets by eye on 139 

streambanks, and recorded the geographical location of each pipe outlet using a hand-held GPS (e.g. 140 
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Garmin Etrex10). Pipe outlets were recorded 1) in gullies, which had two clear banks (left- and right-141 

hand side), and 2) at exposed edges of the peat margin, that faced the main drainage stem of the 142 

catchment (Figure 2 and 3). Both locations will hereafter be referred to as ‘streambank’. At each 143 

streambank the location of a pipe outlet was characterised as either occurring at: (1) the ‘edge’ where 144 

the streambank was broadly linear, without perpendicular headward incisions or (2) the ‘head’ where 145 

the streambank showed signs of headward retreat at the pipe outlet (Figure 2). 146 

For each pipe outlet four main characteristics were recorded: 1) the pipe outlet dimensions, 2) the 147 

distance from the roof of the pipe outlet to the top of the streambank, 3) the slope of the streambank 148 

adjacent to the pipe outlet, and 4) the sloping length of the streambank. The latter was measured as 149 

the distance along the slope of the streambank between the highest and the lowest point at the 150 

streambank adjacent to the pipe outlet. Pipe outlet dimensions were defined by the vertical (H) and 151 

horizontal (W) diameters, which were measured using a steel tape measure to the nearest 5 mm. 152 

Macropores smaller than 5 mm were ignored following the method of Holden et al. (2012a). The 153 

distance from pipe outlet roof to the top of the streambank was measured from the pipe roof to the 154 

boundary between the visible peat surface of the gully edge and the vegetation line, and was recorded 155 

to the nearest 5 mm. The slope of the streambank was measured by placing an inclinometer on its 156 

surface, measuring in the perpendicular direction of the stream. To further determine the relative 157 

position of each pipe outlet on the streambank, photographs were taken of each pipe outlet location 158 

(Figure 2). Twelve pipe outlet surveys were carried out at UNG over a 22-month period between 159 

December 2017 and September 2019. In order to sample different parts of the catchment, the survey 160 

was conducted on different days during the year, which may have resulted in some inconsistencies in 161 

the number of pipe outlets found in certain areas of the catchment due to daylight limitations, 162 

flooding in streams, or adverse weather conditions.  163 

2.3 Data processing 164 
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Table 1 describes the organization of the dataset used for analysis. Data preparation and processing 165 

was performed in ESRI ArcGIS Software suite 10.6. High-resolution LiDAR data recorded at a ground 166 

resolution of 0.5 m was used to produce a detailed digital terrain model (MFFP, 2014), which was used 167 

to delineate hydrological functions and terrain characteristics, including slope, aspect, flow direction, 168 

flow accumulation, stream raster, and the catchment boundary.  169 
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Table 1. Data frame showing selected parameters used in the analyses 170 

Object Feature Feature class File Type Attributes 

Catchment Surface  Raster,  

0.05 x 0.05 m 

Elevation, slope, aspect, flow direction, 

flow accumulation, stream raster, 

watershed area 

Streams Streambank Gully 

Peat margin  

Vector,  

polyline 

Length of streambank 

Pipe 

Outlet 

GPS Location Edge 

Head 

Vector,  

point feature 

Count, GPS coordinates, streambank 

slope (α), depth to pipe roof (DV), 

streambank height (DS), relative 

position (RP), flow contribution area 

(FCA) 

Shape Circular 

Horizontally lenticular 

Vertically lenticular 

Vector,  

point feature 

Count, vertical length (H), horizontal 

length (W), cross-sectional area 

Surface cover  Bare 

Non-bare (‘Vegetated’) 

Vector,  

point feature 

Count 

Aspect Slope direction  

(Flat, N, NE, E, SE, S, SW, 

W, NW) 

Vector,  

point feature 

Count 

 171 

To determine the actual depth of a pipe outlet at the gully bank, bank slope and the distance from the 172 

pipe roof to the gully edge were converted into a parameter describing the depth to pipe roof relative 173 

to the edge of the gully (Figure 3), which was derived as follows: 174 

𝐷𝑉 = sin (𝛼∙𝜋180) ∙ 𝐷0      [2] 175 
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where α is the slope of the streambank in degrees, and D0 represents the distance from pipe roof to 176 

peat surface measured over the streambank. For pipe outlets on banks with a slope of 90°, D0 was 177 

used for DV. To derive a value for streambank height, DS, equation 2 was modified as followed: 178 

𝐷𝑆 = sin (𝛼∙𝜋180) ∙ 𝑆𝐿      [3] 179 

where SL is the sloping length of the streambank in centimetres. To provide further insight about 180 

where pipes issue onto streambanks, the relative position between the gully edge and gully floor was 181 

determined for each pipe outlet by dividing DV by DS and subtracting this product from one. This 182 

provided a value range between 0 and 1, where 0 represents the level of the bottom of the gully and 183 

1 represents the level of the upper peat surface.    184 

The cross-sectional area of a pipe outlet was calculated using the surface area formula of an ellipsoid:   185 

𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 =  𝜋 ∙  𝐻 ∙ 𝑊     [4] 186 

where H is the vertical length of the pipe outlet (cm), and W is the horizontal length of the pipe outlet 187 

(cm). The cross-sectional area of pipes along streambanks was calculated as the sum of the cross-188 

sectional area of all pipe outlets per surveyed streambank length. For each pipe outlet the topographic 189 

upslope area that drained towards the pipe outlet was derived using the watershed tool in ArcGIS, 190 

hereafter referred to as flow contribution area (FCA) measured in m2. In this study, the cross-sections 191 

of pipe outlets were divided into three shape types: horizontally-lenticular or vertically-lenticular if 192 

one axis exceeded the other by more than 5 cm; and circular pipes if horizontal and vertical axes 193 

differed by less than 5 cm. Surface cover was determined by identifying bare areas from pixel 194 

classification of aerial photographs taken of UNG in June 2014 that were recorded at 8 cm pixel size 195 

(MFFP, 2014). A colour signature representing the various colouring shades of bare peat surfaces in 196 

the UNG catchment was used to produce a new raster at 10 cm cell size, detailing two feature classes: 197 

bare peat surface (bare) and non-bare surface. Non-bare surfaces contained rock outcrop, water 198 

bodies and vegetation. Projecting the layers of pipe outlet GPS location and cover information over 199 
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the aerial photographs, showed that most pipe outlets in non-bare areas actually occurred where 200 

there was a vegetation cover, and hereafter non-bare surfaces will be referred to as ‘vegetated’.  201 

The length of surveyed streambanks in gullies was derived from the length of the stream raster in 202 

ArcGIS. Since gullies had two streambanks on either side, the length of each gully was multiplied by 203 

two to arrive at the total length of surveyed streambanks in gullies. Some of the observed pipe outlets 204 

were located on the peat margin. The length of streambanks on the peat margin was extracted from 205 

the length of polylines drawn upon the aerial photographs in ArcGIS. The latter streambanks were all 206 

facing the main drainage stem of the catchment. The frequency of pipe outlets per total length of 207 

streambank was calculated as follows: 208 

𝑝𝑖𝑝𝑒 𝑜𝑢𝑡𝑙𝑒𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑛 ∙  (2 ∙ 𝑆𝑡𝑟𝑒𝑎𝑚 𝑅𝑎𝑠𝑡𝑒𝑟 + 𝑃𝑜𝑙𝑦𝑙𝑖𝑛𝑒 )−1  [5] 209 

where n represents the total number of pipe outlets (dimensionless), stream raster and polyline are 210 

in meters as the sum of the lengths for their respective streambank types. Pipe outlets were surveyed 211 

along a total of 15.16 km streambank. 212 
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  213 

Figure 2. Diagram showing schematic representation of survey locations and pipe outlet locations: a. locations at which pipe 214 
outlets have been surveyed; in gullies (1) and along the peat margin (2); b. edge locations and c. head locations. Streambanks 215 
were defined as the area covering one gully wall and its adjacent peat surface (3).  216 

To determine where hotspots of pipe outlets occurred in the catchment, a kernel density map was 217 

constructed using the pipe outlet locations as input data. Areas with high kernel density were further 218 

analysed by sampling the sum of pipe outlets over a length of streambank inside sample polygons of 219 

100 m x 50 m. In this way, for each polygon the pipe outlet frequency was calculated per km 220 

streambank. In Figure 3 the sample polygon with the highest value of pipe outlet frequency is indicated 221 

with a red line. This area depicts the maximum pipe outlet frequency in the catchment recorded over 222 

at least 200 m of streambank, denoted as pipe outlets per km streambank. 223 

Normality tests were performed for all variables and showed non-normal distributions. Data 224 

transformation did not result in normal distributions and therefore non-parametric tests were 225 
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conducted using Mann-Whitney U tests, Spearman’s Rank and Chi-squared in IBM SPSS Statistics 226 

version 26.  227 

3. Results 228 

3.1 Frequency of piping 229 

A total of 346 pipe outlets were identified, of which 336 pipe outlets occurred at streambanks in 230 

gullies, while 10 pipe outlets occurred on the peat margin. A total of 88 pipe outlets were found at 231 

head locations, and 258 pipe outlets were found at edge locations. The mean pipe outlet frequency 232 

was 22.8 per km streambank. Sampling in areas with a high kernel density for pipe outlets resulted in 233 

a maximum pipe outlet frequency of 91 per km streambank (Figure 3), located in the middle part of 234 

the catchment in a wide and deeply eroded gully. 235 

 236 

Figure 3. Map showing surveyed streambanks with identified pipe outlets, superimposed on a hillshade map of the 237 

catchment. A kernel density map was produced to indicate hotspots of pipe outlet frequency across the catchment, ranging 238 

from low to high (indicative). Rectangular polygons indicate areas of interest to determine the maximum pipe outlet 239 
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frequency in the catchment. The polygon that is outlined in red indicates the location with the highest estimated pipe outlet 240 

frequency. Contour lines run between 490 and 530 m, with 10 m interval. The highest point in the catchment is at 539.9 m 241 

above mean sea level. 242 

3.2 Pipe outlet locations 243 

More than half of the pipe outlets were identified at elevations between 515 m and 525 m (Figure 4), 244 

which covers an area with wide and deep gullies (Figure 3). Edge and head locations were significantly 245 

different across elevation (U = 15143.5, p < 0.001), with median elevation of 519.5 m (edge) and 523.6 246 

m (head) respectively (Figure 4). The pipe outlets that were identified at streambanks on the peat 247 

margin were mostly found at the interface of the organic layer and the mineral bedrock, whereas the 248 

pipe outlets at streambanks in gullies were generally found in the peat profile (Figure 2 and 5). 249 

 250 

Figure 4. Bar diagram showing the distribution of pipe outlets by elevation in the catchment. 251 

Streambank slope was determined for 197 edge locations and 40 head locations. Slopes of 252 

streambanks ranged from 3o to 87o with a median of 40o. Depth to pipe roof (DV) ranged from 199 cm 253 

to 0 cm, with a median of 44 cm. Pipe outlets on head locations were found significantly closer to the 254 

surface (median DV = 20 cm) compared to pipe outlets in gully edge areas (median DV = 49 cm) (DV 255 

Mann-Whitney U = 1548, p < 0.001). Overall, depth to pipe roof had weak but significantly negative 256 
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relationships with vertical length (rs(235) = -0.226, p < 0.001), horizontal length (rs(235) = -0.174, p = 257 

0.007), and cross-sectional area (rs(235) = -0.217, p = 0.001).  258 

The streambank height (DS) was determined for 190 edge locations and 22 head locations. There was 259 

no difference in streambank height between edge locations and head locations (U= 1781.5, p = 0.257) 260 

but the relative position of pipe outlets was different across location (U=3419, p < 0.001), with a 261 

median of 0.80 for edge locations compared to a median of 0.95 for head locations. A Spearman's 262 

rank-order correlation showed that depth to pipe roof and streambank height had a positive 263 

correlation at edge locations at p < 0.001 (rs(188) = 0.350), whereas no significant correlation was 264 

found at head locations (rs(20) = 0.307, p = 0.165) (Figure 5). 265 

 266 

Figure 5. Scatter plot showing depth to pipe roof against streambank height for pipe outlets at edge and head locations.  267 

  268 
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3.3 Pipe outlet shape and size 269 

There were 227 circular pipe outlets (c) (185 edge, 42 head), 10 horizontally lenticular pipe outlets 270 

(h)(5 at each location), 79 vertically lenticular pipe outlets (v)(52 edge, 27 head). Vertical length ranged 271 

from 1 to 90 cm, with a median of 8 cm. The horizontal length ranged 1 to 60 cm and had a median of 272 

5 cm. Cross-sectional area of pipe outlets ranged from 3 cm2 to 7539 cm2, with a median of 119 cm2. 273 

The total cross-sectional area of pipe outlets in the catchment was 110,477 cm2, which translates to a 274 

density of piping along streambanks of 0.73 m2 km-1. Figure 5 shows that pipe outlets at head locations 275 

are particularly concentrated near the surface. Within head locations pipe outlets issuing at the head 276 

of gullies occurred significantly closer to the surface compared to pipe outlets at head locations 277 

elsewhere in the catchment, with medians of 5.1 cm and 22.9 cm respectively (Mann-Whitney U = 68, 278 

p = 0.020). Such differences were not found for cross-sectional area. 279 
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 280 

Figure 6. Box plots showing the effects of location in the gully on: A) bank slope (degrees), B) depth to pipe roof (cm) and C) 281 

cross-sectional area of pipe outlets (cm2), for location (E: edge; H: head) and shape type (c: circular; h: horizontally 282 

lenticular; v: vertically lenticular). The boxes show the interquartile range between Q1 and Q3, with the median indicated 283 

within the boxes as a black horizontal line. The whiskers indicate the lowest and highest values that are still within the 284 

range: [Q1 - 1.5 * (Q3 - Q1)] and [Q3 + 1.5 * (Q3 - Q1)]. Different superscript letters indicate significant difference (p < 0.05) 285 

compared with the other location and shape combinations. 286 
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Values for streambank slope and depth to pipe roof were determined for 175 circular pipe outlets 287 

(154 edge, 21 head), 9 horizontally lenticular pipe outlets (4 edge, 5 head), and 53 vertically lenticular 288 

pipe outlets (39 edge, 14 head). Figure 6a shows the distribution of streambank slope for pipe outlets 289 

by location and shape type, with median values of streambank slope per shape type at edge locations 290 

(Ec = 40 ˚, Eh = 40 ˚, and Ev = 42 ˚) and head locations (Hc = 35 ˚, Hh = 25 ˚, Hv = 27.5 ˚). Vertically 291 

lenticular pipe outlets had significantly different distributions of streambank slope across categories 292 

of location (U = 147.5, p = 0.011). Distributions of streambank slope for circular (U = 1532.5, p = 0.695) 293 

and horizontally lenticular (U=8, p = 0.730) pipe outlets did not differ between locations. On edge 294 

locations there was no difference in the distributions of streambank slope across shape types: Ec 295 

versus Ev (U = 3494.5, p = 0.111), Ec versus Eh (U = 282.5, p = 0.775) and Eh versus Ev (U = 101, p = 296 

0.361). At head locations the difference in streambank slope between Hc and Hv had a weak 297 

significance at p < 0.1 (U = 97.5, p = 0.096), but streambank slopes did not differ between Hc and Hh 298 

(U = 38, p = 0.374), and Hh and Hv (U = 29.5, p = 0.622) (Figure 6a).   299 

Figure 6b shows the distribution of depth to pipe roof for pipe outlets by location and shape type, with 300 

median values of depth to pipe roof per shape type at edge locations (Ec = 51.6 cm, Eh = 59.1 cm, and 301 

Ev = 39.8 cm) and at head locations (Hc = 20.0 cm, Hh = 31.7 cm, Hv = 7.3 cm). The distribution of 302 

depth to pipe roof of circular pipe outlets was significantly different across categories of location (U = 303 

540.5, p < 0.001). The distribution of depth to pipe roof of vertically lenticular pipe outlets was 304 

significantly different across categories of location (U = 108.5, p = 0.001) (Figure 6b). The distributions 305 

of depth to pipe roof of horizontally lenticular pipe outlets did not differ across location (U = 8, p = 306 

0.730) (Figure 6).  At head locations there was no difference in the distributions of depth to pipe roof 307 

across shape types: Hc versus Hv (U = 112.5, p = 0.249), Hc versus Hh (U = 67, p = 0.374) and Hh versus 308 

Hv (U =20.5, p = 0.186) (Figure 6b). At edge locations the difference in depth to pipe roof between Ec 309 

and Ev had a weak significance at p < 0.1 (U = 2408.5, p = 0.056). Depth to pipe roof did not differ 310 

between Ec and Eh (U = 345.5, p = 0.678), and Eh and Ev (U = 60, p = 0.479) (Figure 6b).   311 
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The cross-sectional area of pipe outlets was determined for 227 circular pipe outlets (edge = 185, 312 

head = 42), 10 horizontally lenticular pipe outlets (5 per location), and 79 vertically lenticular pipe 313 

outlets (edge = 52, head = 27). The cross-sectional area of pipe outlets was significantly larger at head 314 

locations with a median cross-sectional area of 292.2 cm2 compared to pipe outlets at edge locations 315 

which had a median cross-sectional area of 88.0 cm2 (U = 12048.5, p < 0.001). Overall, circular pipe 316 

outlets had significantly smaller cross-sectional areas with a median of 75.4 cm2 compared to 351.9 317 

cm2 for vertically lenticular pipe outlets (U = 15028.5, p < 0.001) and 596.9 cm2 for horizontally 318 

lenticular pipe outlets (U = 2073, p < 0.001), whilst the latter two had similar distributions of cross-319 

sectional area (U = 258.5, p = 0.076).  320 

Figure 6c shows the distribution of cross-sectional area of pipe outlets by location and shape type, 321 

with median values per shape type at edge locations (Ec = 66.0 cm2, Eh = 867.1 cm2, and Ev = 340.9 322 

cm2) and head locations (Hc = 157.1 cm2, Hh = 326.7 cm2, Hv = 351.9 cm2). The distribution of cross-323 

sectional area of circular pipe outlets was significantly different between categories of location (U = 324 

5425, p < 0.001). No difference was found in distribution of cross-sectional area between locations for 325 

horizontally lenticular (U = 5, p = 0.151) and vertically lenticular (U = 708, p = 0.951) pipe outlets. The 326 

distribution of cross-sectional area of circular and vertically lenticular pipe outlets were significantly 327 

different from each other at edge locations (U= 8395.5, p < 0.001) and at head locations (U=804.5, p 328 

= 0.003). The distribution of cross-sectional area of circular and horizontally lenticular pipe outlets 329 

were significantly different from each other at edge locations (U=895, p < 0.001), and at head 330 

locations, but only at p < 0.1 (U=160, p = 0.058). The distribution of cross-sectional area of vertically 331 

and horizontally lenticular pipe outlets was significantly different from each other at edge locations 332 

(U=50.5, p = 0.021), but not at head locations (U=66, p = 0.960).  333 

3.4 Relationship between pipe outlets and surface contributing area 334 
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The FCA was determined for 346 pipe outlet locations. The median FCA for pipe outlet locations was 335 

1 m2. There was no significant difference in FCA between head and edge locations (U = 10488, p = 336 

0.283) and no significant relationship between the cross-sectional area of pipe outlets and FCA.  337 

3.5 Relationship between pipe outlets and aspect 338 

Aspect was determined for 346 pipe outlets.  A chi square goodness of fit test showed that aspect was 339 

a significant factor controlling the distribution of pipe outlets (χ2(8) = 141.7, p < 0.001). For each of 340 

eight aspect categories, 38.4 pipe outlets were expected, but the observed count was larger for 341 

streambanks  facing southwest (n = 76) and west (n = 76), which in total account for 43.9% of the pipe 342 

outlets. The rest of the pipe outlets faced north (n = 11), northeast (n = 16), east (n = 40) and south 343 

east (n = 41), south (n = 44), and northwest (n = 40). Two pipe outlets were found on flat surfaces 344 

(Figure 7). 345 

  346 

Figure 7. Stacked bar chart showing number of pipe outlets against aspect, stacked by cover type. 347 

Post hoc pair wise chi square comparison showed that the number of pipe outlets was significantly 348 

different for north versus south (χ2(1)= 19.8, p < 0.001), north east versus south west (χ2(1) = 39.1, p 349 

< 0.001), and east versus west (χ2(1) = 11.2, p = 0.001). The distribution of pipe outlets was assumed 350 

to be the same between south east and north west facing streambanks (χ2(1) = 0.012, p = 0.912). 351 
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Table 2. Results of Mann-Whitney U independent sample tests on the distributions of depth to pipe roof (DV) and cross-352 

sectional area across categories of location for classes of aspect. Fields marked with a dash indicate missing data in either 353 

edge or head locations, hence comparisons were not performed.  354 

  Differences between edge and head locations  

 Depth to pipe roof (DV) Cross-sectional area 

aspect MW-U P - value n MW-U P - value n 

flat -   -   

north -   -   

northeast 2.0 0.121 12 9.5 0.500 16 

east 34.0 0.580   32 86.5 0.968 40 

southeast 21.0  0.188 23 139.0 0.424 35 

south 25.0 0.001 28 272.0 0.019 39 

southwest 58.5  < 0.001 50 734.0 < 0.001 66 

west 67.5  0.041 52 564.0 0.008 72 

northwest 24.0 0.126 28 106.0 0.428 35 

 355 

On streambanks with southerly, southwestly and westerly aspects, pipe outlets at edge locations were 356 

found significantly deeper compared to pipe outlets at head locations with the same aspect, at p < 357 

0.05 (Table 2). On streambanks facing south, southwest and west, the cross-sectional area of pipe 358 

outlets at edge locations was significantly smaller compared to pipe outlets at head locations with the 359 

same aspect, at p < 0.05 (Table 2).  360 

3.6 Surface cover and pipe outlets 361 

A total of 202 pipe outlets occurred where there was a bare surface (edge = 177, head = 25) with 144 362 

pipe outlets where there was vegetation (edge = 81, head = 63). The distribution of depth to pipe roof 363 
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was the same across classes of surface cover in both edge locations (U = 3538.5, n = 197, p = 0.056) 364 

and head locations (U = 126.5, n = 40, p = 0.159) (Figure 8). 365 

On bare surfaces, the distribution of depth to pipe roof was significantly different across categories of 366 

location (U = 433.0, n = 146, p = 0.003), with a median of 51.6 cm for edge locations and 22.9 cm for 367 

head locations (Figure 8). On vegetated surfaces, the distribution of depth to pipe roof was 368 

significantly different across categories of location (U = 330.5, n = 91, p < 0.001), with a median of 42.4 369 

cm for edge locations and 10.0 cm for head locations (Figure 8). 370 

 371 

Figure 8. Box plots showing the distribution of depth to pipe roof (cm), grouped by location (E: edge; H: head) and surface 372 

cover (bare; vegetated). The boxes show the interquartile range between Q1 and Q3, with the median indicated within the 373 

boxes as a black horizontal line. The whiskers indicate the lowest and highest values that are still within the range: [Q1 - 1.5 374 

* (Q3 - Q1)] and [Q3 + 1.5 * (Q3 - Q1)]. Different superscript letters indicate significant difference (p < 0.05) compared with 375 

the other location and surface cover class combinations. 376 

The distribution of cross-sectional area across categories of surface cover type was assumed to be the 377 

same in both edge locations (U = 7081.0, n = 248, p = 0.213) and head locations (U = 626, p = 0.523). 378 

Cross-sectional area was significantly different across categories of location in both classes of surface 379 

cover. In bare surface areas (U = 2374.5, n = 190, p = 0.030) edge pipes had a median cross-sectional 380 

area of 88.0 cm2 (edge) which was significantly smaller in size compared to pipe outlets in head 381 

locations (219.9 cm2). A similar pattern was observed for pipe outlets at vegetated surfaces (U = 382 
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2570.0, n = 126, p = 0.001), with median values of 94.2 cm2 for edge locations and 304.7 cm2 for head 383 

locations.  384 

A Chi square goodness of fit test indicated that the occurrence of pipe outlets was significantly 385 

different across classes of aspect for areas with a bare surface (χ2 (8) = 97.9, p < 0.001) and areas with 386 

a vegetated surface (χ2 (7) = 79.4, p < 0.001) (Figure 7). Bare surfaces that were facing west (n = 57) 387 

had markedly more pipe outlets than bare surfaces at other aspects. Vegetated surfaces that were 388 

facing south (n = 31) and southwest (n = 44) had markedly more pipe outlets than vegetated surfaces 389 

at other aspects.  390 
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4. Discussion 391 

4.1 Pipe outlet frequency 392 

The pipe outlet frequency in UNG (22.8 km-1 streambank) was slightly larger in comparison to the 393 

average pipe outlet frequency of 19.7 km-1 streambank across 160 blanket bog sites reported in 394 

Holden (2005). Table 3 shows that UNG has a relatively high pipe outlet frequency when compared to 395 

other blanket peat study catchments. One of the first surveys that looked specifically at the frequency 396 

of pipes in streambanks was conducted on the streambanks of Burbage Brook in the Peak District 397 

(podzol site) with 184 km-1 over 3 km of streambank in 1968 (Jones, 1975), and a resurvey in 2003 398 

resulted in 134 km-1 over 500 m streambank (Jones and Cottrell, 2007). Other studies on piping 399 

reported values from Welsh catchments of 36 km-1 and 56 km-1, respectively, for Cerrig yr Wyn and 400 

Nant Gerig (Gilman and Newson, 1980) and 80 km-1 for Afon Cerist (Jones, 1975). It should be noted 401 

that pipe outlets found in UNG were not like those in the Welsh studies where pipes were commonly 402 

disconnected from the stream and were found at breaks of slope on the hillside often coinciding with 403 

changes in soil type. The Welsh pipe systems were also characterised by pipes found at the base of 404 

the organic soil horizon. More recent examples in deep peat catchments in the north Pennines include 405 

9.5 km-1 at Little Dodgen Pot Sike (Holden and Burt, 2002), and 36.6 km-1 (August 2007) and 31.7 km-1 406 

(April 2010) at Cottage Hill Sike (Holden et al., 2012a). However, none of the above studies in Welsh 407 

and North Pennine uplands mentioned the total length of their survey transects, nor the methods that 408 

were used for calculating the pipe outlet frequency per length of streambank, and so a fair comparison 409 

between studies is difficult to undertake. 410 
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Table 3. Identified frequency of piping in UNG compared to other selected piped sites (after Holden and Burt (2002) - calculated using source data from papers and topographic maps). 411 

Catchment Soil type  Pipe 

frequency 

(km-1  

stream 

bank) 

Cross- 

sectional  

area of pipes  

(m-2 km-1 

Streambank) 

Mean  

diameter  

of pipes  

(cm) 

Mean  

annual  

ppt  

(mm)  

Mean  

altitude  

(m) 

Mean  

main  

stream  

slope  

(*) 

Mean  

valley  

side  

slope  

(*) 

UNG blanket peat 22.8 0.73 10.5 1314 521 9.06 7.22 

Cottage Hill Sike, North Pennines 

(Holden et al., 2012a) * 

blanket peat 31.69 0.308   563  5 

160 blanket bog sites across UK  

(Holden, 2005) 

blanket peat 19.7 0.556      

Burbage Brook, Peak District  

(Jones and Cottrell, 2007) 

humo-ferric 

podzols 

168 1.037 7.1 1019.4b 330   

Little Dodgen Pot Sike, North Pennines 

(Holden and Burt, 2002) 

blanket peat 9.5 0.026 19 2000 540 2.2 3 

Maesnant, Cambria  histic podzols 14.5 0.656 10a 2200 541 8.1 9.5 



  Taco Regensburg 

Page 26 of 35 

 

(Jones and Crane, 1984) 

Cerrig yr Wyn, Cambria  

(Gilman and Newson, 1980) 

 56  5 2200 472 10.3 9 

Nant Gerrig, Cambria  

(Gilman and Newson, 1980) 

 36  10 2200 495 4.4 9 

Burbage Brook, Peak District  

(Jones, 1975) 

humo-ferric 

podzols 

89 0.554 9 983.6b 150 2 10.2 

a: 10 cm (ephemeral), 24 cm (perennial) 

b: as presented in Jones and Cottrell (2007) 

*: only observations included of survey in 2010 

 412 
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4.2 Location of pipe outlets 413 

This study showed that pipe outlets were mostly concentrated in mid- and footslope areas of UNG 414 

while Holden (2005) found topslopes had greater pipe frequencies than footslopes which in turn had 415 

more pipes than midslopes. However, Holden’s (2005) work was conducted using hillslope GPR grid 416 

surveys rather than observational surveys of pipe outlets on gully and streambanks which was the 417 

focus of the UNG work reported here, so the two surveys are not directly comparable. The occurrence 418 

of pipe outlets in UNG differed greatly between edge and head locations. Figure 3 showed that pipe 419 

outlets at head locations were, unsurprisingly, mainly found near the top of the catchment, and pipe 420 

outlets at edge locations occurred more frequently at lower elevations in UNG. Topslope segments in 421 

UNG consist of shallow channels that run within the peat profile, whilst sections at lower elevation 422 

are more characterized by deep gullies that have shallow tributaries. Bower (1961) suggested gullies 423 

in blanket peatlands mature from shallow, narrow channels within the peat to form wider, and deeply 424 

eroded, channel forms, by slumping of gully sides and collapse of pipe roofs. Heede (1976) proposed 425 

that pipes disconnect from the surface at a young age, but resurface when they have grown old, as 426 

they may be too large to sustain the full support of their roof, with roof collapse as a result. Height 427 

measurements of streambanks in the mid- and footslope sections of UNG suggest those peat profiles 428 

to be of considerable age, but this study demonstrated that the majority of pipe outlets occurred in 429 

the upper half of the streambank profiles (Figure 5). Here, the absence of pipe outlets near the bottom 430 

of streambanks suggests piping to be a secondary eroding agent at streambanks. Sample polygons 431 

that covered areas with a high kernel density were mainly populated by pipe outlets at edge locations 432 

(Figure 3). Daniels et al. (2008) showed that water table levels in UNG drop to larger depths and more 433 

frequently at gully sides than in intact bog further away from the gully. Where water tables are 434 

lowered in consecutive years permanent cracks may form in the peat, that provide new routes for 435 

bypass flow, thus leading to pipeflow and piping (Holden, 2006). Examples from drylands suggest that 436 

when gullies incise deeper than the pipe outlet, increases of the hydraulic gradient can occur, which 437 

then promotes the development of more soil pipes upslope (Swanson et al., 1989). We found pipe 438 
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outlets predominantly on streambanks that face towards the sun and prevailing wind direction (west 439 

southwest – (Clay and Evans, 2017)), and those pipe outlets occurred more at edge locations, which 440 

sat deeper in the profile and were smaller than pipe outlets at head locations with the same aspect. 441 

Moreover, edge locations in unvegetated (bare) areas hosted more and smaller pipe outlets than pipe 442 

outlets on head locations in bare areas. Over the summer of 2018 prolonged drought caused peat to 443 

crack open to depths of 40 cm at places across UNG. Cracks that were observed at south, southwest 444 

and west-facing streambanks had not fully filled in by September 2019 as many of these cracks were 445 

still visible. Desiccation-stress cracking can induce a form of piping called sapping (Parker and Jenne, 446 

1967), which refers to the mass failure or slumping resulting from undercutting of an embankment by 447 

seepage erosion (Fox and Wilson, 2010), followed by mass movement in the subsurface (subsidence) 448 

(Baillie, 1975). This evidence supports the idea that the occurrence of soil piping at edge locations is 449 

associated with the incidence of desiccation cracking as is observed on gully sides (Gilman and 450 

Newson, 1980; Holden, 2006).  451 

4.3 Size and shape of pipe outlets 452 

Table 3 summarizes, for a number of selected studies, the cross-sectional area per length of 453 

streambank. With 0.73 m2 km-1 streambank UNG had a markedly greater surface occupied by pipe 454 

outlets than the average of 0.556 m2 km-1 observed across 160 UK blanket bog sites (Holden, 2005). 455 

UNG ranks also higher than deep peat sites in the North Pennines, e.g. 0.026 m2 km-1 at Little Dodgen 456 

Pot Sike (Holden and Burt, 2002) and 0.35 m2 km-1 at Cottage Sike Hill (Holden et al., 2012a), which 457 

were both recorded in catchments that have naturally revegetated with slope-channel decoupling as 458 

a result (Evans et al., 2006; Holden and Burt, 2002; Holden et al., 2012a). UNG is considered to be still 459 

in an active eroding phase (Evans et al., 2006).  460 

While pipe outlets in UNG were often found just downslope of surface depressions, most pipe outlets 461 

on streambanks seem disconnected from upstream overland flow routes. The cross-sectional area of 462 

pipe outlets was not related to topographic contribution area for each pipe outlet, corroborating 463 
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findings of other piping studies in blanket peatland that suggest surface topography is not a suitable 464 

guide to pipe contributing area (e.g. Goulsbra (2010), Jones (2010), and Smart et al. (2013)). 465 

Jones and Cottrell (2007) noted that vertically lenticular cross-sections suggest active downcutting, 466 

whereas horizontally-lenticular outlets suggest that pipe floor erosion is being inhibited by a less 467 

erodible soil horizon. We found only 3.2% of pipe outlets in UNG were horizontally-lenticular, which 468 

were found throughout the depth profile, and 25% of pipe outlets were vertically-lenticular, which 469 

were significantly closer to the surface than circular pipe outlets, suggesting that active downcutting 470 

of pipe outlets is occurring. However, no evidence was found that horizontally and vertically lenticular 471 

pipe outlets differ in cross-sectional area. The most common pipe outlet shape was circular (71.8%) 472 

which tended to be significantly smaller than elongated pipe outlets, whereas Holden et al. (2012a) 473 

found the opposite in the North Pennines. This suggests that pipe outlet shapes in UNG are distributed 474 

differently compared to other peatland sites, but factors that cause this effect need further research. 475 

4.4 Implications for peatland restoration  476 

The survey presented here was carried out to assess the extent and occurrence of piping in UNG, to 477 

provide evidence for peatland restoration practitioners who are interested in pipe blocking as an 478 

erosion mitigation measure. We have shown that natural soil piping is a common phenomenon in 479 

heavily degraded blanket peatland. While there are no tested guidelines for soil and water 480 

conservation measures to target soil piping in peatland environments, some ideas have been put 481 

forward in other environments (e.g.  Frankl et al. (2016)) but have not yet been tested in the field. One 482 

of the key challenges that our work has identified is that topography alone is a poor guide to likely 483 

flow from pipe outlets as there was no relation between pipe size and upslope surface contributing 484 

area, and the mean pipe contributing area was an unrealistic 1 m2. Therefore, prioritising which pipe 485 

outlets to target for blocking based on topographic maps will not be useful. In addition, it should be 486 

noted that piping is found in most blanket peatlands (Holden, 2006). Therefore, the idea of blocking 487 

all pipes in a catchment as part of restoration efforts may not be reasonable given that pipes are part 488 
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of a natural state.  An alternative option for practitioners is the use of existing practices that may help 489 

to prevent the initiation of new pipes on south and west facing edge locations. Such practices include 490 

gully reprofiling and subsequent revegetation or protective covering of exposed peat (Parry et al., 491 

2014). Reprofiling of gullies aims to reduce the slope of gully sides, thereby eliminating factors that 492 

promote sheet and rill erosion and potentially reducing strong hydraulic gradients that may encourage 493 

pipe sapping. Revegetation of bare surfaces may lower overland flow velocities (Holden et al., 2008), 494 

cool the peat surface (Brown et al., 2016) and help retain moisture in the peat reducing the risk of 495 

desiccation. This revegetation and reprofiling may be particularly important on south to west facing 496 

gully sides to reduce the risk of new pipe development. 497 

 498 

5. Conclusions 499 

This paper provided the first published survey of natural pipe outlets in a heavily eroded blanket 500 

peatland. Pipes were common features of the landscape. The analysis showed that:  501 

1) the location in the catchment is a strong control of the frequency, size, shape and depth of 502 

pipes issuing onto streambanks, with significantly more pipes at edge locations than at head 503 

locations,  504 

2) topographic contribution area is not a suitable surrogate for actual pipe contributing area; 505 

3) aspect of gully banks had a strong influence on pipe outlet frequency with 43% of the pipe 506 

outlets observed on southwest and west facing streambanks, particularly in deeply eroded 507 

gullies;  508 

4) desiccation-cracking is identified as a possible control for pipe outlet frequency, which may 509 

inform a different approach to piping in future peatland restoration plans.   510 

Gully restoration in blanket peatlands is being applied on a large scale but the approach has not yet 511 

included mitigation of pipe development as a key feature. Our results suggest that such an approach 512 

warrants attention.  513 
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