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Abstract 15 

 16 

Neural network function requires an appropriate balance of excitation and inhibition 17 

to be maintained by homeostatic plasticity. However, little is known about 18 

homeostatic mechanisms in the intact central brain in vivo. Here, we study 19 

homeostatic plasticity in the Drosophila mushroom body, where Kenyon cells receive 20 

feedforward excitation from olfactory projection neurons and feedback inhibition from 21 

the APL neuron. We show that prolonged (4 d) artificial activation of the inhibitory 22 

APL causes increased Kenyon cell odor responses after the artificial inhibition is 23 

removed, suggesting that the mushroom body compensates for excess inhibition. In 24 

contrast, there is little compensation for lack of inhibition (blockade of APL). The 25 

compensation occurs through a combination of increased excitation of Kenyon cells 26 

and decreased activation of APL, with differing relative contributions for different 27 

Kenyon cell subtypes. Our findings establish the fly mushroom body as a model for 28 

homeostatic plasticity in vivo. 29 

 30 

Keywords: Drosophila, olfaction, homeostatic plasticity, mushroom body 31 

 32 

Significance statement: When a neuron fires, it excites or inhibits other neurons. 33 

These two opposing forces – excitation and inhibition – need to be carefully 34 

balanced in the brain for neural networks to function properly. Maintaining this 35 

balance requires homeostatic plasticity to compensate for perturbations in neural 36 

activity levels. Relatively little is known about how such homeostatic compensation 37 

works in the intact central brain in vivo. To address this problem, we developed a 38 

model for studying homeostatic plasticity in vivo: the Drosophila mushroom body (the 39 

fly’s olfactory memory center). We found that this brain structure compensates for 40 

prolonged excess inhibition through a combination of increased excitation and 41 

decreased inhibition, with these two mechanisms contributing differently for different 42 

types of neurons. 43 

 44 

Introduction 45 

 46 

Effective information coding in neural networks requires neuronal firing rates to stay 47 

within a certain dynamic range. At the extremes, networks carry no useful 48 
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information if neurons are completely silent or constantly fire at their highest possible 49 

rate. More subtle differences in activity levels can also affect information coding; for 50 

example, sparse coding of sensory stimuli helps to maximize associative memory 51 

capacity and to separate population representations of different stimuli, thereby 52 

enhancing learned discrimination (1, 2). Yet how do neural networks achieve such 53 

“Goldilocks” activity levels, and how do they maintain them in the face of external 54 

perturbations (e.g., temperature changes) or neural plasticity caused by 55 

development or learning (e.g., Hebbian plasticity, which risks destabilizing activity 56 

levels by strengthening active synapses and weakening inactive synapses)? 57 

Theoretical studies show that this problem can be solved by homeostatic plasticity, 58 

which compensates for changes in activity levels to restore neurons to a “set point” 59 

of activity (3, 4). Such homeostatic plasticity can occur through multiple mechanisms, 60 

including changes in intrinsic excitability, strength or number of excitatory or 61 

inhibitory synaptic inputs, or changes in the threshold between synaptic potentiation 62 

vs. depression (5, 6).  63 

 64 

These findings have mostly come from dissociated neurons in vitro or ex vivo 65 

preparations like brain slices, sometimes following in vivo sensory deprivation like 66 

eyelid suture (e.g., (7-13)). Yet brain slices differ in important ways from the intact 67 

brain in vivo: compared to the intact brain, brain slices can have less spontaneous 68 

activity (14) and more synapses (15). Even in vivo, neural activity differs significantly 69 

between awake and anesthetized animals (16). Homeostatic compensation has 70 

been studied in vivo in the spinal cord (17, 18) and more recently in the brain (19-71 

24), but the circuit mechanisms underlying homeostatic plasticity in the intact central 72 

brain in vivo remain relatively unknown. 73 

 74 

This problem can be addressed in Drosophila, whose genetic toolkit and numerically 75 

simple brain allows greater specificity in manipulating and measuring neural activity 76 

in vivo than in mammals. These tools have revealed many examples at cellular 77 

resolution of plasticity underlying associative learning (25), non-associative learning 78 

(26-28), activity-dependent remodeling (29, 30) and developmental circuit refinement 79 

(31). However, relatively little is known about homeostatic regulation of activity levels 80 

(but see, e.g., (32)). In most examples of homeostatic compensation studied in 81 

Drosophila, the variable being controlled is not activity levels but synaptic strength. In 82 
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particular, in the most well-understood homeostatically controlled system, the 83 

neuromuscular junction (NMJ), the goal is to maintain constant synaptic strength so 84 

that the muscle can faithfully execute the motor neuron’s commands, not to maintain 85 

constant average activity levels in the muscle (33) (see also (34) in the antennal 86 

lobe). It remains unclear whether or how the adult fly brain uses homeostatic 87 

plasticity to maintain activity levels in the correct range. 88 

 89 

We address this question in the fly mushroom body, whose principal neurons, called 90 

Kenyon cells (KCs), receive both feedforward excitation from second-order olfactory 91 

neurons called projection neurons (PNs) and feedback inhibition from a single 92 

neuron called “APL” (anterior paired lateral; Fig. 1A) (1, 35-37). This balance of 93 

excitation and inhibition regulates the level of activity in KCs to enforce sparse 94 

coding, in which only a small fraction of KCs responds to each odor (38). This sparse 95 

coding reduces overlap between KC odor representations and enhances learned 96 

odor discrimination (1). However, it remains unclear how KCs set the relative 97 

strength of their excitatory and inhibitory inputs. We hypothesized that this balance 98 

might be set in an activity-dependent manner, in which case the mushroom body 99 

should homeostatically adapt to perturbations in activity levels. 100 

 101 

Here we test the homeostatic capacity of the fly mushroom body in vivo and dissect 102 

the underlying circuit mechanisms. We find that the mushroom body compensates 103 

for excess inhibition from APL, but shows little compensation for lack of inhibition. 104 

Compensation for excess inhibition from APL requires multiple days and occurs by 105 

both weakening odor-evoked activity of APL and increasing odor-evoked excitation 106 

of KCs, with differing relative contributions of these two mechanisms in different 107 

subtypes of KCs. These findings establish the fly mushroom body as a model for 108 

studying homeostatic plasticity in vivo. 109 

 110 

Results 111 

 112 

KCs show little compensation for loss of inhibition from APL 113 

 114 

We first tested whether the mushroom body circuitry adapts to lack of inhibition from 115 

APL. Previously we showed that blocking synaptic output from APL by acutely 116 
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expressing tetanus toxin (TNT) in APL dramatically increases odor-evoked Ca2+ 117 

influx in KCs (1, 39). We now compared the effects of blocking inhibition from APL 118 

acutely (16-24 h) vs. constitutively (throughout development; Fig. 1B). As before, we 119 

expressed TNT in APL by intersecting the expression domains of NP2631-GAL4 and 120 

GH146-FLP, suppressing GAL4 activity in GH146-negative cells by including tubP-121 

FRT-GAL80-FRT. The GAL80 is excised in GH146-positive cells by FLP 122 

recombinase approximately 50-70% of the time (1). This method drives expression 123 

of UAS-transgenes in APL and not in PNs or KCs ((1) and Fig. S1A,B). To express 124 

TNT acutely, we included tubP-GAL80ts to suppress GAL4 activity when flies were 125 

kept at 18 ºC, and induced expression of TNT by heating the flies to 31 ºC for 16–24 126 

h before the experiment. To express TNT in APL constitutively, we left out the tubP-127 

GAL80ts but exposed the flies to the same temperatures as the “acute” flies (Fig. 128 

1B).  129 

 130 

To confirm that tubP-GAL80ts effectively suppressed GAL4 activity in APL in “acute” 131 

flies, we drove CD8::GFP and mCherry in APL (see Table S1 for full genotypes). 132 

These flies showed GFP expression in APL in 12/18 hemispheres when raised at 18 133 

ºC and heated to 31 ºC for 16–24 h before dissection (consistent with previous 134 

studies (1)), but in 0/15 hemispheres when kept at 18 ºC. Given that both conditions 135 

have the same probability of GAL80 excision (excision occurs in development (40) 136 

so would be unaffected by heating during adulthood), it is extremely unlikely that 137 

GAL80 would be excised in APL in 12/18 hemispheres in one condition but 0/15 in 138 

the other (p < 0.0001, Fisher’s exact test). Thus, the most plausible explanation is 139 

that GAL80 was excised in APL even in the flies kept at 18 ºC, but GAL4 activity was 140 

effectively suppressed by tubP-GAL80ts. 141 

 142 

To measure KC odor responses, we expressed GCaMP6f in KCs under the control 143 

of MB247-LexA (41), and TNT in APL using the above-described intersectional 144 

strategy. MB247-LexA does not drive expression in APL ((1) and Fig. S1C,D). To 145 

test KC responses for different strengths of excitatory input, we recorded Ca2+ influx 146 

in KCs evoked by the “strong” odor isoamyl acetate and the “weak” odor δ-147 

decalactone (the former elicits more total activity in olfactor receptor neurons (42) 148 

and KCs (1)). We separately analyzed KC odor responses in the different lobes of 149 

the mushroom body, i.e., the α′ and β′ lobes (made up of axons from α′β′ KCs), the α 150 
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and β lobes (axons from αβ KCs), and the γ lobe (axons from γ KCs; see diagrams 151 

in Fig. 1C), because the three main KC subtypes (α′β′, αβ, and γ) have different 152 

functional properties (43-46). 153 

 154 

We used two negative controls in which APL did not express TNT. First, we 155 

measured KC odor responses in brain hemispheres in which GAL80 was not excised 156 

in APL (i.e., identical genotype and treatment but no TNT in APL: “APL unlabeled”, 157 

black in Fig. 1C,D). We identified which hemispheres had GAL4 activity in APL by 158 

including UAS-mCherry or immunostaining brains for TNT after the experiment. (We 159 

pooled the APL-unlabeled hemispheres from flies with and without tubP-GAL80ts 160 

because their odor responses did not differ: Fig. S2A; conclusions from statistical 161 

analysis are unchanged if the two groups are separated: Table S2).  162 

 163 

Second, to further confirm that tubP-GAL80ts suppressed TNT expression in APL to 164 

functionally insignificant levels, we measured KC odor responses in flies with tubP-165 

GAL80ts that were kept at 18 ºC throughout life (diagram in Fig. 1B, right; data 166 

labeled “18 ºC”, green in Fig. 1C,D). These flies showed similar responses as the 167 

“APL unlabeled” controls. Although we could not confirm whether GAL80 had been 168 

excised from tubP-FRT-GAL80-FRT in APL in these flies (due to the continued 169 

activity of GAL80ts), it is unlikely that all “18 ºC” flies would have had APL unlabeled 170 

by chance, given that 28/40 hemispheres had APL labeled in the corresponding 171 

experimental flies that were heated to 31 ºC (0/10 at 18 ºC vs. 28/40 at 31 ºC, p < 172 

0.0001, Fisher’s exact test), by the same logic as the GFP expression experiment 173 

above. This second negative control confirms that our “acute” expression of TNT 174 

was genuinely acute, with functionally no leaky expression of TNT during 175 

development. 176 

 177 

Compared to both of these control groups, both acute and constitutive expression of 178 

TNT in APL dramatically increased odor-evoked Ca2+ influx in KCs (Fig. 1C,D), with 179 

little evidence of homeostatic compensation. We did not observe any consistent 180 

differences in KC response amplitudes between acute vs. constitutive APL>TNT 181 

flies. In some cases, constitutive responses were lower than acute responses and in 182 

others, they were higher (KC responses imaged with GCaMP6f in Fig. 1, GCaMP3 in 183 

Fig. S2B). Other subtle differences occasionally appeared, e.g., smaller normalized 184 
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difference between responses to isoamyl acetate and δ-decalactone in constitutive 185 

APL>TNT flies, potentially suggesting compensation to restore APL’s gain control 186 

function, or reduced post-odor GCaMP signal in constitutive APL>TNT flies, 187 

potentially suggesting altered calcium export (Fig. S3). However, again, these 188 

differences were subtle and inconsistent, and thus do not provide clear evidence of 189 

functionally significant adaptation. Thus, taken together, our data indicate that 190 

Kenyon cells show little, if any, homeostatic compensation for prolonged lack of 191 

inhibition from APL. 192 

 193 

KC odor responses are higher following prolonged excess inhibition from APL 194 

 195 

We next tested the reverse manipulation: rather than blocking APL, we activated 196 

APL with the temperature-sensitive cation channel dTRPA1 (47). Acutely activating 197 

APL with dTRPA1 suppresses odor responses in KCs (1) and activation with 198 

dTRPA1 throughout development induces homeostatic plasticity in larval motor 199 

neurons (29). Given that mammalian cortical plasticity induced by sensory 200 

deprivation can take several days to appear (24, 48), we initially activated APL for 4 201 

d. We expressed GCaMP6f in KCs, and dTRPA1 and mCherry in APL, using the 202 

same drivers as in Fig. 1. We raised flies at 22 ºC, collected them 0–1 d after 203 

eclosion, and either left them at 22 ºC or heated them to 31 ºC for 4 d (88–96 h) 204 

before recording KC odor responses at 22 ºC (Fig. 2A).  205 

 206 

If this prolonged artificial activation of APL induces homeostatic compensation, KC 207 

activity should rebound to abnormally high levels when the artificial activation is 208 

stopped. Indeed, KC odor responses recorded at 22 ºC were significantly higher in 209 

hemispheres where APL expressed dTRPA1 when the flies had been pre-heated to 210 

31 ºC for 4 d, compared to hemispheres where APL was unlabeled or to flies that 211 

had not been pre-heated. This effect occurred in all lobes, with both the “strong” odor 212 

isoamyl acetate and the “weak” odor δ-decalactone (Fig. 2B,C). Similar effects were 213 

seen when measuring odor responses with GCaMP3 instead of GCaMP6f (Fig. S4), 214 

although the effect in α′β′ KCs was less consistent here and in later experiments (see 215 

below). Note that “APL unlabeled” and “APL>dTRPA1” hemispheres had the same 216 

genotype and in many cases were in the same fly, providing an ideal genetic control.  217 

 218 
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Increased responses in KC axonal lobes could reflect individual KCs responding 219 

more and/or more KCs responding. To test the latter possibility, we recorded KC 220 

somatic odor responses in pre-heated flies and measured the population sparseness 221 

of the resulting activity maps. Odor responses were less sparse (broader) in 222 

APL>dTRPA1 hemispheres compared to APL unlabeled hemispheres (Fig. 2D,E, 223 

S5A). We next asked if this broadening would also make KC odor responses more 224 

similar. Although inter-odor correlations between activity maps were somewhat 225 

higher in APL>dTRPA1 hemispheres, the effect was not statistically significant (Fig. 226 

S5B,C). We may lack statistical power to detect a modest effect, but our sample size 227 

provided 96% power to detect an effect as large as the increase in inter-odor 228 

correlations previously observed in APL>TNT flies (1). This difference could be 229 

explained by the fact that adaptation to APL activation causes a much smaller 230 

increase in KC odor responses than APL>TNT does (Fig. S5D). 231 

 232 

The smaller effect of adaptation to APL>dTRPA1 (vs. blocking APL with TNT) also 233 

implies that the adaptation effect cannot be explained trivially as APL simply being 234 

killed or damaged by over-activation by dTRPA1 for 4 d. This trivial explanation is 235 

further excluded by the fact that even after we pre-activated APL with dTRPA1, 236 

heating flies to 31 ºC during the imaging experiment to acutely activate APL still 237 

efficiently suppressed KC odor responses (Fig. S6,S7, see also Fig. 5 below). 238 

Moreover, adaptation to APL>dTRPA1 caused no obvious changes in the gross 239 

morphology of KCs or APL (Fig. S8). Together, these results suggest that 4 d 240 

APL>dTRPA1 activation induces homeostatic compensation to counteract the 241 

excess activity in APL or insufficient activity in Kenyon cells. 242 

 243 

Adaptation to excess inhibition from APL is most prominent after 4 days and is 244 

temporary 245 

 246 

To further confirm these results, we repeated the APL>dTRPA1 adaptation 247 

experiments using a different APL driver, VT43924-GAL4, to express dTRPA1 in 248 

APL (49) (see Fig. S1 for expression pattern). Kenyon cells’ odor responses 249 

recorded after 4 d pre-activation of APL were significantly higher (except in the α′ 250 

lobe) in flies where APL expressed dTRPA1, compared to flies with UAS-dTRPA1 251 
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alone (Fig. 3A, blue squares; S9), thereby reproducing the results obtained with the 252 

intersectional strategy for labeling APL. 253 

 254 

Other model systems show homeostatic compensation in as little as 1 d (9, 19, 23, 255 

50-52). To test whether the mushroom body might similarly compensate within 1 d, 256 

we tested flies after 1 d of pre-activating APL instead of 4 d, while still imaging them 257 

4-5 d after eclosion (Fig. 3, blue squares; S9). Unlike with 4 d pre-heating, with 1 d 258 

pre-heating, APL>dTRPA1 flies did not have signficantly higher KC odor responses 259 

than flies with UAS-dTRPA1 alone (although in some case there was a non-260 

significant trend toward an increase).  261 

 262 

This difference might arise not from the length of pre-heating but rather from the 263 

timing during the fly’s life: perhaps there is a critical period for homeostatic plasticity 264 

in the first day after eclosion. To test this, we pre-heated newly eclosed flies for 1 d. 265 

These flies also showed no significant difference between APL>dTRPA1 flies and 266 

UAS-dTRPA1 controls (Fig. S10), suggesting that the difference between 1 d and 4 267 

d pre-heating is not due to a critical period (although there may still be a critical 268 

period such that, e.g., 10 d old flies would not show homeostatic plasticity).  269 

 270 

To further probe when compensation occurs, we tested flies at multiple time points: 271 

1, 2, 3 and 4 d of heating (keeping the age of the fly at imaging constant). To 272 

reproduce our timescale results with a different driver, we returned to the 273 

NP2631/GH146-FLP intersectional driver (Fig. 3, black circles). Consistent with the 274 

results with VT43294-GAL4, only at 4 d did we consistently observe significantly 275 

higher KC odor responses in APL>dTRPA1 hemispheres compared to control ‘APL 276 

unlabeled’ hemispheres (although at 1-3 d there was a trend toward an increase that 277 

was sometimes significant at 2-3 d; Fig. 3A, S11). Here and in Fig. S9, we do not 278 

exclude the possibility that some small adaptation occurs before 4 d that couldn’t be 279 

detected with our statistical power, but these results suggest that the effect is more 280 

prominent after 4 d. 281 

 282 

We next tested how long homeostatic compensation lasts, by taking flies where APL 283 

had been activated for 4 d and leaving them at 22 ºC for 1, 2, or 3 d to ‘forget’ the 284 

adaptation. The difference between APL>dTRPA1 and control hemispheres was no 285 
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longer statistically significant by 1-2 d (Fig. 3B, S12), suggesting that adaptation 286 

does not last more than 1-2 d after excess inhibition from APL stops. 287 

 288 

APL odor responses are reduced following adaptation 289 

 290 

We next asked what cellular or circuit mechanisms underlie the adaptation observed 291 

above, i.e., increased odor responses in KCs following excess inhibition from APL. 292 

We postulated five broad, non-mutually-exclusive categories of mechanisms: (1) 293 

increased synaptic excitation from PNs to KCs, (2) increased intrinsic excitability of 294 

KCs, (3) decreased synaptic excitation from KCs to APL, (4) decreased intrinsic 295 

excitability of APL, and (5) decreased synaptic inhibition from APL to KCs (Fig. 4A). 296 

Mechanisms 1, 2 and 5 center on KC activity while mechanisms 3 and 4 center on 297 

APL activity. To test these two broad groupings of hypotheses, we recorded odor 298 

responses in APL after adaptation (Fig. 4B). If adaptation only involves changes 299 

centered on KC activity (mechanisms 1, 2, 5), then the relation between KC activity 300 

and APL activity would be unchanged; therefore, because APL’s odor input comes 301 

from KCs (1), APL should continue to copy whatever KCs do. Thus, APL odor 302 

responses should increase after adaptation just as KC odor responses do. Contrary 303 

to this prediction, after 4 d at 31 ºC, APL>dTRPA,GCaMP6f flies showed decreased 304 

APL odor responses compared to APL>GCaMP6f (no dTRPA1) flies (Fig. 4C), 305 

particularly in the peak response (compare to steady-state responses in Fig. S13). 306 

These results suggest that increased KC odor responses after adaptation can be 307 

explained at least in part by decreased activity in the inhibitory APL neuron 308 

(mechanism 3 and/or 4).  309 

 310 

Different KCs show different effects of APL activation after adaptation 311 

 312 

These results do not rule out the possibility that, in addition to changes in APL 313 

activity, adaptation also involves changes centered on KC activity (mechanisms 1, 2 314 

and 5 above: increased intrinsic excitability, increased synaptic excitation from PNs, 315 

decreased sensitivity to inhibition from APL). To test this possibility, we re-examined 316 

data from Fig. S6 to focus on KC odor responses during acute activation of APL 317 

(caused by heating APL>dTRPA1 flies to 31 ºC during imaging) (Fig. 5C,D). 318 

Artificially activating APL overrules the reduced odor-evoked activity in APL, making 319 
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APL activity equal in adapted and non-adapted flies, both before and during odor 320 

pulses (Fig. 5A,B, S14). Therefore, if adaptation was due only to reduced APL odor-321 

evoked activity, then the difference in KC odor response between adapted and non-322 

adapted flies should go away when we artificially activate APL. 323 

  324 

We observed different results in different KCs. In αβ KCs, odor responses in adapted 325 

flies were generally still higher than in non-adapted flies even at 31 ºC (Fig. 5E). In 326 

contrast, in γ KCs, although odor responses were higher in adapted than non-327 

adapted flies when recorded at 22 ºC, the odor responses declined approximately to 328 

the same level when recorded at 31 ºC (Fig. 5E). (Note that Fig. 5 shows mean ∆F/F 329 

rather than maximum ∆F/F because in some cases activating APL with dTRPA1 330 

changed the dynamics of the KC odor responses; see Fig. S15 for maximum ∆F/F, 331 

which gives similar results.) A power analysis indicates our sample sizes would 332 

detect an effect as strong as that observed in the β lobe with power >0.95. (Odor 333 

responses in α′β′ KCs are more difficult to interpret as they did not consistently 334 

decrease when APL was activated by dTRPA1; see Fig. S6, S7, S15.) These results 335 

indicate that while adaptation in γ KCs can be explained by decreased APL odor 336 

responses, adaptation in αβ KCs requires an additional mechanism. 337 

 338 

Adaptation in αβ KCs occurs at least partly through non-inhibitory plasticity 339 

 340 

This additional mechanism in αβ KCs could be mechanism 1, 2 and/or 5: increased 341 

intrinsic excitability, increased synaptic excitation from PNs, and/or decreased 342 

sensitivity to inhibition from APL. To distinguish between these possibilities (Fig. 6A), 343 

we sought to block inhibition from APL in adapted flies (Fig. 6B). If adaptation 344 

occurred solely through weakening inhibition, whether through reducing APL activity 345 

(mechanisms 3 and 4) or reducing KC sensitivity to inhibition (mechanism 5), then 346 

blocking inhibition should remove the difference between adapted and non-adapted 347 

flies. To acutely block inhibition from APL in pre-heated APL>dTRPA1 flies, we 348 

expressed the histamine-gated Cl- channel Ort (53) in APL, and bath-applied 349 

histamine. Ectopically expressing Ort in olfactory neurons allows histamine to 350 

potently inhibit them for at least several minutes (54). We again used the 351 

intersectional driver for APL to express dTRPA1 and Ort in APL, and mb247-LexA to 352 

express GCaMP6f in KCs. In hemispheres where APL was unlabeled, 2 mM 353 
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histamine did not affect KC odor responses (Fig. 6C, Fig. S16); this result is 354 

consistent with the relative absence of histamine and histamine receptors in the 355 

mushroom body (54-60), and argues against non-specific effects of histamine.  356 

 357 

In Fig. 2-3, the adapted vs. non-adapted conditions were hemispheres in 358 

APL>dTRPA1 flies where APL was labeled or unlabeled, respectively. However, in 359 

this experiment, we could not use APL-unlabeled hemispheres as controls, because 360 

here we sought to compare adapted vs. non-adapted flies when APL was blocked by 361 

Ort, which is not expressed if APL is unlabeled. In theory, the non-adapted controls 362 

could be either APL>dTRPA1,Ort flies kept at 22 ºC or APL>Ort flies (without 363 

dTRPA1) kept at 31 ºC. However, in preliminary experiments, we found that in 364 

APL>dTRPA1,Ort flies kept at 22 ºC for 4 d, histamine increased KC odor responses 365 

modestly, but not as strongly as in APL>dTRPA1,Ort or APL>Ort flies kept at 31 ºC 366 

for 4 d (Fig. S16). This temperature dependence suggests that Ort expression was 367 

stronger at 31 ºC than 22 ºC because Gal4 activity is stronger at higher temperatures 368 

(61). Therefore, APL>dTRPA1,Ort flies kept at 22 ºC were not a suitable control. 369 

Instead, we compared only flies kept at 31 ºC for 4 d: APL>dTRPA1,Ort (adapted) 370 

and APL>Ort (non-adapted). 371 

 372 

These genotypes replicated the adaptation effect: before adding histamine, 373 

responses in APL>dTRPA1,Ort hemispheres were higher than responses in 374 

APL>Ort (no dTRPA1) hemispheres. (In the α′ and β′ lobes, this difference was not 375 

statistically significant (Fig. S17); it may be that any adaptation effect in α′β′ KCs is 376 

less robust than in αβ and γ KCs, as in Fig. S4,S9,S11,S12). After adding histamine, 377 

KC responses in both genotypes were dramatically increased, to a similar degree as 378 

that caused by tetanus toxin expression in APL (Fig. S18), suggesting that in flies 379 

kept at 31 ºC, stimulating Ort in APL with 2 mM histamine suffices to block APL 380 

inhibition onto KCs.  381 

 382 

In the α and β lobes, after adding histamine, responses to isoamyl acetate in 383 

APL>dTRPA1,Ort hemispheres were still significantly higher than in APL>Ort 384 

hemispheres (Fig. 6C,D). That is, even without inhibition from APL, we still observed 385 

the adaptation effect, suggesting that the adaptation from excess APL inhibition 386 

occurs at least in part through non-inhibitory plasticity, i.e., increased synaptic 387 
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excitation or intrinsic excitability (mechanism 1 or 2), rather than entirely through 388 

decreased sensitivity to inhibition or decreased activity in APL (mechanisms 3-5). In 389 

contrast, in the γ lobe, although APL>dTRPA1,Ort responses were slightly higher 390 

than APL>Ort responses after adding histamine, this difference was not statistically 391 

different. This result suggests that in γ KCs, adaptation from excess APL inhibition 392 

mostly relies on reduced inhibition (mechanisms 3-5). Note that we do not exclude 393 

the possibility that APL>dTRPA1,Ort and APL>Ort γ lobe responses were actually 394 

different and we lacked the statistical power to detect a significant effect due to 395 

experimental variability. Still, this difference between αβ and γ KCs is consistent with 396 

the conclusion from APL activation during imaging (Fig. 5) that adaptation in γ KCs 397 

can be explained mostly by decreased APL activity (mechanisms 3 and 4) while 398 

adaptation in αβ KCs requires something extra.  399 

 400 

Discussion 401 

 402 

We have delineated the homeostatic capacity of the Drosophila mushroom body in 403 

vivo and revealed circuit mechanisms underlying homeostatic plasticity. We found 404 

that the mushroom body compensates for excess inhibition from APL, but not lack of 405 

inhibition. This compensation requires multiple days and occurs by two mechanisms 406 

— suppressed odor-evoked APL activity and increased odor-evoked excitation of 407 

KCs — which contribute differentially to adaptation in different subtypes of KCs. 408 

 409 

We did not observe clear evidence of compensation for lack of inhibition in APL>TNT 410 

flies. Could this be because our “acute” manipulation (16-24 h TNT expression in 411 

APL) was already long enough to induce adaptation? Two lines of evidence argue 412 

against this possibility. First, the effect of blocking APL with 16-24 h of TNT 413 

expression is at least as strong as the effect of blocking APL with shibirets, which 414 

occurs over only ~15 min (1). Second, we saw similar size effects for 16-24 h 415 

APL>TNT expression and APL>Ort + 5 min histamine bath application (Fig. S18). 416 

Because 16-24 h APL>TNT expression produces a similar effect on KCs as two 417 

separate acute blockades of APL, we consider it unlikely that a shorter TNT 418 

blockade would produce larger KC odor responses. 419 

 420 
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Why do KCs show little compensation for lack of inhibition in APL>TNT flies? For 421 

example, KCs could in theory increase expression of potassium channels to reduce 422 

their excitability (45), yet apparently they do not. It may be that the mushroom body 423 

normally tries to compensate for increased KC activity by increasing inhibition from 424 

APL (i.e., mechanisms 3-5 in the scheme in Fig. 4A, but in the opposite direction), 425 

but this strategy fails in APL>TNT flies because synaptic output from APL is 426 

permanently blocked. (Indeed, we observed anecdotally that prolonged APL>TNT 427 

expression appeared to make APL’s neurites degenerate: Fig. S19.) This 428 

explanation would be consistent with findings in mammals that hyperexcitability is 429 

compensated for by increased synaptic inhibition (62-64). Such mechanisms would 430 

successfully adapt for variable APL activity; their only failure mode (complete 431 

inactivation of APL) might be rare enough not to be worth evolving compensation for. 432 

The lack of compensation for blockade of APL may not be surprising in light of other 433 

findings that even strong homeostatic compensation can be imperfect (65). 434 

 435 

We imposed excess inhibition on KCs by activating APL with dTRPA1 for 4 d. 436 

Although it was not technically feasible to verify by in vivo recordings that APL was 437 

continuously activated throughout the 4 d, Fig. 5A,S14 show that (1) dTRPA1 438 

activation drives Ca2+ influx in APL to a plateau lasting as long as a ~3-4 min heat 439 

stimulus and (2) APL activation during imaging is not affected by APL pre-activation 440 

for 4 d. APL is unlikely to enter depolarization block as it does not fire action 441 

potentials (66). Similarly, activating APL with dTRPA1 still suppresses KC odor 442 

responses after 4 d pre-activation (Fig. 4,S6-7). These results suggest that APL 443 

most likely was depolarized throughout the 4 d pre-activation. 444 

 445 

What mechanisms underlie the observed compensation for excess inhibition from 446 

APL? We initially postulated five non-mutually-exclusive categories of mechanisms: 447 

(1) increased synaptic excitation from PNs to KCs, (2) increased intrinsic excitability 448 

of KCs, (3) decreased synaptic excitation from KCs to APL, (4) decreased intrinsic 449 

excitability of APL, and (5) decreased synaptic inhibition from APL to KCs (Fig. 4A). 450 

Our finding that APL shows decreased odor responses after adaptation (Fig. 4) 451 

implicates decreased synaptic excitation and/or intrinsic excitability of APL 452 

(mechanisms 3 and 4). The equal activation of APL by dTRPA1 in control vs. 453 

adapted flies (Fig. 5A) might argue against decreased intrinsic excitability of APL. 454 
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However, dTRPA1 activation might be so strong as to cause a ceiling effect, or 455 

GAL4-driven dTRPA1 expression in APL might be higher in pre-heated flies (61), 456 

cancelling out any decreased intrinsic excitability.  457 

 458 

Our finding of decreased APL activity after APL over-activation is consistent with 459 

previous studies showing the converse result: that mammalian interneurons increase 460 

their excitability when their activity is blocked (67-69). Yet other studies found 461 

opposite effects: decreasing network activity decreases excitability of interneurons 462 

while increasing activity increases it (10, 21, 23, 51). These differences likely arise 463 

from whether the system’s homeostatic set point focuses on single neurons (i.e., 464 

inhibitory interneurons try to maintain their desired activity) or the network as a whole 465 

(i.e., if total network activity is decreased, even including decreased interneuron 466 

activity, interneurons should still decrease their excitability to disinhibit the network) 467 

(70). In our case, both scenarios point in the same direction, as our manipulation 468 

activates an inhibitory interneuron (APL) that then inhibits the principal excitatory 469 

neurons (KCs); both the primary and secondary effect demand decreased APL 470 

excitability as the correct homeostatic response. 471 

 472 

We further found that αβ (but not γ) KCs continue to show the adaptation effect when 473 

APL is artificially activated (Fig. 5) or blocked (Fig. 6), implicating increased synaptic 474 

excitation or intrinsic excitability of KC (mechanisms 1 and/or 2 in αβ KCs). These 475 

findings are consistent with other studies showing increased excitation/excitability of 476 

excitatory neurons in response to decreased activity (7, 12, 19, 52, 71, 72). Note that 477 

we do not exclude the possibility of decreased synaptic inhibition from APL to KCs 478 

(mechanism 5); such weakening of inhibition onto excitatory neurons commonly 479 

occurs in response to neuronal inactivity (7, 8, 11, 73). Finally, in contrasting αβ KCs 480 

and γ KCs, we do not claim that γ KCs show absolutely no changes in excitation, 481 

merely that we did not find evidence of such changes. 482 

 483 

What molecular mechanisms may be involved? Neurons in the circuit might sense 484 

their abnormally high (APL) or low (KC) activity by reactive oxygen species via the 485 

redox sensor DJ-1β (29) or by Ca2+ levels via CaM kinase (9, 72). Our finding that 486 

adaptation takes more than 1 d suggests that the effector arm of the homeostatic 487 

mechanism may involve altered transcription or translation. Increased (KCs) or 488 
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decreased (APL) synaptic excitation (mechanisms 1 and 3 above) might occur 489 

through altered synapse size/number (30) or altered surface expression of post-490 

synaptic nicotinic acetylcholine receptors, as occurs with AMPA receptors in 491 

plasticity of glutamatergic synapses (74, 75). Such changes could also occur by 492 

altered pre-synaptic release from PNs or KCs, respectively. However, we consider 493 

pre-synaptic plasticity in PNs less likely, as this would be expected to affect all KCs 494 

equally rather than only αβ KCs, whereas we only observed increased 495 

excitation/excitability in αβ KCs, not γ KCs. Increased (KCs) or decreased (APL) 496 

intrinsic excitability (mechanisms 2 and 4 above) might occur through altered ion 497 

channel expression, as observed in Drosophila larval motor neurons (32), or (for 498 

KCs) through moving the axon initial segment (76, 77). 499 

 500 

We do not exclude the possibility that other neurons in the mushroom body could be 501 

involved in the observed homeostatic compensation. For example, DPM (‘dorsal 502 

paired medial’) also forms reciprocal synapses with KCs (78) and contains GABA 503 

(79), so it may be that DPM reduces inhibition of KCs to compensate for excess 504 

inhibition from APL. However, unlike APL, DPM shows little or no expression of 505 

GABAergic markers (56). Moreover, there is no published physiological evidence 506 

that DPM directly inhibits KCs; DPM and APL are connected by gap junctions (80) so 507 

findings that activating DPM increases chloride concentrations in KCs (79) could be 508 

explained by DPM activating APL. If increased KC activity arises in part from 509 

decreased DPM activity causing decreased APL activity via DPM-APL gap junctions, 510 

this could be considered a special case of decreased synaptic excitation from KCs to 511 

APL. 512 

 513 

Our findings that adaptation occurs over multiple days (Fig. 3, S9-S11) fit in with 514 

diverse adaptation timescales in other in vivo studies. Following sensory deprivation 515 

in mammals, recovery of cortical activity levels from their nadir can take ~1-3 d (21, 516 

48, 81), even up to 7 d (24). In other cases, adaptation occurs within 24 h (19, 23, 517 

50, 51). It may be that the incomplete suppression of KC odor responses by 518 

APL>dTRPA1 activation (Fig. 5, S6-7) is a less drastic effect than, e.g., the effect of 519 

eyelid suture on visually evoked cortical activity. Intuitively, it is reasonable that 520 

homeostatic mechanisms may take longer to sense and respond to a less drastic 521 

activity perturbation. Alternatively, it may simply be that the mushroom body is less 522 
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efficient at compensating for activity perturbations than mammalian cortex, whether 523 

due to differences between species or types of brain structures. Future studies may 524 

address these and other questions about the timescale of adaptation, such as 525 

whether adaptation occurs in older flies, or whether different underlying mechanisms 526 

kick in at different times during the multi-day unfolding of homeostatic adaptation.  527 

 528 

Finally, what is the behavioral significance of homeostatic adaptation in Kenyon 529 

cells? In the example studied here, increased KC activity following excess inhibition 530 

makes odor responses less sparse (Fig. 2D), which could impair learned odor 531 

discrimination (1). However, it is unclear if the relatively modest decrease in 532 

sparseness would measurably impair odor discrimination, especially as we did not 533 

detect a significant increase in inter-odor correlations. Indeed, the adaptation might 534 

even improve associative olfactory learning, given that improved learning is seen 535 

when KC activity is modestly increased by downregulating GABA synthesis in APL 536 

(vs. blocking APL output completely) (1, 36, 37). Future work may address which (if 537 

any) of these potential behavioral outcomes occurs. Conversely, given that 538 

homeostatic compensation following APL>dTRPA1 pre-activation allows αβ (but not 539 

γ) KC odor responses to approach normal amplitudes during acute APL>dTRPA1 540 

activation despite the excess inhibition (Fig. 5), it will be interesting to test whether 541 

pre-activating APL analogously allows flies to resist whatever learning impairment (if 542 

any) might normally result from acutely inhibiting KCs with APL>dTRPA1. If so, 543 

homeostatic adaptation might help flies avoid detection failures in the case of hyper-544 

inhibition. Indeed, a greater need to avoid detection failures than discrimination 545 

failures could explain why the mushroom body compensates for KC hypo-activity but 546 

not hyper-activity. More generally, homeostatic plasticity may reflect broader activity-547 

dependent parameter setting in KCs that helps achieve reliably distributed sparse 548 

odor coding (82). 549 

 550 

  551 
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Methods 552 

 553 

See SI Appendix, Supplementary Methods for details. 554 

 555 

Fly strains 556 

Flies were raised on standard cornmeal agar at the temperatures described. Details 557 

of fly strains are given in Supplementary Methods. 558 

 559 

Imaging 560 

Brains were imaged by two-photon microscopy on a Movable Objective Microscope 561 

(Sutter) using ScanImage software (Vidrio), as described (1, 43). Volume imaging 562 

was performed in sawtooth mode (typically 10-16 z slices, volume rate ~3 Hz). 563 

Movies were motion-corrected in X-Y using the moco ImageJ plugin (83), and 564 

motion-corrected in Z by maximizing the pixel-by-pixel correlation between each 565 

volume and the average volume across time points (43). ∆F/F traces were calculated 566 

in ImageJ using manually-drawn ROIs for the background and brain structure of 567 

interest, and smoothed with a 0.2 s boxcar filter and interpolated to common frame 568 

times for averaging traces in Igor Pro 7 (WaveMetrics). ∆R/R in Fig. 5, Fig. S14 was 569 

calculated by dividing GCaMP6f signal by dsRed signal, to remove motion artifacts 570 

caused by heating. Sparseness and correlation were analyzed as in (1). Histamine 571 

(2 mM, Sigma H7250) was added 5 min before imaging in APL>Ort experiments.  572 

 573 

Data availability statement 574 

All data necessary to reproduce our findings and figures is included in the SI 575 

Dataset. Analysis code is available at https://github.com/aclinlab/calcium-imaging. 576 
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 586 

Figure legends 587 

 588 

Fig. 1. Kenyon cells show little compensation for loss of inhibition from APL 589 

(A) Schematic of mushroom body circuitry: Kenyon cells (KCs) receive 590 

feedforward excitation from projection neurons (PNs) and feedback inhibition 591 

from APL. 592 

(B) Diagram of genotype (green shows GCaMP6f expression; orange X shows 593 

blockade with TNT) and experimental protocol. Flies were raised at 18 ºC, 594 

collected 0–1 d after eclosion, then kept at 18 ºC for 3 d and heated to 31 ºC 595 

for 16–24 h (middle panel) or kept at 18 ºC for 4 d (right panel) before the 596 

imaging experiment, which was always done at 22 ºC. 597 

(C) Responses of different KC lobes to isoamyl acetate (IA, upper) or δ-598 

decalactone (δDL, lower), imaged with GCaMP6f. Black bars, 5 s odor pulse; 599 

shading, s.e.m. Diagrams show the locations of different lobes in the 600 

mushroom body (green; medial is left, dorsal is up). See also Fig. S2-3. 601 

(D) Maximum ∆F/F of data from C. Half-filled circles mean the category pools 602 

data, i.e., APL labeled and unlabeled (green), with GAL80ts and without 603 

(black). Mean ± 95% confidence interval. # p < 0.05 between acute vs. 604 

constitutive, * p < 0.001 between TNT expressed (acute or constitutive) vs. 605 

TNT not expressed (18 ºC or APL unlabeled), ANOVA (see Table S2 for 606 

details). n, given as # hemispheres (# flies), left to right: α′ and α, 9 (5), 9 (7), 607 

22 (15), 17 (10); β′, β and γ, 10 (5), 19 (14), 28 (19), 26 (15).  608 

 609 

Fig. 2. Kenyon cell odor responses are higher following prolonged excess 610 

inhibition from APL 611 

(A) Diagram of genotype (green shows GCaMP6f expression; magenta shows 612 

activation with dTRPA1) and experimental protocol. Flies were raised at 22 613 

ºC, collected 0–1 d after eclosion, kept at 22 ºC (control) or 31 ºC (pre-heated) 614 

for 4 d, and returned to 22 ºC for the imaging experiment. 615 

(B) Responses of the γ lobe to isoamyl acetate, for flies kept at 22 ºC (upper) or 616 

31 ºC (lower), where APL was unlabeled (grey/black) or expressed dTRPA1 617 

(pink/red). Black bars, 5 s odor pulse; shading, s.e.m. Responses of all lobes 618 

shown in Fig. S4. 619 
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(C) Maximum ∆F/F of odor responses in all lobes to isoamyl acetate (IA) and δ-620 

decalactone (δDL). * p < 0.05, ** p < 0.01, *** p < 0.001, ANOVA (see Table 621 

S2 for details). n, given as # hemispheres (# flies), left to right within each 622 

graph: 9 (8), 15 (11), 11 (7), 13 (8).  623 

(D) Activity maps of responses to isoamyl acetate in KC somata. Grayscale 624 

shows baseline fluorescence of GCaMP6f; false-color overlay shows odor-625 

responsive pixels. Scale bar 10 µm. 626 

(E) Average sparseness to a panel of 6 odors (δ-decalactone, isoamyl acetate, 627 

ethyl butyrate, methylcyclohexanol, 3-octanol, benzaldehyde; sparseness to 628 

each odor shown separately in Fig. S5). Mean ± 95% confidence interval. *** 629 

p < 0.001, unpaired t-test. 630 

 631 

Fig. 3. Adaptation to excess inhibition from APL is most prominent after 4 days 632 

and is temporary 633 

(A) Adaptation after 1, 2, 3, or 4 d of APL activation. Flies were raised at 22 ºC 634 

and collected 0-1 d after eclosion, then kept at 22 ºC for 0-3 d, then kept at 31 635 

ºC for 1-4 d, and imaged at 22 ºC at 4-5 d post-eclosion. Graphs show effect 636 

size of adaptation (maximum ∆F/F of KC response to isoamyl acetate, 637 

APL>dTRPA1 minus control), calculated using bootstrap-coupled estimation 638 

statistics (84), driving dTRPA1 expression in APL using NP2631+GH146-FLP 639 

(black circles; control is APL unlabeled) or VT43924-GAL4 (blue squares; 640 

control is UAS-dTRPA1/+). Error bars, 95% confidence intervals. In the 641 

diagram of the genotype (upper left), green shows GCaMP6f expression, 642 

magenta shows activation with dTRPA1. * p < 0.05 for APL>dTRPA1 vs. 643 

control, ANOVA (see Table S2 for details). ns (p > 0.05) applies to both 644 

drivers at 1 d. Full data and sample sizes for all lobes in Fig. S9-11.  645 

(B) As in A, except flies were all kept at 31 ºC for 4 d, then kept at 22 ºC for 0-3 d 646 

before imaging. Data for 0 d is repeated from ‘4 d’ in panel A for comparison. 647 

Full data in Fig. S12. 648 

 649 

Fig. 4. APL odor responses are reduced following adaptation 650 

(A) Diagrams of potential mechanisms that might underlie increased KC odor 651 

responses following adaptation. This figure tests mechanisms 1, 2, 5 vs. 652 

mechanisms 3-4, and shows evidence for mechanisms 3-4 (blue box). 653 
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(B) Diagram of genotype (APL expresses dTRPA1 and GCaMP6f) and 654 

experimental protocol (all flies were raised at 22 ºC and kept at 31 ºC for 4 d 655 

before imaging). 656 

(C) Responses of different lobes of APL (as determined by the anatomical marker 657 

mb247-dsRed) to isoamyl acetate in APL>GCaMP6f (“no dTRPA1”) or 658 

APL>dTRPA1,GCaMP6f (“APL>dTRPA1”) flies kept at 31 ºC for 4 d. 659 

Diagrams show the locations of different lobes (green) within APL, which 660 

innervates the whole mushroom body. Graphs show maximum ∆F/F, mean ± 661 

95% confidence interval; shading, s.e.m. * p < 0.05, ** p < 0.01, unpaired t-662 

test or Mann-Whitney test (see Table S2 for details). n, left to right: α′ and α, 663 

12 (9 flies), 12(8 flies); β′, β and γ, 12 (9 flies), 13 (8 flies).  664 

 665 

Fig. 5. Different KCs show different effects of APL activation after adaptation 666 

(A) APL is equally activated by dTRPA1 regardless of pre-heating. Upper traces 667 

show GCaMP6f signal of β lobe of APL (as determined by the anatomical 668 

marker mb247-dsRed), normalized to dsRed signal (hence ∆R/R, not ∆F/F), 669 

during perfusion heating of saline, in APL>TRPA,GCaMP6f flies kept at 22 ºC 670 

(black) or 31 ºC (red) for 4 d. Blue shading shows periods used for 671 

quantification in (B): After temperature reached a plateau (period 1), isoamyl 672 

acetate (period 2) and δ-decalactone (period 3) were presented. Lower traces 673 

show the saline temperature corresponding to recordings in the upper traces 674 

(same color scheme and time scale). Shading, s.e.m. Other lobes shown in 675 

Fig. S14. 676 

(B) Quantification of periods from A: average ∆R/R during temperature plateau 677 

(period 1) and maximum ∆R/R during odors (periods 2, 3). Maximum ∆R/R is 678 

used for odors for consistency with Fig. 4. Graphs show mean ± 95% 679 

confidence interval. n.s. p > 0.05, unpaired t-test or Mann-Whitney test. n: 22 680 

ºC, 10 (8 flies); 31 ºC, 8 (6 flies). 681 

(C) This figure tests mechanisms 1, 2, 5 vs. mechanisms 3-4, and shows 682 

evidence for mechanisms 1, 2, 5 (blue box) in αβ KCs. 683 

(D) Diagram of genotype (APL expresses dTRPA1, KCs express GCaMP6f) and 684 

experimental protocol for (E). 685 

(E) Traces show responses of the α, β, and γ lobes to isoamyl acetate (IA, left) 686 

and δ-decalactone (δDL, right) in KC>GCaMP6f, APL>dTRPA1 flies kept at 687 
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22 ºC or 31 ºC for 4 d, recorded at 22 ºC (black) or 31 ºC (magenta). Only 688 

paired recordings are shown (same fly recorded at both temperatures). Black 689 

bars, 5 s odor pulse; shading, s.e.m. Bar graphs quantify traces using mean 690 

∆F/F during the odor pulse (same color scheme as traces; bars show mean, 691 

thin lines show paired data recorded at 22 ºC and 31 ºC). Data for α′β′ KCs 692 

and maximum ∆F/F given in Fig. S15. * p < 0.05, ** p < 0.01, *** p < 0.001, 693 

paired t-test or Wilcoxon test (22 ºC vs. 31 ºC), unpaired t-test or Mann-694 

Whitney test (across flies), with Holm-Bonferroni correction (see Table S2 for 695 

details). n as in Fig. S6, S7.  696 

 697 

Fig. 6. Adaptation effect remains in αβ KCs after removing inhibition from APL 698 

(A) This figure tests mechanisms 1-2 vs. mechanisms 3-5, and shows evidence 699 

for mechanisms 1-2 (blue box) in αβ KCs. 700 

(B) Diagram of genotype and experimental protocol. Flies were raised at 22 ºC, 701 

collected 0–1 d after eclosion, kept at 31 ºC for 4 d, and returned to 22 ºC for 702 

the imaging experiment. During the experiment, odor responses were 703 

recorded before and after bath-applying 2 mM histamine. 704 

(C) Responses of α, β and γ lobes to isoamyl acetate before (black) and after 705 

(orange) bath-applying 2 mM histamine. Genotypes: mixture of hemispheres 706 

from APL>Ort and APL>dTRPA1,Ort flies where APL was unlabeled (left); 707 

APL>Ort, APL labeled (middle); APL>dTRPA1,Ort, APL labeled (right). 708 

Shading, s.e.m. Traces of other lobes and responses to δ-decalactone are 709 

shown in Fig. S16,S17. 710 

(D) Maximum ∆F/F for traces in (C). Genotypes: APL>Ort (left), APL>dTRPA1,Ort 711 

(right). Bars show mean, thin lines show paired data (same hemisphere 712 

before and after histamine). The effect of histamine was statistically significant 713 

in all cases (p < 0.001, paired t-test or Wilcoxon test). * p < 0.05, ** p < 0.01, 714 

unpaired t-test or Mann-Whitney test, Holm-Bonferroni correction for multiple 715 

comparisons (see Table S2 for details). n: no dTRPA1, 17 (11 flies); 716 

APL>dTRPA1, 16 (11 flies).  717 

 718 

 719 

 720 
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Supplementary Information Text 

Supplementary Methods 

Fly strains 

 Fly strains (see below) were raised on standard cornmeal agar (80 g medium cornmeal, 18 g 
dried yeast, 10 g soya flour, 80 g malt extract, 40 g molasses, 8 g agar, 25 ml 10% nipagin in ethanol, 4 
ml propionic acid per 1 L water), at 25 ºC for preparatory fly crosses, and at 18 ºC (GAL80

ts
 flies) or 22 ºC 

(dTRPA1 flies) as described, and in some cases heated to 31 ºC after eclosion as described. Flies were 
imaged at the ages specified in the Results section. 
 The following transgenic strains were used: NP2631-GAL4 (1), GH146-FLP (2), tubP-FRT-
GAL80-FRT (for dTRPA1, on chromosome 2: (3); for TNT, on chromosome 2 or 3: (4)), UAS-TNT (5), 
tubP-GAL80

ts
 (6), UAS-CD8::GFP (7), UAS-mCherry-CAAX (8), MB247-LexA::VP16 (9), lexAop-

GCaMP6f (10), lexAop-GCaMP3 (11), UAS-dTRPA1 (12), VT43924-GAL4 (13) (note that we did not 
include UAS-GAL4), UAS-Ort (14) (gift from Chi-hon Lee). 

Functional imaging 

 Calcium imaging was performed as described (11, 15). Cuticle and trachea in a window overlying 
the mushroom body were removed, and the exposed brain was superfused (perfusion pump Watson-
Marlow 120S DM2, ~2.7 ml/min) with carbogenated (95% O2, 5% CO2) solution containing 103 mM NaCl, 
3 mM KCl, 5 mM trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM NaH2PO4, 3 mM CaCl2, 4 mM MgCl2, 
5 mM N-Tris (TES), pH 7.3. Odors (10

-2
 for isoamyl acetate, δ-decalactone; 10

-1
 for ethyl butyrate, 

benzaldehyde, 4-methylcyclohexanol, 3-octanol) were delivered by switching mass-flow controlled carrier 
and stimulus streams (Sensirion) via software controlled solenoid valves (The Lee Company). The flow 
rate at the fly was ~0.5 L/min. Flies were heated during imaging using a perfusion heater (Scientifica, SM-
4600). Histamine (2 mM, Sigma H7250) was added 5 min before imaging in APL>Ort experiments. 
Although histamine was reported to effectively suppress activity in Ort-expressing neurons at 100 µM 
(14), in preliminary experiments we found that 100 µM histamine did not increase KC odor responses in 
APL>Ort flies but 2 mM histamine did (Fig. 6), possibly because a mere reduction in APL activity (as 
opposed to a total blockade) would be canceled out by increased KC activity due to the KC-APL negative 
feedback loop. 
 Brains were imaged by two-photon microscopy (16, 17). Fluorescence was excited by 75-80 fs 
pulses (pulse width measured by APE Carpe autocorrelator) of 910 nm light at 80 MHz from a 
Ti:Sapphire laser (Spectra-Physics eHP DS), attenuated by a Pockels cell (Conoptics, Model 350-80LA) 
and coupled to a galvo-resonant scanner on a Movable Objective Microscope (Sutter Instruments). 
Excitation light was focused by a 20X, 1.0 NA objective (Olympus XLUMPLFLN20XW), and emitted 
photons were passed through a 750 nm short pass filter (to exclude excitation light) and bandpass filters 
(green: 525/50; red: 605/70), and detected by GaAsP photomultiplier tubes (Hamamatsu Photonics, 
H10770PA-40SEL), whose currents were amplified (Thorlabs, TIA60) and transferred to the imaging 
computer running ScanImage 5 (Vidrio Technologies). Volume imaging was performed using a piezo 
objective stage (nPFocus400, nPoint) using ScanImage’s FastZ control in sawtooth mode (typically 10-16 
z slices, volume rate ~3 Hz). 
 Movies were motion-corrected in X-Y using the moco ImageJ plugin (18), with pre-processing to 
collapse volume movies in Z and to smooth the image with a Gaussian filter (standard deviation = 4 
pixels; the displacements generated from the smoothed movie were then applied to the original, 
unsmoothed movie), and motion-corrected in Z by maximizing the pixel-by-pixel correlation between each 
volume and the average volume across time points (15). ∆F/F traces were calculated in ImageJ using 
manually-drawn ROIs for the background and brain structure of interest, and smoothed with a 0.2 s 
boxcar filter in Igor Pro 7 (WaveMetrics). ∆R/R in Fig. 5, Fig. S14 was calculated by dividing GCaMP6f 
signal by dsRed signal, to remove motion artifacts caused by heating. Where traces with different frame 
times needed to be averaged, traces were linearly interpolated to a frame time of 0.018 s, except for Fig. 
5a, Fig. S14c, where they were interpolated to 0.2878 s due to software limitations. Flies were excluded if 
the neurons of interest did not respond to odor, the GCaMP6f signal was too low/noisy, or the brain 
moved too much to correct for motion artifacts. 
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 Activity maps were generated as in (11, 15). Briefly, movies were smoothed with a 5-pixel-square 
Gaussian filter (standard deviation 2). Baseline fluorescence was taken as the average fluorescence 
during the pre-stimulus period. Frames with sudden, large axial movements were discarded by correlating 
each frame to the baseline image and discarding it if the correlation fell below a threshold value, which 
was manually selected for each brain by noting the constant high correlation value when the brain was 
stationary and sudden drops in correlation when the brain moved. ∆F/F was calculated for each pixel as 
the difference between mean fluorescence during the stimulus period vs. the baseline fluorescence (∆F), 
divided by the baseline fluorescence. For pixels where ∆F did not exceed 2 times the standard deviation 
over time of that pixel’s intensity during the pre-stimulus period, the pixel was considered non-responsive. 
We excluded non-responsive flies and flies whose motion could not be corrected. 
 Inter-odor correlations were calculated by first aligning the activity maps of each odor response 
by maximizing the inter-odor correlations of baseline fluorescence, and then converting image matrices of 
the activity maps of each odor response into linear vectors and calculating the Pearson correlation 
coefficients between each “odor vector”. Where a pair of volume movies did not fully align in z, a subset 
of z-slices was chosen that did align. A threshold for baseline fluorescence was applied as a mask to the 
activity map to exclude pixels with no baseline GCaMP6f signal. Areas with non-GCaMP6f fluorescence 
(e.g., cuticle) or non-KC-soma areas (e.g., calyx) were manually excluded. Population sparseness was 
calculated for activity maps using the following equation (19, 20): 

𝑆! =
1

1−
1

𝑁

(1−

𝑟!

𝑁

!

!!!

!

𝑟!
!

𝑁

!

!!!

) 

where 𝑁 is the number of pixels and 𝑟! is the response of each pixel. Analysis code is available at 

https://github.com/aclinlab/calcium-imaging. 

Structural imaging 

 To visualize tetanus toxin expression in APL>TNT flies, we either included UAS-mCherry in the 
genotype as in (15) or immunostained with anti-TNT antibody (Abcam, ab53829, formerly known as POL 
016 from Statens Serum Institut). mCherry expression in APL was distinguished from 3XP3-driven dsRed 
from the GH146-FLP transgene by using separate filter cubes for dsRed (49004, Chroma: 545/25 
excitation; 565 dichroic; 605/70 emission) and mCherry (LED-mCherry-A-000, Semrock: 578/21 
excitation; 596 dichroic; 641/75 emission). Immunostaining was carried out as described in (11, 21). 
Dissected brains were fixed in 4% (wt/vol) paraformaldehyde in PBT (100 mM Na2PO4, 0.3% Triton-X-
100, pH 7.2), washed in PBT (2 quick washes, then 3 20 min washes), blocked with 5% goat serum 
(Sigma, G6767) in PBT, incubated in primary antibody (1:100 in blocking solution) at 4 ºC over 2-3 nights, 
washed in PBT (2 quick washes, then 3 20 min washes), incubated in secondary antibody (goat anti-
rabbit Alexa 546, 1:500, ThermoFisher A11071), washed in PBT (2 quick washes, then 3 20 min washes), 
and mounted in Vectashield (Vector Laboratories, H-1000). mCherry expression or anti-TNT staining was 
scored using epifluorescence. 

Statistics 

 Statistical analyses were performed in Prism 8 (GraphPad) and MATLAB. Bootstrap-coupled 
estimation statistics (22) were analysed using the DABEST package 
(https://github.com/ACCLAB/DABEST-python). Parametric (t-test, ANOVA) or non-parametric tests 
(Mann-Whitney, Friedman, Kruskal-Wallis) were used depending on whether raw data (for pairwise 
comparisons) or residuals (for ANOVAs) passed the D’Agostino-Pearson normality test. For ANOVAs and 
unpaired t-tests, Welch or Greenhouse-Geisser corrections were applied when variances were 
significantly different between groups. Random assignment to experimental groups was not used as all 
manipulations were genetic. In general, no statistical tests were done to pre-determine sample size, but 
where a conclusion relied on the absence of a significant effect, a power analysis was performed to 
confirm if the sample size was sufficient to detect an effect of the expected size; if not, the lack of 
statistical power was explicitly noted. The experimenter was blind to which APL neurons were labeled 
before post-experimental dissection (Fig. 1-3,5-6) and for some acute vs. constitutive experiments in Fig. 
S2c, but not otherwise.  
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Fig. S1 (related to all figures). Expression pattern of APL and KC drivers 

(A) Expression pattern of the intersection of NP2631-GAL4 and GH146-FLP where both APL 
neurons are labeled (data from ref. 11, Fig. 4c). Projection neurons (PNs) are not labeled. 

(B) Image in A with maximum intensity projection through only the z-slices containing the calyx. No 
KC somata are labelled (should appear dorsally and laterally to the calyx, as visible in panel C, 
but even stronger here as this brain was imaged posterior side up). 

(C) Expression pattern of MB247-LexA (data from ref. 11, Fig. 1e). 
(D) Image in C with enhanced contrast, to show that APL is not labelled by MB247-LexA. 
(E) Expression pattern of VT43924-GAL4 driving UAS-CD8::GFP. Maximum intensity projection of z-

stack of unfixed brain captured on a two-photon microscope. The non-APL expression along the 
midline and in the periesophageal neuropils can also be seen in Fig. 1C of (13). Note the lack of 
expression in the antennal lobes.  

(F) Single z-slice of (E) 30 µm deep revealing the typical neurite structure of APL in the mushroom 
body lobes, indicating that other mushroom body neurons are not labeled. Contrast in (F-H) 
differs from (E) and from each other to compensate for decreased signal deep in uncleared 
tissue. 

(G) Single z-slice of (E) 48 µm deep showing the APL cell bodies. 
(H) Single z-slice of (E) 134 µm deep showing APL in the calyces.  

Scale bars 50 µm. Dashed outlines outline the brain. Thin diagonal lines outline the boundaries of the 
rotated field of view. 
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Fig. S2 (related to Fig. 1). Additional data for APL>TNT  

(A) KC>GCaMP6f odor responses in APL-unlabeled control hemispheres are the same in flies with 
(orange) and without (blue) GAL80

ts
. Graph shows maximum ∆F/F (data taken from Fig. 1C, 

“APL unlabeled”), mean ± 95% confidence interval. n, given as # hemispheres (# flies): GAL80
ts
, 

α′ and α, 5 (4), β′, β and γ, 7 (5); no GAL80
ts
, α′ and α, 4 (3), β′, β and γ, 12 (9). Mixed-effects 

model (matching across lobes) finds no significant effect of genotype (GAL80
ts
 vs. no GAL80

ts
) (p 

> 0.05).  
(B) Responses of different Kenyon cell lobes to isoamyl acetate (IA, upper) or δ-decalactone (δDL, 

lower), imaged with GCaMP3 instead of GCaMP6f. Horizontal bar shows time of odor 
presentation. Error shading shows s.e.m. Data for ‘acute’ and ‘APL unlabeled’ (with GAL80

ts
) flies 

from ref. 23. 
(C) Maximum ∆F/F of data from panel B. Mean ± 95% confidence interval. # p < 0.05 between acute 

vs. constitutive, * p < 0.001, Welch ANOVA with Dunnett’s T3 multiple comparisons test, or 
Kruskal-Wallis ANOVA with Dunn’s multiple comparisons test. n, given as # hemispheres (# flies), 
left to right within each graph: α′ and α, 11 (10), 20 (14), 12 (9); β′, β and γ, 18 (15), 36 (24), 24 
(16). 

In all panels, * without line indicates different from APL unlabeled. Detailed statistical analysis given in 
Table S2. 
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Fig. S3 (related to Fig. 1). Dynamics of KC odor responses with APL>TNT 

(A) Normalized difference between maximum ∆F/F response to IA vs. δDL, taken as (IA-
δDL)/(IA+δDL), for data from Fig. 1C (KC>GCaMP6f, left) and Fig. S2C (KC>GCaMP3, right). n 
as in those panels. For GCaMP6f, but not GCaMP3, the normalized difference is higher with 
acute APL>TNT than both APL unlabeled controls and constitutive APL>TNT. * p < 0.05, mixed-
effects model (matching across lobes) with Geisser-Greenhouse correction and Holm-Sidak 
multiple comparisons test (GCaMP6f), Welch’s 1-way ANOVA with Holm-Sidak multiple 
comparisons or Kruskal-Wallis ANOVA with Dunn’s multiple comparisons test (GCaMP3).  

(B) Post-odor GCaMP signal (KC>GCaMP6f, left; KC>GCaMP3, right), for IA (top) and δDL (bottom), 
analysed as mean ∆F/F 1-6 s after the end of the odor pulse divided by mean ∆F/F during the 5 s 
odor pulse (ON and OFF periods shown in right panel as shading superimposed on γ lobe 
responses). Data from Fig. 1C and Fig. S2B (n as in those panels). * p < 0.05, ordinary 1-way 
ANOVA with Holm-Sidak multiple comparisons test or Kruskal-Wallis ANOVA with Dunn’s 
multiple comparisons test.  

In all panels, * without line indicates different from APL unlabeled. Detailed statistical analysis given in 
Table S2. 
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Fig. S4 (related to Fig. 2). Odor response traces and GCaMP3 data for Fig. 2 (Kenyon cell odor 
responses are increased following excess activation of the inhibitory APL neuron) 

(A) Responses of all lobes to isoamyl acetate (IA) and δ-decalactone (δDL) for KC>GCaMP6f, 
APL>dTRPA1 flies kept at 22 ºC or 31 ºC, where APL was unlabeled or expressed dTRPA1, 
recorded at 22 ºC. Legend shows 2x2 grid: APL unlabeled, kept at 22 ºC (green), APL>dTRPA1, 
kept at 22 ºC (blue), APL unlabeled, kept at 31 ºC (black), APL>dTRPA1, kept at 31 ºC (red). 
Horizontal bars show time of odor presentation. Error shading shows s.e.m. Diagrams of the 
mushroom body show the α′, β′, α, β and γ lobes. n as in Fig. 2. 

(B) Same as (A) except measured with KC>GCaMP3 instead of KC>GCaMP6f. 
(C) Maximum ∆F/F response from panel B. Mean ± 95% confidence interval.* p < 0.05, ** p < 0.01, 

ordinary 1-way ANOVA with Holm-Sidak multiple comparisons test or Kruskal-Wallis test with 
Dunn’s multiple comparisons test, comparing only conditions where a single variable changed 
(see Table S2 for details). n, given as # hemispheres (# flies), left to right within each graph: α′, 
14 (9), 9 (7), 10 (9), 13 (11); β′, 16 (11), 15 (11), 7 (6), 12 (10); α, 14 (9), 10 (7), 10 (9), 14 (11); β, 
15 (10), 14 (11), 9 (8), 13 (11); γ, 16 (11), 16 (12), 9 (8), 13 (11). 
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Fig. S5 (related to Fig. 2). Sparseness and inter-odor correlation of KC odor responses after 
adaptation to APL>dTRPA1 adaptation 

(A) Population sparseness of activity maps of KC somatic responses to a panel of 6 odors: δ-
decalactone, 4-methylcyclohexanol, 3-octanol, benzaldehyde, isoamyl acetate, ethyl butyrate. δ-
decalactone and isoamyl acetate were at 10

-2
 dilution for consistency with the rest of the study; 

the others were at 10
-1

 to ease detection of broader odor responses. All flies were kept at 31 ºC 
for 4 d before imaging at 22 ºC as in Fig. 2. APL unlabeled, n = 7 (6 flies); APL>dTRPA1, n = 8 (6 
flies). p = 0.0004, significant main effect of genotype in mixed-effects model. 

(B) Pairwise correlations between activity maps of KC somatic responses to the odors in A. 
(C) Mean inter-odor correlation (mean of all non-diagonal squares in B) does not significantly differ 

between APL unlabeled and APL>dTRPA1 hemispheres. n as in (A). p = 0.15, unpaired t-test. p 
= 0.18, main effect of genotype in mixed-effects model when considering each odor pair 
separately. p < 0.0001, main effect of odor-pair identity, indicating that our data reliably report that 
some odor pairs are more similar than others (see grids in B). 

(D) Maximum ∆F/F of γ lobe responses to isoamyl acetate, duplicated from Fig. 1C, 2C. Odor 
responses are higher with APL blocked by TNT (blue) than after adaptation following 4 d APL 
activation by dTRPA1 (red), possibly explaining why adaptation to APL>dTRPA1 does not affect 
inter-odor correlations, whereas blocking APL with TNT does (11). *** p < 0.001, Welch ANOVA 
with Holm-Sidak multiple comparisons test (see Table S2 for details). 
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Fig. S6 (related to Fig. 2). APL remains functional after prolonged activation 
(A) Diagram of genotype (green shows GCaMP6f expression; magenta shows activation with 

dTRPA1).  
(B) Diagrams show experimental protocol: Flies were raised at 22 ºC, collected 0–1 d after eclosion, 

kept at 22 ºC (control) or 31 ºC (pre-heated) for 4 d, and returned to 22 ºC before the imaging 
experiment. 

(C) Responses of all lobes to isoamyl acetate (IA) and δ-decalactone (δDL) for KC>GCaMP6f, 
APL>dTRPA1 flies kept at 22 ºC or 31 ºC, where APL was unlabeled or expressed dTRPA1, 
recorded at 22 ºC (black) or 31 ºC (magenta). Horizontal bars show time of odor presentation. 
Error shading shows s.e.m. Diagrams of the mushroom body show the α′, β′, α, β and γ lobes. 
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Fig. S7 (related to Fig. 2). APL remains functional after prolonged activation, quantification 

(A) Mean ∆F/F during odor recorded at 22 ºC (grey) vs. recorded at 31 ºC (magenta), for APL 
unlabeled or APL>dTRPA1 hemispheres, kept at 22 ºC or kept at 31 ºC, for odors isoamyl 
acetate or δ-decalactone. Here we quantified odor responses using mean ∆F/F rather than 
maximum ∆F/F because in some cases activating APL with dTRPA1 changed the dynamics of 
the KC odor responses, such that the decrease in mean ∆F/F was more obvious than the 
decrease in maximum ∆F/F. Bars show mean, thin lines show paired data (recorded at 22 ºC and 
31 ºC). * p < 0.05, ** p < 0.01, *** p < 0.001, 2-way repeated measures ANOVA or mixed-effects 
model with Geisser-Greenhouse correction with Holm-Sidak multiple comparisons test (see Table 
S2 for details). n, given as # hemispheres (# flies) in the order APL unlabeled, kept at 22 ºC; 
APL>dTRPA1, kept at 22 ºC; APL unlabeled, kept at 31 ºC; APL>dTRPA1, kept at 31 ºC (n for IA 
and δDL equal except where noted): α′ and α, 7 (7) [6 (6) for δDL], 14 (10) [13 (9) for δDL], 7 (4), 
11 (6); β′, β and γ, 8 (7) [7 (6) for δDL], 14 (10) [13 (9) for δDL], 10 (6), 12 (7). Responses 
recorded at 22 ºC are the same as in Fig. 2 except excluding flies without a response at 31 ºC (fly 
died, motion artifacts, etc.).  

(B) Same as panel A except with maximum ∆F/F instead of mean ∆F/F. 
Note: The lesser effect of activating APL with dTRPA1 on α′β′ odor responses, compared to αβ and γ 
responses, is consistent with our previous data (11) and with findings that α′β′ KCs are more excitable 
(24, 25) and have higher spontaneous activity than αβ and γ KCs (spontaneous activity ~0.3 Hz in α′β′ 
KCs vs. 0 Hz in αβ and γ KCs; (26)). Although all three types of KCs respond equally to optogenetic 
activation of APL (25), it may be that APL activation suppresses spontaneous activity in α′β′ KCs, which 
would make the inhibitory effect on the odor-evoked ∆F/F less apparent due to the lower baseline 
GCaMP6f fluorescence. 
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Fig. S8 (related to Fig. 2). Gross morphology of APL and KCs is unaffected by APL>dTRPA1 
adaptation 

(A) Example single optical sections of KCs expressing GCaMP6f in the vertical (left) and horizontal 
(right) lobes, in control APL-unlabeled hemispheres (upper) and APL>dTRPA1 hemispheres 
(lower), kept at 31 ºC for 4 d. 

(B)  Example single optical sections of APL expressing GCaMP6f in the vertical (left) and horizontal 
(right) lobes, in APL>GCaMP6f only (no dTRPA1) flies (upper) and APL>GCaMP6f,dTRPA1 flies 
(lower), kept at 31 ºC for 4 d. Diagonal lines indicate the edge of the rotated field of view. Note 
typical APL neurite morphology, parallel to KC axons (hence perpendicular to the imaging plane 
in the vertical, and running left and right in the horizontal lobe). 

Diagrams illustrate approximate z-depth of imaging planes of each optical section. Scale bars 10 µm. 
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Fig. S9 (related to Fig. 3). Stronger adaptation to APL activation after 4 days than 1 day (using 
VT43924-GAL4) 

(A) Responses of different lobes of the mushroom body to isoamyl acetate (IA) and δ-decalactone 
(δDL) for 1 d adapted (4 d old) flies, where APL did not express (grey) or expressed dTRPA1 
(pink) driven by VT43924-GAL4. Horizontal bar shows time of odor presentation. Error shading 
shows s.e.m. Diagram at left shows experimental protocol: Flies were raised at 22 ºC and 
collected 0–1 d after eclosion, then kept at 22 ºC for 3 days and moved to 31 ºC for 1 d (4 d old). 
All flies were imaged at 22 ºC. 

(B) As A, except flies kept at 31 ºC for 4 d after eclosion.  
(C) Maximum ∆F/F of traces in (B-C). * p < 0.05, ** p < 0.01, *** p < 0.001, 1-way ANOVA with Holm-

Sidak multiple comparisons test or Kruskal-Wallis test with Dunn’s multiple comparisons test, 
comparing only conditions where a single variable changed. 2-way ANOVAs revealed interactions 
between genotype and length of pre-heating in the β′ and γ lobes (see Table S2 for details). n, 
given as # hemispheres (# flies), left to right within each graph: IA, α and α′, 9 (5), 10 (5), 12 (6), 
11 (6); β, β′ and γ, 10 (5), 10 (5), 12 (6), 12 (6); δDL, α and α′, 10 (5), 11 (6), 10 (5), 10 (5); β, β′ 
and γ, 10 (5), 10 (5), 8 (4), 12 (6).   



13 

 

 
Fig. S10 (related to Fig. 3). No adaptation after 1 d APL activation in 1 d old flies (using VT43924-
GAL4) 

(A) Diagram of experimental protocol. Flies were raised at 22 ºC and collected 0–1 d after eclosion, 
then immediately moved to 31 ºC for 1 d, and then imaged at 22 ºC. 

(B) Responses of different lobes of the mushroom body to isoamyl acetate and δ-decalactone in 1 d 
old flies kept at 31 ºC for 1 d (diagram in A), where APL did not express (grey) or expressed 
dTRPA1 (orange) driven by VT43924-GAL4. Horizontal bar shows time of odor presentation. 
Error shading shows s.e.m. 

(C) Maximum ∆F/F from panel B. Mean ± 95% confidence interval. n, given as # hemispheres (# 
flies) in the order UAS-TRPA alone; APL>dTRPA1: IA, α′ and α, 12(7), 17(10); β′, β and γ, 13(7), 
17(10); δDL, α′ and α, 12(7), 18(10); β′, β and γ, 13(7), 18(10). p > 0.05 for all comparisons, 
unpaired t-test or Mann-Whitney test (see Table S2 for details).  

  



14 

 

 
Fig. S11 (related to Fig. 3). Adaptation after 1, 2, 3, and 4 d pre-activation of APL 

(A) Responses of all lobes to isoamyl acetate for KC>GCaMP6f, APL>dTRPA1 flies kept at 31 ºC for 
1, 2, 3 or 4 d (as shown on diagrams at top), where APL was unlabeled (black) or expressed 
dTRPA1 (red). Horizontal bars show time of odor presentation. Error shading shows s.e.m. 
Diagrams of the mushroom body show the α′, β′, α, β and γ lobes. 

(B) Maximum ∆F/F response from panel A. Mean ± 95% confidence interval. * p < 0.05, 2-way 
ANOVA with Sidak’s multiple comparisons test. n, given as # hemispheres (# flies), left to right 
within each graph: 1 d: 6 (5) [5 (4) for β and β′], 10 [9 for α] (7); 2 d: 12 (9), 12 (8); 3 d: 8 (6), 10 
(7); 4 d: 9 (7), 11 (8). 

(C) Effect size of adaptation (KC response with APL>dTRPA1 minus KC response with APL 
unlabeled), calculated using bootstrap-coupled estimation statistics (22). Error bars, 95% 
confidence intervals. 
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Fig. S12 (related to Fig. 3). Loss of adaptation 0, 1, 2, and 3 d after the end of pre-activation of APL 

(A) Responses of all lobes to isoamyl acetate for KC>GCaMP6f, APL>dTRPA1 flies kept at 31 ºC for 
4 d and then 22 ºC for 0, 1, 2, or 3 d (as shown on diagrams at top), where APL was unlabeled 
(black) or expressed dTRPA1 (red). Horizontal bars show time of odor presentation. Error 
shading shows s.e.m. Diagrams of the mushroom body show the α′, β′, α, β and γ lobes. 

(B) Maximum ∆F/F response from panel A. Mean ± 95% confidence interval. * p < 0.05, 2-way 
ANOVA with Sidak’s multiple comparisons test. n, given as # hemispheres (# flies), left to right 
within each graph: 0 d: 9 (7), 11 (8); 1 d: 10 (9), 10 (9); 2 d: 10 (9), 15 (11); 3 d: 6 (4), 18 (10). p < 
0.01 for the β lobe, interaction between genotype (APL unlabeled vs. APL>dTRPA1) and time (# 
days at 22 ºC) (see Table S2). 

(C) Effect size of adaptation (KC response with APL>dTRPA1 minus KC response with APL 
unlabeled), calculated using bootstrap-coupled estimation statistics (22). Error bars, 95% 
confidence intervals. 

Data for 0 d repeated from condition ‘4 d’ in Fig. S11 for comparison. 
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Fig. S13 (related to Fig. 4). APL responses to δ-decalactone, and quantification of APL steady-
state responses, following adaptation. 

(A) Traces show responses of different lobes of APL (as determined by the anatomical marker 
MB247-dsRed) to δ-decalactone in APL>GCaMP6f (“no dTRPA1”) or APL>dTRPA1,GCaMP6f 
(“APL>dTRPA1”) flies kept at 31 ºC for 4 d. Shading shows s.e.m. Grey rectangle shows “steady-
state” period for (C). 

(B) Maximum ∆F/F of traces from (A). Mean ± 95% confidence interval. * p < 0.05, unpaired t-test. n, 
given as # hemispheres (# flies): no dTRPA1, 12 (9); APL>dTRPA1, 13 (8). Most lobes show 
decreased responses in adapted APL>dTRPA1 flies, but unlike responses to isoamyl acetate 
(Fig. 4), in most cases this is not statistically significant, possibly due to the lower amplitude 
responses (to δ-decalactone compared to isoamyl acetate) combined with the overall noisy 
GCaMP6f signal (due to recording from only the single APL neuron). 

(C) Mean steady-state ∆F/F of traces from (A) and Fig. 4, during 2 – 5 s after odor onset (grey 
rectangle in (A)). Mean ± 95% confidence interval. n as in those panels. p > 0.05 for all 
comparisons, unpaired t-test or Mann-Whitney test (see Table S2 for details). 
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Fig. S14 (related to Fig. 5). Additional data for activation of APL following adaptation 

(A) Data as in Fig. 5A,B but including α′, α and γ APL lobes. n, given as # hemispheres (# flies), left 
to right within each graph: α′, 7(5), 10(6); α, 4(5), 9(6); β, 10(8), 8(6); γ, 10(8), 8(6). We omitted 
the β′ lobe because due to technical limitations in this experiment we could only image one focal 
plane at a time, and whereas the α′ and α lobes can be captured in one plane, as can the β and γ 
lobes, the β′ lobe requires another movie, which we deemed non-essential given that Fig. 5 does 
not address the β′ lobe. The peak after δ-decalactone presentation (diagonal arrow) is most likely 
an artifact of our perfusion protocol. To accelerate cooling, upon turning off the heater, we sped 
up the perfusion from ~2.7 ml/min to ~9.8 ml/min. In doing so, we inadvertently briefly increased 
the saline temperature (arrowhead) because heated saline from the heater had less time to cool 
down before reaching the fly. Note that the secondary increase in GCaMP6f signal (arrow) aligns 
not with the secondary rise temperature (arrowhead) but with a slight discontinuity in temperature 
at the vertical arrow, which reflects the change in perfusion speed. The most likely explanation is 
that, due to turbulence in the perfusion chamber, the fly received the brief pulse of heat before the 
thermometer did. Note that this artifact does not affect our interpretation, because the key result 
of this experiment is only the activation of APL during heating. 

(B) Quantification of data from panel A, as in Fig. 5B. 
Detailed statistical analysis given in Table S2. 
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Fig. S15 (related to Fig. 5). Additional data for activation of APL following adaptation 

(A) Data as in Fig. 5E but including α′β′ KCs 
(B) Data as in panel A, but showing maximum ∆F/F during odor response instead of mean ∆F/F.  

All data from traces in Fig. S6, n as in that figure. Detailed statistical analysis given in Table S2. 
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Fig. S16 (related to Fig. 6). KC odor responses with APL>Ort. 
Average responses of all lobes to isoamyl acetate (IA) or δ-decalactone (δDL), before (black) and after 
(orange) bath-applying 2 mM histamine. Error shading shows s.e.m. Genotypes as described on the Fig. 
(see Table S1 for details); “APL unlabeled” is a mixture of hemispheres from APL>Ort and 
APL>dTRPA1,Ort flies where APL was unlabeled. n, given as # hemispheres (# flies), left to right for each 
lobe: 10 (9), 6 (4), 17 (11), 16 (11) [15 (10) for δDL]. 
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Fig. S17 (related to Fig. 6). Responses in all KC lobes with APL>Ort. 
Maximum ∆F/F for odor responses in all lobes to isoamyl acetate or δ-decalactone, before (gray) and 
after (orange) bath-applying 2 mM histamine. Genotypes: APL>Ort (left), APL>dTRPA1,Ort (right). Bars 
show mean, thin lines show paired data (same hemisphere before and after histamine). # p < 0.05 effect 
of histamine, paired t-test or Wilcoxon matched-pairs signed rank test; * p < 0.05, ** p < 0.01, unpaired t-
test or Mann-Whitney test, Holm-Bonferroni correction for multiple comparisons (see Table S2 for 
details). n, given as # hemispheres (# flies): no dTRPA1, 17 (11); APL>dTRPA1, 16 (11) [15 (10) for 
δDL]. Responses from the calyx are shown for completeness but it is difficult to draw conclusions from 
the calyx as it combines all three types of KCs. Note that for the α and β lobes, unlike for the strong odor 
isoamyl acetate, for the weak odor δ-decalactone, while APL>dTRPA1,Ort responses were higher than 
APL>Ort responses after adding histamine, the difference was not statistically significant. This might be 
due to experimental variability: in some cases even the effect of histamine was not statistically significant 
for δ-decalactone, suggesting that our experimental manipulation was less reliable with a weaker sensory 
stimulus.  
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Fig. S18 (related to Fig. 6). Blocking APL with Ort or TNT causes similar increases in KC odor 
responses 

(A) The effect of histamine on APL>Ort (no dTRPA1) flies (filled bars) has similar magnitude as the 
effect of acute (16-24 h) APL>TNT expression (open bars). Greater variability in APL>Ort flies 
compared to APL>TNT flies may reflect the more invasive dissection (the perineural sheath had 
to be removed in APL>Ort flies to allow histamine to penetrate) or variability in penetration of 
histamine into the brain. αβ KC responses were generally higher in APL>Ort flies than APL>TNT 
flies (independent of whether APL was blocked or not), for unknown reasons. Bars show mean, 
thin lines show paired data (same hemisphere before and after histamine). * p < 0.05, ** p < 0.01, 
unpaired t-test or Mann-Whitney test, Holm-Bonferroni correction for multiple comparisons (see 
Table S2 for details). n as in Fig. 1 and 6.  

(B) Effect sizes of blocking APL with APL>TNT or with histamine on APL>Ort flies, calculated using 
bootstrap-coupled estimation statistics (22). The overlapping error bars for APL>TNT and 
APL>Ort show the overlap between the 95% confidence intervals of the mean difference between 
control and APL-blocked conditions, for the two manipulations. 
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Fig. S19 (related to Fig. 6). Prolonged expression of tetanus toxin in APL may damage its 
morphology. The panels show epifluorescence images of live dissected brains from flies expressing TNT 
(upper panels) or TNT-inactive (lower panels) and CD8::GFP in APL driven by NP2631-GAL4, GH146-
FLP, with tubP-GAL80

ts
, kept at 31 ºC for 7 d. Arrows indicate the APL cell bodies. APL neurons 

expressing TNT show extremely bright cell bodies and dim or no fluorescence in the mushroom body 
lobes, suggesting that the neurites in the lobes may have degenerated, consistent with previous reports 
from photoreceptors (27). Scale bars not available. 
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Table S1. List of genotypes used 

Figure Shorthand 
name / Purpose 

Full genotype 

(text) APL>TNT, 
GFP, GAL80

ts
 

NP2631-GAL4, GH146-FLP/tub-FRT-GAL80-FRT, UAS-TNT, 
tubP-GAL80

ts
; UAS-CD8::GFP/UAS-mCherry 

1, S3 APL>TNT, 
GAL80

ts 
NP2631-GAL4, GH146-FLP/tub-FRT-GAL80-FRT, UAS-TNT, 
tubP-GAL80

ts
; MB247-LexA, lexAop-GCaMP6f/UAS-mCherry 

or 
NP2631-GAL4, GH146-FLP/UAS-TNT, tubP-GAL80

ts
; MB247-

LexA, lexAop-GCaMP6f/tub-FRT-GAL80-FRT 

1, S3 APL>TNT NP2631-GAL4, GH146-FLP/tub-FRT-GAL80-FRT, UAS-TNT, 
UAS-mCherry; MB247-LexA, lexAop-GCaMP6f/+ 

S1 VT43924>GFP UAS-CD8::GFP/CyO; VT43924-GAL4 

S2, S3 APL>TNT, 
GAL80

ts
, 

KC>GCaMP3 

NP2631-GAL4, GH146-FLP/tub-FRT-GAL80-FRT, UAS-TNT, 
tubP-GAL80

ts
; MB247-LexA, lexAop-GCaMP3/UAS-mCherry 

or 
NP2631-GAL4, GH146-FLP/UAS-TNT, tubP-GAL80

ts
; MB247-

LexA, lexAop-GCaMP3/tub-FRT-GAL80-FRT 

S2, S3 APL>TNT, 
KC>GCaMP3 

NP2631-GAL4, GH146-FLP/UAS-TNT; MB247-LexA, lexAop-
GCaMP3,tub-FRT-GAL80-FRT/UAS-mCherry 

2, 3, 5, S4-8, 
S11-12, S15 

APL>dTRPA1 NP2631-GAL4, GH146-FLP/tubP-FRT-GAL80-FRT, UAS-
dTRPA1, UAS-mCherry; MB247-LexA, lexAop-GCaMP6f/+ 

S4 APL>dTRPA1, 
KC>GCaMP3 

NP2631-GAL4, GH146-FLP/tubP-FRT-GAL80-FRT, UAS-
dTRPA1, UAS-mCherry; MB247-LexA, lexAop-GCaMP3/+ 

3, S9, S10 APL>dTRPA1 UAS-dTRPA1/+; MB247-LexA, lexAop-GCaMP6f/VT43924-
GAL4(attP2) 

3, S9, S10 UAS-dTRPA1/+ UAS-dTRPA1/+; MB247-LexA, lexAop-GCaMP6f/+ 

4, 5, S8, S14 APL>dTRPA1, 
GCaMP6f 

NP2631-GAL4, GH146-FLP, MB247-dsRed/tubP-FRT-GAL80-
FRT, UAS-dTRPA1; UAS-GCaMP6f/+ 

4, S8 APL>GCaMP6f NP2631-GAL4, GH146-FLP, MB247-dsRed/tubP-FRT-GAL80-
FRT; UAS-GCaMP6f/+ 

6, S16, S17 APL>dTRPA1, 
Ort 

NP2631-GAL4, GH146-FLP/tubP-FRT-GAL80-FRT, UAS-
dTRPA1, UAS-Ort; MB247-LexA, lexAop-GCaMP6f/UAS-
mCherry 

6, S16-18 APL>Ort NP2631-GAL4, GH146-FLP/tubP-FRT-GAL80-FRT, UAS-Ort; 
MB247-LexA, lexAop-GCaMP6f/UAS-mCherry 

S19 APL>TNT(-
inactive),GFP, 
Gal80

ts 

NP2631, GH146-FLP/UAS-TNT(-inactive), tubP-GAL80
ts
; UAS-

CD8:GFP/tub-FRT-GAL80-FRT 

Table S2. Details of statistical analyses: Appended after references  
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Figure Data Statistical test Comparison P-value Significance

Welch's ANOVA <0.0001 ****

18 ºC vs. APL unlabeled 0.9372 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.4529 ns

18 ºC vs. APL unlabeled, Gal80ts 0.9209 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. APL unlabeled, no Gal80ts >0.9999 ns

18 ºC vs. constitutive <0.0001 ****

APL unlabeled, Gal80ts vs. acute <0.0001 ****

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts 0.9477 ns

APL unlabeled, no Gal80ts vs. constitutive <0.0001 ****

acute vs. constitutive 0.5461 ns

Kruskal-Wallis test <0.0001 ****

18 ºC vs. APL unlabeled >0.9999 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.4911 ns

18 ºC vs. APL unlabeled, Gal80ts >0.9999 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. APL unlabeled, no Gal80ts >0.9999 ns

18 ºC vs. constitutive <0.0001 ****

APL unlabeled, Gal80ts vs. acute <0.0001 ****

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts >0.9999 ns

APL unlabeled, no Gal80ts vs. constitutive 0.007 **

acute vs. constitutive 0.6548 ns

Welch's ANOVA <0.0001 ****

18 ºC vs. APL unlabeled 0.6682 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.0204 *

18 ºC vs. APL unlabeled, Gal80ts 0.9944 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. APL unlabeled, no Gal80ts 0.3794 ns

18 ºC vs. constitutive <0.0001 ****

APL unlabeled, Gal80ts vs. acute <0.0001 ****

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts 0.9901 ns

APL unlabeled, no Gal80ts vs. constitutive <0.0001 ****

acute vs. constitutive 0.0269 *

Welch's ANOVA <0.0001 ****

18 ºC vs. APL unlabeled >0.9999 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.9997 ns

18 ºC vs. APL unlabeled, Gal80ts >0.9999 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. APL unlabeled, no Gal80ts 0.9993 ns

18 ºC vs. constitutive <0.0001 ****

APL unlabeled, Gal80ts vs. acute <0.0001 ****

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts 0.9759 ns

APL unlabeled, no Gal80ts vs. constitutive <0.0001 ****

acute vs. constitutive >0.9999 ns

Welch's ANOVA <0.0001 ****

18 ºC vs. APL unlabeled 0.0285 *

18 ºC vs. acute <0.0001 ****

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.9578 ns

18 ºC vs. APL unlabeled, Gal80ts 0.0569 ns

18 ºC vs. acute <0.0001 ****

Dunnett's T3 multiple comparisons test

Dunn's multiple comparisons test

Dunn's multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunnett's T3 multiple comparisons test
gamma, IA

beta, IA, 

separating APL 

unlabeled, Gal80ts 

vs. no Gal80ts

1C: APL>TNT, IA

alpha', IA

alpha, IA, 

separating APL 

unlabeled, Gal80ts 

vs. no Gal80ts

alpha', IA, 

separating APL 

unlabeled, Gal80ts 

vs. no Gal80ts

beta', IA

beta, IA

beta', IA, 

separating APL 

unlabeled, Gal80ts 

vs. no Gal80ts

alpha, IA
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18 ºC vs. APL unlabeled, no Gal80ts 0.0931 ns

18 ºC vs. constitutive <0.0001 ****

APL unlabeled, Gal80ts vs. acute <0.0001 ****

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts 0.9993 ns

APL unlabeled, no Gal80ts vs. constitutive <0.0001 ****

acute vs. constitutive 0.9846 ns

Kruskal-Wallis test <0.0001 ****

18 ºC vs. APL unlabeled >0.9999 ns

18 ºC vs. acute 0.0001 ***

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute 0.0002 ***

APL unlabeled vs. constitutive 0.0001 ***

acute vs. constitutive >0.9999 ns

18 ºC vs. APL unlabeled, Gal80ts >0.9999 ns

18 ºC vs. acute 0.0001 ***

18 ºC vs. APL unlabeled, no Gal80ts >0.9999 ns

18 ºC vs. constitutive 0.0001 ***

APL unlabeled, Gal80ts vs. acute 0.0037 **

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts >0.9999 ns

APL unlabeled, no Gal80ts vs. constitutive 0.0228 *

acute vs. constitutive >0.9999 ns

Kruskal-Wallis test <0.0001 ****

18 ºC vs. APL unlabeled >0.9999 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive >0.9999 ns

18 ºC vs. APL unlabeled, Gal80ts >0.9999 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. APL unlabeled, no Gal80ts >0.9999 ns

18 ºC vs. constitutive <0.0001 ****

APL unlabeled, Gal80ts vs. acute <0.0001 ****

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts >0.9999 ns

APL unlabeled, no Gal80ts vs. constitutive 0.0015 **

acute vs. constitutive >0.9999 ns

Kruskal-Wallis test <0.0001 ****

18 ºC vs. APL unlabeled >0.9999 ns

18 ºC vs. acute 0.0005 ***

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute 0.0003 ***

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive >0.9999 ns

18 ºC vs. APL unlabeled, Gal80ts >0.9999 ns

18 ºC vs. acute 0.0006 ***

18 ºC vs. APL unlabeled, no Gal80ts >0.9999 ns

18 ºC vs. constitutive 0.0001 ***

APL unlabeled, Gal80ts vs. acute 0.0044 **

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts >0.9999 ns

APL unlabeled, no Gal80ts vs. constitutive 0.0167 *

acute vs. constitutive >0.9999 ns

Welch's ANOVA <0.0001 ****

18 ºC vs. APL unlabeled 0.759 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.0055 **

18 ºC vs. APL unlabeled, Gal80ts >0.9999 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. APL unlabeled, no Gal80ts 0.1759 ns

18 ºC vs. constitutive <0.0001 ****

APL unlabeled, Gal80ts vs. acute <0.0001 ****

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts 0.1014 ns

APL unlabeled, no Gal80ts vs. constitutive <0.0001 ****

acute vs. constitutive 0.0073 **

Kruskal-Wallis test <0.0001 ****

18 ºC vs. APL unlabeled >0.9999 ns

18 ºC vs. acute <0.0001 ****

Dunn's multiple comparisons test

Dunn's multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunn's multiple comparisons test

Dunn's multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunn's multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunn's multiple comparisons test

beta', dDL, 

separating APL 

unlabeled, 

Gal80ts vs. no 

Gal80ts

beta', d-DL

1C: APL>TNT, d-

DL

alpha, d-DL

alpha, dDL, 

separating APL 

unlabeled, 

Gal80ts vs. no 

Gal80ts

beta, d-DL

beta, d-DL, 

separating APL 

unlabeled, 

Gal80ts vs. no 

Gal80ts

gamma, IA, 

separating APL 

unlabeled, 

Gal80ts vs. no 

Gal80ts

alpha', d-DL

alpha', dDL, 

separating APL 

unlabeled, 

Gal80ts vs. no 

Gal80ts
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18 ºC vs. constitutive <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.8711 ns

18 ºC vs. APL unlabeled, Gal80ts >0.9999 ns

18 ºC vs. acute <0.0001 ****

18 ºC vs. APL unlabeled, no Gal80ts >0.9999 ns

18 ºC vs. constitutive <0.0001 ****

APL unlabeled, Gal80ts vs. acute <0.0001 ****

APL unlabeled, Gal80ts vs. APL unlabeled, no Gal80ts >0.9999 ns

APL unlabeled, no Gal80ts vs. constitutive 0.0003 ***

acute vs. constitutive >0.9999 ns

Lobe 0.0973 ns

Genotype 0.6698 ns

Lobe x Genotype 0.6685 ns

Lobe <0.0001 ****

Genotype 0.0802 ns

Lobe x Genotype 0.2552 ns

Welch's ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.5147 ns

Welch's ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.8257 ns

Welch's ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.2323 ns

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive >0.9999 ns

Welch's ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.4235 ns

Welch's ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive 0.0002 ***

acute vs. constitutive 0.3843 ns

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive >0.9999 ns

Welch's ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.5274 ns

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive >0.9999 ns

Welch's ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.3781 ns

Lobe <0.0001 ****

Genotype <0.0001 ****

Lobe x Genotype 0.0262 *

APL unlabeled vs. acute 0.024 *

APL unlabeled vs. constitutive 0.3438 ns

acute vs. constitutive 0.024 *

APL unlabeled vs. acute 0.0177 *

APL unlabeled vs. constitutive 0.563 ns

acute vs. constitutive 0.0319 *

APL unlabeled vs. acute 0.3056 ns

APL unlabeled vs. constitutive 0.6328 ns

Dunn's multiple comparisons test

Dunn's multiple comparisons test

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes)

Dunnett's T3 multiple comparisons test

Dunn's multiple comparisons test

Dunnett's T3 multiple comparisons test

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes)

Dunn's multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunnett's T3 multiple comparisons test

Holm-Sidak multiple comparison tests

Dunnett's T3 multiple comparisons test

Dunn's multiple comparisons test
beta', d-DL

beta'

gamma, d-DL

Mixed-effects model with Geisser-Greenhouse correction 

(matching across lobes)

Dunnett's T3 multiple comparisons test

Holm-Sidak multiple comparison tests

S2C: 

KC>GCaMP3, 

APL>TNT, d-DL

S3A: (IA-

dDL)/(IA+dDL), 

KC>GCaMP6f

gamma, d-DL

gamma, dDL, 

separating APL 

unlabeled, Gal80ts 

vs. no Gal80ts

alpha', IA

IA

alpha', d-DL

dDL

beta', IA

beta, d-DL

alpha Holm-Sidak multiple comparison tests

S2A: 

KC>GCaMP6f, 

APL unlabeled, 

with vs. without 

GAL80ts

S2C: 

KC>GCaMP3, 

APL>TNT, IA

alpha, IA

beta, IA

gamma, IA

alpha, d-DL

alpha'
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acute vs. constitutive 0.0039 **

APL unlabeled vs. acute 0.0005 ***

APL unlabeled vs. constitutive 0.575 ns

acute vs. constitutive 0.0001 ***

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive 0.0274 *

acute vs. constitutive 0.0274 *

N/A: residuals not normal

ordinary 1-way ANOVA 0.0034 **

APL unlabeled vs. acute 0.0036 **

APL unlabeled vs. constitutive 0.0248 *

acute vs. constitutive 0.6375 ns

Kruskal-Wallis test 0.0127 *

APL unlabeled vs. acute 0.9179 ns

APL unlabeled vs. constitutive 0.0117 *

acute vs. constitutive 0.1072 ns

Kruskal-Wallis test 0.0157 *

APL unlabeled vs. acute 0.0246 *

APL unlabeled vs. constitutive >0.9999 ns

acute vs. constitutive 0.1044 ns

Kruskal-Wallis test 0.0236 *

APL unlabeled vs. acute 0.0208 *

APL unlabeled vs. constitutive 0.2035 ns

acute vs. constitutive >0.9999 ns

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive >0.9999 ns

Ordinary 1-way ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.1596 ns

Ordinary 1-way ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.0651 ns

Ordinary 1-way ANOVA 0.0039 **

APL unlabeled vs. acute 0.0054 **

APL unlabeled vs. constitutive 0.0054 **

acute vs. constitutive 0.9967 ns

Ordinary 1-way ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.2841 ns

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.5456 ns

Kruskal-Wallis test 0.0087 **

APL unlabeled vs. acute 0.2945 ns

APL unlabeled vs. constitutive 0.0074 **

acute vs. constitutive 0.1976 ns

Kruskal-Wallis test 0.0004 ***

APL unlabeled vs. acute 0.041 *

APL unlabeled vs. constitutive 0.0002 ***

acute vs. constitutive 0.2542 ns

alpha, d-DL Kruskal-Wallis test 0.8892 ns

beta, d-DL Kruskal-Wallis test 0.8892 ns

gamma, d-DL Kruskal-Wallis test 0.1644 ns

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute 0.0019 **

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.2982 ns

Welch's ANOVA <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive <0.0001 ****

alpha, IA Kruskal-Wallis test 0.0736 ns

Kruskal-Wallis test <0.0001 ****

Dunn's multiple comparisons test

Dunn's multiple comparisons test

Dunnett's T3 multiple comparisons test

Dunn's multiple comparisons test

Dunn's multiple comparisons test
beta', d-DL

alpha

S3A: (IA-

dDL)/(IA+dDL), 

KC>GCaMP3 Dunn's multiple comparisons test

Holm-Sidak multiple comparisons test

Dunn's multiple comparisons test

2-way ANOVA

alpha'

Holm-Sidak multiple comparison tests

Holm-Sidak multiple comparison tests

Dunn's multiple comparisons test

beta

gamma

beta

Holm-Sidak multiple comparisons test

alpha', IA

beta'

beta', IA

alpha', IA

beta, IA

S3B: OFF/ON, 

KC>GCaMP6f

S1e: OFF/ON, 

KC>GCaMP6f

Holm-Sidak multiple comparisons test

alpha, IA
Holm-Sidak multiple comparisons test

Holm-Sidak multiple comparisons test

Dunn's multiple comparisons test

alpha', d-DL

S3B: OFF/ON, 

KC>GCaMP3

gamma

beta', IA

gamma, IA
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APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.017 *

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute <0.0001 ****

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.0022 **

alpha', d-DL Kruskal-Wallis test 0.218 ns

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute 0.032 *

APL unlabeled vs. constitutive <0.0001 ****

acute vs. constitutive 0.0599 ns

alpha, d-DL Kruskal-Wallis test 0.4053 ns

Kruskal-Wallis test 0.0191 ****

APL unlabeled vs. acute >0.9999 ns

APL unlabeled vs. constitutive 0.0192 *

acute vs. constitutive 0.1087 ns

Kruskal-Wallis test <0.0001 ****

APL unlabeled vs. acute >0.9999 ns

APL unlabeled vs. constitutive 0.0015 **

acute vs. constitutive <0.0001 ****

interaction 0.0354 *

kept at 22 C vs. kept at 31 C 0.0168 *

APL unlabeled vs. APL labeled 0.008 **

Ordinary 1-way ANOVA 0.0009 ***

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.8942 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.8942 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0031 **

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0031 **

2-way ANOVA n/a (residuals not normal)

Welch's ANOVA <0.0001 ****

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.3687 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.097 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC <0.0001 ****

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0018 **

interaction 0.1146 ns

kept at 22 C vs. kept at 31 C 0.002 **

APL unlabeled vs. APL labeled 0.1613 ns

Kruskal-Wallis test 0.0009 ***

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC >0.9999 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.731 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0039 **

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.4608 ns

Ordinary 1-way ANOVA (NB: D'Agostino-Pearson test on residuals p=0.0501) 0.0023 **

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.898 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.4796 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0018 **

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.101 ns

interaction 0.2336 ns

kept at 22 C vs. kept at 31 C <0.0001 ****

APL unlabeled vs. APL labeled 0.0109 *

Ordinary 1-way ANOVA <0.0001 ****

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.3174 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.0208 *

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC <0.0001 ****

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0208 *

interaction <0.0001 ****

kept at 22 C vs. kept at 31 C <0.0001 ****

APL unlabeled vs. APL labeled <0.0001 ****

Ordinary 1-way ANOVA <0.0001 ****

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.8358 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.6543 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC <0.0001 ****

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC <0.0001 ****

2-way ANOVA n/a (residuals not normal)

Kruskal-Wallis test <0.0001 ****

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC >0.9999 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC >0.9999 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC <0.0001 ****

2-way ANOVA

Dunn's multiple comparisons test

Dunnett's T3 multiple comparisons test

2-way ANOVA

Holm-Sidak's multiple comparisons test

Holm-Sidak's multiple comparisons test

2-way ANOVA

beta, IA

alpha', d-DL

2-way ANOVA

Holm-Sidak's multiple comparisons test

Holm-Sidak's multiple comparisons test

Dunn's multiple comparisons test

2C: APL>dTRPA1 

adaptation, IA

gamma, IA

alpha, IA

alpha', IA

beta', IA

gamma, d-DL

Dunnett's T3 multiple comparisons test

Dunn's multiple comparisons test
gamma, IA

Dunn's multiple comparisons test

Dunn's multiple comparisons test

Dunn's multiple comparisons test

S3B: OFF/ON, 

KC>GCaMP3
beta, d-DL

beta', d-DL

beta, IA
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APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0003 ***

interaction 0.0005 ***

kept at 22 C vs. kept at 31 C 0.0008 ***

APL unlabeled vs. APL labeled 0.0046 **

Welch's ANOVA 0.0019 **

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.8689 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.9998 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0013 **

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0029 **

interaction 0.0003 ***

kept at 22 C vs. kept at 31 C <0.0001 ****

APL unlabeled vs. APL labeled <0.0001 ****

Welch's ANOVA <0.0001 ****

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.9744 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.3449 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC <0.0001 ****

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0002 ***

interaction 0.0013 **

kept at 22 C vs. kept at 31 C <0.0001 ****

APL unlabeled vs. APL labeled 0.0005 ***

Welch's ANOVA 0.0002 ***

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.9796 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.1068 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0008 ***

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0036 **

interaction <0.0001 ****

kept at 22 C vs. kept at 31 C <0.0001 ****

APL unlabeled vs. APL labeled <0.0001 ****

Welch's ANOVA 0.0001 ***

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.9551 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.9976 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0002 ***

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0003 ***

2E: sparseness Unpaired t-test APL unlabeled vs. APL>dTRPA1 0.0003 ***

Kruskal-Wallis test 0.0223 *

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.0088 **

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.6146 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.1445 ns

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC >0.9999 ns

Ordinary 1-way ANOVA 0.0022 **

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.8251 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.8251 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0061 **

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0441 *

Ordinary 1-way ANOVA 0.0034 **

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.3967 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.1209 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0277 *

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0019 **

Kruskal-Wallis test 0.0174 *

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC >0.9999 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC >0.9999 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0436 *

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.2168 ns

Ordinary 1-way ANOVA 0.0002 ***

APL unlab, kept 22ºC vs. APL>dTRPA1, kept 22ºC 0.3343 ns

APL unlab, kept 22ºC vs. APL unlab, kept 31ºC 0.3343 ns

APL>dTRPA1, kept 22ºC vs. APL>dTRPA1, kept 31ºC 0.0023 **

APL unlab, kept 31ºC vs. APL>dTRPA1, kept 31ºC 0.0239 *

main effect APL unlabeled vs. APL>dTRPA1 0.0004 ***

main effect across odors <0.0001 ****

interaction odor x (APL unlabeled vs. APL>dTRPA1) 0.0032 **

Unpaired t-test APL unlabeled vs. APL>dTRPA1 0.1457 ns

main effect APL unlabeled vs. APL>dTRPA1 0.1808 ns

main effect across odor pairs <0.0001 ****

interaction odor pairs x (APL unlabeled vs. APL>dTRPA1) 0.3646 ns

Welch's ANOVA <0.0001 ****

APL unlab, dTRPA1, kept 31ºC vs. APL>dTRPA1, kept 31ºC <0.0001 ****

APL unlab, dTRPA1, kept 31ºC vs. APL unlab, TNT 0.0769 ns

2-way ANOVA

2-way ANOVA

Dunnett's T3 multiple comparisons test

2-way ANOVA

Dunnett's T3 multiple comparisons test

gamma, d-DL

Holm-Sidak multiple comparisons test

Holm-Sidak multiple comparisons test

Dunn's multiple comparisons test

2-way ANOVA

Dunnett's T3 multiple comparisons test

Fig. S5C, inter-odor correlation

Holm-Sidak multiple comparisons test

2C: APL>dTRPA1 

adaptation, d-DL

beta, d-DL

alpha, d-DL

beta', d-DL

Dunn's multiple comparisons test
alpha', IA

S5D: APL>TNT vs. APL>dTRPA1

beta', IA

alpha, IA

gamma, IA

beta, IA

Mixed-effects model (matching across 

odors)

Mixed-effects model (matching across odor 

pairs)

Dunnett's T3 multiple comparisons test

S2: KC>GCaMP3, 

APL>dTRPA1, 

odor responses 

after adaptation

Fig. S5A, sparseness for different odors
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APL unlab, dTRPA1, kept 31ºC vs. APL>TNT acute <0.0001 ****

APL>dTRPA1, kept 31ºC vs. APL unlab, TNT <0.0001 ****

APL>dTRPA1, kept 31ºC vs. APL>TNT acute <0.0001 ****

APL unlab, TNT vs. APL>TNT acute <0.0001 ****

lobe 0.6803 ns

temperature 0.4272 ns

lobe x temperature 0.3621 ns

lobe <0.0001 ****

temperature 0.0017 **

lobe x temperature <0.0001 ****

alpha' 0.7426 ns

beta' 0.044 *

alpha <0.0001 ****

beta 0.0004 ***

gamma 0.0015 **

lobe 0.0024 **

temperature 0.1031 ns

lobe x temperature 0.4676 ns

lobe <0.0001 ****

temperature 0.0018 **

lobe x temperature <0.0001 ****

alpha' 0.2072 ns

beta' 0.1344 ns

alpha 0.0033 **

beta 0.0042 **

gamma 0.003 **

lobe 0.0352 *

temperature 0.8346 ns

lobe x temperature 0.3694 ns

lobe 0.0006 ***

temperature 0.0002 ***

lobe x temperature 0.0012 **

alpha' 0.071 ns

beta' 0.052 ns

alpha <0.0001 ****

beta 0.0015 **

gamma <0.0001 ****

lobe 0.0006 ***

temperature 0.561 ns

lobe x temperature 0.0185 *

lobe <0.0001 ****

temperature <0.0001 ****

lobe x temperature <0.0001 ****

alpha' 0.0058 **

beta' 0.0026 **

alpha 0.0002 ***

beta 0.0005 ***

gamma 0.0006 ***

lobe 0.5361 ns

temperature 0.1998 ns

lobe x temperature 0.3806 ns

lobe 0.0011 **

temperature 0.0103 *

lobe x temperature <0.0001 ****

alpha' 0.9831 ns

beta' 0.0032 **

alpha <0.0001 ****

beta 0.0003 ***

gamma 0.0082 **

lobe 0.0001 ***

temperature 0.0464 *

lobe x temperature 0.2941 ns

alpha' 0.8542 ns

beta' 0.1352 ns

alpha 0.0217 *

beta 0.3134 ns

gamma 0.6756 ns

lobe 0.0001 ***

temperature 0.0088 **

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

2-way repeated measures ANOVA with 

Geisser-Greenhouse correction (matching 

across lobes and across temperature at 

time of measurement)

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

Dunnett's T3 multiple comparisons test

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

2-way repeated measures ANOVA with 

Geisser-Greenhouse correction (matching 

across lobes and across temperature at 

time of measurement)

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

2-way repeated measures ANOVA with 

Geisser-Greenhouse correction (matching 

across lobes and across temperature at 

time of measurement)

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

S7A: 

APL>dTRPA1 

effect of heating 

during imaging, 

mean ∆F/F

APL>dTRPA1, 

kept at 31 ºC, IA

APL unlabeled, 

kept at 31 ºC, IA

APL>dTRPA1, 

kept at 31 ºC, IA

APL unlabeled, 

kept at 22 ºC, dDL

APL unlabeled, 

kept at 31 ºC, dDL

APL>dTRPA1, 

kept at 22 ºC, dDL

S5D: APL>TNT vs. APL>dTRPA1 

adaptation

APL unlabeled, 

kept at 22 ºC, IA

APL>dTRPA1, 

kept at 22 ºC, IA

APL unlabeled, 

kept at 22 ºC, IA

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

APL unlabeled, 

kept at 31 ºC, IA

APL>dTRPA1, 

kept at 22 ºC, IA



Table S2: Details of statistics

Page 8 of 13

Figure Data Statistical test Comparison P-value Significance

lobe x temperature <0.0001 ****

alpha' 0.4606 ns

beta' 0.4606 ns

alpha 0.0228 *

beta 0.0412 *

gamma 0.0018 **

lobe 0.0034 **

temperature 0.9247 ns

lobe x temperature 0.3579 ns

lobe <0.0001 ****

temperature 0.0002 ***

lobe x temperature 0.0003 ***

alpha' 0.533 ns

beta' 0.533 ns

alpha <0.0001 ****

beta 0.0003 ***

gamma <0.0001 ****

lobe <0.0001 ****

temperature 0.6791 ns

lobe x temperature 0.0006 ***

lobe <0.0001 ****

temperature 0.0001 ***

lobe x temperature <0.0001 ****

alpha' 0.0289 *

beta' 0.0247 *

alpha 0.0007 ***

beta 0.0016 **

gamma 0.0003 ***

interaction 0.3092 ns

1d adaptation vs. 4d adaptation 0.8735 ns

UAS TRPA vs. APL TRPA 0.4222 ns

Ordinary 1-way ANOVA 0.5952 ns

interaction 0.0033 **

1d adaptation vs. 4d adaptation 0.9944 ns

UAS TRPA vs. APL TRPA 0.0036 **

Ordinary 1-way ANOVA 0.0006 ***

UAS TRPA 1d vs. APL TRPA 1d 0.9998 ns

UAS TRPA 4d vs. APL TRPA 4d <0.0001 ****

interaction 0.0803 ns

1d adaptation vs. 4d adaptation 0.0503 ns

UAS TRPA vs. APL TRPA 0.0665 ns

Ordinary 1-way ANOVA 0.0185 *

UAS TRPA 1d vs. APL TRPA 1d 0.9975 ns

UAS TRPA 4d vs. APL TRPA 4d 0.0185 *

interaction 0.3323 ns

1d adaptation vs. 4d adaptation 0.638 ns

UAS TRPA vs. APL TRPA 0.0031 **

Ordinary 1-way ANOVA 0.0151 *

UAS TRPA 1d vs. APL TRPA 1d 0.2767 ns

UAS TRPA 4d vs. APL TRPA 4d 0.0078 **

0.0187 *

1d adaptation vs. 4d adaptation 0.4415 ns

UAS TRPA vs. APL TRPA 0.0002 ***

Ordinary 1-way ANOVA 0.0002 ***

UAS TRPA 1d vs. APL TRPA 1d 0.4469 ns

UAS TRPA 4d vs. APL TRPA 4d <0.0001 ****

interaction 0.3624 ns

1d adaptation vs. 4d adaptation 0.466 ns

UAS TRPA vs. APL TRPA 0.1286 ns

Ordinary 1-way ANOVA 0.3528 ns

interaction 0.0011 **

1d adaptation vs. 4d adaptation 0.2283 ns

UAS TRPA vs. APL TRPA 0.0207 *

Ordinary 1-way ANOVA 0.0073 **

UAS TRPA 1d vs. APL TRPA 1d 0.5612 ns

UAS TRPA 4d vs. APL TRPA 4d 0.0019 **

interaction 0.0427 *

1d adaptation vs. 4d adaptation 0.0304 *

UAS TRPA vs. APL TRPA 0.0411 *

Holm-Sidak's multiple comparisons test

2-way ANOVA

Holm-Sidak's multiple comparisons test

2-way ANOVA

Holm-Sidak's multiple comparisons test

2-way ANOVA

lobes and across temperature at time of 

measurement)

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)
2-way repeated measures ANOVA with 

Geisser-Greenhouse correction (matching 

across lobes and across temperature at 

time of measurement)

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

Holm-Sidak's multiple comparisons test

2-way ANOVA

2-way ANOVA
alpha', dDL

beta', dDL

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

Fig. S9, 

APL>dTRPA1

alpha', IA

beta', IA

Fig. S9, 

APL>dTRPA1 

adaptation, IA 

after 1d and 4d 

adaptation

gamma, IA

alpha, IA

Holm-Sidak's multiple comparisons test

beta, IA

alpha, dDL

APL>dTRPA1, 

kept at 31 ºC, IA

APL>dTRPA1, 

kept at 22 ºC, dDL

APL unlabeled, 

kept at 31 ºC, dDL

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

Holm-Sidak multiple comparison test (22 

ºC vs. 31 ºC)

S7B: 

APL>dTRPA1 

effect of heating 

during imaging - 

max. ∆F/F

Mixed-effects model with Geisser-

Greenhouse correction (matching across 

lobes and across temperature at time of 

measurement)

2-way ANOVA

2-way ANOVA

2-way ANOVA

APL>dTRPA1, 

kept at 31 ºC, IA

APL unlabeled, 

kept at 22 ºC, dDL
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Ordinary 1-way ANOVA 0.0079 **

UAS TRPA 1d vs. APL TRPA 1d >0.9999 ns

UAS TRPA 4d vs. APL TRPA 4d 0.011 *

interaction 0.3142 ns

1d adaptation vs. 4d adaptation 0.0231 *

UAS TRPA vs. APL TRPA 0.0049 **

Ordinary 1-way ANOVA 0.0022 **

UAS TRPA 1d vs. APL TRPA 1d 0.3058 ns

UAS TRPA 4d vs. APL TRPA 4d 0.0158 *

interaction 0.281 ns

1d adaptation vs. 4d adaptation 0.8239 ns

UAS TRPA vs. APL TRPA 0.0056 **

Ordinary 1-way ANOVA 0.0284 *

UAS TRPA 1d vs. APL TRPA 1d 0.3507 ns

UAS TRPA 4d vs. APL TRPA 4d 0.0151 *

alpha', IA Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.4985 ns

beta', IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.7981 ns

alpha, IA Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.6788 ns

beta, IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.6934 ns

gamma, IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.7713 ns

alpha', d-DL Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.5653 ns

beta', d-DL Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.5145 ns

alpha, d-DL Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.3114 ns

beta, d-DL Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.9215 ns

gamma, d-DL Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.7374 ns

interaction 0.5387 ns

main effect of days at 31 ºC <0.0001 ****

main effect of APL unlabeled vs. APL>dTRPA1 <0.0001 ****

1 d 0.9266 ns

2 d 0.0112 *

3 d 0.046 *

4 d 0.0608 ns

interaction 0.4041 ns

main effect of days at 31 ºC 0.0018 **

main effect of APL unlabeled vs. APL>dTRPA1 0.0074 **

1 d ns 0.3357

2 d ns 0.9997

3 d ns 0.6155

4 d ns 0.1045

interaction 0.8591 ns

main effect of days at 31 ºC <0.0001 ****

main effect of APL unlabeled vs. APL>dTRPA1 <0.0001 ****

1 d 0.4206 ns

2 d 0.0338 *

3 d 0.2485 ns

4 d 0.0162 *

interaction 0.1678 ns

main effect of days at 31 ºC <0.0001 ****

main effect of APL unlabeled vs. APL>dTRPA1 <0.0001 ****

1 d 0.3706 ns

2 d 0.2266 ns

3 d 0.0332 *

4 d <0.0001 ****

interaction 0.3869 ns

main effect of days at 31 ºC 0.0065 **

main effect of APL unlabeled vs. APL>dTRPA1 0.0005 ***

1 d 0.7576 ns

2 d 0.8093 ns

3 d 0.0338 *

4 d 0.041 *

interaction 0.8996 ns

main effect of days at 31 ºC 0.0363 *

main effect of APL unlabeled vs. APL>dTRPA1 <0.0001 ****

1 d 0.0459 *

2 d 0.3131 ns

3 d 0.0643 ns

4 d 0.0463 *

interaction 0.2786 ns

main effect of days at 31 ºC 0.0106 *

beta, IA

2-way ANOVA

Sidak multiple comparisons test

gamma, IA

2-way ANOVA

Sidak multiple comparisons test

Fig 3, S11, 

APL>dTRPA1 

1,2,3,4 d 

adaptation

alpha', IA

2-way ANOVA

Sidak multiple comparisons test

2-way ANOVA

2-way ANOVA

Holm-Sidak's multiple comparisons test

Sidak multiple comparisons test

alpha', IA

beta', IA

2-way ANOVA

Sidak multiple comparisons test

alpha, IA

2-way ANOVA

Sidak multiple comparisons test

Holm-Sidak's multiple comparisons test

2-way ANOVA

gamma, dDL

APL>dTRPA1 

adaptation, d-DL 

after 1d and 4d 

adaptation

2-way ANOVA

alpha, dDL

Fig S10, 

APL>dTRPA1  1d 

adaptation 

(imaged at 1 d old)

Holm-Sidak's multiple comparisons test

beta, dDL
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main effect of APL unlabeled vs. APL>dTRPA1 0.0016 **

1 d 0.1053 ns

2 d 0.0694 ns

3 d >0.9999 ns

4 d 0.343 ns

interaction 0.8594 ns

main effect of days at 31 ºC 0.0003 ***

main effect of APL unlabeled vs. APL>dTRPA1 <0.0001 ****

1 d 0.0228 *

2 d 0.1343 ns

3 d 0.1595 ns

4 d 0.3751 ns

interaction 0.0073 **

main effect of days at 31 ºC <0.0001 ****

main effect of APL unlabeled vs. APL>dTRPA1 <0.0001 ****

1 d <0.0001 ****

2 d 0.0901 ns

3 d 0.9886 ns

4 d 0.154 ns

interaction 0.6227 ns

main effect of days at 31 ºC 0.9096 ns

main effect of APL unlabeled vs. APL>dTRPA1 <0.0001 ****

1 d 0.0081 **

2 d 0.0488 *

3 d 0.2186 ns

4 d 0.4802 ns

alpha', IA Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.0205 *

beta', IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.0498 *

alpha, IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.0111 *

beta, IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.0235 *

gamma, IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.0048 **

alpha', d-DL Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.6495 ns

beta', d-DL Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.3475 ns

alpha, d-DL Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.0271 *

beta, d-DL Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.1355 ns

gamma, d-DL Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.0768 ns

alpha', IA Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.4776 ns

beta', IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.5483 ns

alpha, IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.4987 ns

beta, IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.6323 ns

gamma, IA Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.0652 ns

alpha', d-DL Mann-Whitney test no dTRPA1 vs. APL>dTRPA1 0.1366 ns

beta', d-DL Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.2305 ns

alpha, d-DL Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.1425 ns

beta, d-DL Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.9134 ns

gamma, d-DL Unpaired t-test no dTRPA1 vs. APL>dTRPA1 0.5768 ns

alpha', heat Mann-Whitney test kept 22°C 4d vs. kept 31°C 4d 0.6009 ns

alpha', heat + IA Mann-Whitney test kept 22°C 4d vs. kept 31°C 4d 0.9623 nsalpha', he

dDL Mann-Whitney test kept 22°C 4d vs. kept 31°C 4d 0.7396 ns

alpha, heat Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.6606 ns

alpha, heat + IA Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.5465 nsalpha, he

dDL Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.5223 ns

beta, heat Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.7655 ns

beta, heat + IA Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.7018 ns

beta, heat + dDL Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.9975 ns

gamma, heat Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.1617 ns

gamma, heat + IA Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.1225 nsg ,

dDL Unpaired t-test kept 22°C 4d vs. kept 31°C 4d 0.0881 ns

alpha', IA Welch's ANOVA 0.1045 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.066 ns

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0696 ns

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0002 ***

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0028 ***

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.1348 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC <0.0001 ****

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0024 **

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0028 **

Fig 3, S12, 

APL>dTRPA1 

0,1,2,3 d loss of 

adaptation

beta', IA

Sidak multiple comparisons test

alpha, IA

2-way ANOVA

Sidak multiple comparisons test

beta, IA

2-way ANOVA

Sidak multiple comparisons test

gamma, IA

2-way ANOVA

Sidak multiple comparisons test

Fig 4: 

APL>dTRPA,GCa
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Fig S13C: 

APL>dTRPA1,GC

aMP6f, steady 

state responses

beta', IA

Fig 5B, S14: 

APL>dTRPA,GCa

MP6f

alpha, IA

Fig S13B: 

APL>dTRPA,GCa
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Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0609 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.104 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.0005 ***

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0042 **

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC <0.0001 ****

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.04 *

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.5275 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.002 **

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0018 **

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0011 **

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.9022 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.0318 *

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction 0.0002 ***

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.213 ns

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.029 *

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.034 *

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.6808 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.3088 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.0526 ns

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0052 **

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.001 **

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.072 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.3252 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC <0.0001 ****

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.00012 ***

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC <0.0001 ****

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0374 *

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.0032 **

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction 0.0002 ***

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.0015 **

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0005 ***

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.00044 ***

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0194 *

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.5368 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC <0.0001 ****

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0008 ***

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0008 ***

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.1946 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.0084 **

alpha', IA Welch's ANOVA 0.0599 ns

Kruskal-Wallis test Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.0022 **

Wilcoxon signed rank test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.2334 ns

Mann-Whitney test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC <0.0001 ****

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0024 **

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC <0.0001 ****

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC <0.0001 ****

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0174 *

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0032 **

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.1724 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.3025 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.0002 ***

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0278 *

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0002 ***

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0015 **

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.1597 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.0123 *

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0016 **

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC <0.0001 ****

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.4147 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.6607 ns

alpha, dDL

beta', dDL

alpha, IA

beta', IA

Fig 5E, S15A: 

APL>dTRPA1, 
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(mean ∆F/F)
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gamma, IA

beta, IA

gamma, IA

beta, dDL

gamma, dDL
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Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction 0.0027 **

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.4921 ns

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.1156 ns

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0035 **

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.8121 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.8322 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.3166 ns

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0248 *

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0005 ***

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0087 **

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.0072 **

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC <0.0001 ****

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0006 ***

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0002 ***

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0126 *

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.0178 *

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC 0.0005 ***

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0015 **

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0004 ***

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.0042 **

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.2224 ns

Welch's ANOVA Post hoc tests below with Holm-Bonferroni correction <0.0001 ****

Paired t-test Kept at 22 ºC, measured at 22 ºC v. 31 ºC <0.0001 ****

Paired t-test Kept at 31 ºC, measured at 22 ºC v. 31 ºC 0.0002 ***

Welch's t-test Measured at 22 ºC, kept at 22 ºC v. kept at 31 ºC 0.0002 ***

Welch's t-test Measured at 31 ºC, kept at 22 ºC v. kept at 31 ºC 0.51 ns

Welch's t-test Kept @22ºC, meas. @22ºC v. kept @31ºC, meas. @31ºC 0.0008 ***

Wilcoxon signed-rank test no dTRPA1: before vs. +histamine 0.0002 ***

Wilcoxon signed-rank test APL>dTRPA1: before vs. +histamine 0.0002 ***

Mann-Whitney test before: no dTRPA1 vs. APL>dTRPA1 0.0974 ns

Mann-Whitney test +histamine: no dTRPA1 vs. APL>dTRPA1 0.8173 ns

paired t-test no dTRPA1: before vs. +histamine <0.0001 ****

paired t-test APL>dTRPA1: before vs. +histamine <0.0001 ****

unpaired t-test before: no dTRPA1 vs. APL>dTRPA1 0.3371 ns

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.6116 ns

paired t-test no dTRPA1: before vs. +histamine <0.0001 ****

paired t-test APL>dTRPA1: before vs. +histamine <0.0001 ****

unpaired t-test before: no dTRPA1 vs. APL>dTRPA1 0.0214 *

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.042 *

paired t-test no dTRPA1: before vs. +histamine <0.0001 ****

paired t-test APL>dTRPA1: before vs. +histamine <0.0001 ****

unpaired t-test before: no dTRPA1 vs. APL>dTRPA1 0.002 **

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.0352 *

Wilcoxon signed-rank test no dTRPA1: before vs. +histamine 0.0006 ***

Wilcoxon signed-rank test APL>dTRPA1: before vs. +histamine 0.0002 ***

Mann-Whitney test before: no dTRPA1 vs. APL>dTRPA1 0.0038 **

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.4998 ns

paired t-test no dTRPA1: before vs. +histamine 0.0006 ***

paired t-test APL>dTRPA1: before vs. +histamine 0.0002 ***

unpaired t-test before: no dTRPA1 vs. APL>dTRPA1 0.0046 **

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.3891 ns

Wilcoxon signed-rank test no dTRPA1: before vs. +histamine 0.0008 ***

paired t-test APL>dTRPA1: before vs. +histamine 0.0018 **

Mann-Whitney test before: no dTRPA1 vs. APL>dTRPA1 0.139 ns

Mann-Whitney test +histamine: no dTRPA1 vs. APL>dTRPA1 0.7658 ns

paired t-test no dTRPA1: before vs. +histamine 0.0008 ***

paired t-test APL>dTRPA1: before vs. +histamine 0.0018 **

unpaired t-test before: no dTRPA1 vs. APL>dTRPA1 0.5005 ns

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.6698 ns

paired t-test no dTRPA1: before vs. +histamine 0.0147 *

paired t-test APL>dTRPA1: before vs. +histamine 0.0132 *

unpaired t-test before: no dTRPA1 vs. APL>dTRPA1 0.0254 *

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.4561 ns

paired t-test no dTRPA1: before vs. +histamine 0.0064 **

paired t-test APL>dTRPA1: before vs. +histamine 0.0057 **

Note: for Fig 6/S17, pairwise comparisons were Holm-Bonferroni corrected for the 4 comparisons within each lobe (2 paired, 2 unpaired)
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unpaired t-test before: no dTRPA1 vs. APL>dTRPA1 0.002 **

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.016 *

Wilcoxon signed-rank test no dTRPA1: before vs. +histamine 0.033 *

Wilcoxon signed-rank test APL>dTRPA1: before vs. +histamine 0.214 ns

Mann-Whitney test before: no dTRPA1 vs. APL>dTRPA1 0.0164 *

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.2777 ns

paired t-test no dTRPA1: before vs. +histamine 0.0801 ns

paired t-test APL>dTRPA1: before vs. +histamine 0.1358 ns

unpaired t-test before: no dTRPA1 vs. APL>dTRPA1 0.0548 ns

unpaired t-test +histamine: no dTRPA1 vs. APL>dTRPA1 0.3275 ns

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Wilcoxon signed rank test APL>Ort, histamine vs. no histamine 0.0002 ***

Mann-Whitney test APL unlabeled vs. APL>Ort no histamine 0.102 ns

Welch's t-test APL>TNT vs. APL>Ort + histamine 0.8805 ns

Mann-Whitney test APL unlabeled vs. APL>TNT <0.0001 ****

Paired t-test APL>Ort, histamine vs. no histamine <0.0001 ****

Welch's t-test APL unlabeled vs. APL>Ort no histamine 0.2128 ns

Mann-Whitney test APL>TNT vs. APL>Ort + histamine 0.6682 ns

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Paired t-test APL>Ort, histamine vs. no histamine <0.0001 ****

Welch's t-test APL unlabeled vs. APL>Ort no histamine 0.0016 **

Welch's t-test APL>TNT vs. APL>Ort + histamine 0.0008 ***

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Paired t-test APL>Ort, histamine vs. no histamine <0.0001 ****

Welch's t-test APL unlabeled vs. APL>Ort no histamine 0.006 **

Welch's t-test APL>TNT vs. APL>Ort + histamine 0.011 *

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Wilcoxon signed rank test APL>Ort, histamine vs. no histamine 0.0006 ***

Mann-Whitney test APL unlabeled vs. APL>Ort no histamine 0.02 *

Welch's t-test APL>TNT vs. APL>Ort + histamine 0.4298 ns

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Wilcoxon signed rank test APL>Ort, histamine vs. no histamine 0.0006 ***

Mann-Whitney test APL unlabeled vs. APL>Ort no histamine >0.99 ns

Welch's t-test APL>TNT vs. APL>Ort + histamine >0.99 ns

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Paired t-test APL>Ort, histamine vs. no histamine 0.0006 ***

Welch's t-test APL unlabeled vs. APL>Ort no histamine 0.9555 ns

Welch's t-test APL>TNT vs. APL>Ort + histamine 0.1324 ns

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Paired t-test APL>Ort, histamine vs. no histamine 0.0147 *

Welch's t-test APL unlabeled vs. APL>Ort no histamine 0.1487 ns

Welch's t-test APL>TNT vs. APL>Ort + histamine 0.2208 ns

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Paired t-test APL>Ort, histamine vs. no histamine 0.0038 **

Welch's t-test APL unlabeled vs. APL>Ort no histamine 0.03 *

Welch's t-test APL>TNT vs. APL>Ort + histamine 0.3994 ns

Welch's t-test APL unlabeled vs. APL>TNT <0.0001 ****

Wilcoxon signed rank test APL>Ort, histamine vs. no histamine 0.033 *

Mann-Whitney test APL unlabeled vs. APL>Ort no histamine 0.8266 ns

Welch's t-test APL>TNT vs. APL>Ort + histamine 0.2188 ns

alpha', dDL

gamma, IA

beta', dDL

alpha, dDL

Note: for Fig S18, pairwise comparisons were Holm-Bonferroni corrected for the 4 comparisons within each lobe (2 paired, 2 unpaired)
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