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Candidate genes linked to QTL regions associated with fatty acid composition in oil palm 1 

 2 

Abstract 3 

 4 

The present study searched for candidate genes in five linkage groups (LGs) - T2, T3, OT4, OT6 and T9 hosting the QTLs 5 

associated with iodine value (IV) and fatty acid composition (FAC) in an oil palm interspecific hybrid population. Each 6 

of the five LGs was successfully anchored to its corresponding chromosomal segment where, a wider repertoire of 7 

candidate genes was identified. This study further revealed a total of 19 candidate genes and four transcription factors 8 

involved in biosynthesis of fatty acids, lipids (including triacylglycerol) and acetyl-CoA, glycosylation and degradation 9 

of fatty acids. Their possible involvement in regulating the levels of saturation are discussed. In addition, 22 candidate 10 

genes located outside the QTL intervals were also identified across the interspecific hybrid genome. A total of 92 SSR 11 

markers were developed to tag the presence of these candidate genes and 50 were successfully mapped onto their 12 

respective positions on the genome. The data obtained here complements the previous studies, and collectively, these 13 

QTL-linked candidate gene markers could help breeders in more precisely selecting palms with the desired FAC. 14 
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ACX4 acyl-CoA oxidase 4 26 

C14:0  myristic acid   27 

C16:0  palmitic acid  28 

C16:1  palmitoleic acid 29 

C18:0 stearic acid 30 

C18:1 oleic acid 31 

C18:2 linoleic acid 32 
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FAC fatty acid composition 42 
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FBA  fructose-bisphosphate aldolase 44 

Fwd  forward primer 45 

GLABRA  homeobox protein GLABRA 46 

GPAT3 glycerol-3-phosphate acyltransferase 3 47 

GPDH  glycerol-3-phosphate dehydrogenase 48 

HAGH  hydroxyacyl glutathione hydrolase 49 

HD-Zip  TF homeobox-leucine zipper protein ATHB-13 50 

IV iodine value  51 

KAR  beta-ketoacyl-ACP reductase 52 

KASII, III  beta-ketoacyl-ACP synthases II, III 53 

LG linkage group 54 

LIPT2 triacylglycerol lipase 2 55 

LOD   logarithm of odds 56 

LPAAT1 lysophosphatidic acid acyltransferase 1 57 

M13  primer 5’CACGACGTTGTAAAACGAC3’ 58 

MACP/MAT  malonyl-CoA:ACP transacylase 59 

MAS marker-assisted selection 60 

MDH  malate dehydrogenase 61 

MYB  TF myb family PHL8 62 

NCBI  National center for biotechnology information 63 

OxG the E. oleifera x E. guineensis interspecific hybrid population 64 

OEP163 outer envelope pore protein 16-3 65 

OTE/FATA  oleoyl-ACP thioesterase 66 

PATE/FATB  palmitoyl-ACP thioesterase 67 

PVE  phenotypic variation explained 68 

QTLs quantitative trait loci 69 

rf  recombination frequency 70 

Rvs  reverse primer 71 

SAD  stearoyl-ACP desaturase 72 

sn  stereospecific number 73 

SNP   single nucleotide polymorphism 74 

SSR   simple sequence repeats 75 

T128 Nigerian E. guineensis paternal palm  76 

TAG triacylglycerol 77 

TCP15 TF TCP15 78 

TF transcription factor 79 

TPE tris-phosphate buffer 80 

UGT  UDP-glycosyltransferase 81 

Uniprot  Universal protein resource database 82 

UP1026 Colombian E. oleifera maternal palm  83 

 84 
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Introduction 87 

 88 

The oil palm industry is a major contributor to the global vegetable oils and fats market. The production of palm and palm 89 

kernel oil is at about 75.2 million tonnes accounting for almost one-third of the world’s vegetable oil production (Kushairi 90 

et al. 2018). Interestingly, over 84.0 % of production is in South-east Asia (USDA 2017). The high demand for palm oil 91 

reflects its position as the most consumed vegetable oil, with India, China and the European Union among the main 92 

importing countries (Index Mundi 2016; Kushairi et al. 2018). Despite concerns about sustainable practices, especially in 93 

the European Union which the industry is addressing aggressively, the supply of palm oil needs to rise in order to meet 94 

increasing demand from the growing population worldwide.  95 

 Palm oil is produced and accumulates in the fruit mesocarp tissue and is referred to as crude palm oil (CPO). The 96 

physical and chemical characteristics (e.g. melting, crystallization and morphology) of CPO are mainly attributed to its 97 

fatty acid composition (FAC). In the commercial Elaeis guineensis CPO, FAC comprises a balanced combination of 98 

saturated and unsaturated fatty acids (FAs). The saturated FAs consist primarily of palmitic (C16:0; ~ 44.0 %) and stearic 99 

(C18:0; ~ 4.5 %) acids whereas the unsaturated FAs consist mainly of oleic (C18:1; ~ 39.0 %) and linoleic (C18:2; ~ 10.0 100 

%) acids. The iodine value (IV) which measures the total level of unsaturation is on average about 53.0 in commercial 101 

materials. In comparison, CPO from E. oleifera has much higher levels of unsaturated FAs (IV: 70.0 – 93.0) due to high 102 

levels of C18:1 (ranges from 47.0 – 69.0 %) and C18:2 (ranges from 2.0 – 22.0 %). In contrast, saturated FAs in the E. 103 

oleifera CPO only range from 15.0 – 30.0 % for C16:0 and 0.2 – 2.0 % for C18:0 (Mohd Din et al. 2000; Montoya et al. 104 

2014; Corley and Tinker 2016). Increasing the unsaturated FA levels in commercial E. guineensis CPO has advantages, 105 

especially for marketing palm oil in temperate countries. As such, conventional breeding programmes have been directed 106 

at selecting high IV oil palm. A sure way to achieve this is via interspecific hybrid breeding, where there is a desire for 107 

the unsaturated characteristic from E. oleifera to be introgressed into the commercial planting materials. Interspecific 108 

breeding crosses have been created using selected high IV E. oleifera palms (> 70.0) and Nigerian E. guineensis palms 109 

(~ 64.0) which appears close to the upper limit that can be achieved in pure E. guineensis materials. Early results showed 110 

an additive effect in the interspecific hybrids, which possess an intermediate level of unsaturated FAs compared to both 111 

the E. oleifera and E. guineensis parental palms (Rajanaidu et al. 1990; Rajanaidu et al. 2000; Corley and Tinker 2016).  112 

The application of marker-assisted selection (MAS), especially in interspecific hybrid breeding programmes, can 113 

expedite the introgression of unsaturated FAs into elite E. guineensis line. In this respect, a number of quantitative trait 114 

loci (QTLs) affecting FAC have been previously identified by Singh et al. (2009), Montoya et al. (2013, 2014) and Ting 115 

et al. (2016). Markers associated with these QTLs can help breeders in selecting palms with desired FAC, at least in 116 

specific genetic backgrounds. In addition to the identification of QTL-linked markers, efforts are also focussed on 117 

identifying the genes responsible for the variation in FAC as well as other important economic traits (e.g. yield) in oil 118 

palm (Kalyana Babu et al. 2020; Xia et al. 2019; Ting et al. 2018; 2016). The availability of the oil palm genome sequence 119 

(Singh et al. 2013) can facilitate the identification of the genes. In the present study, the E. guineensis genome build 5 120 

(EG5) successfully revealed a number of important genes and transcription factors (TFs) involved in biosynthesis of FAs 121 

and triacylglycerols (TAGs) within the QTL intervals, associated with FAC in an E. oleifera x E. guineensis (OxG) 122 

interspecific hybrid population (Ting et al. 2016). The authors had identified a total of 12 QTLs distributed across six 123 

linkage groups (LGs) - OT1, T2, T3, OT4, OT6 and T9 that were linked to IV, myristic acid (C14:0), C16:0, palmitoleic 124 

acid (C16:1), C18:0, C18:1 and C18:2. However, previous search for candidate genes was restricted to the QTL intervals 125 

in LGOT1. The method was efficient at revealing potential regulatory genes and as such, a similar approach was extended 126 

in the present study to mine for candidate genes from QTL intervals on the five other identified LGs. Interestingly, a 127 

number of the genes identified in the QTL intervals were similar to those described in other independent studies as 128 
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regulating the synthesis of FAs and TAGs in the oil palm mesocarp (Sambanthamurthi et al. 1999; Tranbarger et al. 2011; 129 

Bourgis et al. 2011; Dussert et al. 2013; Guerin et al. 2016).  130 

 131 

Materials and Methods 132 

 133 

The OxG mapping population 134 

 135 

The OxG mapping population is an oil palm interspecific hybrid cross between the maternal Colombian E. oleifera (coded 136 

as UP1026) and a paternal Nigerian E. guineensis tenera (coded as T128). The OxG cross consists of 108 F1 hybrid 137 

progenies. F1 mapping populations have been routinely utilized in genetic linkage and QTL analysis of important 138 

economic traits in oil palm as reported by Ong et al. (2019), Bai et al. (2017, 2018), Seng et al. (2016), Lee et al. (2015) 139 

and Jeennor and Volkaert (2014). 140 

 The spear leaves were sampled and stored at -80 oC. The frozen leaves were ground into powder in liquid nitrogen 141 

and DNA extraction was carried out using the modified cetyltriammonium bromide (CTAB) method (Doyle and Doyle, 142 

1990). DNA purity was assessed using a NanoDrop spectrophotometer (NanoDrop Technologies Inc. DE) and an 143 

A260/A280 OD ratio of at least 1.8 was considered acceptable. Quality of the extracted DNA was further verified by 144 

comparing DNA digested with EcoRI and HaeIII with undigested DNA on a 0.9 % agarose gel in 1X TPE buffer (90mM 145 

tris-phosphate buffer and 2mM EDTA pH 8.0) after electrophoresed at 80 – 100V for 3 hours. The DNA was diluted to 146 

50 ng/uL for genotyping with simple sequence repeats (SSR) markers.  147 

 148 

Mining candidate genes and development of candidate markers 149 

 150 

Sequence information of the single nucleotide polymorphism (SNP) markers linked to QTLs for IV and FAC (reported 151 

by Ting et al. 2016) was downloaded from the publicly accessible Genomsawit database at 152 

http://genomsawit.mpob.gov.my. The QTL linked SNP markers were then mapped to the published oil palm reference 153 

genome (EG5) (Singh et al. 2013) using BLASTN (Altschul et al. 1997) based on sequence similarity < 1e-5.  Markers 154 

linked to QTLs and candidate genes reported by Bourgis et al. (2011), Montoya et al. (2013) and Jeennor and Volkaert 155 

(2014) were also mapped to EG5. Subsequently, the genomic sequences of the entire chromosomal fragment 156 

corresponding to each QTL interval were extracted from EG5 and searched for significant homology (BLASTN and 157 

BLASTX) to known genes of interest in the National Center for Biotechnology Information (NCBI) databases 158 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Relevant information associated with the biological functions of the genes and 159 

TFs was obtained from published literature and the Universal Protein Resource (Uniprot) database 160 

(http://www.uniprot.org/uniprot/). Genes and TFs involved in regulation of biosynthesis of FAs and TAGs, glycolysis 161 

and other possible influential factors were shortlisted as candidates.  162 

 The identified candidate genes and TFs were mined for SSRs of various repeats (e.g. mono- di-, tri-, tetra-, penta- 163 

and hexa-nucleotides) using default parameters in the MIcroSAtellite identification tool (Thiel et al. 2003). One to five 164 

SSRs were selected for each candidate gene and forward (Fwd) and reverse (Rvs) primers (18 – 24 nucleotides) were 165 

designed using the default parameters in PRIMER 3 (http://www-166 

genome.wi.mit.edu/genome_software/other/primer3.html). A common M13-tail (5’CACGACGTTGTAAAACGAC3’) 167 

was attached to the forward primer (Fwd 5’-M13) whereas, another M13 primer was attached to each of the fluorescent 168 

dyes (FAM-, NED-, PET- and VIC-M13). Nomenclatures sPSc and _oSSR were used for these candidate SSR markers.  169 

 170 

 171 

http://genomsawit.mpob.gov.my/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.uniprot.org/uniprot/
http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www-genome.wi.mit.edu/genome_software/other/primer3.html
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Candidate SSR marker analysis 172 

 173 

The genotyping of the SSR markers on the 108 F1 hybrid progenies and two parental palms was carried out as described 174 

previously (Ting et al. 2013, 2014 and 2016). PCR amplification of each SSR marker was carried out in a 10.0 uL mixture 175 

containing genomic DNA (50ng/uL), Fwd 5’-M13 primer (2.5 uM), Rvs primer (2.5 uM), one fluorescent dye-M13 (2.5 176 

uM), 1X PCR buffer (NEB, USA), 2 mM of each dNTP (NEB, USA) and 0.5 U Taq DNA polymerase (NEB, USA). The 177 

PCR conditions were as follows: 95 oC for denaturation (3 min); 35 cycles consisting of 95 oC (30 s), 52 – 56 oC 178 

(depending on primers, 30 s) and 72 oC (30 s) and a final extension at 72 oC (5 min). Prior to fragment analysis, 179 

multiplexing of four to eight PCR products was carried out, depending on the sizes of the expected amplicons. PCR 180 

fragments were analysed using capillary electrophoresis and subsequently detected using an ABI3730XL DNA analyser 181 

(Applied Biosystems, USA). Sizing and scoring of the SSR alleles were executed using the GeneMapper® 4.1 software 182 

(Applied Biosystems, USA).  183 

 The genotype profile of the markers was determined as originally described by Billotte et al. (2005). The four 184 

segregation profiles that were observed in the OxG mapping population previously (Ting et al. 2016) are illustrated in 185 

Online Resource 1: Fig. 1. For profile 1, a polymorphic locus is inherited from one of the parental palms and was scored 186 

as ab and aa for the heterozygous and homozygous genotypes, respectively, with an expected ratio of 1:1. For profile 2, 187 

polymorphism involved two common segregating alleles (observed as ab in both parents) and was scored as aa, ab and 188 

bb in the progenies with the expected ratio of 1:2:1. For polymorphisms that involved three co-segregating alleles (profiles 189 

3), the parental genotypes were scored as ab and ac whereas, the progenies were scored as aa, ab, ac and bc, which are 190 

expected to fit a 1:1:1:1 ratio. Finally, for profile 4, the four co-segregating alleles were scored as ab and cd in the two 191 

parents and were expected to segregate as ac, bc, ad and bd in the progenies, also in a 1:1:1:1 ratio.  192 

 193 

Mapping candidate SSR markers to the OxG linkage map and QTL analysis 194 

 195 

The F1 interspecific hybrid population was analyzed essentially as a pseudo-testcross (Grattapaglia and Sederoff 1994). 196 

The SSR loci coded as ‘cross pollinator’ (CP) were incorporated into the existing data set (Ting et al. 2016) and linkage 197 

phases between the SSR alleles were determined using JoinMap® 4.1 (van Ooijen 2006). Segregation of the SSR marker 198 

alleles according to expected Mendelian ratios was evaluated using a built-in chi-square analysis and severely distorted 199 

markers (p < 0.0001) were excluded from linkage analysis. The existing OxG linkage map was used as the backbone in 200 

the Start Order tabsheet. The new SSR markers were integrated using the maximum likelihood (ML) method and markers 201 

were grouped at a recombination frequency (rf) threshold of ≤ 0.2. The rf between markers was transformed into map 202 

distance in centiMorgans (cM) using the Haldane mapping function. Markers with a nearest neighbour stress value > 4.0 203 

cM were discarded from each LG and the contribution of each marker to the nearest neighbour fit was also inspected in 204 

order to get the best possible map order.  205 

 The QTL analysis was performed using three separate methods, namely Interval Mapping (IM), the Multiple-206 

QTL Model (MQM) and the Kruskal-Wallis non-parametric ranking tests where all three methods were implemented via 207 

MapQTL 6 (van Ooijen 2009). The logarithm of odds (LOD) thresholds for declaring a significant QTL at genome-wide 208 

(GW) and chromosome-wide (CW) in the IM and MQM methods were determined by permutation tests (1,000 times) on 209 

the phenotypic data, also implemented via MapQTL 6. Only QTLs that were consistently observed in all three methods 210 

were considered significant in this study.   211 

 212 

 213 
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Results 214 

 215 

Candidate genes underlying QTL intervals 216 

 217 

Eleven QTLs on LGs T2, T3, OT4, OT6 and T9 were previously associated with C14:0 (≥ LOD3.7, GW), C16:1 (≥ 218 

LOD4.3, GW), C18:0 (≥ LOD3.8, GW) and C18:2 (≥ LOD1.7 on LGT3 and LOD2.7 on LGOT6, CW) in the OxG 219 

mapping population (Ting et al. 2016). Each of the LGs was successfully anchored to the oil palm EG5 genome build on 220 

its corresponding pseudo-chromosome (CHR) – 8, 14, 2, 7 and 13, respectively. Markers associated with QTLs, including 221 

a number of candidate genes reported previously (Bourgis et al. 2011; Montoya et al. 2013 and Jeennor and Volkaert 222 

2014) were also aligned to CHR 2, 5, 6, 7, 8, 10, 13, 15 and 16. In total 45 candidate genes including four TFs, were 223 

identified, most of which are directly involved in biosynthesis of FAs and TAGs (Fig. 1, Table 1 and Online Resource 2: 224 

Table 1). 225 

 226 

Integration of candidate gene-linked SSR markers into existing genetic map  227 

 228 

A total of 45 FAC and TAG related genes were utilized for development of SSR markers. One to five SSR markers were 229 

selected for each candidate gene, resulting in 92 SSR primer-pairs being designed (Table 1). Genotyping of these SSR 230 

markers in the OxG mapping population resulted in 50 polymorphic SSR markers, of which 47 were scored according to 231 

profile 1 (45 inherited from T128 and two inherited from UP1026) and three were scored as having profile 4. The allelic 232 

segregation ratios for the 50 SSR markers met the expected Mendelian ratios at p ≥ 0.0005. These 50 markers were then 233 

included into the existing marker data set for constructing the genetic map and all were successfully mapped into the 234 

existing OxG genetic map (Fig. 2 and Online Resource 3: Fig. 2). 235 

 236 

Mapping of candidate gene markers to the respective QTLs 237 

 238 

The candidate gene markers identified in this study were successfully mapped back to the respective QTL intervals in 239 

LGs T2, OT3, OT4, OT6 and T9. In LGT2, the 1.0 cM interval (61.2 – 62.1 cM) related to QTL for C14:0 was mapped 240 

to CHR08, but clear candidate genes related to biosynthesis of FAs or TAGs were not detected in the QTL interval. 241 

Therefore, the search was extended towards the left and right of the QTL interval and an oleoyl-ACP thioesterase 242 

(OTE/FATA), stearoyl-ACP desaturase (SAD) and hydroxyacyl glutathione hydrolase 2 (HAGH) gene were detected 243 

flanking both sides of the interval (Fig. 2). A similar chromosomal region corresponding to the QTL for C14:0 was also 244 

reported in an interspecific BC1 mapping population (Montoya et al. 2013), as determined by the common markers 245 

(mEgCIR3649, mEgCIR3282 and mEgCIR0800) mapped on both the studies (Fig. 2). 246 

 In LGT9, the QTLs for C14:0, C16:1 and C18:0 were located at regions spanning 17.2 – 32.6, 2.9 – 32.6 and 13.4 247 

– 24.8 cM, respectively (Ting et al. 2016). The QTLs for C14:0 and C18:0 were also found to be located very close to 248 

that reported previously in a tenera x dura mapping population (Montoya et al. 2014). This was revealed by two common 249 

SSR markers, namely mEgCIR3592 and mEgCIR3787 that were located within/near the similar QTLs reported by 250 

Montoya et al. (2014) (Fig. 2). Taking the regions containing all three QTLs, an interval ranging from 2.9 – 32.6 cM was 251 

examined, which identified four potential genes and three TFs. The four candidate genes were beta-ketoacyl-ACP 252 

synthases II and III (KASII, KASIII), malate dehydrogenase (MDH) and acetoacetyl-CoA thiolase (AACT) whereas, the 253 

TFs were myb family PHL8 (MYB), TCP15 (TCP15) and homeobox-leucine zipper protein ATHB-13 (HD-Zip) (Table 1). 254 

Three SSR markers, namely sPSc00554, sPSc00571 and sPSc00574, associated with the candidate genes AACT, TCP15 255 

and HD-Zip respectively, were successfully mapped within the QTL interval. The TCP15 linked sPSc00571 was mapped 256 
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closest to the QTL peak (LOD5.2 – 12.7) and explained 24.5 – 49.8 % the variation for C14:0, C16:1 and C18:0. The 257 

LOD score and phenotypic variation explained (PVE) after mapping of the candidate gene markers were higher than that 258 

observed before fine-mapping (LOD4.5 – 10.7 and 21.9 – 44.2 % PVE) with the candidate markers (Ting et al. 2016). 259 

Unfortunately, the SSR markers developed for KASII, KASIII, MDH and MYB, were not polymorphic (*), and thus could 260 

not be mapped onto LGT9. They were placed on the LG based on their relative order compared to other markers (and 261 

genes) in CHR08, but their exact map positions could not be determined (Fig. 2).   262 

On LGOT4 (CHR02), UDP-glycosyltransferase (UGT) was found located underlying the QTL peak for C18:0, 263 

defined by SNPM00121 (LOD5.0). UGTs are not involved in FA or TAG biosynthesis. They however, catalyse the 264 

covalent addition of sugars to a wide range of lipophilic molecules by transferring the glycosyl group from nucleoside 265 

diphosphate-activated sugars (e.g. UDP-sugars), and control the levels of many signalling molecules. The molecules 266 

include a broad array of hormones (including phytohormones), secondary metabolites and xenobiotics for maintaining 267 

good growth and development in plants (Ross et al. 2001; Barvkar et al. 2012; Ostrowski and Jakubowska 2014). Other 268 

genes from the QTL interval were fructose-bisphosphate aldolase (FBA), outer envelope pore protein 16-3 (OEP163), 4-269 

coumarate--CoA ligase 1 (4CLL1) and beta-ketoacyl-ACP reductase (KAR). Among these, KAR is involved in the de 270 

novo FA chain elongation cycle and the SSR marker associated with this gene, sPSc00584A (LOD4.5) mapped closest to 271 

UGT. The PVE explained by sPSc00584A at 22.5 % was similar to that observed for SNPM00121 (23.8 %). In fact, 272 

another important FA gene namely stearoyl-ACP desaturase (SAD) which converts C18:0- to C18:1-ACP was identified 273 

on LGOT4 but, at a distance of about 36.0 cM from the QTL interval (Fig. 2).  274 

Two putative QTLs for C18:2 were reported on LGs OT3 and OT6, at intervals 46.9 – 65.2 and 38.9 – 54.5 cM, 275 

respectively. Three candidate markers - sPSc00664, sPSc00665 and sPSc00666 associated with omega-3 fatty acid 276 

desaturase (FAD3/7/8), were developed within the QTL interval at LGOT3 (corresponded to CHR14). All three SSR 277 

markers were successfully mapped back to the QTL peak. The second gene within close proximity was acyl-CoA oxidase 278 

4 (ACX4) which is involved in the peroxisomal degradation of short-chain FAs (C4:0 – C8:0) during beta-oxidation. This 279 

process also recycles acetyl-CoA as a carbon and energy source for FA synthesis and plant growth (Poirier et al. 2006; 280 

Goepfert and Poirier 2007). Other genes involved in FA and TAG synthesis activities were also detected at the QTL 281 

interval in LGOT3. These include lysophosphatidic acid acyltransferase 1 (LPAAT1), acyl-CoA-binding domain-282 

containing protein 4 (acbd4) and glycerol-3-phosphate acyltransferase 3 (GPAT3). A candidate SSR marker, sPSc00694 283 

was developed and mapped close to LPAAT1 whereas, SSR markers for acbd4 and GPAT3 were not polymorphic (*) and 284 

could not be mapped (Table 1 and Fig. 2).  285 

For QTL-C18:2 on LGOT6 which corresponded to CHR07, the QTL interval hosted a palmitoyl-ACP thioesterase 286 

(PATE/FATB) gene. None of the markers developed from the gene were polymorphic (*). However, two important FA 287 

genes – SAD and OTE/FATA were identified at a distance of 4.4 cM from the QTL interval.  288 

In addition to mining candidate genes from the QTLs identified by Ting et al. (2016), a number of candidate SSR 289 

markers were also developed for other published QTLs/genes for FAC and oil yield in oil palm. Other than the five LGs 290 

mentioned above, these markers were also mapped onto LGs T5, OT10, OT12, T14, OT15 and T16 (Table 1, Fig. 2 and 291 

Online Resource 3: Fig. 2). As an example, the homeobox protein GLABRA gene (GLABRA), glycerol-3-phosphate 292 

dehydrogenase (GPDH), plastid-linoleate desaturase (FAD7), malonyl-CoA:ACP transacylase (MACP/MAT) and 293 

triacylglycerol lipase 2 (LIPT2) genes associated with QTLs for oil-to-fruit and oil-to-bunch traits (Jeennor and Volkaert 294 

2014) were successfully mapped to the present LGOT12. The candidate SSR markers developed from these genes mapped 295 

close to each of the respective genes as follows: sPSc00442-GLABRA, sPSc00443-GPDH, sPSc00445-FAD7-sPSc00446, 296 

sPSc00447-MACP-sPSc00448 and sPSc00449-LIPT2. 297 

 298 

 299 

http://www.sciencedirect.com/science/article/pii/S0167488906002485
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Discussion 300 

 301 

The present study builds on previous efforts in searching for candidate genes in the QTL intervals on LGs T2, T9, OT3, 302 

OT4 and OT6 (Ting et al. 2016). The use of SSR markers common to those utilized in other studies revealed that several 303 

of these QTLs were located near or within the genomic regions linked to FAC in previous studies using a BC1 and a tenera 304 

x dura mapping populations (Montoya et al. 2013; 2014). This provided confidence to search for candidate genes within 305 

the designated QTL intervals. In this study, there were 92 SSR markers developed from FA and TAG related genes, of 306 

which 50 (53.0 %) were informative. The 50 SSR candidate markers followed two of the four segregation profiles 307 

observed in the OxG mapping population previously. All 50 were successfully mapped to the expected LG, corresponding 308 

to the genomic region from which they were designed, confirming the appropriateness of the mapping methodology 309 

applied in this study. 310 

 Each of the QTL intervals of interest in this study was successfully anchored to the corresponding pseudo-311 

chromosomes and revealed a number of FA and lipid related genes. From the QTL regions associated with C14:0, C16:1 312 

and C18:0 in LGT9 (CHR13), MDH and KASIII were identified. The MDH encoding enzyme can be found in a range of 313 

subcellular locations (e.g. cytosol and mitochondria) and it catalyses the interconversion of malate to oxaloacetate which 314 

subsequently can be converted to form phosphoenolpyruvate or can be oxidized to form pyruvate (Wedding 1989; Minárik 315 

et al. 2002). This provides the pyruvate source to initiate the synthesis of FAs. In vitro experiments in castor bean 316 

demonstrated high FA synthesis rate when malate was provided as a precursor (Smith et al. 1992). The enzyme KASIII 317 

forms the acetoacetyl-ACP complex from acetyl-CoA and malonyl-ACP in preparation for FA-chain elongation. Both 318 

the MDH and KASIII-catalysed reactions take place at a very early stage even before the FA-chain elongation process 319 

starts. This suggests that MDH and KASIII activities are important prior to formation of various FAs and could explain 320 

the co-localization of the two genes within the same QTL interval associated with C14:0, C16:1 and C18:0 in LGT9.  321 

Another gene, KASII, that plays a critical step in elongating C16:0-ACP to form C18:0-ACP was also detected in 322 

LGT9. This is one of the most important enzymatic activities for generating and supplying C18:0 for subsequent 323 

desaturation into unsaturated FAs by SAD and FADs. In oil palm, KASII activity was found to be positively correlated 324 

with unsaturated FA content. The observed relationship was particularly strong with C18:1 and C18:2, suggesting that 325 

increased levels of C18:0-ACP are efficiently converted to C18:1-ACP which subsequently is hydrolysed 326 

(Sambanthamurthi et al. 1999). The C18:1 released is activated to C18:1-CoA and channelled to endoplasmic reticulum 327 

(ER) for TAG assembly or further desaturated to C18:2 prior to TAG assembly. In contrast, KASII activity was found to 328 

be negatively correlated with the saturated FAs (Sambanthamurthi et al. 1999). This was supported by the recent 329 

transcriptomic co-expression analysis in oil palm, where lower levels of C16:0 were the result of increased KASII 330 

expression (Guerin et al. 2016). It has been suggested that lower rates of KASII activity increase accumulation of shorter 331 

FA chains such as C14:0- and C16:0-ACPs. The increased accumulation of C16:0-ACP allows C16:0-ACP to be 332 

desaturated to form C16:1-ACP. Increased accumulation of C16:0-ACP also results in increased hydrolysis by 333 

PATE/FATB, activation into C16:0-CoA and assembly of higher levels of C16:0 into TAG in the ER. In A. thaliana and 334 

cotton seed, silencing or down-regulating the KASII gene has led to two- to six-fold increase in C16:0 (Pidkowich et al. 335 

2007; Liu et al. 2017). In Camelina, suppression of the KASII gene also led to higher accumulation of palmitate and 336 

further reduction of unsaturated FAs (Hu et al. 2017). This provides support for the involvement of KASII in the QTL 337 

interval linked to C14:0, C16:1 (produced from C16:0) and C18:0. However, the SSR markers designed to the KASII gene 338 

did not segregate in the mapping family. It will be interesting to extend the analysis in future to search for polymorphic 339 
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SNPs, within or flanking the KASII gene. The identification of candidate genes that are required for the initiation of FA 340 

synthesis (MDH and KASIII) and in the accumulation of unsaturated FAs (KASII) within the QTL interval in LGT9, 341 

suggests that it is an important genomic region influencing FAC in interspecific hybrids. 342 

A number of genes encoding enzymes that show substrate specificity have also been identified in the confidence 343 

intervals of QTLs, in accordance to their respective FA preferences. These include FAD3/7/8, acbd4 and LPAAT1 that 344 

were associated with QTL for C18:2 in LGOT3 (CHR14). FAD3/7/8 encodes desaturase activity to convert C18:2 into 345 

C18:3 either in the plastids (by FAD7/8) or in the ER (by FAD3) (Song et al. 2004, Yurchenko et al. 2014). The acbd4 346 

binds oleoyl (C18:1)-CoAs with high affinity and transports them from cytosol to ER for further modification of FAs or 347 

synthesis of TAGs (Leung et al. 2004; Xiao et al. 2008). Located next to acbd4 is GPAT which encodes the first step of 348 

enzymatic acylation to form TAGs in ER. Generally, GPAT is known to have preference for saturated FAs, especially 349 

towards C16:0-CoA (Griffiths et al. 1988; Griffiths and Harwood 1991; Xu et al. 2009). However, Sambanthamurthi et 350 

al. (2000), Manaf and Harwood (2000) and Dussert et al. (2013) suggested that oil palm GPAT can use both saturated 351 

and unsaturated acyl-CoAs (including C18:1-CoA) as substrates. Interestingly in Brassica napus, GPAT has a wider 352 

range of specificity, allowing addition of variety of fatty acyl-CoAs to the stereospecific number 1 (sn-1) position of 353 

glycerol-3-phosphate (Gly3P) (Larson et al. 2002). The subsequent acylation is catalysed by lysophosphatidic 354 

acid acyltransferase, an enzyme encoded by the LPAAT gene. In the current QTL interval, LPAAT1 was identified and 355 

interestingly it has been reported to show high specificity towards unsaturated fatty acyl-CoAs such as C18:1-CoA in 356 

humans and most plants (Shindou et al. 2009). In oil palm, LPAAT has also been reported to accept C16:0-CoA as the 357 

alternative substrate at the sn-2 position for producing phosphatidate (Sambanthamurthi et al. 2000). The QTL intervals 358 

essentially contain genes that regulate both FA synthesis in the plastid and TAG assembly in the ER. As such, the 359 

candidate genes and the SSR markers linked to these genes are ideal candidates to further investigate both FA and lipid 360 

biosynthesis in independent oil palm populations. 361 

In this study, there were interesting candidate genes identified outside the QTL confidence intervals such as those 362 

for C18:0 in LGOT4 (CHR02) and C18:2 in LGOT6 (CHR07). SAD was located at a distance of about 36.0 cM from the 363 

QTL for C18:0 whereas on LGOT6, SAD and OTE/FATA were located at a position about 4.4 cM from the QTL for 364 

C18:2. SAD and OTE/FATA encode stearoyl-ACP desaturase and oleoyl-ACP thioesterases A, respectively and these two 365 

enzymes have high specificity towards C18 FA-ACPs. In the oil palm mesocarp, SAD modifies C18:0-ACP to C18:1-366 

ACP while, OTE/FATA hydrolyses and releases C18:1 from C18:1-ACP. Detection of candidate genes outside the 367 

confidence interval has also been reported for QTLs associated with C18:1 and C18:2 in watermelon seeds (Meru and 368 

McGregor 2014). A point to consider is the observation by Raghaven and Collard (2012) that for a small mapping 369 

population (< 194 samples), there is a possibility that the QTL detected may actually be several cM away from its actual 370 

position. As such, even though the candidate genes were located outside the QTL confidence interval, they remain as 371 

good candidates for further evaluation.  372 

 373 

Conclusion 374 

 375 

The increasing availability of information on gene function and genome sequence data of plant species (including oil 376 

palm) that are accessible in public databases facilitated the present study to uncover potential candidate genes associated 377 

with fatty acid composition. This further facilitated development of markers closely linked to these candidate genes within 378 

the QTL confidence intervals. In this study, the candidate gene approach once again proved very efficient and was 379 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Xiao%20S%5BAuthor%5D&cauthor=true&cauthor_uid=18773301
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shindou%20H%5BAuthor%5D&cauthor=true&cauthor_uid=18931347
http://journal.ashspublications.org/search?author1=Geoffrey+Meru&sortspec=date&submit=Submit
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successfully applied to identify candidate genes and transcription factors from the QTL intervals. More importantly, 380 

biological functions of these candidate genes provided potential explanations for their possible involvement in the fatty 381 

acid and Kennedy pathways for lipid assembly. Both pathways play an important role in determining the levels of 382 

saturation and unsaturation in palm oil. The levels of saturation and unsaturation could possibly be regulated by the 383 

expression of these genes. More in-depth evaluation e.g. expression and functional studies will be required to confirm the 384 

regulatory effects of these candidate genes. This paper presents an atlas of candidate genes which may be involved in the 385 

oil saturation differences between the high IV E. oleifera and lower IV E. guineensis. Introgression of the high IV 386 

character into the African oil palm could lead to new markets and applications for palm oil. The current work represents 387 

an important step towards realising these objectives. 388 
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Linkage 

group 

(LG) 

EG5 

chromosome 

(CHR) 

QTL# Candidate SSR 

marker 

Gene/TF Source 

T2 8 - sPSc00417; 

sPSc00647*; 

sPSc00648 

Oleoyl-ACP thioesterase (OTE/FATA) Bourgis et al. (2011);  

Montoya et al. (2013); 

Jeennor and Volkaert 

(2014); NCBI 

  - sPSc00418; 

sPSc00419; 

sPSc00420 

Stearoyl-ACP desaturase (SAD) Bourgis et al. (2011);  

Montoya et al. (2013) 

  - sPSc00607 Enoyl-ACP reductase I (ENR1/EAR1) Jeennor and Volkaert 

(2014); NCBI 

  - sPSc00631 Hydroxyacyl glutathione hydrolase 2 (HAGH) Singh et al. (2013);  

NCBI 

OT3 14 C18:2 sPSc00654*; 

sPSc00655 

CDP-diacylglycerol--glycerol-3-phosphate 3-

phosphatidyltransferase 2 (pgsA) 

Singh et al. (2013);  

NCBI 

 

  C18:2 sPSc00664; 

sPSc00665; 

sPSc00666 

Omega-3 fatty acid desaturase (FAD3/7/8) Singh et al. (2013);  

NCBI 

 

  C18:2 sPSc00667; 

sPSc00668*; 

sPSc00669B 

Acyl-coenzyme A oxidase 4 (ACX4) Singh et al. (2013);  

NCBI 

 

  C18:2 sPSc00679* Zinc finger protein 598 (ZNF598) Singh et al. (2013);  

NCBI 

  C18:2 sPSc00681*; 

sPSc00682* 

Glycerol-3-phosphate acyltransferase 3 (GPAT3) Singh et al. (2013);  

NCBI 

  C18:2 sPSc00685*; 

sPSc00686* 

Acyl-CoA-binding domain-containing protein 4 

(acbd4) 

Singh et al. (2013);  

NCBI 

  C18:2 sPSc00683* ATP-citrate synthase beta chain protein 1 

(ACLB-1) 

Singh et al. (2013);  

NCBI 

  C18:2 sPSc00694 Lysophosphatidic acid acyltransferase 1 

(LPAAT1)  

Singh et al. (2013);  

NCBI 

  C18:2 sPSc00695 Acetate/butyrate--CoA ligase (AAE7) Singh et al. (2013);  

NCBI 

OT4 2 C18:0 sPSc00583A Outer envelope pore protein 16-3 (OEP163) Singh et al. (2013);  

NCBI 

  C18:0 sPSc00584A; 

sPSc00585* 

beta-ketoacyl-ACP reductase (KAR) Singh et al. (2013);  

NCBI 

  C18:0 sPSc00587; 

sPSc00588 

4-coumarate--CoA ligase 1 (4CLL1) Singh et al. (2013);  

NCBI 

  C18:0 sPSc00591* Fructose-bisphosphate aldolase (FBA) Singh et al. (2013) 

  C18:0 sPSc00593; 

sPSc00594* 

UDP-glycosyltransferase (UGT) Singh et al. (2013);  

NCBI 

  - sPSc00422; 

sPSc00423* 

Stearoyl-ACP desaturase (SAD) Bourgis et al. (2011);  

Montoya et al. (2013) 

  - sPSc00430; 

sPSc00431* 

Indole-3-glycerol phosphate synthase (IGPS) Jeennor and Volkaert 

(2014); NCBI 
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  - sPSc00450A; 

sPSc00450B 

Triacylglycerol lipase 2 (LIPT2) Jeennor and Volkaert 

(2014); NCBI 

T5 16 - sPSc00432; 

sPSc00433 

 

Acyl-coenzyme A oxidase 1 (ACX1) Jeennor and Volkaert 

(2014); NCBI 

OT6 7 C18:2 sPSc00709 Phospholipase A1-Igamma1 (A1-Igamma1) Singh et al. (2013);  

NCBI 

  C18:2 sPSc00696*; 

sPSc00697*; 

sPSc00698* 

Palmitoyl-acyl carrier protein thioesterase 

(PATE/FATB) 

Singh et al. (2013);  

NCBI 

 

  - sPSc00411; 

sPSc00412; 

sPSc00413* 

Stearoyl-ACP desaturase (SAD) Bourgis et al. (2011);  

Montoya et al. (2013) 

 

  - sPSc00414A; 

sPSc00415 

Oleoyl-ACP thioesterase OTE/(FATA) Bourgis et al. (2011);  

Montoya et al. (2013) 

T9 13 C14:0; 

C16:1; 

C18:0 

sPSc00554 Acetoacetyl-CoA thiolase (AACT) Singh et al. (2013);  

NCBI 

 

  C14:0; 

C16:1; 

C18:0 

sPSc00556*; 

sPSc00557*; 

sPSc00558*  

beta-ketoacyl-ACP synthase II (KASII) Singh et al. (2013);  

NCBI;  

Jeennor and Volkaert (2014) 

  C14:0; 

C16:1; 

C18:0 

sPSc00564*; 

sPSc00565* 

TF myb family PHL8 (MYB) Singh et al. (2013);  

NCBI 

 

  C14:0; 

C16:1; 

C18:0 

sPSc00566*; 

sPSc00567* 

Malate dehydrogenase (MDH) Singh et al. (2013);  

NCBI 

 

  C14:0; 

C16:1; 

C18:0 

sPSc00568*; 

sPSc00569* 

beta-ketoacyl-ACP synthase III (KASIII) Singh et al. (2013);  

NCBI;  

Jeennor and Volkaert (2014) 

  C14:0; 

C16:1; 

C18:0 

sPSc00570*; 

sPSc00571 

TF TCP15 (TCP15) Singh et al. (2013);  

NCBI 

 

  C14:0; 

C16:1; 

C18:0 

sPSc00574; 

sPSc00575* 

TF Homeobox-leucine zipper protein ATHB-13-

like (HD-Zip) 

Singh et al. (2013);  

NCBI 

 

OT10 6 - sPSc00439; 

sPSc00440* 

Lysophospholipase 2 (LYPLA2) Jeennor and Volkaert (2014) 

  - sPSc00436; 

sPSc00437*; 

sPSc00438 

Phosphoenolpyruvate/phosphate translocator 1 

(PPT) 

Jeennor and Volkaert 

(2014); NCBI 

 

OT12 5 - sPSc00399*; 

sPSc00400*; 

sPSc00401B 

beta-ketoacyl-ACP synthase II (KASII) Bourgis et al. (2011);   

NCBI 

  - sPSc00441*; 

sPSc00442 

Homeobox protein GLABRA (GLABRA) Jeennor and Volkaert (2014) 

  - sPSc00443; 

sPSc00444* 

Glycerol-3-phosphate dehydrogenase (GPDH) Jeennor and Volkaert 

(2014); NCBI 
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  - sPSc00445; 

sPSc00446 

Plastid-linoleate desaturase (FAD7) Jeennor and Volkaert 

(2014); NCBI 

  - sPSc00447; 

sPSc00448 

Malonyl-CoA:ACP transacylase (MACP/MAT) Jeennor and Volkaert 

(2014); NCBI 

  - sPSc00449  Triacylglycerol lipase 2 (LIPT2) Jeennor and Volkaert (2014) 

T14 11 - SA1_oSSR Stearoyl-ACP desaturase (SAD) Singh et al. (2013);  

NCBI 

OT15 10 - sPSc00390*; 

sPSc00391; 

sPSc00392*; 

sPSc00393* 

beta-ketoacyl-ACP synthase II (KASII) Bourgis et al. (2011);  

Montoya et al. (2013);  

NCBI 

 

  - sPSc00394; 

sPSc00395; 

sPSc00396*   

beta-ketoacyl-ACP synthase I (KASI) Bourgis et al. (2011);  

Montoya et al. (2013);   

NCBI 

T16 15 - sPSc00402*; 

sPSc00403*; 

sPSc00404*; 

sPSc00405 

beta-ketoacyl-ACP synthase II (KASII) Bourgis et al. (2011);  

Montoya et al. (2013);   

NCBI 

*Non-polymorphic markers; #QTLs reported by Ting et al. (2016) 435 
 436 

 437 

 438 

Supplementary material 439 

 440 

Online Resource 1: Fig. 1. The polymorphism profiles observed for the segregating SSR alleles in the OxG mapping 441 

population. 442 

 

Fig. 1. The polymorphism profiles observed for the segregating SSR alleles in the OxG mapping population. 
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Online Resource 2: Table 1. Putative biological function for the candidate genes and transcription factors (TFs) identified 443 

from various QTL regions associated with palm oil iodine value (IV) and fatty acid composition (FAC) on the OxG 444 

genetic linkage map (Ting et al. 2016). 445 
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446 

Fig. 2. Mapping candidate SSR markers (in blue font) onto the OxG linkage map in linkage groups (LGs) T5, OT10, 

OT12, T14, OT15 and T16. These candidate SSR markers were developed from QTLs associated with FAC and oil yield 

published previously by Bourgis et al. (2011), Montoya et al. (2013) and Jeennor and Volkaert (2014). The updated OxG 

LGs (Mapping candidate markers) are aligned to the previous map (Before mapping candidate markers) published by 

Ting et al. (2016). Candidate genes and transcription factors are indicated in italic red.  
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No. Gene/TF NCBI accession Putative function for the encoded enzymes/protein/TF Reference 

1 Malate dehydrogenase (MDH) XM_010938857.1 The encoded enzyme catalyzes the interconversion of malate to 

oxaloacetate and vice versa which, subsequently can be converted 

to form phosphoenolpyruvate (PEP) or can be oxidized to form 

pyruvate as the source to initiate the synthesis of fatty acids (FAs). 

Wedding (1989);  

Minárik et al. (2002) 

2 Phosphoenolpyruvate/phosphate 

translocator 1 (PPT) 

XM_010925820.2 The encoded translocator transports phosphoenolpyruvate (PEP) 

produced from glycolysis into the plastids.  

Flügge et al. (2011); 

Bourgis et al. (2011)    

3 ATP-citrate synthase beta chain 

protein 1 (ACLB-1) 

 

XM_010939930.2 The encoded enzyme synthesizes cytosolic acetyl-CoA which can 

be used for the elongation of FAs. May also supply substrate to the 

cytosolic acetyl-CoA carboxylase, which generates malonyl-CoA 

for the synthesis of very long chain FAs. 

Uniprot 

(http://www.uniprot.org/uniprot/Q9

3VT8) 

4 Malonyl-CoA:ACP transacylase 

(MACP/FabD/MAT) 

 

XR_831945.2; 

XM_010922720.2 

The encoded enzyme catalyses malonylation via transferring 

malonyl group from malonyl-CoA to the acyl carrier protein 

(ACP). The resulted malonyl-ACP as the substrate for the 

subsequent condensation reaction catalysed by KASIII 

Heath and Rock (1995);  

Zhang et al. (2007); 

Arthur et al. (2009); 

Hong et al. (2010) 

5 beta-ketoacyl-ACP synthase III 

(KASIII) 

XM_010938804.1; 

JN003561.1 

The encoded KASIII enzyme forms the acetoacetyl-ACP complex 

from malonyl-ACP and acetyl-ACP, in preparation for FA-chain 

elongation. 

Clough et al. (1992); 

Yuan et al. (2012) 

6 beta-ketoacyl-ACP reductase (KAR) / 

3-oxoacyl-ACP reductase (FabG) 

XM_010915609.1 The encoded enzyme catalyses 3-ketoacyl-ACP to form 3-

hydroxyacyl-ACP, the first reduction reaction during the C4 – C14 

FAs-chain elongation.  

Hoang et al. (2002);  

Feng et al. (2015) 
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 451 

Online Resource 3: Fig. 2. Mapping candidate SSR markers (in blue font) onto the OxG linkage map in linkage groups 452 

(LGs) T5, OT10, OT12, T14, OT15 and T16. These candidate SSR markers were developed from QTLs associated with 453 

FAC and oil yield published previously by Bourgis et al. (2011), Montoya et al. (2013) and Jeennor and Volkaert (2014). 454 

The updated OxG LGs (Mapping candidate markers) are aligned to the previous map (Before mapping candidate markers) 455 

published by Ting et al. (2016). Candidate genes and transcription factors are indicated in italic red.  456 

 457 
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