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h i g h l i g h t s
� Adherence and immobilization of hydrogen-producing microbes improves H2 yields.

� fdp encodes an adherence factor in hydrogen-producer Rhodobacter sphaeroides.

� Expression of fdp is negatively regulated by the global Prr regulatory pathway.

� Negative regulation by Prr was demonstrated under all growth conditions tested.

� Fdp-based adherence may be optimised by inactivating the PrrA binding site(s) of fdp.
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a b s t r a c t

Expression of fdp, encoding a fasciclin I domain protein important for adherence in the

hydrogen-producing bacterium Rhodobacter sphaeroides, was investigated under a range of

conditions to gain insights into optimization of adherence for immobilization strategies

suitable for H2 production. The fdp promoter was linked to a lacZ reporter and expressed in

wild type and in PRRB and PRRA mutant strains of the Prr regulatory pathway. Expression

was significantly negatively regulated by Prr under all conditions of aerobiosis tested

including anaerobic conditions (required for H2 production), and aerobically regardless of

growth phase, growth medium complexity or composition, carbon source, heat and cold

shock and dark/light conditions. Negative fdp regulation by Prr was reflected in cellular

levels of translated Fdp protein. Since Prr is required directly for nitrogenase expression,

we propose optimization of Fdp-based adherence in R. sphaeroides for immobilized bio-

hydrogen production by inactivation of the PrrA binding site(s) upstream of fdp.
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Introduction

Rhodobacter sphaeroides belongs to the purple non-sulphur

(PNS) group of bacteria that are widely recognized as poten-

tial ‘green energy’ producers of biohydrogen from solid food

waste and food processing wastewater (reviewed in Refs.

[1e4]). There are several other bacterial groups that generate

hydrogen such as the bio-photolytic microalgae and cyano-

bacteria [5,6], and some acidogenic thermophiles and meso-

philes that perform dark fermentative hydrogen production

[7e9]. Examples recently reported include hydrogen-

producing clostridial strains isolated from landfill leachate

sludge [10], that produce high yields of up to 4.7 mol H2/mol

glucose [11]; Clostridium sartagoforme and Enterobacter cloacae

strains isolated from Sago industrial effluent [12]; extreme

halophiles that produce biohydrogen from lignocellulose

biomass in nearly saturated salt [13]; Bacillus spp. isolated

frombananawaste [14] and improved hydrogen production by

bioaugmentation with thermophiles exampled by Thermoa-

naerobacterium thermosaccharolyticum used to enhance ther-

mophilic hydrogen production from corn stover hydrolysate

[15]. The use of consortia of these groups of microorganisms,

derived either as endogenous species isolated from biomass

or fromother environmental sources and used to augment the

natural microbial flora has also proved a successful strategy

[16e20]. However, the photofermentative processes involved

in hydrogen production performed by the PNS group (repre-

sented by R. sphaeroides but also including Rhodopseudomonas

capsulatus, R. palustris and Rhodospirillum rubrum), has attrac-

tedmore attention because of the higher conversion efficiency

and yields expected from the conversion of substrate to

hydrogen and the abilities to utilise food industry wastes and

solar light energy of wide ranging wavelengths (522e860 nm)

[1,3,21].

R. sphaeroides has attracted particular attention, not least

because of its remarkable metabolic versatility; it is able to

grow photoheterotrophically, photoautotrophically, fermen-

tatively and using aerobic or anaerobic respiration [21e24].

Photofermentation by PNS bacteria such as R. sphaeroides in-

volves fermentation of organic substrates in the presence of

light. Light results in the production and activity of a photo-

synthetic apparatus which facilitates electron flow from

substrate to the [MoeFe]-nitrogenase. Nitrogenase activity

results not only in fixation of nitrogen (in an irreversible re-

action requiring large amounts of ATP via the F0F1-ATPase),

but also conversion of Hþ to hydrogen gas. R. sphaeroides also

has a [NieFe]-Hyd uptake hydrogenase enzyme which catal-

yses H2 oxidation in the presence of hydrogen gas. Although

this enzyme also produces hydrogen under nitrogen excess

conditions it is the nitrogenase that is considered to be the

most important source of hydrogen generation [4]. Thus,

hydrogen production in R. sphaeroides and other PNS bacteria

provides a substrate for hydrogen oxidation reactions for en-

ergy generation and facilitates the activities of nitrogenase

which catalyses the fixation of atmospheric nitrogen into a

cellular source of reduced nitrogen [1,2].

There are a number of external factors reported to influ-

ence hydrogen production by R. sphaeroides, including culture

medium composition (including nitrogen source and
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concentration, choice of organic substrate, use of mixed car-

bon sources and incorporation of certainmetal ions), reducing

agents, pH, light-dark period, illumination intensity, temper-

ature, aerobiosis conditions and even low-intensity electro-

magnetic fields (e.g. Refs. [25,26] and reviewed in Refs. [2,4,9]).

R. sphaeroides has been successfully used for biohydrogen

production from biomass; e.g. it has recently been trialled for

single-stage hydrogen production from hydrolyzed straw [27]

and sugar beet molasses [28], and recently a new strain was

identified for producing hydrogen using oil palm waste hy-

drolysate [29]. It has also been successfully used in co-culture

with Enterobacter aerogenes for hydrogen production using

Calophyllum inophyllum oil cake as complex carbon source [30].

Therefore, much is known about the external conditions

needed to obtain and increase hydrogen production, though

not all the mechanisms by which they work are yet

understood.

Immobilization of PNS bacteria through biofilm formation

has also been reported to be beneficial for hydrogen yields and

opens up the possibilities of semi- or full-continuous culture

methods for hydrogen production [1,31e33], including bio-

photoreactor technologies with enlarged surface areas

[34e36]. Biofilm formation and adherence properties in R.

sphaeroides are multifactorial, affected by flagellar location

and number [37,38], chemotaxis [39], membrane cardiolipin

[40], presence of functional fasciclin-1 domain protein (Fdp)

[41], as well as by light-driven and other regulatory factors

[42,43]. In the case of R. sphaeroides Fdp, insertionally-

inactivated fdp knockout strains were reported to reduce cell

adherence by 100-fold (in terms of cell number) [41]. Fdp re-

sembles the fasciclin I (FAS1) domains found in proteins of

higher organisms that have important roles in cell adhesion

(Fig. 1). It also shares 60% identity (74% similarity) with the

nodule-expressed Nex18 protein of Sinorhizobium meliloti [44],

though there appear to be no homologues in other PNS bac-

teria (Fig. 1). The precise mechanism by which Fdp promotes

cell adherence (a prerequisite for biofilms) in R. sphaeroides

remains unknown [41]. Clearly, a deeper understanding of the

factors important for establishment and maintenance of R.

sphaeroides in an immobilized state will be important for

improved hydrogen yields reportedly gained through immo-

bilization, not least through employment of continuous flow

photobioreactors which optimize microbial exposure to light

and fresh nutrients and biomass substrates [e.g. 35]. The aim

therefore of the present study was to identify conditions for

Fdp expression in R. sphaeroides that promote immobilization

and which can therefore ultimately be applied to hydrogen

production via nitrogenase. This was investigated by testing a

range of growth, chemical and physical conditions on tran-

scriptional expression of fdp, including anaerobic conditions

with reduced NH4
þ. We show that fdp transcription is strongly

repressed by the Prr global regulatory system in wild type R.

sphaeroides under all laboratory conditions tested here. This

leads us to propose the future development of a new strain

mutagenesis strategy for optimizing hydrogen generation

based on increased attachment and biofilm development

mediated by Fdp in R. sphaeroides for use in bioreactors

designed for continuous biohydrogen production, through

promoter engineering upstream of the fdp gene that reduces

or abolishes Prr repressor binding upstream of the fdp locus.
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Fig. 1 e Alignment of R. sphaeroides Fdp with fasciclin-1 proteins. Amino acid residues that are identical to Fdp are in bold

and grey shading; similar amino acid residues are in bold. Sinorhizobium meliloti Nex18, symbiotically-induced conserved

protein Nex18 of Sinorhizobium meliloti (pir|F95334) 60/74% identical/similar; Trichodesmium erythraeum hypothetical protein

(gb|ZP00071101.1) 60/72%; Synech TGF-ip, Synechocystis transforming growth factor-induced protein (pir|S76811) 56/73%;

Nostoc, hypothetical protein all 4894 of Nostoc sp. PCC7120 (pir|AF2417) 57/74%; Synech MPB70-like, Synechocystis secreted

protein MPB70-like slll735 (pir|S77329) 47/63%; M. tuberculosis MPT70, Mycobacterium tuberculosis major secreted MPT70

protein (gb|AAF13402.1/AF189006) 39/55%; M. bovis MPB70, Mycobacterium bovis major secreted protein MPB70 precursor

(pir|A37195) 39/55%; Human bIG-H3, human transforming growth factor b-induced protein BIG-H3 (pir|I52996) 36/58%; Pig

bIG-H3, pig transforming growth factor b-induced protein (kerato epithelin)(RGD-CAP)(sp|O11780|BGH3 PIG) 36/58%; Human

FEEL-1, human FEEL-1 protein (dbj|BAC15606.1) 35/52%; Human stabilin, human stabilin 1 protein (emb|CAB61827.1) 35/52%;

Mouse stabilin, mouse stabilin 1 protein (gb|AAL91671.2/AF2909141) 34/53%; Chicken RGD-CAP, RGD-containing collagen-

associated protein (bIG-H3)(kerato epithelin) (dbj|BAA21479.1) 33/59%; Mouse OSF-2, mouse osteoblast-specific factor 2 (pir|

S36109) 34/52%; Human OSF-2, human osteoblast-specific factor 2 (pir|S36110) 32/52%; Anthocidaris EBP-a, Anthocidaris

crassispina EBP-a protein (dbj|BAA82956.1) 31/53%; Echinoid HLC-32, Echinoidea HLC-32 protein (gb|AAB32327.1) 30/50%;

Human FEEL-2, human FEEL-2 protein (dbj|BAC15608.1) 29/49%; Drosophila FAS1-4, Drosophila melanogaster FAS1 4th

fasciclin domain (pir|B29900) 29/52%; Grasshopper FAS1, grasshopper FAS1 (pir|A29900) 24/44%. Secondary structural data

is derived from the structure of domain pair 3 and 4 of Drosophila FAS1 and is shown below the alignment (a-helix: *****; b-

strand: ≡≡≡≡). The conserved HI and H2 regions identified as protein interaction sites in several fasciclin I proteins are

shown (residues 37-46 and 124-133 in Fdp, respectively).
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Materials and methods

Chemicals

The chemicals used in this study were purchased from Merck

(Gillingham, Dorset, UK), VWR (Lutterworth, Leicestershire,

UK), or Fisher Scientific (Loughborough, Leicestershire, UK)

unless otherwise stated, and were of molecular biology grade.

Bacterial strains, plasmids and growth conditions

All strains and plasmids are described in Table 1 [45e49]. E. coli

strains DH5a, S17-1 and BL21[DE3] have been described pre-

viously and were routinely cultured aerobically in Luria-

Bertani (LB) media by vigorous aeration of culture vessels, or

on LB agar, at 37 �C as described in Ref. [50]. Where appro-

priate, media were supplemented with 50 mg mL�1 ampicillin

and/or 50 mg mL�1 kanamycin or 500 mg mL�1 carbenicillin.

Reporter plasmid transfer into R. sphaeroides was by con-

jugative transfer from E. coli S17-1 [45].

R. sphaeroides NCIB 8253 was cultured at 34 �C in M22 me-

dium [45]; the fdp and prrA mutant strains were cultured in

M22 containing 20 mg mL�1 kanamycin. Liquid M22 lacked

added caesamino acids and contained 1.5 mM NH4
þ which

permits some nitrogenase expression under anaerobic con-

ditions [51] but little/no hydrogen evolution anaerobically due

to the absence of light and the presence of dissolved N2.

Growth was measured using culture absorbance at 680 nm

(A680). Aerobic growth of R. sphaeroides was achieved using

vigorous shaking of 10 mL medium in 250 mL vessels or

500mL in 2 L vessels. Semi-aerobic growth at 34 �Cwas carried

out using 70 mL medium in 250 mL vessels, whilst anaerobic
Table 1 e Strains and plasmids used in this study.

Strain/plasmid Relevant genotype/c

Strains

R. sphaeroides

NCIB 8253 Wild type

PRRA Derivative of NCIB 8253 wild type, Tn5 in

PRRB Derivative of NCIB 8253 wild type, Tn5 in

FDP Derivative of NCIB 8253 wild type, kan in

E. coli

DH5-alpha supE44 dlacU169 f80 lacZdM15) hsdRl7 rec

S17-1 Mobilisation host.

RP4-2 (Tc::Mu, Km::Tn7) integrated into th

recA, TpR, SmR Traþ

BL21[DE3] F� ompT hsdSB (rB
- mB

- ) gal dcm (DE3)

Plasmids

pSUP202 ApR TcR CmR; Mobþ Tra� ColE1 replicon

pSDP1 TcR; Derivative of pRK415 with promoter

sphaeroides and E. coli

pSDP-FDPP Fdp reporter; pSDP1 with fdp promoter r

pREG464 ApR, contains a 12 kb fragment of the R.

prrAþ prrBþ prrCþ

pUX-Km ApR, KmR; pUC12 with KmR gene flanked

cloning sites

pBluescript -SK ApR; pUC19 derivative. ColE1 ori; cloning

pET14b ApR; E. coli expression vector

C.N.Hunter (University of Sheffield). KmR, kanamycin resistance; ApR, a

resistance; SmR, streptomycin resistance.
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growth at 34 �C in the dark was achieved using M22 medium

containing 60 mM dimethyl sulphoxide (DMSO).

R. sphaeroides prrA and prrB knockout mutants (PRRA and

PRRB respectively) were constructed by transposon Tn5

mutagenesis of pREG464 [52,53]. Insertion sites in prrA or prrB

were verified by restriction analysis and DNA sequencing.

Kanamycin-resistant transconjugants were screened for loss

of the suicide plasmid by Southern hybridization using

parental pSUP202 as labeled probe. The correct location of the

inserted transposon (and loss of intact prrA or prrB gene from

the chromosome)was determined by restriction and Southern

hybridization analysis. The phenotypes of the resulting

strains were identical to those reported for these mutations

previously [54,55], including photosynthesis- and

nitrogenase-minus phenotypes, and were successfully com-

plemented using a 4.8-kb BamHI prr (reg) fragment described

in Ref. [49].

Plasmids pBluescript-SK and pET14b have been described

previously [53]. Plasmid pSUP202 is a R. sphaeroides suicide

plasmid used in fdp and prr mutant construction and is the

host plasmid for the R. sphaeroides genomic library and has

been described previously [47]. The R. sphaeroides replicative

pSDP1 reporter plasmid possessing a promoter-less lacZ gene,

and pUX-Km, have both been described previously [48].

Isolation of the fdp gene has been described previously [56].

Construction of an insertionally-inactivated fdp mutant was

described by Ref. [41].

Reporter studies of fdp expression

The 592 bp promoter region of the fdp gene (�613 to �21

relative to the ATG start codon) was amplified by polymerase
haracteristics Source/Reference

C.N. Hunter/[45]

sertion in prrA; KmR This work

sertion in prrB; KmR This work

sertion in fdp; KmR Eun-Lee Jeong/[41]

A1 endA1 gyrA96 thi-1 relA1 [46]

e chromosome: thi, pro, hsdR, hsdMþ,
C.N. Hunter/[47]

Novagen

C.N. Hunter/[47]

-less lacZ. Replicates in R. [48]

egion inserted upstream of lacZ This work

sphaeroides prr cluster in pSUP202; C.N. Hunter/[49]

by symmetrical pUC12 multiple C.N. Hunter

vector with blue-white selection Invitrogen

Novagen

mpicillin resistance; TcR, tetracycline resistance; TpR, trimethoprim
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chain reaction (PCR) using pSUP202fdp-13 as template, and

primers NIT1: 50- ATGAGGTACCTCGAGGAGGGTCCG-

CAGCTCG -30 and NIT2: 50- ATGATCTA-

GATCGTGCCGTGCTTGGCCTGC -30 (KpnI and XbaI sites are

underlined). The PCR fragment was purified and cloned into

SmaI-cut pBluescript-SK to give pBSFDPP-2. The promoter

insert was checked by sequencing, prior to digestionwith KpnI

and XbaI, and ligation into KpnI- and XbaI-digested pSDP1, a

promoter-less lacZ reporter plasmid described previously [48].

The resulting plasmid, pSDP-FDPP, was checked by restriction

analysis. pSDP-FDPP and control pSDP1 were introduced into

R. sphaeroideswild type and PRRmutant strains by conjugation

via E. coli S17-1. Transconjugants were selected in culture

media containing 1 mg mL�1 tetracycline (plus 20 mg mL�1

kanamycin for the PRR strains). b-galactosidase reporter as-

says were performed as described [48]. Protein content was

measured either using the Bio-Rad DC Protein Assay or by the

method in Ref. [57]. Bovine serum albumin (Sigma-Aldrich,

Poole, UK) was used as the calibrant.

Separation of cell proteins by two-dimensional SDS-PAGE
and identification of Fdp

Protein extracts of semi-aerobically grown R. sphaeroides were

prepared by batch culture to mid-exponential phase (A680 of

0.6). Cells from 300 ml cultures were harvested by centrifu-

gation at 4 �C and resuspended in 10 mL TGEND buffer

(comprising 10 mM Tris.HCl pH 8.0, 10% (v/v) glycerol, 0.1 mM

EDTA, 50 mM NaCl, 0.1 mM dithiothreitol (DTT), 500 mM phe-

nylmethyl sulfonyl fluoride (PMSF) and 50 mM N-tosyl-L-

phenylalanine chloromethyl ketone (TPACK); final pH 8.3) at

4 �C. Cell suspensions were sonicated on ice (4 � 15 s bursts

with 45 s intervals on ice). Unbroken cells and cell debris were

removed by centrifugation for 20 min at 29,000 g at 4 �C and

the protein supernatents (soluble, cytoplasm plus periplasm)

stored at �70 �C.
40 mg protein were diluted in rehydration buffer (8 M urea,

2% Triton X-100, Pharmalyte pH3-10, Amphiline pH 6e8 1.5%,

DTT 100 mM, bromophenol blue trace) and applied to 11 cm

Immobiline DryStrips (Pharmacia Biotech Inc, USA) with an

immobilized pH nonlinear gradient, pH 3 to 10. The first

dimension was performed on an IGP isoelectric focusing unit

(Pharmacia Biotech Inc, USA), and the second dimension was

performed in 8e18% polyacrylamide gels. Gels were stained

either with Coomassie brilliant blue or by the modified silver

staining method of [58]. For sequence determinations of

native Fdp, proteins were blotted onto membrane, visualised

with Coomassie Brilliant Blue stain, excised from the mem-

brane and the N-terminal sequence determined by Edman

degradation.

Overexpression and purification of His6-tagged Fdp in E. coli
BL21[DE3]

To overexpress Fdp, the fdp region 57 to 470 (relative to ATG,

where A is position 1), which lacks the region encoding the
Please cite this article as: Jeong E-L et al., The adherence-associated
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signal peptide region (residues 1e18), was amplified by poly-

merase chain reaction using upstream primer SGINT1: 50-
TCAGCCATATGGAAACCGGAGACATCGTGGA -30 (NdeI cloning

site underlined), and downstream primer SGEL2: 50- GCTAG-

GATCCGCATCAGGCGCCCGGCATCAGCACG -30 (BamHI site

underlined), using pSUP202fdp-13 as template. The 470-bp

fragment was purified by gel extraction and cloned into

SmaI-digested pBluescript-SK to give pBlFDP470. The presence

of inserts with correct sequence was verified by restriction

digest analysis and sequencing. Plasmid pBlFDP470 was

digested with BamHI and NdeI, and the fdp fragment cloned

into pET14b (Novagen® Merck Group, UK). The final expres-

sion construct, pETfdp470, expresses a Fdp protein with a N-

terminal MGSS(H)6SSGLVPRGSHM sequence followed by Fdp

starting at E-19. Verification of the N-terminal sequence of

recombinant purified Fdp was performed by Edman degrada-

tion: approximately 3 mg of purified his-tagged Fdp was loaded

onto 15% polyacrylamide resolving gels, and transferred to

Fluorotrans™ membrane (Pall BioSupport, UK) by electro-

blotting for 1 h at 100 V using a Bio-Rad Mini Trans-Blot Cell.

The proteins were visualised with Coomassie Brilliant Blue,

excised from the membrane and the N-terminal sequence

determined.

The construct was transformed into E. coli BL21 [DE3];

overexpression and purification were performed as described

for RegA (PrrA) in Ref. [53].

Western blotting

To verify the presence of recombinant His-tagged Fdp purified

from IPTG-induced E. coli BL21[DE3]/pET14fdp, Western blot-

ting was undertaken using an antibody that recognises the

His6 motif as described previously [59]. Briefly, purified His6-

Fdp (4 mg) was loaded on 15% SDS-polyacrylamide resolving

gels. Following electrophoresis by standard methods [50],

proteins were transferred to nitrocellulose membrane

(AmershamHybond-C) by electroblotting for 1 h at 100 V using

a Bio-Rad Mini Trans-Blot Cell. The transfer buffer contained

25mM Tris.HCl pH 8.3, 192mM glycine, 20%methanol, 0.025%

sodium dodecyl sulphate (SDS). Membranes were washed

twice for 10 min with TBS buffer (10 mM Tris.HCl pH 7.5,

150 mM NaCl) at room temperature, and incubated for 16 h in

3% (w/v) bovine serum albumin in TBS buffer. Membranes

were then washed twice for 10 min each time in TBSTT buffer

(TBS buffer containing 0.05% (v/v) Tween-20, 0.2% (v/v) Triton

X-100), and then once for 10 min in TBS buffer. A 1:1000

dilution of mouse anti-RGS(H)6 monoclonal antibody (Qiagen

Ltd, Manchester, UK) was then prepared in TBS containing 3%

BSA into which membranes were immersed for 1 h at room

temperature. Following two washes for 10 min each time in

TBSTT buffer and one wash for 10 min in TBS at room tem-

perature, a 1:5000 dilution of goat anti-mouse IgG horse radish

peroxidase conjugate (Stratech Scientific Ltd, Ely, UK) in TBS

containing 10% (w/v) skimmed milk powder was added and

the membranes incubated for 1 h at room temperature.

Following four washes for 10 min each in TBSTT buffer,
Fdp fasciclin I domain protein of the biohydrogen producer Rho-
rnational Journal of Hydrogen Energy, https://doi.org/10.1016/

https://doi.org/10.1016/j.ijhydene.2020.07.108


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x6
membranes were incubated with ECL Western blotting

detection reagent (GE Healthcare, USA) and developed by

autoradiography with Xograph film (Kodak Co., Herts, UK).

Mass determinations using electrospray mass spectrometry

Samples of purified recombinant Fdp were prepared for elec-

trospray mass spectroscopy by the method of [60] and ana-

lysed on a single quadrupole, bench top mass spectrometer

(Platform II, Micromass UK Ltd). as described by Ref. [53].

Samples were dissolved in formic acid:methanol:water (1:1:1,

v/v/v) and infused into the ionisation source at a flow rate of

10 mL perminute. Data were acquired over the appropriatem/z

range and were processed using the MassLynx software sup-

plied with the instrument. The m/z spectrum was transposed

onto a truemolecular mass scale for more facile identification

using Maximum Entropy processing techniques. An external

calibration is applied, using horse heart myoglobin (MW

16,951.49 Da) as the calibrant.

Protein determinations

Protein content was measured using the Bio-rad DC Protein

Assay Kit II (Bio-rad Laboratories Inc., Watford, Herts., UK) as

outlined by themanufacturer, using bovine serum albumin as

the standard.
Results

Confirmation of Fdp as a member of the fasciclin I protein
superfamily

The open reading frame encoding Fdp (ORF RSP1409) was first

identified as a FAS1 fasciclin Ielike protein in Ref. [56] (Beta-Ig-

H3/Fasciclin; https://www.uniprot.org/uniprot/Q3IXZ6). Fdp

has a predicted signal peptide at the N-terminus (residues

1e18: (RKTLLALSLGLLAAPAFA)) suggesting a protein that is

translocated across the innermembrane resulting in amature

137-residue protein possessing the N-terminal sequence

ETGDIVETATGA. By PSI-BLAST, the closest sequence similar-

ity (60% identical; 74% similar) is to Sinorhizobium meliloti

Nex18 (Fig. 1). It is also related (32e39% identity; 52e59%

similarity) to Mycobacterium tuberculosis MPT70 and M. bovis

MPB70 major secreted proteins [61], the fasciclin I domains of

mammalian transforming growth factor b-induced proteins

(bIG-H3 or RGD-CAP adhesion proteins, as indicated in Uni-

Prot) [62], and human osteoblast-specific factor 2 (OSF-2 or

periostin) [63], which is thought to be involved in bone adhe-

sion and is a ligand for avb5 integrin [64] (Fig. 1). Drosophila

FAS1 domain 4 [65,66], which is responsible for axon guidance,

has 29% identity to Fdp (Fig. 1). The common feature in all

these proteins, where a function is known, is their involve-

ment in protein-protein associations. The sequence similar-

ities are quite striking, since fasciclin I domains generally

exhibit low overall sequence conservation (<20%) [66]. The

two regions of high conservation recognized for the FAS1 su-

perfamily (H1 and H2) are also strongly conserved in this pu-

tative protein. Taken together with the NMR structure of Fdp

described previously [41,56], it is clear that this protein is a
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member of the fasciclin I protein superfamily. One unusual

aspect of this particular fasciclin-domain protein is that it

occurs in a free-living bacterium, and fortuitously this free-

living species is well characterized regarding its physiology,

metabolic versatility, molecular bases for responses to envi-

ronmental change and it is also amenable to knock-out stra-

tegies. Indeed the role of Fdp in cell adherence properties of R.

sphaeroides has already been established; Fdp appears to pro-

mote cell adherence as shown by insertional activation

studies in which inactivation of fdp resulted in a 100-fold

reduction in numbers of adherent cells in a R. sphaeroides

adherence assay [41]. Here we investigate the regulation of

expression of this adherence factor in R. sphaeroides, which

could yield important knowledge for the establishment and

continuous immobilization of bacterial cells in bioreactors.

Transcription of Fdp is negatively regulated by the Prr
signaling pathway under anaerobic and other growth
conditions

Prr is a major regulator that senses changes in external redox

potential and serves as a global switch in gene expression for

many genes in R. sphaeroides [67e69]. To investigate whether

this global environment-responsive regulator controls fdp

transcription, reporter studies were undertaken using the

promoter region of the fdp gene linked to a lacZ reporter gene,

which was expressed in both wild type and PRR mutants.

Table 2 shows activity of the fdp promoter under different

aerobiosis conditions, as shown by b-galactosidase measure-

ments of R. sphaeroides extracts from stationary-phase cells

harbouring pSDP-FDPP, a pRK415-based replicative reporter

plasmid carrying 592-bp of fdp upstream sequence transcrip-

tionally linked to lacZ. Experiments were carried out using

wild type, plus two mutants PRRA and PRRB in which the prrA

(encoding the response regulator PrrA) and prrB (encoding the

redox sensor kinase PrrB) genes, respectively, were inser-

tionally inactivated. Anaerobic conditions were achieved

using dark conditions in the presence of DMSO rather than

light conditions for light harvesting, since PRR mutants are

unable to grow photosynthetically. Table 2 shows that levels

of fdp expression levels in aerobic and semi-aerobic cells of

wild type grown on succinate-lactate medium were similar

(DA405 units/min/mg protein¼ 93e100� 103), but were slightly

lower under anaerobic conditions (required for nitrogenase

expression and thereby hydrogen generation) [1] (and under

which the Prr pathway generates a higher level of phosphor-

ylated PrrA, Prr-P) (DA405 units/min/mg protein ¼ 64 � 103) [70]

(Table 2). Expressionwas significantly higher (3.7e40.3-fold) in

both PRRA and PRRB strains compared with wild type under

all conditions of aerobiosis in these cells grown on glucose or

succinate-lactate (Table 2), demonstrating that the Prr system

exerts negative control of fdp transcription under both aerobic

and anaerobic nitrogenase-expressing conditions. Presum-

ably sufficient transcriptionally-active PrrA or PrrA-P must

occur for the efficient repression of the fdp promoter region

observed under all aerobiosis conditions. The fold effect on

expression levels in PRR mutants appears to be less marked

under increasingly anaerobic conditions (though nonetheless

significant), possibly suggesting that PrrA (which pre-

dominates under aerobic conditions comparedwith PrrA-P), is
Fdp fasciclin I domain protein of the biohydrogen producer Rho-
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Table 2 e Activity of the fdp promoter in stationary phase wild type, PRRB and PRRA strains cultured under different
aerobiosis conditions.

Growth conditions b-galactosidase (DA405/min/mg protein � 103)

Wild type PRRB PRRA

Control pSDP-FDPP Control pSDP-FDPP Folda Control pSDP-FDPP Folda

M22 succinate/lactate

Aerobic 4.2 (3.1) 100.0 (19.2) 4.9 (4.3) 934.9 (121.8) 9.7 4.4 (7.4) 3487.5 (189.4) 36.4

Semi-aerobic 16.6 (5.8) 92.8 (10.1) 4.4 (1.6) 283.7 (15.5) 3.7 11.8 (1.9) 580.3 (14.4) 7.5

Anaerobic 16.5 (2.9) 64.4 (1.1) 6.3 (0.4) 252.8 (9.4) 5.2 10.1 (1.7) 279.3 (51) 5.6

M22 glucose

Aerobic 6.1 (1.1) 83.9 (2.9) 5.4 (1.8) 1892.4 (18.2) 24.3 9.0 (0.6) 3140.7 (86.6) 40.3

Semi-aerobic 2.2 (0.9) 74.7 (3.4) 13.5 (0.9) 1098.6 (2.3) 15.0 4.6 (1.4) 2771.5 (80.9) 38.2

Anaerobic 4.4 (1.3) 67.7 (15.0) 2.0 (1.9) 507.8 (142.1) 6.8 3.6 (0.4) 370.0 (103.5) 5.0

The fdp promoter region was inserted upstream of lacZ as described in Methods, resulting in pSDP-FDPP. All growth experiments were con-

ducted at 34 �C in the dark, and anaerobic growth was achieved by supplementing M22 medium with 60 mM dimethyl sulphoxide (DMSO).

Growth (A680) was monitored and cells harvested in late stationary phase (aerobic cultures - 30e36 h; semi-aerobic cultures - 3 days; and

anaerobic DMSO-grown cultures e 9 days). b-galactosidase measurements are means derived from four separate experiments, each set per-

formed at least in triplicate (standard deviation values in parentheses). The enzyme levels produced in corresponding pSDP1-harboring control

cells are shown. Bracketed values show the standard deviation values.
a Ratio of expression levels in PRR strains compared with wild type, calculated after subtraction of control pSDP1 activity.
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the overall repressor, and/or alternatively that additional

aerobiosis-responsive regulators are regulating to different

degrees under these conditions.

Expression of fdp was less elevated in the PRRB strain

compared with PRRA under aerobic and semi-aerobic growth

conditions of aerobiosis, but levels were approximately

equivalent in PRRA and PRRB strains under anaerobic condi-

tions. This suggests that whilst there is a role for PrrB in fdp

regulation under all aerobiosis conditions (shown by the

elevated levels of reporter in the PRRB strain), under anaerobic

conditions the loss of PrrB in PRRB exerts no greater or lesser

effect on fdp transcription than loss of PrrA-P in PRRA, sug-

gesting that PrrA-P derived only from PrrB acts as the

repressor under anaerobic conditions in wild type cells and/or

that any additional regulators present exert their effects

equally on fdp expression in anaerobically-cultured PRRB and

PRRA strains (Table 2).

A similar trend was observed using glucose-containing

medium, though reporter levels (and fold effects) were over-

all higher in aerobic and semi-aerobic mutant cells compared

with those grown in the same aerobiosis conditions using

succinate-lactate medium (Table 2). Under anaerobic condi-

tions on glucose (in common with succinate-lactate), fdp

expression levels were elevated 5.0e6.8 fold in the absence of

a functioning Prr pathway.

Reporter studies of cells harvested at different times during

batch growth revealed that in the wild type strain, under all

conditions of aerobiosis including anaerobic conditions, re-

porter levels remained at constant low levels throughout

growth (Fig. 2). By contrast, reporter levels in anaerobic/dark-

grown PRRA were significantly elevated, though once again

relatively similar throughout growth. Under aerobic/dark

conditions (and to a lesser extent under semi-aerobic/dark

conditions), reporter levels appeared more variable and

possibly growth-phase dependent in the PRRA mutant. Levels

in the PRRA mutant increased during lag and early exponen-

tial phase under aerobic conditions and reached a maximum

level in late-exponential phase, reaching up to 99-fold those of
Please cite this article as: Jeong E-L et al., The adherence-associated
dobacter sphaeroides is regulated by the global Prr pathway, Inte
j.ijhydene.2020.07.108
wild type cells in the same phase of growth (Fig. 2). This may

suggest the presence of additional regulators governing fdp

expression, in addition to Prr. Indeed, the higher fdp expres-

sion observed in late exponential phase cells cultivated under

aerobic conditions is reminiscent of gene expression control

governed by quorum-based systems [71]. To perform pre-

liminary investigations on whether quorum sensing in R.

sphaeroides [72] could possibly play a role in regulation of fdp,

reporter studies were undertaken using early-exponential

phase aerobically-grown cells from wild type and PRRA

strains and to which were added sterile culture supernatants

from stationary phase wild type cells (shown to accumulate

7,8-cis-N-(tetradecenoyl) homoserine lactone, [72]) to consti-

tute 10% of the total culture volume. Expression levels of fdp

were compared to those of untreated cells after 1 h further

incubation. Addition of the culture supernatant did not

significantly affect expression levels; expression levels in wild

type were 0.6-fold comparedwith untreated cells whilst in the

PRRA strain levels were only 1.3-fold those of the control

(Table 3). Therefore, these preliminary experiments indicate

that quorum sensing plays no detectable role in fdp regulation,

but further investigations should be conducted to confirm

this.

Although levels of fdp expression were consistently low in

wild type (compared with PRR mutants) under all conditions

of aerobiosis tested (Table 2), some variation in expression

levels nonetheless occurred, specifically there are signifi-

cantly lower levels of expression under anaerobic conditions

on succinate/lactate medium compared with aerobic and

semi-aerobic conditions in the same medium (Table 2). To

investigate whether other environmental factors can also

affect fdp transcription in wild type, the effects of complex

versus defined medium, heat versus cold shock and light

versus dark conditions were investigated. For comparative

purposes, strains were all cultured under aerobic conditions,

so that a wider range of conditions could be investigated at a

practical level. Thus, the anaerobic conditions required for

nitrogenase expression were not specifically investigated
Fdp fasciclin I domain protein of the biohydrogen producer Rho-
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Fig. 2 e Activity of the fdp promoter in R. sphaeroideswild type and PRRA strains during aerobic, semi-aerobic and anaerobic

batch growth. The fdp promoter region was inserted upstream of lacZ in reporter plasmid pSDP1 as described in Methods,

resulting in pSDP-FDPP. A promoter-less control was also included throughout all growth experiments; reporter levels

remained at the expected very low levels throughout these experiments. Plasmids were introduced into R. sphaeroides wild

type and PRRA strains andmaintained as described in Methods. Growth experiments were performed at 34 �C in M22media

under (a) aerobic/dark, (b) semi-aerobic/dark and (c) anaerobic/dark (in the presence of 60 mM DMSO) conditions for both

wild type- and PRRA-transformed strains. Samples (1e50 ml) were taken for measurements of growth (absorbance at

680 nm, A680) (¡-¡) and duplicate b-galactosidase measurements (shown by the blue bars), as described in Methods. (For

interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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here. The study also included the effects of these factors on

fdp expression in PRRA strain, to determine whether any

variation also occurs in the absence of the Prr pathway. The

results in Table 3 demonstrate that fdp expression was sen-

sitive to growth medium composition in both wild type and

PRRA; expression was upregulated 3-fold in the wild type and

4.2-fold in PRRA in Luria-Bertani complex medium compared

with M22 succinate-lactate medium (Table 3). There was no

significant effect of cold shock in both strains nor of heat

shock or light compared with dark on wild type expression.

Expression in PRRAwas 2.7-fold elevated upon heat shock and

3-fold elevated under light conditions compared with iden-

tical dark conditions (Table 3). Thus, growth medium

composition (complex versus defined) significantly affected

expression in the wild type as well as in PRRA, though most
Please cite this article as: Jeong E-L et al., The adherence-associated
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changes in expression levels were observed in the PRRA

mutant strain. It is difficult to draw conclusions about the

nature of the mechanisms by which such different regulation

occurs.

To investigate possible regulatory mechanisms by which

fdp is regulated under different growth conditions, studies

were focused on reporter studies using pyruvate-grown cells

to ascertain whether the global signaling molecule acetyl

phosphate which occurs in R. sphaeroides [73] may affect fdp

expression. When pyruvate is the carbon source, levels of the

small phospho donor acetyl phosphate are elevated [74,75].

Acetyl phosphate is a global signaling molecule that regulates

many bacterial cellular processes including nitrogen assimi-

lation, osmoregulation, flagellar biogenesis, pilus assembly,

capsule biosynthesis, biofilm development, and pathogenicity
Fdp fasciclin I domain protein of the biohydrogen producer Rho-
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Table 3 e Comparison of fdp promoter activity in wild type and PRRA strains under different growth conditions.

Treatment Strain b-galactosidase (DA405/min/mg protein � 103)a

Control untreated culturesc Addition of sterile supernatentc Foldb

Control pSDP-FDPP Control pSDP-FDPP

1 Wild type 1.5 (1.5) 24.4 (7.8) 6.5 (1.8) 21.4 (1.3) 0.6

PRRA 11.7 (3.1) 760.0 (347.7) 12.3 (5.8) 977.0 (58.4) 1.3

32.7 foldb 45.1 foldb

M22 succinate lactated Luria-Bertani mediumd Foldb

Control pSDP-FDPP Control pSDP-FDPP

2 Wild type 6.1 (1.0) 52.5 (6.7) 24.5 (25.8) 165.9 (24.5) 3.0

PRRA 4.3 (1.5) 5185.8 (297.7) 4.4 (0.8) 21806 (3667.8) 4.2

111.7 foldb 154.2 foldb

Control conditionse Heat shocke Foldb Cold shocke Foldb

Control pSDP-FDPP Control pSDP-FDPP Control pSDP-FDPP

3 Wild type 5.0 (5.5) 183.5 (5.6) 3.0 (3.3) 254.4 (18.2) 1.4 1.3 (0.3) 209.3 (20.9) 1.2

PRRA 7.3 (3.7) 2770.6 (64.3) 9.8 (0.83) 7356.6 (225.6) 2.7 16.8 (14.8) 3868.6 (191.2) 1.4

15.5 foldb 29.2 foldb 18.5 foldb

Darkb,f Lightf,g Foldb

Control pSDP-FDPP Control pSDP-FDPP

4 Wild type 3.2 (3.0) 141.4 (13.9) 5.5 (1.0) 178.2 (4.2) 1.3

PRRA 2.2 (0.0) 1802.4 (55.4) 16.0 (8.9) 5457.0 (24.5) 3.0

12.7 foldb 31.5 foldb

aThe fdp promoter region was inserted upstream of lacZ as described in Methods, resulting in pSDP-FDPP (Table 1). b-galactosidase measurements are means derived from triplicate measurements

(standard deviation values in parentheses). The enzyme levels produced in corresponding pSDP1-harbouring control cells are shown.
bFold is the ratio of expression levels in the presence and absence of treatment (or Prrmutant: wildtype levels), calculated after subtraction of control pSDP1 activity. See individual treatments formore

specific detail.

Treatment 1: Activity in early exponential phase cells in response to addition of sterile supernatent from stationary phase cells. cAerobic dark growth at 34 �C (A680) was monitored and either sterile

culture supernatent from stationary phase cells were added or no addition made (Control), to early log phase cells.

Treatment 2: Activity in stationary phase cells cultured aerobically in rich (LB) andminimal M22 succinate-lactate media. dAerobic dark growth at 34 �C (A680) wasmonitored (A680) and cells harvested

in stationary phase (30e36 h). Fold: ratio of expression levels in LB medium compared with those in M22 medium, calculated after subtraction of control pSDP1 activity.

Treatment 3: Activity in stationary phase cells following exposure to temperature shock. ecultures were grown aerobically in M22 succinate-lactate medium at 34 �C in the dark until early stationary

phase before heat shock at 42 �C or cold shock at 5 �C for 4 h and cell harvesting. Fold: Ratio of expression levels compared with continued standard conditions, calculated after subtraction of control

pSDP1 activity.

Treatment 4: Activity in stationary phase cells cultured in the light or dark. fAerobic growth in M22 succinate-lactate medium at 34 �C in the dark or light was monitored (A680) and cells harvested in

stationary phase (30e36 h). Fold: ratio of expression levels in the light compared with those in the same medium in the dark under aerobic conditions at 34 �C, calculated after subtraction of control

pSDP1 activity. g86 W m2.
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Table 4eComparison of succinate-lactate and pyruvate carbon sources on the activity of the fdp promoter inwild type, FDP
and PRRA strains.

Growth conditions b-galactosidase (DA405/min/mg protein � 103)

Wild type FDP Folda PRRA Folda

Semi-aerobic

Succinate-lactate 51 (10) 48 (22) 0.9 517 (63) 10.1

Pyruvate 10 (0.6) 15 (2) 1.5 832 (37) 83.2

Anaerobic

Succinate-Lactate 40 (5) 50 (60) 1.3 410 (20) 10.3

Pyruvate 10 (0.6) 30 (10) 3.0 580 (70) 58.0

The fdp promoter region was inserted upstream of lacZ as described in Methods, resulting in pSDP-FDPP. All growth experiments were con-

ducted in M22 medium at 34 �C in the dark, and anaerobic growth was achieved by supplementing M22 medium with 60 mM dimethyl

sulphoxide (DMSO). Growth (A680) was monitored and cells harvested in late exponential phase. b-galactosidase measurements are means

derived from triplicate measurements (standard deviation values in parentheses).
a Ratio of expression levels compared with wild type, calculated after subtraction of control pSDP1 activity.
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[76]. One way it has been shown to exert its regulatory effects

is by direct phosphorylation of response regulators of two-

component systems, including R. sphaeroides response regu-

lators [74,77,78]. In wild type and fdpmutant strains, pyruvate-

grown cells consistently expressed significantly less fdp

compared with succinate/lactate grown cells, possibly indi-

cating greater repression by Prr, though effects due to addi-

tional regulators cannot be ruled out (Table 4). However, in the

PRRA mutant strain which lacks the PrrA response regulator,

the fold increase in expression levels was significantly higher

(83-fold and 58-fold in semi-aerobic and anaerobic conditions,

respectively) in pyruvate-grown cells compared with

succinate/lactate-grown cells (10-fold) (Table 4), suggesting a

possible role for acetyl phosphate and/or the presence of

additional phosphorylatable regulators of fdp expression in
Fig. 3 e Separation of soluble proteins of wild type, PRRA and P

polyacrylamide gel electrophoresis. Extracts (40 mg protein) from

dark conditions at 34 �C were separated as described in Method

insertionally inactivated prrA mutant). The boxed area is the re

boxed area is expanded for comparisons of: (C) wild type and (

Typical results from five comparisons of wild type versus PRRA
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addition to the Prr pathway under anaerobic (and semi-

aerobic) conditions.

Comparisons of Fdp protein levels in wild type and Prr
mutants in vivo

As shown in all the reporter data described above, Fdp

expression is significantly lower in the wild type strain

compared with the PRRmutants. To determine whether these

differences are also reflected in vivo with regard to the final

translated Fdp protein, 2D SDS-PAGE analysis of cell extracts

was undertaken. The Fdp protein possesses a putative signal

peptide at the N-terminus, suggesting that the protein is

secreted either externally or onto the cell surface, into the

periplasm or is membraneeassociated. Since post-

translationally modified Fdp is of relatively low molecular
RRB strains of R. sphaeroides by two-dimensional SDS-

mid-exponential phase cells cultured under semi-aerobic/

s. Proteins were extracted from: (A) wild type; (B) PRRA (an

gion showing the Fdp protein (indicated by an arrow). This

D) PRRB (an insertionally inactivated prrB mutant) extracts.

, and one comparison of wild type versus PRRB.
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Fig. 4 e Production and verification of purified His-tagged

Fdp. (A) SDS-polyacrylamide gel (6% stacking and 15%

resolving gel) showing 4 mg purified recombinant Fdp

(predicted molecular mass 16004.8 Da) with apparent

molecular mass of 20,100 Da, visualised using Coomassie

blue staining. (B) Western blot using 4 mg of purified Fdp

with an INDIA His probe to detect the presence of the N-

terminal hexahistidine tag. Arrow denotes the position of

the Fdp protein. The positions of molecular mass markers

are indicated. (For interpretation of the references to colour

in this figure legend, the reader is referred to the Web

version of this article.)
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mass (13.8 kDa), and is predicted to possess a low predicted pI

(3.96) compared with other R. sphaeroides proteins, we

reasoned that it should be possible to separate and identify

the protein in two-dimensional SDS-PAGE of R. sphaeroides cell

fractions.

Soluble extracts (including periplasmic fractions) of

washed semi-aerobic wild type and PRR mutant cells were

used in the 2D SDS-PAGE analysis (Fig. 3). The correct protein

spot and position in the gels were identified by N-terminal

sequencing (sequenced as ETGDIVETATSA, compared to the

Fdp protein in the R. sphaeroides genome database which is

ETGDIVETATGA). Characteristically, it runs anomalously in

the approximate technique of SDS-PAGE, with an apparent

molecular mass of 17,300 Da, higher than the predicted

13,800 Da. This is a characteristic also observed using a puri-

fied his-tagged version of Fdp expressed in E. coli; His6-Fdp

possesses an apparent molecular mass of 20,100 Da in SDS-

PAGE (Fig. 4) but mass spectrometry reveals a mass of

16003.9 ± 1.6 Da, in good agreement with the expected theo-

retical value for the recombinant protein (16,004.8 Da).

Fig. 3 shows that in PRRA and PRRB soluble extracts, levels

of Fdp are significant in comparisonwith other cellular soluble

proteins, confirming that washed cells possess abundant

levels of mature, post-translationally modified Fdp. Taken

together with the N-terminal sequencing data, these results

demonstrate that the predicted N-terminal signal peptide is

indeed cleaved in vivo, and that mature Fdp is therefore pre-

sumably exported across the inner membrane and at least
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into the periplasm in these strains. Fdp levels were lower or

barely detectable in the wild type strain (Fig. 3), a feature

consistent with the findings described above for Fdp

transcription.
Discussion

The present study clearly demonstrates that expression of the

fdp gene encoding a protein involved in adherence [41] is

negatively regulated by the Prr global regulator in R. sphaer-

oides. Under a wide range of growth conditions tested here

including different carbon sources, conditions of aerobiosis

(including anaerobic conditions suitable for nitrogenase

expression), rich versus defined growth media, heat/cold

shock, and light versus dark conditions, elevated fdp promoter

activity was consistently observed in PRRA and PRRB mutants

compared with wild type, ranging from 3.7 to 154-fold (Tables

2e4). Increased levels of promoter activity in PRR mutants

were also observed throughout batch growth under all aero-

biosis conditions (Fig. 2) and whilst the highest levels of pro-

moter activity were seen in late exponential phase cells under

aerobic/dark conditions, no evidence of quorum-based regu-

lation was found (Table 3), though further study is needed to

confirm this. Interestingly Prr repression occurred under all

conditions of aerobiosis, suggesting either sufficient levels of

PrrA-P under all these aerobiosis conditions for repression, or

that unphosphorylated PrrA is also able to repress fdp. The

regulatory activity of PrrA (or analogous RegA in other species)

as well as of PrrA-P (RegA-P) has been documented previously

[77,79e81].

In the absence of the Prr pathway, the increased levels of

fdp expression varied depending on growth conditions,

possibly suggesting the involvement of additional regulators

involved in Fdp regulation. This was further supported by

growth experiments using pyruvate as carbon source, in

which elevated levels of the global signaling molecule acetyl

phosphate are present; in PRR mutants growing on pyruvate,

reporter levels were significantly elevated still further (Table

4), suggesting possible regulation by phosphorylatable con-

trol systems, such as two-component signal transduction

systems. The effects on fdp expression measured using our

reporter assay system were also reflected in the levels of

translated Fdp protein observed in cell extracts in vivo (Fig. 3).

Evidence for the adherent properties of the wild type strain

of R. sphaeroides used in this study has been reported previ-

ously [41]. The strain was shown here to exhibit low levels of

fdp expression resulting in low, barely detectable levels of

post-translationally modified Fdp protein in which the signal

peptide has been removed in vivo (Tables 2e4, Fig. 3). Such low

levels are surprising, but presumably these levels in the wild

type are nonetheless sufficient to support cell adherence.

There were low but detectable levels of fdp expression in the

wild type under all conditions tested, and yet there were some

limited levels of variation in these expression levels under

different conditions. For example, expression levels in wild

type cells cultured anaerobically in M22 succinate/lactate
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medium were 64% of those measured aerobically in the same

medium (Table 2). Similarly, fdp expression in wild type cells

cultured anaerobically with pyruvate as carbon source was

approximately 5-fold lower than in cells grown in the same

medium semi-aerobically with succinate-lactate as carbon

source (Table 4), and aerobic wild type cells cultured in rich LB

mediumexhibited 3-fold elevated levels of fdp expression over

cells cultured in defined M22 medium (Table 3). These varia-

tionsmay be due to variable regulation by Prr itself as reported

for the analogous Reg pathway in R. capsulatuswhich regulates

in a variable way different gene sets depending on growth

conditions [81]. Alternatively, other Prr-independent regula-

tory activity may be occurring. In light of the strong regulation

exerted by Prr regulation in wild type demonstrated in this

study by the significantly derepressed levels of fdp expression

observed in the PRR mutants, the latter of these two possi-

bilities appears to be the most likely explanation for the

relatively low (but significant) levels of variation seen in the

wild type.

The question therefore is why Fdp expression should be

subject to such strong regulation by Prr and possibly other

phosphorylatable regulators under most growth conditions as

demonstratedhere.Onepossible explanation is that theremay

be occasions in which it is advantageous for the bacterium to

experiencea full reversal orpartial lossof adherenceability, for

example in order to enter a motile phase. Perhaps there are

particular environmental conditions which occur in nature

(and which were not possible to replicate in the laboratory

environment), that facilitate full repression of Fdp levels

equivalent to a full shut down of Fdp in thewild type, resulting

in motile phase non-adherent cells. A previous study estab-

lished that, in terms of cell numbers, adherence is reduced

approximately 100-fold in an insertionally-inactivated fdp

mutant [41]. In this regard it is relevant to note that Rhodobacter

mutants in the global Prr/Reg regulatory pathway, and shown

here to exhibit significantly elevated levels of Fdp in R. sphaer-

oides, are defective in aerotaxis and motility [81,82]. It is not

suggested here that there must therefore be a direct link be-

tween elevated Fdp levels and loss inmotility and aerotaxis, as

Prr is a global regulator affecting many processes, but rather

that such characteristics of Prr mutants makes the above hy-

pothesis difficult to test. Another difficulty with testing this

possibility is that in the present study no laboratory conditions

were identified in which Fdp levels were fully repressed in the

wild type. Nonetheless, with regard to promoting permenant

adherence and thereby immobilization in a bioreactor envi-

ronment, we propose that engineering of the PrrA binding site

upstream of the fdp promoter to inhibit binding by the PrrA/

PrrA-P repressormay be a useful future strategy. Development

of the Prrmutants themselves, which are already lacking PrrA/

PrrA-Pbindingandproducedesirablyelevated levelsofFdp,are

not suitable in this case as they are defective in expression of

nitrogenase for H2 production and other key metabolic pro-

cesses suchas photosynthesis andCO2 fixation requiredunder

light anaerobic conditions [67,70,81]. Therefore, amutagenesis

strategy designed to specifically abolish or reduce PrrA binding

in the fdp promoter region and thereby ensure either strongly

elevated levels of Fdp, or levels that aremoderatelyhigher than

wild type levels, may be a fruitful line of future investigation.
Please cite this article as: Jeong E-L et al., The adherence-associated
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Progress has previously been made in improving hydrogen

yields through mutant analysis and genetic/metabolic engi-

neering strategies, mainly targeting the activities of the up-

take hydrogenase, poly-3-hydroxybutyric acid synthesis,

nitrogenase and light harvesting systems under defined

external conditions [2,3,23,83e87]. Not many reports have yet

appeared on mutations in transcriptional regulators; howev-

er, the studies of [2,87,88] investigated the effects of HupR,

HupT, NifA and NifL mutations for improving hydrogen yield

in PNS bacteria, with success in improving hydrogen produc-

tion. Searches using the consensus sequence for PrrA DNA

binding in R. sphaeroides [89,90] reveal two possible binding

sites for PrrA to the fdp upstream region, both of which occur

in the promoter fragment used in the reporter studies

described above. One starts at position �432 (50-
GCGCCGGCATTCTGCGC). In common with sites of other

repressed genes such as hydrogenase (hup), this site has a

rather long half-site spacing [89]. The second possible site

starts at �419 (50-GCGCCGGATCGC) and possesses a relatively

short 6-nt half-site spacing [89]. Following confirmation of

these PrrA binding sites, a comprehensive mutagenesis pro-

gramme can be initiated.
Conclusions

Expression of the fdp gene,which encodes an adherence factor

in R. sphaeroides, is negatively regulated by the global Prr reg-

ulatory pathway. Strains defective in either the sensor kinase

PrrB or the response regulator PrrA of this pathway possess

significantly elevated levels of fdp promoter activity, which is

also reflected in the levels of translated Fdp protein in R.

sphaeroides cells in vivo. One strategy to optimize or increase

adherence properties of R. sphaeroides in immobilized biore-

actor applications might be to generate altered strains in

which the Prr repressor activity has been reduced or removed.

Mutations in the prrA or prrB genes themselves is not feasible,

as they are required for expression of nitrogenase. We there-

fore propose targeted mutagenesis of the PrrA binding site

upstream of the fdp gene to reduce or remove binding by the

PrrA repressor specifically at this site and thereby enhance

expression of the fdp adherence factor.
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