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Abstract

A vibrational analysis of three types of carbon nanotube based nanomechanical

resonator is presented. Harmonic vibrational frequencies and the associated normal

modes are evaluated through diagonalisation of the full mass-weighted hessian matrix

where a very large mass is assigned to the suitable carbon atoms to represent the

constraints arising as a consequence of the different resonator configurations. The vi-

brational frequencies are determined for carbon nanotubes of different dimensions, and

the response of the resonators to an applied mass is studied. For the flexural modes

which are relevant for mass-sensing resonator devices, the calculations show the reso-

nant frequency to increase as the tube diameter increases. For the longest nanotubes

studied, the frequencies for cantilever and bridged resonators are very similar, and

double-walled nanotubes have resonant frequencies that lie between the frequencies of

the component single-walled nanotubes. The vibrational modes for a shuttle resonator

have also been determined, and the lowest frequency mode was found to correspond

to the relative rotation of the nanotubes with frequencies in the range 70 – 120 GHz.

The calculations predict a sensitivity of up to 1030 Hz/g although the response of the

flexural modes of suspended nanotubes is dependent on the location of the adsorbed
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mass, while the response based upon the relative rotational motion in double-walled

nanotubes is independent of the position of the adsorbed mass.

Introduction

There is considerable interest in nanomechanical resonators based upon carbon nanotubes

(CNTs).1–5 The high stiffness and strength coupled with low density of CNTs make them

attractive candidates for these devices. One area of application of these resonators is in

sensing devices which have the potential to greatly advance fundamental measurements at

the molecular scale. One prominent example is the use of CNT-based resonators as highly

sensitive mass detection devices.1,6–12 These devices have resonant frequencies of the order

of giga-hertz and function by measuring the change in frequency induced by the change in

the effective mass of the resonator when a particle adsorbs. The exceptional sensitivity of

these devices has the potential to achieve atomic resolution, for example in the detection of

gold atoms.7 There are several possible configurations for a nanomechanical resonator, and

three types are illustrated in Figure 1. In a cantilever resonator, one end of the nanotube

is clamped and fixed in position and the remainder of the nanotube is free to vibrate. In a

bridged resonator both ends of the nanotube are clamped and the central part of the nan-

otube is free to vibrate. Figure 1 illustrates these resonators for single-walled nanotubes,

however, these resonators can also be constructed based upon double-walled (or multi-walled)

nanotubes. In these resonators, the ends of all of the nanotubes are fixed in position. The

majority of work on these devices has focused on the flexural modes of cantilever or bridged

type of resonator. In this study, a third type of device, denoted shuttle, proposed in earlier

work13,14 is considered. This resonator is based upon two nanotubes, where the inner nan-

otube is clamped and a second shorter nanotubes is free move around the inner nanotube,

and the vibrational modes of interest involve the relative motion between the walls of the

nanotubes. One advantage of this type of device is that the shift in frequency should be
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insensitive to the location of the adsorbed particle on the resonator.

cantilever

bridged

shuttle

Figure 1: Schematic diagrams of the nanomechanical resonators studied.

Computational simulations can be applied to study the changes in resonant frequency

induced in these devices, providing a foundation to design and optimise their performance.

There have been a large number of computational studies exploring the properties of these

systems employing a range of different methods, and some reviews of this work are avail-

able.3 In general these systems have been predominantly modelled using continuum mechan-

ics or molecular dynamics (MD) simulations. In continuum models the atoms themselves

are neglected and the structure is treated as a continuous microstructure, and a range of

models have been applied to the study of CNTs.3,15–17 One example is the study of graphene-

resonator composed of a suspended graphene-ribbon. Resonant frequencies in the range 750-

1200 GHz depending on the configuration of the device were determined.18 It has also been

shown that there is a decrease in the resonant frequency as the aspect ratio of the nanotube

increases.17

MD simulations provide an atomistic description of the system with the potential to pro-
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vide a more detailed insight into the vibrational behaviour and the interactions underpinning

the function of these systems. These simulations require a force field to describe the inter-

atomic interactions, and established force-fields such as the reactive empirical bond order

(REBO)19 and adaptive intermolecular reactive empirical bond order (AIREBO)20 poten-

tials are commonly used. In these simulations the resonant frequencies can be determined by

applying an external force for an initial period of the simulation that is subsequently removed

and the CNT left to oscillate freely with atoms at the edge of the CNT fixed to represent

different boundary conditions that arise as a consequence of the different nanoresonator

configurations.21–26 Other atomistic approaches include a molecular structural mechanics

method that has been applied to study single and multi-walled CNTs.27,28 Resonant fre-

quencies in the range of 10 GHz – 1.5 THz depending on the nanotube diameter and length

were determined, and it was also found that bridged nanotubes have higher fundamental fre-

quencies than cantilevered ones. Furthermore, the fundamental frequencies of double-walled

CNTs are about 10% lower than those of single-walled CNTs of the same outer diameter.

The vibrational frequencies associated with the relative motion of the tubes in double-walled

nanotubes have been determined based upon the interaction potential calculated using den-

sity functional theory (DFT).13,14 For a (9,0)@(18,0) double-walled carbon nanotube with

the movable outer wall, a frequency of 130 GHz was predicted, with a lower value of about

45 GHz for a (5,5)@(10,10) nanotube.14

An alternative approach to characterise these systems is to perform a full vibrational fre-

quency analysis to determine the normal modes and their associated frequencies. Previous

work has shown that widely used potentials such as REBO perform poorly for the prediction

of vibrational frequencies of fullerenes and CNTs,29 but new potentials designed to predict

vibrational frequencies of carbon nanostructures have been reported.30 In this work, a vi-

brational frequency analysis is performed for the three types of nanomechanical resonator

illustrated in Figure 1. Using an empirical atomistic model the vibrational modes of the
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different types of nanoresonator and their dependence on the dimensions of the nanotube

are characterised. This allows the mass-sensing capabilities of the different nanoresonator

configurations to be assessed. It is shown that a cantilever type nanoresonator has a sensi-

tivity of up to approximately 1030 Hz/g for the nanotubes studied that is dependent on the

mass absorption site, while the response of a shuttle-type resonator is independent of the

absorption site.

Methods

The nanoresonator systems are described using the Murrell-Mottram (MM) potential31 which

represents the interaction between atoms through a sum of two-body and three-body con-

tributions. For a system of N atoms, the potential has the following form:

E =
N∑
i

N∑
j=i+1

V
(2)
ij +

N∑
i

N∑
j=i+1

N∑
k=j+1

V
(3)
ijk (1)

where

V
(2)
ij = −D(1 + a2ρij) exp(−a2ρij) (2)

V
(3)
ijk = DP (Q1, Q2, Q3) exp(−a3Q1) (3)

ρij = (rij − re)/re. (4)

The two-body potential V
(2)
ij is represented by a Rydberg function, where rij is the distance

between atoms i and j. D and re are parameters that are chosen such that the energy and

structure are described accurately. The terms exp(−a2ρij) and exp(−a3Q1) are damping

functions which depend on the parameters a2 and a3, and they ensure the potential converges

to zero energy at infinite interatomic separation. P (Q1, Q2, Q3) is a quartic polynomial
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where Qi are symmetrical coordinates

Q1 =
1√
3

(ρij + ρik + ρjk) (6)

Q2 =
1√
2

(ρij + ρik) (7)

Q3 =
1√
6

(2ρij − ρik − ρjk). (8)

Table 1: Parameters for the Murrell-Mottram potential with dispersion for carbon.

Parameter MMV ib+D

D / eV 6.298
re / Å 1.313
a2 7.428
a3 8.072
c0 7.788
c1 3.917
c2 -17.503
c3 -51.427
c4 99.263
c5 -39.772
c6 70.505
c7 73.262
c8 3.831
c9 65.696
c10 -85.307
s6 2.06
C6 / J nm6 mol−1 1.75
R0 / Å 1.75
α 28.00

The term Q1 describes the perimeter of the interaction triangles, while Q2 and Q3 describe
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the distortions of the triangles from being equilateral and c0 to c10 are parameters that need

to be determined. Parameters for carbon have been reported by Eggen et al.,32 wherein the

potential was fitted to the phonon frequencies and elastic constants of diamond and to the

cohesive energy and intralayer spacing of graphite in addition to other structural data. How-

ever, these parameters based upon diamond do not account for π-bonding electronic effects,

and, as a consequence, are not well suited to describe CNTs. To improve the description

of CNTs, the MM potential was parameterised to describe the structure and vibrational

frequencies of carbon nanomaterials using a Monte-Carlo hessian-matching approach to re-

produce data from density functional theory calculations.30 More specifically, the parameters

were optimised to reproduce the hessian matrix and structure of C60, and the resulting po-

tential was applied to study the vibrational spectroscopy of single-walled carbon nanotubes

and graphene.

More recently, the potential was extended to model multi-layer carbon materials through

the inclusion of Van der Waals interactions between the layers,33 where the potential has

the form

E =
N∑
i

N∑
j=i+1

V
(2)
ij +

N∑
i

N∑
j=i+1

N∑
k=j+1

V
(3)
ijk +

N∑
i

N∑
j=i+1

V
(Disp)
ij (9)

where

V
(Disp)
ij = −s6

N−1∑
i

N∑
j=i+1

C6

R6
ij

fdmp(Rij) (10)

and C6 is the dispersion coefficient for a pair of carbon atoms, s6 is a global scaling factor to

account for the different behaviour of the intermolecular potential especially at intermediate

distances, and Rij is the inter-atomic distance between atoms ij. The damping function

fdmp(Rij) is given by

fdmp(Rij) =
1

1 + e
−α(

Rij
R0

−1)
(11)

where R0 is the sum of atomic Van der Waals radii and α is a damping parameter. This

function removes the singularity at Rij = 0 and ensures that the dispersion contribution
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becomes insignificant below the Van der Waals separation and, consequently, the covalent

bonds described by the MM potential are not significantly affected. The dispersion term has

been optimized such that it predicts the interlayer spacing and the frequency of the shear

mode of bilayer graphene correctly, and the full parameters for the potential are given in

Table 1. For the calculations presented here, single-walled nanotubes were described using

the potential without the dispersion contribution (equation 1) and for the double-walled

nanotubes the dispersion term was included (equation 9).

Table 2: Dimensions of the nanotubes studied.

Nanotube Diameter Length Aspect Ratio Number
(nm) (nm) (L/D) of Atoms

(5,5)-A 0.68 4.80 7.1 400
(5,5)-B 0.68 14.6 21.5 1200
(5,5)-C 0.68 24.5 36.0 2000
(10,10)-A 1.36 4.80 3.5 800
(10,10)-B 1.36 14.6 10.8 2400
(10,10)-C 1.36 24.5 18.0 4000
(15,15)-A 2.03 4.80 2.4 1200
(15,15)-B 2.03 14.6 7.2 3600
(15,15)-C 2.03 24.5 12.1 6000

Structures were optimized using the conjugate gradient method with a gradient conver-

gence criterion of 10−8 Eh Å−1, and a spherical cut-off was applied to the potential with a

radius of 8 Å. Harmonic vibrational frequencies and normal modes were calculated through

diagonalisation of the mass-weighted hessian matrix, where the required second derivatives

are evaluated analytically. The effects of the clamping of the nanotubes on the vibrational

frequencies has been modelled by applying a very large mass (1×107 a.m.u) to the appropri-

ate carbon atoms in the mass-weighting of the hessian matrix. This has the effect of keeping

these atoms fixed in the vibrational analysis, and the vibrational modes associated with the

fixed atoms have a frequency that is approximately zero. For the cantilever resonator, the

first six rings of carbon atoms at one end of the nanotube were fixed through the mass-

weighting, which constitutes 120 atoms for a (10,10) CNT. For the bridged resonator, six
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rings of carbon atoms were fixed at each end of the CNT, and for the shuttle resonator all of

the carbon atoms of the inner tube were fixed. The vibrational frequencies have been studied

for armchair CNTs of different dimensions, and the dimensions and notation for these tubes

are given in Table 2. Owing to the computational cost, the longest nanotubes studied here

are ≈25 nm in length, which is shorter than those used typically used in experimental in-

vestigations. However, studies on smaller nanotubes do enable a direct comparison between

the properties of the different resonator configurations and allow for the convergence of the

frequencies with respect to the dimensions of the nanotubes to be studied. The notation

used to describe the nanotubes follows the standard chiral indices (n,m) notation,34 and the

letters A, B and C denote the length of the nanotubes. (5,5)@(10,10)-B is an example of

a double-walled nanotube, and comprises the (5,5)-B nanotube in the (10,10)-B nanotube

and would have a length of 14.6 nm. While only armchair nanotubes, where the indices n

and m are equal, are considered here, previous studies have found similar behaviour between

armchair and zigzag nanotubes for these systems.27 The response of the resonators to an

adsorbed mass was simulated by varying the mass of a six membered carbon ring, this was

done for different positions on the resonators to explore their sensitivity with respect to the

location of the absorption site.

Results and Discussion

Cantilever resonator

The vibrational analysis performed here provides a complete picture of the vibrational modes

of the resonator systems. The number of vibrational modes of these systems is extremely

large and Figure 2 illustrates just six key characteristic low frequency vibrational modes

of the cantilever style nanoresonator. There are many more vibrational modes of higher

frequency, however, these can generally be characterised as higher order vibrational modes
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Figure 2: Illustration of the key vibrational modes for the cantilever resonator. The ampli-
tudes of the vibrations have been amplified to allow for the motion to be distinguished more
clearly. The long axis of the nanotube lies in the z direction

(i.e. with additional nodes) of the vibrational modes shown. For the nanotubes with larger

diameter there are also many vibrational modes that correspond to complex deformations

of the tube that are difficult to characterise.

The first vibrational mode ν1 is singly degenerate and corresponds to a rotation of the

tube around its axis. The second mode corresponds to the flexural vibrational of the whole

tube and is the mode that is typically studied for this type of resonator. This mode is doubly

degenerate owing to the motion can occur in x and y directions (where the nanotube lies

on the z-axis). ν3 is an elongation of the tube along its axis, and is singly degenerate. ν4 is

related to ν3, however, as the end of the tube moves in one direction the remainder of the

tube moves in the opposite direction to give a snake-like motion. ν5 is a distortion at the

free and open end of the nanotube, while ν6 corresponds to a radial opening of the end of the

tube in conjunction with a compression at the centre of the tube. These latter two modes

clearly arise owing to the choice of an open-ended nanotube rather than a capped end.35

The computed frequencies of these modes for a set of nanotubes with varying lengths and
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Table 3: Calculated vibrational frequencies (in GHz) for the cantilever nanoresonator.

Nanotube ν1 ν2 ν3 ν4 ν5 ν6
(5,5)-A 585 132 1073 666 1625 1748
(5,5)-B 177 75 324 204 1622 1700
(5,5)-C 105 75 189 144 1625 1700
(10,10)-A 585 231 1070 878 405 627
(10,10)-B 177 138 324 345 393 405
(10,10)-C 105 138 192 252 396 399
(15,15)-A 585 291 1055 962 216 582
(15,15)-B 177 186 324 432 174 264
(15,15)-C 105 186 192 327 174 192
(5,5)@(10,10)-A 589 205 1091 829 - -
(5,5)@(10,10)-B 174 119 329 310 - -
(10,10)@(15,15)-A 588 270 1077 940 - -

*The nanotubes have lengths: A - 4.8 nm, B - 14.6 nm and C - 24.5 nm and diameters: (5,5) - 0.68 nm,

(10,10) - 1.36 nm and (15,15) - 2.03 nm.

diameter are shown in Table 3. The different vibrational modes show a varying behaviour in

their dependence on the structure of the nanotube. The frequency of ν1 is independent of the

tube diameter but reduces as the length of the tube increases. For the longest tube studied

here, a frequency of 105 GHz is predicted. There is also only a small change in frequency for

the double-walled carbon nanotubes compared with their singled-walled analogues. ν3 shows

a similar behaviour to ν1 in that the frequency is dependent on the length of the tube and

not the diameter, with the exception of the shortest nanotubes studied. ν4 shows an increase

in frequency as the diameter increases, while decreasing with increasing tube length. With

the exception of the shortest nanotubes, the frequencies for ν5 and ν6 show little dependence

on the length of the tube but decrease with increasing diameter.

We focus our discussion on ν2 since this is the most important vibrational mode in the

context of mass-sensing nanoresonators. This mode has been studied previously in the lit-

erature allowing the trends observed here to be compared with the findings from different

computational approaches. The calculations show a clear increase in the frequency of this

mode as the diameter of the nanotube increases which is consistent with previous work.24

The frequency also decreases with increasing length. A similar dependence on the length of

11



0 5 10 15 20 25 30 35 40
Aspect Ratio

0

100

200

300

400

500

600

700

800

900

1000

Fr
eq

ue
nc

y 
/ G

H
z

Cantilever
Bridged
Cantilever (5,0) - Li & Chou
Cantilever (10,0) - Li & Chou
Bridged (5,0) - Li & Chou
Bridged (10,0) - Li & Chou

Figure 3: Variation of the frequency for the flexural modes with aspect ratio of the nanotube
for the cantilever and bridged resonators.

tube has also been observed in previous computational studies. In this study, nanotubes of

sufficient length have been studied to see convergence of the frequency with respect to the

length of the tube. Using a MD approach with the REBO potential, Arash et al.24 reported

a decrease in the resonant frequency as the length of the nanotube increases. Convergence

of the frequency with respect to the length of the tube was not observed but the length of

tubes studied, up to about 9.5 nm, is considerably shorter that the longest tubes considered

here. The MD approach predicted a frequency of 182 GHz for a 9.5 nm (5,5) nanotube,

which compares with a value of 82 GHz for a 9.5 nm (5,5) nanotube using the approach used

in this work. The dependence of the resonant frequency on the dimensions is captured by

examining its variation with the aspect ratio of the tube. This follows previous studies17,27

and provides a convenient approach to compare results for nanotubes of different lengths and

diameters, although it will neglect more subtle dependencies on the length and diameter.

This dependence is shown in Figure 3 which also shows results adapted from the work of Li

and Chou.27 Focusing on the data for the cantilever configuration, there is close agreement

between the results for nanotubes with a smaller aspect ratio. For the larger aspect ratio

nanotubes, higher frequencies are predicted in this work and the reason for this difference
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could be associated with the force field or the approach used to determine the frequencies.

Results are also shown for double-walled nanotubes, where the calculations find the fre-

quency for ν2 to lie between the frequencies of the component single-walled nanotubes. For

example a value of 119 GHz for (5,5)@(10,10)-B is found which compares with values of 75

GHz for (5,5)-B and 138 GHz for (10,10)-B. This represents the balance between the increas-

ing stiffness for the double-walled tubes36 and their increased mass. This is consistent with

the results of previous studies. Using a MD approach for a cantilever styled resonator,22 the

frequency for a double-walled nanotube was found to be less than for the outer single-walled

tube. Also a continuum approach based study for a bridged resonator showed the frequency

for the double-walled nanotube to lie in between those for the inner and outer tubes,15 and

the fundamental frequencies of double-walled carbon nanotubes have been found to be 10%

lower than those of single-walled carbon nanotubes of the same outer diameter.28 Frequen-

cies are not reported for modes ν5 and ν6, which involve distortion of the open end of the

nanotube, since the corresponding modes cannot be reliably identified for the double-walled

nanotubes. For the double-walled nanotubes there is an additional type of mode that corre-

sponds to the rotation of the tubes along their axes relative to each other. These frequencies

are calculated to be 678 GHz, 384 GHz and 604 GHz for the (5,5)@(10,10)-A, (5,5)@(10,10)-

B and (10,10)@(15,15)-A nanotubes, respectively.

Bridged resonator

Next we consider the bridged resonator configuration, and the key vibrational modes are

shown in Figure 4. There is a direct correspondence between these modes and the vibra-

tional modes for the cantilever resonator, with the exception that the modes involving the

distortion of the open end of the tube are no longer present. The dependence of the cal-

culated frequencies are given in Table 4. ν1 corresponds to the vibrational mode that is
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Table 4: Calculated vibrational frequencies (in GHz) for the bridged nanoresonator.

Nanotube ν1 ν2 ν3 ν4 ν5
(5,5)-A 812 1400 1733 2533 1775
(5,5)-B 84 372 222 678 1700
(5,5)-C 78 213 150 393 1697
(10,10)-A 947 1400 1913 2407 684
(10,10)-B 147 369 351 681 405
(10,10)-C 141 213 255 393 399
(15,15)-A 971 1397 1874 2159 627
(15,15)-B 189 369 417 678 192
(15,15)-C 186 213 323 393 177
(5,5)@(10,10)-B 129 372 318 910 692

*The nanotubes have lengths: A - 4.8 nm, B - 14.6 nm and C - 24.5 nm and diameters: (5,5) - 0.68 nm,

(10,10) - 1.36 nm and (15,15) - 2.03 nm.

relevant for the mass sensing applications and we focus our discussion on this mode. Simi-

lar to the cantilever configuration, the frequencies of this mode increase with the diameter

of the tube. Also while the frequency decreases with the length of the tube, it has nearly

converged for the longest tubes studied. Interestingly, the value of the frequency is close

to the corresponding value for the cantilever resonator. For example, the frequency of 186

GHz is obtained for the (15,15)-C nanotube both in cantilever and bridged configurations.

Previous studies that considered shorter nanotubes have concluded that the frequencies for

the bridged resonator are higher, but the results presented here suggest that the frequencies

for the two resonators approach the same value with increasing length of the tube. The

dependence on the frequency of this mode with respect to the aspect ratio is also shown in

Figure 3. For short aspect ratios the frequencies are much higher than those of the cantilever

resonator, but the convergence for larger aspect ratios is evident. The results of this work

are also in close agreement with the molecular structural mechanics model of Li and Chou,27

and also calculations using the Euler-Bernoulli beam model which showed a decrease in fre-

quency as the aspect ratio of the tubes increases.17 The ν2 and ν4 modes do not involve

motion perpendicular to the axis of the tube, and the frequencies show little dependence

on tube diameter but decrease with increasing length of the tube. For both the ν3 and ν5

modes the frequency decreases as the length increases but show different trends with respect
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Figure 4: Illustration of the key vibrational modes for the bridged resonator. The amplitudes
of the vibrations have been amplified to allow for the motion to be distinguished more clearly.
The long axis of the nanotube lies in the z direction

to diameter. Frequencies have also been computed for the (5,5)@(10,10)-B double-walled

nanotube. We focus on this nanotube since it provides a closer representation of experi-

ments than the shorter nanotubes. Similar to the behaviour for the double-walled nanotube

cantilever resonator, the calculated frequency of the flexural mode (ν1) lies in between the

values calculated for the individual single-walled nanotubes.

Table 5: Calculated vibrational frequencies (in GHz) for the shuttle nanoresonator.

Nanotube ν1 ν2 ν3 ν4 ν5
(5,5)@(10,10)-A 116 328 1019 1584 1685
(5,5)@(10,10)-B 68 375 1014 1245 1575
(10,10)@(15,15)-A 121 277 361 1595 1709

*The nanotubes have lengths: A - 4.8 nm, B - 14.6 nm and C - 24.5 nm and diameters: (5,5) - 0.68 nm,

(10,10) - 1.36 nm and (15,15) - 2.03 nm.

Shuttle resonator

The shuttle resonator represents a significantly different approach where the relevant vibra-

tional modes correspond to the relative motion of the nanotubes. While this type of resonator

has not been realised in practice, resonator devices that depend on the relative motion of

15



n1

n2

n3

n4

n5

Figure 5: Illustration of the key vibrational modes for the shuttle resonator. The amplitudes
of the vibrations have been amplified to allow for the motion to be distinguished more clearly.
The long axis of the nanotube lies in the z direction

multi-walled nanotubes have been developed.1 These fundamental vibrational modes for the

shuttle resonator are shown in Figure 5, and correspond to the rotation, linear motion, tilting

and bending of the outer tube. The calculated vibrational frequencies for three resonator

systems capturing a variation in length and diameter of the shuttle are given in Table 5. The

frequencies for the bending (ν5) and tilting (ν4) vibrational modes are considerably higher

than for the flexural modes of the cantilever and bridged resonators. The two modes with

lowest frequency correspond to the relative rotation (ν1) and the relative linear motion (ν2)

of the tubes. The ν1 mode has been studied previously and discussed in the context of a

mass-sensing device.13,14 The calculations predict a frequency of 116 GHz for (5,5)@(10,10)-

A which decreases to 68 GHz as the length of the shuttle increases. There is little change in

frequency for the wider diameter tubes, which represents an increase in inter-wall separation

of 3.4 Å to 4.2 Å. The calculated frequency of this mode is consistent with previous work

where it was determined based upon a potential computed using DFT14 giving a value of 46

GHz, which is in good agreement with the value reported here.
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Mass sensing

The calculations provide an opportunity to explore the response of the resonators to the

adsorption of a mass. This is modelled by assuming that the mass is adsorbed on a single

six membered ring and the mass is evenly distributed between the six carbon atoms. The

response of the resonator is then determined by modifying the mass of these carbon atoms

for the mass-weighting of the hessian. The calculations have used the (10,10)-B nanotube

for the cantilever and bridged resonators and (5,5)@(10,10)-A for the shuttle resonator, and

for the cantilever resonator the ν2 mode (Figure 2) is studied, ν1 (Figure 4) for the bridged

resonator and ν1 (Figure 5) for the shuttle resonator. The response of the resonators with

respect to the position of the adsorbed mass is also studied and Figure 6 shows the various

locations of the adsorbed mass that have been considered along with the change in the cal-

culated frequency as the applied mass is increased.
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Figure 6: Change in frequency on the addition of a mass for the different resonators. Red
atoms denote atoms that are frozen in the vibrational analysis (100 a.m.u ≈ 0.17 zg)

.

For all of the resonators studied here, there is a linear decrease in the frequency as the

mass increases. One factor to consider is that in this study harmonic vibrational frequen-
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cies are computed and additional effects may be observed if anharmonicity was considered.

In previous studies examining the response of the cantilever and bridged resonators to an

applied mass also showed a decrease in frequency as the applied mass increases.17,37 For the

cantilever resonator, three positions of for the adsorbed mass are considered, and the change

in the resonant frequency is sensitive to the location of the adsorbed mass. There is no

significant response for the mass adsorbed near the wall, while there is a shift of about 2

GHz for a mass of 300 a.m.u (≈ 0.5 zg). This variation will contribute to the distribution

of frequency shifts observed in experiment.7 The response of the bridged resonator shows

a similar behaviour, with the predicted frequency shift for the mass at the centre of the

nanotube being close to the value for the end of the cantilever resonator. The gradient of

the lines is an important factor in the sensitivity of a mass-sensing device. The gradient for

the end position of the cantilever resonator is of the order to 1030 Hz/g, which is in reason-

able agreement with previous work,37 and will depend on the dimensions of the nanotube.

Finally we consider the shuttle resonator which shows a response that is only slightly smaller

than the largest response of the cantilever and bridged resonators, but crucially shows no

dependence on the position of the mass.

Conclusions

The vibrational modes for three different types of mass-sensing nanomechanical resonators

have been characterised through a harmonic vibrational frequency analysis using a potential

designed to describe the vibrational frequencies of carbon systems. The different resonator

configurations are represented by applying a large mass to the appropriate carbon atoms in

the mass-weighting of the hessian matrix. The resonant frequencies of these devices have

been studied as the length and diameter of the nanotube is varied. For the flexural modes

which are relevant for mass-sensing resonator devices, the calculations show the resonant fre-
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quency to increase as the tube diameter increases. The frequency is also shown to decrease

with increasing length of the tube, although for the longest tubes considered, the frequency

is found to have converged with respect to the length. For these longest nanotubes, the fre-

quencies for cantilever and bridged resonators are very similar. For double-walled nanotubes

the resonant frequencies lie between the frequencies of the component single-walled nan-

otubes which represents the balance between the increasing stiffness for the double-walled

tubes and their increased mass. The vibrational modes for a shuttle resonator have also been

determined, and the lowest frequency mode was found to correspond to the relative rotation

of the nanotubes with frequencies in the range 70 – 120 GHz.

Calculations exploring the sensitivity of the resonators to the adsorption of an applied

mass show predict a sensitivity of up to 1030 Hz/g although the response of the flexural

modes of suspended nanotubes is dependent on the location of the adsorbed mass and this

will contribute to the distribution of frequency shifts that are observed in a device. The

response in the frequency for the shuttle resonator based upon the relative rotational motion

in double-walled nanotubes is shown to be independent of the position of the adsorbed mass,

which represents a favourable attribute for a mass-sensing device.
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