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Abstract 28 

Tropical forests harbour the highest biodiversity on the planet and are essential to human livelihoods 29 

and the global economy. However continued loss and degradation of forested landscapes, coupled 30 

with a rapidly rising global population, is placing incredible pressure on forests globally. The United 31 

Nations has developed the Reducing Emissions from Deforestation and forest Degradation (REDD+) 32 

programme in response to the challenges facing tropical forests and in recognition of the role they can 33 

play in climate mitigation. REDD+ requires consistent and reliable monitoring of forests, however, 34 

national-level methodologies for measuring degradation are often bespoke and, because of an inability 35 

to track degradation effectively, the majority of countries combine reporting for deforestation and 36 

forest degradation into a single value. Here, we extend a recent analysis that enabled the detection of 37 

selective logging at the scale of a logging concession to a regional-scale estimation of selective 38 

logging activities. We utilized logging records from across Brazil to train a supervised classification 39 

algorithm for detecting logged pixels in Landsat imagery then predicted the extent of logging over a 40 

20 year period throughout Rondônia, Brazil. Approximately one-quarter of the forested lands in 41 

Rondônia were cleared between 2000 and 2019.  We estimate that 11.0% of the forest area present in 42 

2000 had been selectively logged by 2019, comprising >11,500 km2 of forest. In general, rates of 43 

selective logging were twice as high in the first decade relative to the last decade of the period. Our 44 

approach is a considerable advance in developing an operationalized selective logging monitoring 45 

system capable of detecting subtle forest disturbances over large spatial scales.  46 

 47 

 48 

 49 

 50 
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1. Introduction 56 

The ten countries reporting the highest forest losses over the last fifteen years are all in the tropics 57 

(FAO 2016). Tropical forests are among the most biodiverse ecosystems on Earth, play a crucial role 58 

in the global carbon and hydrological cycles, and support human livelihoods and the global economy 59 

(Edwards et al 2019, Pan et al 2011, Lewis and Maslin 2015). Moreover, there is increasing 60 

recognition that tropical forests will be vital in nature-based solutions mitigating climate impacts and 61 

reaching targets in the Paris Climate Agreement (Griscom et al 2017, Houghton et al 2015). However 62 

continued loss and degradation of tropical forests, coupled with a rising global population and 63 

growing energy demands, are putting enormous pressure on forests globally (Edwards et al 2019). 64 

In response to both the challenges and opportunities tropical forests present, the United 65 

Nations (UN) has developed the Reducing Emissions from Deforestation and forest Degradation 66 

(REDD+) programme. REDD+ aims to mitigate climate impacts while maintaining the myriad of 67 

services forests provide (e.g. flood prevention, control soil erosion, maintain biodiversity, cultural 68 

traditions, etc.) through sustainable forest management (UN-REDD 2018). An essential component in 69 

REDD+ is consistent monitoring systems for national-level reporting of anthropogenic greenhouse 70 

gas emissions from activities affecting forests. Guidelines for estimating and reporting emissions from 71 

forest degradation are based on methods for land use change recommended by the Intergovernmental 72 

Panel on Climate Change (IPCC 2019) to facilitate a consistent framework for estimating reference 73 

levels (GFOI 2016)Yet the IPCC and REDD+ lack specific methodological details on quantifying 74 

emissions from forest degradation (Pearson et al 2014, IPCC 2006). This is because degradation is 75 

notoriously difficult to quantify, as it includes a variety of forest disturbances (e.g. fire, selective 76 

logging, mining, fuelwood consumption, hunting, invasive species), and forest degradation often 77 

operates at spatial and temporal scales incompatible with reporting at the national level (Ghazoul et al 78 

2015, Pearson et al 2014, Hosonuma et al 2012). Consequently, national-level methodologies for 79 

measuring degradation are often bespoke and most countries report emissions from both forest 80 

degradation and deforestation as a single, combined value (Hosonuma et al 2012, Pearson et al 2017). 81 

Advances in remote sensing have made satellite data the most practical and cost-effective way 82 

to monitor forests at large spatial scales. The spatial and temporal accuracy of deforestation 83 
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monitoring  has improved rapidly in the last decade (Hansen et al 2013, 2016, Reiche et al 2018), as 84 

have detection of the spatial extent, severity, and  impacts of fires (Matricardi et al 2010, Peres et al 85 

2006). Yet, detection of selective logging has shown little progress, despite being a key driver of both 86 

deforestation and forest degradation (Hosonuma et al 2012, Pearson et al 2017). Selective logging 87 

often marks the onset of anthropogenic disturbance affecting primary forests, with road networks and 88 

improved access to forested lands facilitating further degradation (e.g. fuel wood removal, spread of 89 

invasive species, illegal logging, mining, and fires) or forest clearance for pastures, agriculture, or 90 

settlements. Furthermore, because of the role tropical forests are poised to play in meeting climate 91 

targets and growing concerns about the impacts to other services, the amount of tropical forests 92 

logged at lower intensity and with better management practices is likely to grow.  93 

 Efforts to improve detection of selective logging have appeared periodically in the literature 94 

(e.g. Asner et al 2005, Broadbent et al 2008, Matricardi et al 2010, Souza et al 2005, 2013). In all 95 

cases the approach was either a proof-of-concept and not applied at scale or the intensity of selective 96 

logging was so high that detections are mapped as forest loss in the Hansen et al (2013) data (e.g. 97 

Asner et al 2006; see also Figures S1 and S2). The majority of researchers have utilized spectral 98 

unmixing of before-after images to estimate forest disturbance between time steps (e.g. Souza et al 99 

2013). Single-image analyses can miss forest disturbances occurring later and/or regions covered by 100 

clouds during scene acquisitions. More recently, advancements in data handling (e.g. Google Earth 101 

Engine) have enabled tracking individual pixels over a long period to detect forest disturbances 102 

(Bullock et al 2018). Google Earth Engine (GEE) has also allowed for more complex image mosaics 103 

to be produced, in which an image can be composed of individual pixels spanning any time period, 104 

minimizing information loss from clouds  (Gorelick et al 2017).  Recently, Hethcoat et al (2019) 105 

developed a method that used logging records to train supervised classification algorithms for 106 

detecting logging activities. Their methods were only applied at the scale of the logging concession 107 

and have not been demonstrated at larger spatial and temporal scales. The primary objective of this 108 

paper was to extend their methodology to a regional-scale assessment of selective logging. We trained 109 

a supervised classification algorithm for detecting selective logging using detailed logging records, 110 

then estimate the extent of logging between 2000 and 2019 throughout Rondônia, Brazil.  111 
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 112 

2. Methods 113 

An overview of the methods described in the following sections is given in Figure 1. 114 

 115 

2.1. Study area 116 

The Brazilian state of Rondônia covers 237,576 km2 and is one of the most deforested regions in the 117 

Amazon (Tyukavina et al 2017, Pedlowski et al 2005). Historically, Brazil encouraged logging and 118 

land clearance as part of its settlement and development policies between 1970 and 1990 (Asner et al 119 

2009). Widespread, unmanaged logging ravaged large portions of Mato Grosso, Pará, and Rondônia, 120 

accounting for more than 90% of timber harvest within the Brazilian Amazon (Asner et al 2009). In 121 

an effort to address some of the impacts rampant deforestation and logging had caused, Brazil adopted 122 

the CONAMA resolution (CONAMA 2009), which recognized advances in forestry research in the 123 

Brazilian Amazon and imposed a number of restrictions on logging, including limiting logging 124 

intensities to 30 m3 ha-1. While Pará and Mato Grasso have endured the highest rates of selective 125 

logging (Tyukavina et al 2017), the smaller size of Rondônia and the high availability of cloud-free 126 

imagery during the dry season (in contrast to cloudier regions of the Amazon basin) make it ideal for 127 

initially upscaling the methodology proposed by Hethcoat et al (2019). 128 

 129 

2.2. Data and processing 130 

2.2.1. Selective logging data 131 

Selective logging data from four lowland tropical forest regions in the Brazilian Amazon were used to 132 

build the detection algorithm described in Section 2.3. The Jacundá and Jamari regions were inside 133 

the Jacundá and Jamari National Forests, in Rondônia, while the Saracá and Cikel regions were in the 134 

Saracá-Taquera National Forest and Paragominas municipality, Pará, respectively (Figure 2).  Forest 135 

inventory data from 19 forest management units (FMUs) selectively logged between 2010 and 2017 136 

were used, comprising over 55,000 individual tree locations (see Asner et al 2004 for a description of 137 

typical logging practices in the Amazon). Data from three additional locations, one inside each  138 
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139 

Figure 1. Workflow summarizing the methodology. The platform used for each step is in parentheses, with GEE being Google Earth 
Engine and R being the statistical software developed by the R Core Team. 
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 140 

 141 

 142 

Figure 2. Location of the Cikel (triangle), Saracá (diamond), Jacundá (circle), and Jamari (square) study 
regions in the Brazilian Amazon. Cikel and Saracá are in Pará and Jacundá and Jamari are in Rondônia.  
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National Forest (Jacundá, Jamari, and Saracá), comprised over 11,500 randomly selected point 143 

locations known to have remained unlogged during the study period (Table S1). 144 

 145 

2.2.2. Satellite data and processing 146 

All available Landsat 5, 7 and 8 surface reflectance data that coincided with the logging data were 147 

utilized in Google Earth Engine (GEE). At each FMU the Landsat archives were queried to find a 148 

single scene with the lowest cloud cover that was late into the dry season, but before the onset of the 149 

rainy season, to ensure the majority of logging was completed for that FMU (Hethcoat et al 2019). A 150 

linear spectral unmixing model, developed and validated over a range of forest disturbance types 151 

within the Amazon (Souza et al 2005, Bullock et al 2018), was used to convert surface reflectance 152 

into proportions of Bare Ground (BG), Photosynthetic Vegetation (PV), and Non-Photosynthetic 153 

Vegetation (NPV) in each pixel (Table S2). The normalized burn ratio (NBR) was also calculated 154 

(Equation 1), because it highlights changes in BG and NPV relative to PV and has demonstrated 155 

strong change detection capabilities in evergreen tropical forests (Langner et al 2018, Grogan et al 156 

2015, Shimizu et al 2017). 157 

 158 

ܴܤܰ  ൌ ேூோ ି ௌௐூோଶேூோ ା ௌௐூோଶ                                    (1) 159 

 160 

Spectral unmixing fractions for BG were zero for all logged locations, because of documented 161 

difficulties distinguishing BG and NPV with multispectral data in deterministic spectral unmixing 162 

algorithms (Okin et al 2001, Asner and Heidebrecht 2002, Asner 1998). Consequently, PV and NPV 163 

values were complementary and we only utilized PV fractions in the analyses. To reduce variations 164 

arising from differing atmospheric conditions and solar illumination, the PV and NBR values were 165 

spatially normalized in a self-referencing step (Equations 2a and 2b) by subtracting the centre pixel 166 

value from the median value in a 150 m radius window (Langner et al 2018): 167 

 168 

 ܲ ௡ܸ ൌ ܲ ௠ܸ௘ௗ௜௔௡ െ  ܸܲ                                            (2a) 169 
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and 170 

௡ܴܤܰ  ൌ ௠௘ௗ௜௔௡ܴܤܰ െ  171 (2b)                               ܴܤܰ 

 172 

Normalized PV and NBR values ranged between -1 and 1. This step was necessary to prevent highly 173 

inconsistent predictions along adjacent Landsat paths acquired at different dates (Figure S3). The 174 

spatially normalized PV and NBR values for the logged and unlogged observations were then 175 

compiled for algorithm training (Section 2.3). 176 

 177 

2.3. Building the detection algorithm  178 

We built Random Forest (RF) models using the randomForest package (version 4.6) in the R program, 179 

version 3.5.1 (Liaw and Wiener, 2002; R Development Core Team, 2018). We randomly allocated 180 

90% of the data for training and withheld 10% for validation. In addition, to ensure training and 181 

validation datasets were independent, we assessed spatial autocorrelation of predictor variables and 182 

spatially filtered the data such that no observations in the validation dataset were within 90 m of an 183 

observation in the training dataset (Figure S4; see Supplementary Materials, Sections S1 and S2 for 184 

further details on model specification and training).  185 

 186 

2.4. Predicting selective logging through time 187 

All available Landsat 5, 7, and 8 data over Rondônia were utilized in GEE. A cloud-free mosaic was 188 

constructed from the latest cloud-free pixel within the dry season (see Table S4 for date ranges in each 189 

year). Clouds were masked using the QA band and an additional 300 m radius buffer was applied to 190 

cloudy pixels to minimize cloud shadows not identified by the QA mask. For the first year of analysis 191 

(2000) we only included pixels with forest cover >90% (Hansen et al 2013; Hansen data hereafter) to 192 

exclude open canopy forests, regenerating secondary forests, and areas generally not suitable for 193 

selective logging concessions that might result in false positives.   194 

At each time step, pixels identified in the Hansen data as being deforested in that year were 195 

removed. In addition, deforested pixels in the preceding year had a one pixel buffer removed from its 196 

edges to reduce spurious logging detections associated with deforestation. Pixels identified by the 197 
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Moderate Resolution Imaging Spectrometer (MODIS) monthly burned area product (MCD64A1.006) 198 

were also removed. Thus, the pixels used to estimate the occurrence of logging in each year were in 199 

regions with tree cover exceeding 90% in 2000, that had not been deforested that year (or prior years), 200 

and had not burned. 201 

 202 

2.5. Post-processing of logging predictions 203 

In order to remove isolated logging detections amongst undisturbed forest we removed any detection 204 

with fewer than 3 other detections within a 7×7 pixel window neighbourhood. The window size and 205 

number of additional detections were chosen through extensive testing of different values over the 206 

Jamari region. 207 

 208 

2.6. Evaluating map errors 209 

Methods in Olofsson et al (2014) were used to assess agreement, calculate unbiased error estimates, 210 

and produce 95% confidence intervals of the mapped classes. We only assessed the accuracies of 211 

selective logging and undisturbed forest (i.e. logged and unlogged pixels) and did not consider 212 

deforestation and fires, as these have been estimated elsewhere (Turubanova et al 2018, Hansen et al 213 

2013, Giglio et al 2018).   214 

 215 

3. Results  216 

We mapped logging across 44% of Rondônia, as the remaining 56% had already been deforested by 217 

2000 or was below 90% canopy cover (e.g. rivers, lakes, savanna, cerrado, gallery forest). Of the 218 

forested lands present in 2000, 26.5% were deforested by 2019 (Figure 3). We estimate that 11.0% of 219 

the forest area present in 2000 had been selectively logged by 2019, comprising >11,500 km2 of forest 220 

(Table 1). Logging detections were highest in the north central part of the state, in the region of the 221 

Bom Futuro National Forest (Figure S7), a hotspot for logging and land clearance over the period 222 

(Pedlowski et al 2005). In general, the amount of selective logging was about twice as high in the first 223 

ten years of the period than in the last ten years, generally coinciding with logging restrictions 224 

implemented under the CONAMA resolution (CONAMA 2009).  225 
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 226 

 227 

The bias-adjusted confusion matrix, summarizing errors and confidence intervals for the 228 

proportions of mapped classes (Olofsson et al 2014), is shown in Table 1 and is consistent with the 229 

results from model validation (Section S2, Figure S5, Table S3). These findings reiterate a roughly 230 

55% omission of logging detections and 5% commission error for unlogged forest (i.e. an estimated 231 

5.4% of the area mapped as unlogged forest, roughly 4500 km2, was actually logged). For these 232 

reasons, and because we further limited our detection rate by excluding high intensity logging 233 

detected in the Hansen data (Figure S1 and S2), our estimates of selective logging should be viewed 234 

Deforestation 

Selective Logging 

Figure 3. Annual amount of deforestation (from Hansen et al 2013) and selectively logged (this study) 
in the state of Rondônia, Brazil. Deforestation data from 2019 were unavailable at the time of analyses.  
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as conservative and the annual amounts of selective logging are likely closer to double what is 235 

reported here. 236 

Table 1. Confusion matrix summarizing unbiased (Olofsson et al 2014) error estimates and 95% confidence 
intervals (in parentheses) from mapping logged and unlogged forest in Rondônia, Brazil between 2000 and 
2019. Also shown are the unbiased estimates of Overall Accuracy (OA) and the total area for logged and 
unlogged forest in the final map.  
OA:  94.11 ± 0.26% 

   
Logged: 11,529.28 ± 18.53 km2 Reference  Class 

 
Unlogged: 93,079.71 ± 249.62 km2 Logged Unlogged Commission 

     Error (%) 

Predicted Class 
Logged 0.06 0.01 12.9  (1.8) 

Unlogged 0.05 0.88 5.4  (0.2) 

    
Omission Error (%) 

45.5 
(1.2) 

1.0 
(0.1) 

  

 237 

We explored the results in more detail over two FMUs where we had general knowledge of 238 

logging but limited field data. First, an FMU selectively logged in 2018 with no data on logging 239 

locations showed some false detections in the years preceding 2018 (at roughly the expected rate), but 240 

the year of logging and an internal logging road constructed in 2015 are accurately identified (Figure 241 

4). Similarly, the number of false detections over an area known to have remained unlogged (a forest 242 

reserve area associated with the logging concession) was approximately 2% over the twenty year 243 

period (Figure 5).  244 

Many of the detections were obviously logging road networks, both main access roads and 245 

smaller internal roads, which generally go undetected by the Hansen dataset (Figure 6). In addition, 246 

many detections preceded deforestation by a year or two (Figure 7), demonstrated by logging 247 

detections occurring in areas later identified as deforested (i.e. subtle forest disturbance preceding 248 

total clearance was detected). Consistently, about 55% (±8% SD) of selective logging detections were 249 

within 1km of deforestation activities occurring in the same year (Figure 8). Thus, the majority of 250 

selective logging activities in Rondônia occurred in close proximity to deforestation presently 251 

detectable through the weekly Global Land Analysis & Discovery alerts system (Hansen et al 2016). 252 

This result is in line with the well documented cycle involving selective logging as a driver of and 253 

precursor to land clearance (Curtis et al 2018). 254 
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  255 

Figure 4. Example forest management unit (FMU) showing detections of 
logging over the entire period. The logging roads detected in 2015 are in 
accordance with field data (white lines) and the detections along the southern 
FMU border are a main access road winding into the logging concession. The 
year the FMU was actually logged (2018) shows an order of magnitude more 
detections (histogram in upper right). Stable forest is in black, Hansen forest 
loss is in grey shades, and white squares are areas burned. The FMU is 
approximately 1700 hectares. The map is centred on 63.002 W, 9.406 S.  

1 km 
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256 

Figure 5. Example forest reserve area (i.e. unlogged forest) inside a logging concession in the Jamari National Forest showing false detections over the entire period. 
Stable forest is in black, Hansen forest loss is in grey shades, and white areas are burned forest and water. Only 2.3% of pixels (n=796) are false alarms within the 
reserve over the 20 year period. The reserve is approximately 3000 hectares. The map is centred on 63.022 W, 9.266 S.  

1 km 
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 257 

  0                     2 km 

Figure 6. Example region showing detected selective logging road networks, with stable forest in black, Hansen forest loss in grey shades, and the Preto River in 
white. The map is centred on 62.875 W, 8.478 S. 
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 258 

 259 

  0                       2 km 

Figure 7. Example region showing early detection of deforestation. The expansion of roads and early forest disturbances (A, in green-yellow-orange colors) were 
detected before the deforestation events occurred and are on top of the forest loss layer from Hansen (in grey shades). Stable forest is in black, burned areas are white 
squares, and the Jiparaná River is the in upper right in white. The map is centred on 62.722 W, 8.410 S. 
 

A 
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 260 

 261 

 262 

Figure 8. Selective logging detections over four distance categories from deforestation activities in the same year. Deforestation data from 2000 and 2019 were 
unavailable at the time of analyses. 
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4. Discussion 263 

We have demonstrated that the approach in Hethcoat et al (2019) to map tropical selective logging 264 

with Landsat data can be extended beyond the scale of a logging concession or forest management 265 

unit to regional-scale assessments of logging activities using historical data. This required changes to 266 

the original methodology, moving away from surface reflectance values and utilizing a spatial 267 

normalization step to mitigate abrupt changes in image mosaic values resulting from varying solar 268 

illumination and atmospheric conditions. We show that about 11% of the forested land present in 269 

2000 was selectively logged by 2019, comprising >11,500 km2 of tropical forest. Yet, our estimates of 270 

annual logging rates are likely underestimated for two reasons. First, only about half of the logging 271 

was actually detected in a given year (Tables 1 and S3). We abandoned higher detection rates to 272 

ensure a very low number of false detections (Section S2). Second, forest disturbances from selective 273 

logging (canopy gaps, skid trails, and log landings) affect patches of forest, not isolated pixels. 274 

Indeed, the amount of disturbed forest within a selectively logged FMU can vary from 25-50% (Putz 275 

et al 2019), despite the proportion of pixels where a tree was removed being closer to 10%. Robust 276 

methods are needed that incorporate these additional disturbances as true detections in the absence of 277 

field data. Some have utilized a buffer (often 180 m) around logging road networks or landing decks 278 

(Matricardi et al 2010, Souza and Barreto 2000, Monteiro et al 2003) to account for missed 279 

detections, yet these authors have acknowledged high commission and omission errors associated 280 

with this approach.  281 

We almost certainly underestimate the amount of selective logging for 2010 and overestimate 282 

it for 2011 because of two concurrent factors affecting the predictions for these years. First, the cloud-283 

free window was earlier and narrower in 2010 than most other years (Table S4). The cloudiness of 284 

2010 has been documented in other forest mapping exercises in the Brazilian Amazon (Qin et al 285 

2019). This would result in fewer detections, because the dry season period was about three weeks 286 

shorter than average and fewer pixels would have been logged over the shorter time period. Second, 287 

2010 was a particularly high fire year within the Amazon (Aragão et al 2018), consequently large 288 

regions excluded from our analyses probably coincided with some logging locations (Figure S8). In 289 

contrast, logging detections increased dramatically in 2011 (Figure 3), likely because of delayed 290 
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detection of logging activities missed in 2010 (i.e. showing up a year later), combined with additional 291 

detections from the fire scars from 2010 that were insufficiently mapped by the MODIS burned area 292 

product. While such anomalies would affect an annual estimate of logging, they would be dampened 293 

in an operational product that utilized the 5-year rolling average under reference level reporting for 294 

REDD+ (GFOI 2016).  295 

It is difficult to compare our results with other studies, since none have dealt exclusively with 296 

selective logging. However, our estimates are generally higher than other estimates of degradation in 297 

Rondônia. The only other studies assessing degradation over a similar time period combined all forms 298 

of degradation (Souza et al 2013, Bullock et al 2018). Souza et al (2013) estimated about 5,000 km2 299 

yr-1 of degradation within the whole of the Amazon from 2001- 2010 (but twice that in 2008), with 300 

~7% occurring in Rondônia (~350 km2 yr-1). Bullock et al (2019) estimated ~500 km2 yr-1 from 2000-301 

2005 and >750 km2 yr-1 from 2006-2013 within Rondônia. Our estimates are closer to those from 302 

Bullock et al (2019) and the total area selectively logged over the period (5%) is just under the 6% 303 

they found for all forms of degradation. However, our 1% omission error of unlogged forest (Table 1) 304 

translates to about 970 km2 of unlogged forest being identified as logged over the 20 year period (i.e. 305 

<20 km2 yr-1). Thus, our estimates are unlikely to be erroneously inflated and they reflect an 306 

improvement in the detection of selective logging. 307 

Immediately noticeable in the detections of selective logging are an abundance of linear 308 

features (i.e. logging roads). Road building has big implications for primary tropical forests 309 

(Kleinschroth et al 2016, 2015, Kleinschroth and Healey 2017) and improving their detection is 310 

critical to understanding their lifecycle and the continued loss of intact forest landscapes (Potapov et 311 

al 2017, 2008). Roads create forest edges that can alter abiotic processes like microclimate (Williams-312 

Linera et al 1998), change plant and animal species composition (Tabarelli et al 2012), increase fire 313 

susceptibility (Armenteras et al 2013), and ultimately weaken forest resilience (Murcia 1995, 314 

Kleinschroth and Healey 2017). Moreover recent work has shown that tropical forests globally may 315 

be nearing a tipping point where fragmentation will begin to increase dramatically (Taubert et al 316 

2018). The tropics are estimated to have around 50 million forest fragments, encompassing nearly 50 317 

million km of edge (Brinck et al 2017). Monitoring the emergence and spread of roads is critical to 318 
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understanding the disturbance frontiers of intact forests and our method clearly improves early 319 

detection of cryptic roads. 320 

Some important caveats are needed regarding our approach and results. First, like all studies 321 

in the tropics that exclusively use optical data, some areas were excluded from analyses each year 322 

because of clouds. Despite creating a mosaic of all available pixels in each year, ~1% of Rondônia 323 

was affected by clouds annually (mean = 2,600 km2 ± 2,400 km2 SD) and was included in the 324 

subsequent year assuming no disturbance had occurred. Second, each mosaic consisted of only a 325 

single pixel per location and any selective logging that occurred after the date of the latest cloud-free 326 

pixel in the mosaic would remain undetected. Third, our approach cannot distinguish between logging 327 

and fire. We limited this by removing burned areas annually, using the MCD64 burn product, but the 328 

different scale of these datasets (500 m) and Landsat (30 m) is certain to result in commission and 329 

omission of burned area. Collectively, these factors will tend to cause underestimation of the area 330 

selective logging annually. Finally, our complete dataset on selective logging covered only a subset of 331 

the years (2011-2017) we mapped (2000-2019) and could not be used to properly validate annual 332 

maps from years without logging data (i.e. 2000-2010, 2018, 2019). Consequently, we only validated 333 

the final map against the validation data. Thus, if a logging detection was temporally inaccurate, it 334 

was technically regarded as correctly classified.  Figures 4 and 5 were included to provide some 335 

perspective on this issue, where we show the false alarm rate (FAR) in regions where we had general 336 

knowledge that logging had occurred in a particular year (Figure 4) and where we knew it had not 337 

occurred (Figure 5). Both figures display very low false alarm rates (the temporally inaccurate 338 

detections in Fig 4 and any detection in Fig 5) that suggest our results were not impacted. 339 

Moving forward, we are exploring the sensitivity of the logging estimates to the choices of 340 

the value of the classification threshold used to detect logging (Sections S1, S2, and Figure S5) and 341 

the window size and the number of detections in the post-processing step (Section 2.5). In particular, 342 

it is desirable to decrease the omission of logging by lowering the threshold and/or altering the 343 

window size and detection requirements in the post-processing step. However, such changes will also 344 

modify the commission error when predicting unlogged forest so both must be considered together. 345 

An additional decision affecting logging estimates was the exclusion of forests with canopy cover 346 
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<90% as defined within the Hansen data. Brazil defines a forest as having >10% canopy cover and >5 347 

m height (GFOI 2016), but we sought to restrict our analyses to continuous tropical forests (i.e. not 348 

secondary forest, cerrado, gallery forests, or otherwise modified forests) where commercial logging 349 

leases tend to occur. 350 

Tropical forests store billions of tons of carbon. While the emissions estimates from selective 351 

logging are much lower than those from deforestation (Asner et al 2010), recent work has shown that 352 

taking full accounting of degradation activities suggests much higher emissions than previously 353 

thought (Maxwell et al 2019). However, Maxwell et al (2019) simulated selective logging in 354 

proximity to road networks because large-scale maps are lacking. The extent of logged forest in the 355 

tropic is likely to be vast, yet they represent the next best alternative to the protection of primary 356 

forest (Edwards et al 2014). Given that financially viable pathways for global action on forest 357 

degradation will be linked to climate mitigation potential, with the aim of achieving secondary 358 

benefits for biodiversity and human livelihoods, reliable logging maps will enable a better accounting 359 

of the relationships between timber harvest and the full suite of goods and services tropical forests 360 

provide. 361 
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