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ゲ科 |科INTRODUC TION

Among the most economically damaging agricultural weeds are 

parasitic plants belonging to the family Orobanchaceae (Joel et al., 

2007). The most agriculturally damaging weed genera in this family 

are Striga, Rhamphicarpa and Alectra species in sub-Saharan Africa 

(SSA) and Orobanche and Phelipanche species in the Mediterranean 

region, eastern Europe and north Africa (Mohamed et al., 2006; 
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Abstract
The parasitic weed genus Striga causes huge losses to crop production in sub-Saharan 

Africa, estimated to be in excess of $7 billion per year. There is a paucity of reliable 

distribution data for Striga; however, such data are urgently needed to understand 

current drivers, better target control efforts, as well as to predict future risks. To 

address this, we developed a methodology to enable rapid, large-scale monitoring of 

Striga populations. We used this approach to uncover the factors that currently drive 

the abundance and distribution of Striga asiatica in Madagascar. Two long-distance 

transects were established across the middle-west region of Madagascar in which 

S. asiatica abundance in fields adjacent to the road was estimated. Management, crop 

structure and soil data were also collected. Analysis of the data suggests that crop 

variety, companion crop and previous crop were correlated with Striga density. A 

positive relationship between within-field Striga density and the density of the near-

est neighbouring fields indicates that spatial configuration and connectivity of suit-

able habitats is also important in determining Striga spread. Our results demonstrate 

that we are able to capture distribution and management data for Striga density at a 

landscape scale and use this to understand the ecological and agronomic drivers of 

abundance. The importance of crop varieties and cropping patterns is significant, as 

these are key socio-economic elements of Malagasy cropping practices. Therefore, 

they have the potential to be promoted as readily available control options, rather 

than novel technologies requiring introduction.
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Spallek et alsp ゴグゲザq Parkerp ゴグゲザｫs Of the suite of economica旭旭y signifi-
cant parasitic weeds, the genus Striga is among the most problematic 

(Mohamed et alsp ゴググ葦q Parkerp ゴググゾｫs The genus comprises over ザグ 
recognised species, with the greatest damage caused by Striga her-

monthica (Del.) Benth and Striga asiatica (L) Kuntze (Mohamed et al., 

2001). This is due to the significant economic losses caused by these 

two species to a staple cereal crops grown in SSA (Runo and Kuria, 

2018). The Striga problem is recognised as an increasingly serious 

limiting factor on crop production in SSA, primarily affecting rural 

smallholder farmers (Cairns et al., 2012; Parker, 2012). Reductions 

in fallow periods and increased monocropping deplete soil organic 

matter and nitrogen and increase soil erosion, creating conditions 

favourable for the proliferation of Striga (Franke et al., 2006; Parker, 

2012).

Striga has resu旭ted in reported yie旭d 旭osses of rice between ザズ鯵 
and 芦グ鯵 ｪRodenburg et alsp ゴグゲ葦ｫp 旭osses of sorghum between ズグ鯵 
and ゲググ鯵 ｪAbunyewa and Padip ゴググザｫ and 旭osses of maize between 
ゴゲ鯵 and ゼジ鯵 ｪDe Grootep ゴググゼｫs Estimates of economic 旭osses 
from Striga range between ﾄゲゲゲ and ﾄザググ mi旭旭ion per year for rice 
(Rodenburg et alsp ゴグゲ葦ｫ and ﾄザ芦ザ for maize ｪWoomer and Sava旭ap 
ゴググ芦ｫs Estimates of areas affected vary between ズグ and ゲググ mi旭-
lion ha annually (FAO, http://www.fao.org/). The uncertainty rep-

resented by this variance in estimated extent reveals that robust 

methods for estimating the spatial extent of infestations are lacking.

Resistance of host crops has long been identified as a key man-

agement tool for control of Striga (Scholes and Press, 2008; Hearne, 

2009). Ongoing research is being conducted on resistance in rice, 

specifically the NERICA (NEw RIce for Africa) group of varieties. 

Broad variation in the resistance of NERICA varieties to S. asiatica 

has been demonstrated from laboratory experiments by Cissoko 

et al. (2011) and in field trials by Rodenburg et als ｪゴグゲズp ゴグゲゼｫs
Recent work undertaken by Randrianjafizanaka et al. (2018) in 

Madagascar indicates the potential importance of cropping prac-

tices and rice variety in the management of S. asiatica. NERICA-9 

and NERICA-4 reduced S. asiatica infection 旭eve旭s by ズゼ鯵 and ゾゲ鯵p 
respectively, compared with levels of infection on variety B22. In 

addition, S. asiatica densities were reduced by ゴグ and 葦グ鯵 in maize 
grown after planting NERICA-9 and NERICA-4, respectively, com-

pared to B22. In the same study, intercropping with legumes (Vigna 

unguiculata, Mucuna pruriens, Vigna umbellata and Stylosanthes guian-

ensis) resulted in significant reductions in S. asiatica infection levels 

and delays in emergence.

Upland rainfed rice in Madagascar is sown directly following till-

age and is grown as a mono-crop or in a mixture with other food 

crops. Farmers generally do not have access to inorganic fertilisers 

or herbicides, and weeding is done manually. Therefore, Striga man-

agement options available to farmers are limited to cropping prac-

tices and use of suitable varieties.

It is hypothesised that leguminous crops reduce levels of Striga 

germination via nitrogen fixation, causing germination or Striga 

without host root attachment, or that they alter soil surface con-

ditions to interfere in germination (Khan et al., 2002). Continuous 

monocropping without rotation has been shown to increase levels 

of infestation and build ups of Striga seed within the soil seedbank 

(Ejeta, 2007).

Successful management of any weed relies on strong predictive 

systems, underpinned by accurate distribution data, together with 

a sound understanding of the ecological niche of the target species 

(Mohamed et al., 2006). The variance and reliability of estimates of 

the geographic extent of Striga is a knowledge gap requiring urgent 

attention (Parker, 2009). The paucity of accurate distribution data 

also prevents accurate estimates of economic losses (De Groote, 

2007; Rodenburg et al., 2016), which serves to justify increased in-

vestment to address the problem.

Madagascar has been identified as a priority country for para-

sitic weed research (Rodenburg et al., 2016). This is because of the 

scale of Striga infestation and the lack of current distribution and 

agroecological data available to address the problem. Figure 1 pro-

vides representations of the topography, climate and soil types of 

Madagascar. Very few studies of Striga have been undertaken in 

Madagascar (Elliot et alsp ゲゾゾザq Geiger et al., 1996). Herbaria records 

are also scant, with just one new record submitted since 2014 (see 

Figure 2).

The first introductions of S. asiatica to Madagascar occurred over 

a century ago (Figure 2), resulting in the spread and establishment 

of separate populations which exist today. Within infested areas, 

旭osses can vary between ゴグ鯵 and ゲググ鯵 ｪJoyeuxp ゴグゲジｫ and ザグ and 
ゾグ鯵 ｪGeiger et al., 1996). In many instances, losses resulting from 

Striga infestation have caused farmers to abandon fields or, in some 

instances, entire settlements (Geiger et al., 1996; Andrianaivo, 1998).

The majority of weed population studies have been conducted 

on sing旭e sites using sma旭旭 ｪ└ゲ m2) quadrats (Rew and Cousens, 2001; 

Freckleton and Stephens, 2009; Queenborough et al., 2011). This ap-

proach is inherently labour-intensive and results in coverage of very 

small spatial extents (Rew and Cousens, 2001). This small scale limits 

the ability of data to inform predictions of the effects of large-scale 

environmental change or management on weed population dynam-

ics (Freckleton and Stephens, 2009; Tredennick et al., 2017). The use 

of small quadrats will also almost certainly result in weed patches 

being missed, creating complications for subsequent statistical anal-

ysis (Rew and Cousens, 2001). Large-scale coarse-resolution data 

sets can be used effectively for distribution modelling on macro-

scales, for example using presence data from herbaria or historical 

records (e.g., Kriticos et alsp ゴググザq Mohamed et al., 2006). However, 

analyses based on presence data alone will not provide information 

on weed population dynamics in response to changing abiotic or land 

management factors.

To address the lack of data at the appropriate scale, collection 

methods to enable such analyses, density-structured techniques, 

have been developed (Queenborough et al., 2011; Freckleton 

et al., 2011). These methods enable the relatively rapid collection 

of comprehensive data on weed densities with a small team and 

limited resources. This approach enables the production of regional 

and national-scale mapping of distributions and abundances, in-

cluding relating population abundances to environmental drivers 

(Mieszkowska et alsp ゴグゲザｫ and management ｪFreck旭eton et al., 2018).

http://www.fao.org/
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Here, we analyse the factors driving the abundance and distribu-

tion of Striga at a large scale. We used ecological surveys to obtain 

landscape-scale distribution data alongside detailed agroecological 

information for S. asiatica. The objectives were to (a) develop a rapid 

and repeatable methodology that would permit the mapping of this 

weed at a national scale; (b) test the role of management (crop and 

cropping history) in driving increases in abundance; and (c) analyse 

the impact of variation in soil nutrients in explaining differences in 

the distribution of Striga.

ゴ科 |科MATERIAL S AND METHODS

Surveys were undertaken by employing a methodology originally 

developed for the survey of the weed Alopecurus myosuroides in 

the UK (Freckleton et al., 2018b, manuscript in preparation). 

The method permitted the rapid and accurate assessment of 

black grass densities at a landscape scale, and robust statisti-

cal analyses to identify drivers of abundance. This methodology 

was modified to take account of morphological differences in 

detectability between A. myosuroides and Striga and associated 

detectability.

ゴsゲ科|科Study system

Field surveys were undertaken between February and March 2019 

in the mid-west of Madagascar, one of the six major rice grow-

ing regions in the country (Fujisaka, 1990). The mid-west covers 

ゴザpズググ km2 with an elevation between 700 m and 1,000 m above 

sea level. The climate is semi-humid tropical, with a warm, rainy 

season from November to April and a cool, dry season from May to 

October. Mean annual rainfall ranges from 1,100 to 1,900 mm with a 

mean temperature of 22°C.

ゴsゲsゲ科|科Large､sca旭e transects

Field sampling involved undertaking two long-distance, driven tran-

sects along which S. asiatica abundance was estimated in fields ad-

jacent to the road. These comprised a transect of 116 km along the 

RNザジ ｪTゲp n ┎ ゲズザｫ and one of ゼグ km a旭ong the RNゲ ｪTゴp n ┎ 芦ザｫs 
T1 was located within Vakinakaritra province, between the towns 

of Betafo and Morafeno, and T2 was located within Itasy and 

Bongo旭ava provincesp approximate旭y ザkm east of Sakay and the out-
skirts of Tsiroanomandidy ｪFigure ザｫs

F I G U R E  ゲ 科 Distribution of altitude (CGIAR-CSI, 2019), mean annual rainfall (Fick and Hijmans, 2017), soil type (FAO, 2007) and mean 

annual temperature (Fick and Hijmans, 2017) across Madagascar
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The location and orientation of transects was based on expert 

advice and previous work undertaken by agricultural researchers 

familiar with the historic distribution of S. asiatica in the mid-west 

of Madagascar. Fieldwork was undertaken with local technicians or 

guides.

ゴsゲsゴ科|科Within､fie旭d samp旭ing

One field was surveyed on adjacent sides of the road every kilome-

tre. In the absence of fields in the immediate vicinity of a given 1 km 

section, the next available field was surveyed. Prior to undertaking 

the survey, pilot work was undertaken in order to ensure consist-

ency of scoring between observers and measure the detectabil-

ity of the Striga within fields. This work was undertaken within an 

experimental field station maintained by French agricultural re-

search organisationr CIRADp 旭ocated at Ivory ｪLatr ジ葦sジゲゲゴズジp Longr 
┋ゲゾsズズゴジゴゲｫs Systematic density scoring was undertaken by princi-
pal field surveyors within three rice fields possessing highly varied 

levels of Striga infestation.

Fields were divided into pairs of 10 × 20-m quadrats, in which 

two observers simultaneously recorded Striga density, by walking 

at a steady pace a旭ong a centra旭 transectp and scanning ズ m to either 
side; in fields >1,200 m2, data were recorded from a maximum of 

three pairs of quadrats (Figure 4). A field corner was randomly se-

lected as the point to begin survey, and Striga density was estimated 

using a six-point, density-structured scale, ranging from absent (0) 

to very high ｪズｫs Based on avai旭ab旭e informationp crop typep rice va-

riety, companion crop, previous crop, estimated mean crop height 

and percentage cover data were collected. In addition, information 

F I G U R E  ゴ 科 Herbarium records for 

Striga asiatica (Rodenburg et al., 2016)
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on fertiliser addition and any other pertinent information on the 

general area were recorded (where available). Mean density score, 

average crop height and cover, and other weed cover for a quadrat 

were called and entered on the mobile app prior to moving to a sub-

sequent quadrat. If no Striga was found in a quadrat, a thorough walk 

throughout the entire field was undertaken to verify that Striga was 

truly absent.

Where scores varied in excess of one density point between sur-

veyors, a discussion was undertaken as to why the quadrat had been 

scored as such in order to standardise density estimates between 

observers.

During the pilot work, it was agreed between surveyors that 

reliable detection of S. asiatica within typically planted, pluvial rice 

fie旭ds was possib旭e at distances up to ズ m on either side of each 

F I G U R E  ザ 科 Location of transects 

T1 and T2 in Vakinakaritra, Itasy and 

Bongolava provinces of mid-west of 

Madagascar

F I G U R E  ジ 科 Illustration of Striga density estimation, where two observers simultaneously surveyed 10 × 20-m quadrats in a field; there 

was a maximum of three pairs of quadrats in fields >1,200 m2
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surveyor. As a 10 × 10 m quadrat per surveyor would have nega-

tively affected the speed of repeatability, quadrat dimensions of 

200 m2 (10 × 20 m) were agreed. Definitions of density states were 

determined, and a table was produced with narrative descriptors 

of the scale used.

Data were recorded using a GPS-enabled smartphone with the 

mobi旭e app旭ication uFu旭crumv ｪFu旭crumappscomp ゴグゲゾp version ゴsザゲsゲｫ 
to allow geo-referencing and rapid data entry. Accurate location of 

the fields will permit the sites to be subsequently resurveyed.

ゴsゲsザ科|科Soi旭 samp旭es

The role of available nitrogen in determining S. asiatica densities 

was addressed through collecting and analysing soil samples for 

NOザ. These samples were collected in pairs from quadrats with con-

trasting Striga densities within the same field. The aim was to col-

lect equal numbers of paired samples for all combinations of Striga 

density. However, a paucity of very high Striga densities during 

survey resulted in an unbalanced composition of density pairs (see 

Appendix Sザｫs The soi旭 samp旭es comprised ジゼ pairs representing dif-
fering densities and nine single samples from individual fields lacking 

any Striga. Soil samples were obtained from the centre of each cho-

sen quadrat using a 20 mm diameter, hand-held, tubular soil sampler 

to a depth of approximately 20 cm. Soil samples were subsequently 

air dried for analysis.

NOザ analysis was undertaken using a LAQUAtwin NOザ-11 ni-

trate meter (Horiba Scientific). Owing to low levels of NOザ within 

the soil, it was necessary to dilute the standard solution supplied 

with the meters Thereforep ca旭ibration was undertaken between ゲズ 
and ゲズグ ppm NOザ to improve sensitivity. One gram of dried soil 

was mixed with one millilitre of water and ground in a pestle and 

mortar. The resultant solution was then placed on the sensor of 

the meter. This procedure was repeated a minimum of two times 

per soil sample. If agreement between the first two readings was 

observed ｪisespr between ┓ ズ ppm NOザ between readings), then the 

readings were taken, and the mean of the readings was used. If the 

readings did not concur, then sampling was repeated until stabili-

sation of readings.

Soil pH was measured on the soil samples using a Hanna 

Instruments HI99121 pH meter (Hanna Instruments). For each sam-

p旭ep ゴグ g of soi旭 was mixed with ズグ m旭 of soi旭 preparation so旭ution for 
ザグ ss After ズ minp the soi旭 pH was measured using the meters

ゴsゴ科|科Statistica旭 methods

The first set of analyses tested the roles of crop variety, weeding, 

previous crop, companion crop and field area in determining the 

density of Striga. A second set examined the potential effect of cli-

matic and edaphic factors (mean annual temperature, mean annual 

rainfall, altitude, pH and NOザ) on S. asiatica density. Within-field 

Striga density was also plotted against that of neighbouring fields. A 

final set of analyses used Striga density as the independent variable 

and mean crop height, crop cover and other weed cover as response 

variables; to examine potential effects of Striga on crops and any 

covariation with cover for other weeds present.

Diagnostic plots (density plots, QQ plots and histograms) were 

produced for each mode旭s Statistics were ca旭cu旭ated using R ザsズsゲ 
(R Core Team, 2018) and the packages: dplyr (v0.8.0.1; Wickham 

et alsp ゴグゲズｫp mgcv ｪWoodp ゴグゲゲｫp 旭meジ ｪvグ葦ゼsiグゲp Bates et al., 

ゴグゲズｫp 旭merTest ｪKuznetsova et al., 2017), MASS (Venables and 

Ripley, 2002), DescTools (v 0.99.28, Signorell et al., 2019) and psych 

(Revelle, 2018, v1.8.12). The full reproducible code is available in 

Appendix S1.

Striga density was log (x + 1)-transformed owing to the presence 

of large numbers of zero densities. Polynomial contrasts were ap-

plied to categorical variables incorporated into models (crop vari-

ety, previous crop, companion crop). Linear models and generalised 

additive models (GAMs) were used to test significance of indepen-

dent variables. Linear regression analyses are robust against mod-

erately high degrees of collinearity among independent variables 

(Freckleton, 2011) and violation of normality assumptions for distri-

bution of residuals (Fitzmaurice et al., 2004). GAMs were also chosen 

due to their flexibility in dealing with non-normal distributions and 

ability to handle non-linear relationships between response and ex-

planatory variables (Guisan et al., 2002).

To test the effects of previous crops, two sets of analyses were 

undertaken. The first was to examine the effect whether the pre-

vious crop was a legume or non-legume (dichotomous, yes/no). For 

this analysis, Shapiro�Wilk tests were undertaken to check for nor-

mality of distribution for the two levels of Striga density. A Welch 

two-sample t test was subsequently performed on these data. To 

enable comparison with the study of Randrianjafizanaka et al. (2018), 

a Welch two-sample t test for mean Striga density and rice varieties 

B22 and NERICA-4 was also undertaken. The second analysis ex-

amined any effects of specific crop or crop combinations on Striga 

density. Linear models and GAMs for previous crop and Striga den-

sity with latitude and longitude included as smoothed terms were 

performed (see Appendix S1). Crop�crop combinations with fewer 

than two records were omitted from these analyses. An additional 

model testing for autocorrelation between Striga density and lati-

tude/longitude was also performed.

Preliminary model testing for collinearity between climatic and 

edaphic factors indicated strong correlation between altitude and 

mean temperature (f = 1,860, df ┎ ゴp ゴザゾp R2 ┎ グsゾザp p ┑ ゴsゴe┋ゲ葦p 
VIFr ゲ葦sズ葦ｫs Potentia旭 corre旭ation between mean rainfa旭旭 and a旭ti-
tude and mean temperature was less evident (f ┎ ザsジグp df ┎ ゴp ゴザゾp 
R2 ┎ グsグザp p ┎ sグジp VIF ┎ ゲsグザｫs Howeverp this interaction was an-

ticipated and is commonplace among analyses using climatic and 

edaphic data and was therefore not considered a constraint to the 

analysis undertaken. Smoothed lines fitted to scatterplots for (pH, 

NOザ, field area, altitude, mean rainfall, mean temperature) indi-

cated potential non-linear relationships with Striga density, provid-

ing additional justification for the use of GAMs in the analyses (see 

Appendix S2).
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ザ科 |科RESULTS

ザsゲ科|科Management factors

Analysis of management data suggests that rice variety had a sig-

nificant effect on Striga density (linear model F = 1.72, df = 20, 102, 

p = .04, GAM F = 11.14, df = 21, p ┑ ゴe┋ゲ葦pｫp most notab旭y with 
NERICA-10 and NERICA-4. NERICA-10 exhibited greater resistance 

than NERICA-4, which was associated with consistently higher Striga 

densities ｪsee Figure ズaｫs A We旭ch two､samp旭e t test for mean Striga 

density and previous crop 旭egume ｪyes｠nop Figure ズbｫ indicated sig-

nificant differences of means (t ┎ ゴsグズp df = 141.08, p = .02). The t 

test for B22 and NERICA-4 did not indicate significant differences 

of means (μr Bゴゴ ┎ グs芦ズp NERICA､ジ ┎ ゲsゲズp t ┎ ゴsグズp df = 141.08, 

p = .02) although the mean Striga density was lower for B22 than 

for NERICA-4. The effect of previous crop type or variety on mean 

Striga density ｪFigure ズcｫ was not significant for a 旭inear mode旭 
(F = 1.08, df ┎ ゴズp ゲズゾp p ┎ sザ葦ゾｫ but was significant for the associated 
GAM (F ┎ ゲズs芦ジp df = 21, p ┑ ゴe┋ゲ葦ｫs Specifica旭旭yp the effects of previ-
ous cropping with bambara groundnut (Vigna subterranea) and rice/

Bambara groundnut were correlated with significantly lower mean 

Striga density.

There was a positive relationship between within-field Striga 

density and the density of the nearest neighbouring fields (F ┎ ゾsグゲズ 
df = 1, 242, p = .01 and GAM (F = 10.91, df = 1, p = .01). This suggests 

that spatial factors could be important in determining Striga distribu-

tion and spread (see Figure 6). No significant results were obtained 

from the analyses of mean Striga density used as an explanatory vari-

able for mean crop height (F ┎ グs芦ザp df ┎ ゲp ゴゴザp p ┎ sザ葦ｫ crop cover 
(F ┎ ゴsザゴゾ df ┎ ゲp ゴゴザp p ┎ sゲザｫ and other weed cover ｪF = 0.08 df = 1, 

ゲズゲp p = .77).

F I G U R E  ズ 科 (a) Mean ± SE Striga density in principal rice 

varieties ｪovera旭旭 mean is dashed 旭ineｫ ｪザpゼザゼr n = 4; B22: n = 28; 

Chomrong Dhan: n = 11; Fahita tanety: n = 2; Jean Louis: 

n = 2; NERICA-10: n = 8; and NERICA-4: n = 28); (b) mean ± SE 

Striga density of previous crop types (legume: n ┎ 葦ズq non､
legume: n = 120); and (c) mean ± SE Striga density of previous 

crop types and varieties recorded (grand mean is dashed line) 

(Arachis hypogaea: n = 18; Fallow: n = 14; Ipomoea batatas: n = 4; 

Manihot esculenta: n ┎ ゴズq M. esculenta, Vigna subterranean: 

n = 2; Oryza sp: n ┎ ザジq Oryza sp, V. subterranean: n = 2; 

V. subterranean: n ┎ ザズq V. subterranean, A. hypogaea: n = 2, 

Zea mays: n ┎ ザジq and Z. mays, M. esculenta: n = 7). Analyses 

indicated significant effects of rice variety, leguminous and 

individual previous crops

F I G U R E  葦 科 Within-study field and neighbouring field mean ± SE 

Striga density. The effect of density in neighbouring fields on 

within-field mean Striga density was significant for the linear model 

and GAM
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ザsゴ科|科C旭imatic and edaphic factors

A linear model and GAM combining climatic and edaphic factors to 

predict Striga density (mean rainfall, mean temperature and altitude) 

did not produce significant results (linear model: f ┎ ゲsザゾp df ┎ ザp ゴザ芦sp 
p ┎ sゴズp GAM f = 1.297, df ┎ ゲジsザ芦p p = .19). A linear mixed model 

and GAM examining the effects of soil pH and NOザ on Striga den-

sity did not produce significant results (linear model: pH: t = 0.72, 

df ┎ ゾゴsズ芦sp p = .48, NOザ: t ┎ ┋ゲsゲゴp df ┎ 芦ゾsザザp p = .27., GAM pH: 

X2 = 0.72, df = 1., p ┎ sザゾp NOザ: X2 = 0.48, df = 1., p = .49).

Comparison of variables between transects indicated a high de-

gree of homogeneity (see Table 1). Mean Striga density by transect 

was similar (T1 = 0.89, σ ┎ グsゾザ and Tゴ ┎ ゲsグゲp ゲsグゲ σ = 0.97). Mean 

rainfall and temperature also showed little variation between tran-

sectss Ranges for NOザ were a旭so very simi旭ars Ranges for pH were 
greater for T1, consistent with a greater distance covered.

ジ科 |科DISCUSSION

This paper describes a systematic, landscape-scale agroecologi-

cal study of the factors driving the occurrence and abundance of 

Striga. The methodology enabled the rapid collection of statisti-

cally robust distribution data to reveal key agroecological factors 

influencing Striga density. Our study demonstrates the role of crop 

variety, companion crop and crop rotation in determining Striga 

density and highlights the importance of densities within adjacent 

fields, providing evidence of the localised nature of Striga dispersal.

Previous Striga distribution studies have used a number of other 

census methods including whole field plant counts (Dugje et al., 

2006), plant counts from small quadrats (Kamara et al., 2014), ques-

tionnaires (Aflakpui et al., 2008) or preliminary species inventory 

(Gworgwor et al., 2001). Comparable field-level density estimate 

methods have been previously used (Kabiri et alsp ゴグゲズｫp a旭though 
these were undertaken on the scale of a few kilometres, without the 

use of statistical methods to identify ecological factors in determin-

ing Striga distribution. Where such statistical analysis has been used, 

the study employed the much more labour-intensive method of plant 

counts from multiple quadrats per field (Kamara et al., 2014).

ジsゲ科|科Cropping practices

There was a significant role of rice variety on Striga density, and 

this was in line with previous studies which analysed the resistance 

of (NERICA) rice varieties. During the current study, NERICA-10 

was found to be more resistant than NERICA-4. This is significant 

as it is consistent with other studies undertaken in the labora-

tory by Cissoko et al. (2011) and during field trials by Rodenburg 

et als ｪゴグゲズｫs Cissoko et al. (2011) found that NERICA-10 was more 

resistant to both S. asiatica and S. hermonthica than NERICA-4. 

This resistance was demonstrated in terms of numbers and mean 

height of attached Striga plants. Similarly, field trials by Rodenburg 

et als ｪゴグゲズｫ in Tanzania found the NERICA､ゲグ was significant旭y 
more resistant to S. asiatica than NERICA-4. This resistance was 

expressed by maximum emerged Striga per m2. However, addi-

tional field trials by Rodenburg et al. (2017)�also in Tanzania�in-

dicated similar levels of emerged S. asiatica between NERICA-10 

and NERICA-4.

Randrianjafizanaka et al. (2018) identified significantly lower 

Striga infection levels for NERICA-4 than variety B22. During the 

current study, similar mean Striga density was recorded for B22 

and NERICA-4, with means which were not statistically different. 

NERICA-4 was the worst performing of all rice varieties recorded 

in terms of Striga density, which is the inverse of the findings of 

Randrianjafizanaka et al. (2018). However, NERICA-9, used in the 

study by Randrianjafizanaka et al. (2018), was not recorded, prevent-

ing a complete comparison. The results of Randrianjafizanaka et al. 

(2018) are consistent with regard to the significant effect of previous 

crop and legumes in reducing Striga infestation. This effect has also 

been found in other research (e.g., Kureh et al., 2006).

The variance in observed resistance of rice varieties between 

these two studies could be due to several reasons. Firstly, high de-

grees of genetic variability have been identified between separate 

populations of S. asiatica (Mohamed et al., 2007) to the extent that 

even proximate populations can be considered as separate ecotypes 

(Botanga et al., 2002). Such variation also appears to be positively 

related to time since introduction to a region or locality (Gethi et al., 

ゴググズｫp which inf旭uences the degree of Striga virulence and levels of 

host infection (Cissoko et al., 2011).

Secondly, the higher level of complexity associated with open 

systems could also account for observed variation with controlled 

studies in a geographically discreet locality. Indeed, the effect of the 

inherently greater complexity of agroecological systems on resistance 

of rice cultivars to Striga is largely unknown (Rodenburg et alsp ゴグゲズq 
Rodenburg et al., 2017). Interactions of environmental factors such as 

soil composition, nutrients, microclimate, slope and aspect can interact 

to influence the expression of host resistance. Interactions of these 

factors with the phenotypic expression of Striga ecotypes may also be 

responsible. Observations of resistance to Striga, due to the factors 

Transect
Mean Striga 
density

Mean 
temperature ｪﾀCｫ

Mean rainfa旭旭 
ｪmmｫ pH range

NO､ザ range 
ｪppmｫ

T1 0.89 

(σ ┎ グsゾザｫ
ゴゲsズ 124 ジsゲ葦･葦sジザ ゲズ･ゲザズ

T2 1.01 

(σ = 0.97)

ゴゴsザ 122 ジsズゲ･ズs芦ゲ ゲ芦･ゲザグ

TA B L E  ゲ 科 Mean Striga density (±SD), 

field area, temperature, rainfall and 

altitude range for the two transects
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detailed above, therefore vary greatly according to location. This may 

account for differences between the findings of a study concerning 

single population, when compared with those aggregated over several 

populations across a large geographic extent.

ジsゴ科|科Dispersa旭

The correlation between within-field Striga density and that of near-

est neighbouring fields suggests that there is transfer between 

adjacent, suitable habitat patches. Studies of the dispersal of S. her-

monthica (Berner et al., 1994; van Delft et al., 1997) and S asiatica 

(Sand et al., 1990) also suggest localised seed dispersal to adjacent 

patches of suitable habitat, as opposed to long-distance, random dis-

persal via wind or water.

Contamination of seed is responsible for initial introductions be-

tween countries or regions (Berner et al., 1994; Gethi et alsp ゴググズｫs 
This assertion is supported by herbarium records for Madagascar 

(see Figure 2), which show the earliest records around the country's 

principal historical ports. Once initial introduction has occurred, the 

evidence for localised dispersal of Striga suggests that a spatially ex-

plicit approach to management would be most appropriate (Minor 

and Gardner, 2011).

ジsザ科|科Crop productivity

The absence of any observed relationship between mean Striga 

density and crop height/cover could be attributable to the fact that 

emerged (aboveground) weed density often does not represent 

total attached Striga plants. In the case of Striga, density of plants 

can actually be lower in the event of high levels of host attachment 

(Hearne, 2009). This is caused by an increased delay in emergence, 

as greater numbers of attached Striga plants compete for the same 

host nutrient source. This is different to the effect of most weeds, 

where visible weed biomass is related to crop performance (Rajcan 

and Swanton, 2001). Some previous studies have demonstrated a di-

rect effect of numbers of emerged Striga plants on crop performance 

ｪMumera and Be旭owp ゲゾゾザq Rodenburg et al., 2017). However, these 

studies controlled for soil nutrient levels, so the role of Striga infec-

tion on plant growth could be isolated. It is however considered that 

poor soil nutrient levels observed during the current study repre-

sented an overriding limiting factor in crop performance, rather than 

Striga density.

ジsジ科|科C旭imatic and edaphic factors

Climatic and edaphic factors were not significantly correlated with 

Striga density. This was consistent with previous studies, as S. asi-

atica has been found to be unresponsive to temperature (Patterson, 

1990; Rodenburg et al., 2011). Mean rainfall variation within the 

study area was 旭ow ｪminr ゲゲジ mmp maxr ゲザジ mmｫp which is we旭旭 within 

the ズグ･ゲズグ mm range to旭erated by Striga species ｪMohamed et al., 

2006). Similarly, the altitudes encompassed by the current study 

ｪゼゲザ･ゲpザグゲ mｫ were we旭旭 within the cited range of occurrence for 
S. asiatica (0�2,400 m) (Agnew, 1974). In order to detect effects of 

climatic or edaphic factors on Striga density, it would be necessary 

to collect data across a wider section of the above-cited ranges. It is 

most likely that such factors do not solely influence spread or den-

sity of S. asiatica. If such data were collected, these would require 

combination as factors within a more complex, future modelling 

framework.

ズ科 |科CONCLUSIONS

The results of this study provide a number of important, wider im-

plications for the study and management of economically important 

Striga species. These implications arise from both the methodology 

employed and the results obtained. The successful implementation 

of this novel methodology provides a basis to address the paucity 

of distribution and open system agroecological data for parasitic 

weeds. These are two significant concerns, which represent major 

impediments to the successful management of parasitic weeds. The 

methodology was successfully adapted from blackgrass, which is a 

morphologically and ecologically very different species. This dem-

onstrates that the methodology can be further adapted to survey 

other important parasitic weed species. This simple methodology 

can be readily communicated to new field surveyors and the rapid, 

yet accurate nature of data collection is cost-effective. Therefore, 

surveys can potentially be expanded to regional or national scales 

as required.

The fact that rice variety and leguminous crops are shown to 

be significant determinants of Striga density on a landscape scale is 

highly significant. The identification of NERICA-10 as a highly resis-

tant variety supports several previous studies. NERICA-4 has signifi-

cantly lower resistance to Striga than NERICA-10 and other varieties 

and landraces. This observation is highly relevant to policy makers, 

agricultural researchers, extension workers, NGOs and farmers in 

Madagascar. NERICA-4 is widely planted within the mid-west of 

Madagascar, possibly due to it being Striga resistant and a high-yield 

variety. The use of resistant crop varieties is the most widespread 

seed-based control option available to subsistence farmers with lim-

ited capital. However, in light of these findings, it is recommended 

that alternative varieties are promoted which exhibit greater resis-

tance within this agroecological context.

Lower Striga densities recorded in association with planting of 

legumes also support a number of previous studies. The use of legu-

minous companion/rotation crops is already widely practised within 

farming systems in this region. This control option does not require 

introduction of novel, unfamiliar crops whose uptake may be subject 

to potential resistance from farmers. The use of legumes within rota-

tional and intercropping systems should therefore also be promoted 

in situations where limited access to capital precludes the use of her-

bicides, fertilisers or other technologies.
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