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Abstract 

Cr2O3 (chromia) coatings have been widely used in wear and corrosion resistant applications thanks to 

their good tribomechanical properties, and graphene nanoplatelets (GNPs) have been employed as 

nanofillers to further improve these properties. In this work, we propose a process to deposit 

chromia/GNPs composite coatings on stainless steel substrates using Suspension High Velocity Oxy-Fuel 

(S-HVOF) thermal spray. The coating showed good microhardness, with successful incorporation of 

GNPs showing no or minor spray-induced degradation. Compared to a chromia-only coating, the 

tribological performance improved: both coating and alumina counterbody specific wear rates lowered 

by 20 and 70% respectively and coefficient of friction decreased by 15%. This study shows a non-

expensive and simple method to incorporate GNPs to improve material performance in large scale.  
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1 – Introduction 

Chromium oxide Cr2O3 (chromia) coatings have found a wide range of applications in protection against 

corrosion and wear thanks to their chemical inertness and high mechanical strength [1]. Also, they 

exhibit high microhardness when compared with other thermally sprayed ceramic oxide coatings [2]. 

Chromia can be deposited with different techniques including thermal spray (atmospheric plasma spray, 

high velocity oxy-fuel (HVOF) spray and detonation spray) [3] for coatings and field assisted sintering [4] 

for bulk samples. Chromia coatings deposition using High Velocity Oxy-Fuel (HVOF) thermal spray yields 

higher elastic modulus and toughness [5] and is widely used for paper and pulp industry.  

Suspension HVOF (S-HVOF) thermal spray emerges as a convenient way to handle fine particles (< 1 

µm), including chromia [6], allowing them to reach higher melting rate leading to improved deposition 
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efficiency and mechanical properties. Also, the remarkable mechanical properties of graphene [7,8], are 

harnessed for enhancing mechanical properties of ceramic coatings [9]. Considering a stack of graphene 

layers, such as graphene nanoplatelets (GNPs), there is a dual beneficial effect in terms of lowering the 

coefficient of friction (CoF) due to the inertness of the single graphene layer [10] and to the ease of 

gliding between layers, as typical of lamellar solids [11]. The applicability of S-HVOF thermal spray to 

deposit GNPs has been presented in our recent work [12].  When GNPs undergo structural degradation 

they lose their good mechanical and tribological properties [13], therefore the deposition must be 

carried out carefully to preserve their unique structure. 

In this work, we exploit the ability of S-HVOF thermal spray to handle fine, dissimilar particles in 

suspension, to deposit chromia/GNPs coatings for low-wear applications. The structural integrity of 

GNPs was analysed, and the mechanical and tribology properties of the coatings were studied. 

2 – Material and methods 

A commercial water-based chromia suspension (Millidyne, Finland) was diluted and merged with GNPs 

(abcr, Germany) suspension to a final solid load of 20 wt.% Cr2O3+0.2 wt.% GNP. The feedstock was 

sprayed on grit blasted AISI304 (19-9) stainless steel by S-HVOF thermal spray using a TopGun SS (GTV, 

Germany) operated with 462 slpm and 198 slpm flowrates of hydrogen and oxygen, to provide a 

reducing environment hindering GNPs degradation through oxidation and combustion [13]. This choice 

of particle size and spray parameters aimed at allowing enough chromia melting to obtain a suitable 

coating, while preventing GNP thermal degradation. The substrates surface velocity was 1.4 m/s for 26 

spray passes in total. A chromia-only coating was sprayed under the same conditions for comparison. 

Raman spectroscopy measurements were carried out with a LabRam (Horiba, Japan) Raman 

spectroscope (532 nm laser). Scanning Electron Microscopy (SEM) was carried out using an XL30 SEM 

(Philips, The Netherlands), and microhardness and fracture toughness with a Vickers indenter (Buehler, 

USA) averaging 10 indents. Dry sliding wear tests were carried out with a rotary ball-on-flat tribometer 

(Ducom, The Netherlands) against 6 mm alumina counterbody balls. The tests had a 12 mm diameter 

circular path and a tangential velocity of 37.7 mm/s. The load was 10 N and the duration 30 minutes, 

corresponding to 67.86 m or 1800 cycles. The wear volume loss was measured by contact profilometry 
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(Taylor Hobson, United Kingdom). Each wear test was repeated twice, and the presented results are 

averaged. 

3 – Results and discussion 

3.1 - Coating deposition and characterisation 

SEM images of the two feedstock materials are presented in Figure 1a,b, showing dissimilarities in the 

shape and size of the two materials. A schematic of the process is presented in Figure 1c. During spray, 

the small size of chromia particles allows efficient melting despite their spheroidal shape. GNPs, 

however very thin, can withstand the high temperature for the short time they reside in the spray jet. At 

the substrate, a dense chromia coating is deposited, with incorporated GNPs in forming a composite. 

Figure 1d,e show the cross-sections of the chromia-only and chromia/GNPs coatings, exhibiting similar 

microstructures. The GNPs are not visible in the cross-section as their thickness is below resolution. The 

Chromia/GNP coating had a low surface roughness Ra = 0.9 ± 0.3 µm, a low porosity (1.8 ± 0.3%), a 

Vickers microhardness of (1047 ± 46) HV0.025, and a fracture toughness of (0.9 ± 0.2) MPa·m0.5. Similar 

values within the experimental error were measured on the chromia-only coating (1077 ± 49 HV0.025 and 

1.2 ± 0.3 MPa·m0.5). Compared to other chromia coatings from S-HVOF, this microhardness is not as high 

as the state-of-the-art (1400HV) [6], but still suitable for high-hardness materials applications.  

Further insight is provided by Figure 1f, where it can be seen how the dark areas in Figure 1e are 

characterised by a submicrometric granular structure. This morphology suggests that the darker 

contrast is linked to non-melted or partially melted chromia particles, whereas the brighter contrast can 

be attributed to melted chromia. Our S- HVOF parameters choice is suitable for survival and 

preservation of GNPs, but not for an optimal spray of chromia. A higher-temperature S-HVOF flame 

would have fully melted the chromia particles, but damaged GNPs. Overall, the addition of GNPs to 

chromia appears not to significantly improve mechanical properties, conversely to what reported for 

other ceramic composites [9]. A different concentration of GNPs could be advisable for this purpose, as 

well as other forms of graphene e.g. stacks of fewer graphene layers. 

3.2 - GNPs dispersion, morphology and structural integrity 

The presence of GNPs in the coating was studied by top-surface SEM. A SEM-BSE image in Figure 2a 
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shows dispersed GNPs appearing black with the overlaid red colour from carbon EDX. A high 

magnification SEM-SE image Figure 2b shows GNP particles exhibiting their typical sharp edges. Raman 

spectroscopy measurements were done to assess structural integrity of GNPs after spray. The average 

spectrum is shown in Figure 2c, containing all the main features expected from a GNP: the main D, G 

and 2D bands. A degraded GNP would have a spectrum characterised by a very high D band and a very 

low and broad 2D band, compared to the G band [13]. This average spectrum proves GNPs have 

undergone none or very minimal spray-induced degradation. 

3.3 - Wear tests 

Wear tests were carried out on the polished chromia/GNP and chromia-only coating for comparison; the 

results are shown in Table 1.  

Sample 

Specific wear rate (mm3/Nm) 

Average CoF 

Coating Counterbody 

Chromia/GNP (1.9 ± 0.1) x 10-8 (1.1 ± 0.1) x 10-6 0.51 ± 0.03 

Chromia-only (2.4 ± 0.3) x 10-8 (3.7 ± 0.3) x 10-6 0.60 ± 0.05 

Table 1 – Wear test results. Specific wear rate of chromia/GNP and chromia-only coatings and alumina 
counterbodies, with average CoF.  
  
A lower specific wear rate of both coating and countebody was measured in the chromia/GNP case 

compared to the chromia-only case; the values dropped by 20% and 70%, respectively. In addition, the 

average CoF is also reduced by 15%, suggesting solid lubrication is offered by GNPs, effectively reducing 

wear volume loss of both coating and counterbody. 

Considering the CoF values over distance shown in Figure 3a, the behaviour of the two coatings follows 

the same trend. There is an initial bedding-in spike, then a sudden drop to around 0.5. Then, the two 

coatings behave differently: the chromia-only coating CoF increases and stabilises at around 0.6, 

whereas the chromia/GNP CoF stays at around 0.5. In both cases sudden small spikes originated by 

typical ceramics brittle fractures are visible. In Figure 3b,c, chromia-only and chromia/GNP coatings 

show similar wear behaviours, with delamination and cracking of some areas, and a wider, more evident 

wear track for the chromia-only coating. In addition, a network of smaller cracked areas can be seen 
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throughout the darker contrast region. No GNPs residue could be found at this stage inside the wear 

track. GNPs possibly play a role in retarding these wear mechanisms [13] and, as the wear track 

deepens, fresh GNPs are exposed and favourably lower friction and wear [12]. 

5 – Conclusion 

 A process has been established to deposit Chromia/GNP nanocomposite coatings through S-

HVOF thermal spray. GNPs show no or minimal degradation upon spray as assessed by Raman 

spectroscopy. 

 The composite coatings show good mechanical properties, with no delamination at the 

coating/substrate interface due to GNP addition. 

 The addition of GNP improves tribological properties, lowering CoF by 15% and specific wear 

rate by 20% (coating) and 70% (counterbody). 
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List of figure captions 

Figure 1: Feedstock morphology and coating microstructure. SEM micrograph showing submicrometric 

granular chromia (a) and flat sharp GNP (b) feedstock particles. (c) Schematic of the coating process. 

SEM-BSE cross-section of chromia coating (d) and chromia/GNP coating (e) and (f) from the marked area 

in (e). From (d) emerges no delamination at the coating/substrate interface and some localised porosity. 

In (e) a smooth brighter contrast corresponds to areas of melted chromia and darker granular areas to 

non-melted or partially melted chromia particles.  

Figure 2: Chromia/GNPs sample top surface morphology and spectroscopy. (a) Overview BSE image 

showing scattered GNPs on the sample top surface in black with overlaid EDX showing carbon in red. (b) 

High magnification SE image of GNPs particles showing sharp morphology. (c) Raman spectroscopy 

average spectrum from five GNPs on top surface showing characteristic D, G and 2D bands. 

Figure 3: Wear tests. (a) CoF over distance of wear test of chromia-only and chromia/GNP coatings. 

SEM-BSE micrographs of Chromia (b) and Chromia/GNP (c) wear tracks. Delamination can be seen, and 

the arrows indicate cracks. 
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