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Abstract

The two-dimensional energy equation with a first-order velocity slip model and a temperature jump model is studied
analytically and a solution consisting of an infinite series is obtained. Impacts of viscous dissipation, axial conduction
and rarefied effect on the local Nusselt number, the asymptotic Nusselt number and the bulk temperature profile of
fluid are investigated. Results show that the cooling effect of the fluid benefits from the higher rarefied effect and
axial conduction effect, as well as the lower viscous dissipation. The asymptotic dimensionless bulk temperature of
fluid converges to a constant value that is higher than the wall temperature at a given set of Brinkman number, Péclet
number and Knudsen number regardless of the inlet conditions. When neglecting axial conduction and the rarefied
effect, the asymptotic Nusselt number with or without viscous dissipation is 17.5 or 7.54, respectively. Effects of
axial conduction on the asymptotic Nusselt number are negligible when the Péclet number is greater than 10, while
its influence on the non-dimensional bulk temperature of fluid and local Nusselt number can be neglected only when
Pe > 100.

Keywords:
Axial conduction, Viscous dissipation, Péclet number, Brinkman number, Knudsen number

1. Introduction

Heat transfer in microchannel or nanochannel has
drawn significant attention due to the rapid develop-
ment of micromechanics in the last decades and its engi-
neering applications in film cooling [1–4]. Experiments
have shown that flow and heat transfer characters in mi-
crochannel or nanochannel are quite different from their
well-known macroscale counterparts [5, 6]. Particu-
larly, axial conduction and viscous dissipation which are
generally neglected in macroscale flow and heat transfer
problems are not trivial in microscale or nanoscale heat
transfer due to the following factors: (1) No-slip veloc-
ity, no-slip temperature boundary conditions and even
the continuum assumption widely used in macrochan-
nel fluid flow and heat transfer governing equations be-
come less valid as the size of channel is reduced. (2) In
microchannel or nanochannel, the molecular mean free
path is in the same order as that of channel size, which
requires the consideration of molecular effects on heat
transfer.

Significant efforts have been devoted to studying the
effect of viscous dissipation. Tso et al. [7–9] performed

dimensional analyses and experiments to show the im-
pact of Brinkman number on the microchannel flow.
Their results stated that the Brinkman number has an
essential role in determining the flow transition point
and the temperature distribution in spite of its relatively
small values. Tunc et al. [10] studied the effect of vis-
cous dissipation on the heat transfer of microtubes with
uniform temperature and uniform heat flux via the inte-
gral transform technique and they obtained the asymp-
totic Nusselt number at prescribed Knudsen number,
Brinkman number and Prandtl number. The same au-
thors [11] also applied the H2-type boundary condition
to analyze viscous dissipation influences on the temper-
ature field in a rectangular channel at constant axial and
wall normal heat flux and obtained similar results as in
circular microtubes. Koo et al. [12] used dimensional
analyses and numerical simulations to reveal effects of
viscous dissipation on the temperature profile and fric-
tion factor for three working fluids (water, methanol
and isopropanol) with various conduit geometries and
showed that viscous dissipation cannot be neglected in
flow in micro conduits.

A series of analytical solutions for heat transfer in
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Nomenclature:
An summation coefficients zn variable in confluent hypergeometric function
an coefficients in confluent hypergeometric function Greek symbols
Br Brinkman number, Br =

µu2
ave

k(Ti−Tw) α thermal diffusivity
bn coefficients in confluent hypergeometric function βn eigenvalues
C1

2−σt
σt

2γ
γ+1

Kn
Pr γ specific heat ratio, γ = 1.4

C2 1 + 12 2−σ
σ

Kn λ molecular mean free path
cp specific heat µ dynamics viscosity
DH hydraulic diameter of a 2D channel, DH = 4H θ dimensionless temperature, θ =

T−Tw
Ti−Tw

fn(η) eigenfunctions ρ fluid density
gn(zn) confluent hypergeometric function ξ dimensionless coordinate, ξ = x

Re·Pr·H
h heat transfer coefficient η dimensionless coordinate, η =

y
H

H half of the channel height σ tangential momentum coefficient, σ = 1
k thermal conductivity σT thermal accommodation coefficient, σT = 1
Kn Knudsen number, Kn = λ

DH
δ relative difference

k1
3

C2

2−σ
σ

Kn Subscripts
k2

3
8C2

ave average value
N number of eigenvalues or eigenfunctions b bulk value
Nu Nusselt number, Nu = hDH

k c critical value
Pe Péclet number, Pe = Re · Pr =

uaveDH
α

F asymptotic value
Pr Prandtl number, Pr = ν

α
i inlet prperties

Re Reynolds number, Re =
uaveDH

ν
L local value

T temperature s fluid properties at wall
u velocity w wall properties
W channel width Superscript
x, y cartesian coordinate ∗ non-dimensional value

one-dimensional microchannel when only axial conduc-
tion is considered has been extensively reported [13–
20]. For example, Lahjomri et al. [14, 15] and Haji-
Sheikh et al. [20] applied the series analysis solution
method to investigate the temperature profile in paral-
lel plate channels or circular ducts, respectively. They
concluded that the effect of axial conduction influence
needs to be considered when Pe < 10. Minkowycz
et al. [19] also adopted this approach to analyze heat
transfer in saturated porous passages. Both experimen-
tal and numerical simulation were applied by Tiselj et
al. [17] to obtain axial conduction effects on heat trans-
fer characters for water flow through a triangular chan-
nel at various Reynolds numbers. The wall temperatures
obtained from these two methods have a good agree-
ment and the local Nusselt number along the flow di-
rection has a singular point whose location is a function
of the Reynolds number. The bulk temperature of wa-
ter exceeds the temperature of the heated wall after this
singular point. Maranzana et al. [18] proposed two an-
alytical models that were utilized to analyze the influ-
ence of axial conduction on the wall using a new non-
dimensional number M (M =

Φcond//

Φconv
, Φcond// is wall ax-

ial heat flux and Φconv is the total convective heat flux.).
They found that the wall heat flux density becomes quite
non-uniform when the Reynolds number is small and
the heat transfer coefficient for small flow rates may
be underestimated when using experimental data with a
one-dimensional model to measure this coefficient. Gu
et al. [21] analyzed axial conduction impacts on convec-
tive heat transfer via the molecular dynamics simulation
method and believed that its influence should be consid-
ered in the range of Pe < 10. However, Hennecke[22]
stated that axial conduction might be neglected for the
end of the domain in channels if Pe > 20.

Shah et al. [23] reviewed previous works on the joint
effect of axial conduction and viscous dissipation on
heat transfer in ducts. Nield et al. [24] investigated
the effects of axial conduction and viscous dissipation
on forced heat transfer in a porous medium with a con-
stant temperature boundary condition and they obtained
an analytical expression for the local Nusselt number
as a function of non-dimensional numbers (Darcy num-
ber, Péclet number and Brinkman number). Hetsroni
et al. [25] also considered viscous dissipation and ax-
ial conduction (on the fluid and the wall, jointly and
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separately.) effects on microtube hydrodynamics in
asymptotic incompressible flow with constant physical
properties via assuming ∂T (x,y)

∂y ≈ 0 (this means fluid
temperature profile is 1D). In order to show the lo-
cal Nusselt number distribution as a function of non-
dimensional parameters (Knudsen number, Péclet num-
ber and Brinkman number), Jeong et al. [26] solved
the 2D non-dimensional energy equation using a segre-
gation variable method to make the dimensionless tem-
perature equal to the sum of an asymptotic temperature
θ1 and another variable θ2. The latter variable can be
expanded as an infinite series of eigenfunctions. These
eigenfunctions and their coefficients in the infinite se-
ries can be computed by invoking the shooting method
and the Galerkin method, respectively. Nevertheless,
the exact mathematical expression of temperature was
not given. Cetin et al. [27] adopted first-order veloc-
ity slip model without a temperature jump in order to
address the 2D energy equation of fluid flow in mi-
crotubes including viscous dissipation, axial conduc-
tion and rarefaction via a coordinate transformation ap-
proach [28, 29]. This may not precisely mimic convec-
tive heat transfer since fluid temperature jump is gen-
eral in the vicinity of the wall. Barışık et al. [30] de-
fined a non-dimensional coordinate system. Then, the
energy equation was solved analytically in this new di-
mensionless coordinate system. It was found that, when
the viscous dissipation is neglected, axial conduction ef-
fects need to be considered as the Péclet number is less
than 100. Haddout et al. [31] decomposed the energy
equation into a system of the first-order partial differ-
ential equations and then solved the latter in order to
show the effects of axial conduction, viscous dissipa-
tion and pressure work on heat transfer of a gaseous slip
flow. They indicated that the effects of axial conduction
on heat transfer should be considered in the range of
Pe < 10 as reported by [14, 15, 20, 21]. Clearly, a con-
sensus for the axial conduction impacts on heat transfer
has not been reached.

Unlike previous works reviewed above, in this study,
viscous dissipation term and axial conduction term are
considered simultaneously in the process of deriving the
analytical solution of the 2D energy equation with the
first-order velocity slip model and the temperature jump
boundary model. We give the analytical expression of
dimensionless 2D temperature profile via much simpler
separation of variables and substitution approaches and
apply it to examine the impacts of viscous dissipation,
axial conduction and rarefied effect on heat transfer. Re-
sults indicate good cooling effects can be achieved via
increasing Knudsen number, and reducing Brinkman
number and Péclet number. Effects of axial conduc-

tion on asymptotic Nusselt number become less impor-
tant when Pe > 10, while the impacts on local Nusselt
number and bulk dimensionless temperature can be ne-
glected only when Pe > 100. This clearly demonstrates
the impact of axial conduction on heat transfer.

2. Analytical solution of the 2D energy equation

The geometry of the parallel plate microchannel or
nanochannel considered in this paper and the flow chart
of the analytical solution are shown in Fig. 1 and Fig. 2,
respectively. Assuming that fluid property including

Figure 1: Definition sketch

density, specific heat, thermal conductivity and dynamic
viscosity, are constants, the 2D energy equation includ-
ing axial conduction and viscous dissipation, as well as
boundary conditions can be established as

ρcpu
∂T
∂x

= k
∂2T
∂x2 + k

∂2T
∂y2 + µ

(
∂u
∂y

)2

, (1)

T = Ti at x = 0, (2a)
∂T
∂y

= 0 at y = 0, (2b)

T − Tw = −
2 − σT

σT

2γ
γ + 1

λ

Pr
∂T
∂y

at y = H. (2c)

In Eq. (1), ρcpu ∂T
∂x is the convective term, and the three

terms on the right side represent axial conduction, heat
conduction normal to the wall and viscous dissipation,
respectively. The first and second boundary condition
in Eq. (2a) and Eq. (2b) are the uniform temperature at
the channel entrance and symmetry temperature at the
centreline, respectively. The third boundary condition
shown in Eq. (2c) is the first-order temperature jump
model derived from an energy balance at the wall by
Kennard [32].
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2D energy equation: T (x, y) = 0

θ (ξ, η) = 0

θ (ξ, η) = θ1 (η) + θ2 (ξ, η)f
[
θ1 (η)

]
= 0

θ1 (η) = · · ·

θ (ξ, η) = θ1 (η) + θ2 (ξ, η)

f
[
θ2 (ξ, η)

]
= 0

θ2 =
∑

An fn (η) exp
(
−β2

nξ
)

second-order ODE: F
[
fn (η)

]
= 0

fn (η) = K
[
gn (zn) , βn, η

]
, zn = Z (βn, η)

KCHE: G
[
gn (zn)

]
= 0

gn (zn) = · · ·

fn (η) = · · ·

Mathematica: βn

Gram-Schmidt orthogonal: An

Figure 2: Flow chart of the analytical solution of the 2D energy equation (KCHE stands for the Kummer confluent hypergeometric equation).

We define the following dimensionless variables

θ =
T − Tw

Ti − Tw
, Br =

µu2
ave

k (Ti − Tw)
,

ξ =
x

Re · Pr · H
, η =

y
H
.

(3)

The energy equation and boundary conditions can
thus be non-dimensionalized as

1
4

u∗
∂θ

∂ξ
=

1
Pe2

∂2θ

∂ξ2 +
∂2θ

∂η2 + Br
(
∂u∗

∂η

)2

, (4)

θ = 1 at ξ = 0, (5a)
∂θ

∂η
= 0 at η = 0, (5b)

θ = −4C1
∂θ

∂η
at η = 1, (5c)

where the non-dimensionless velocity u∗ is given by
[26]

u∗ =
u

uave
=

3
2

1 − η2 + 8 2−σ
σ

Kn

C2
. (6)

θ can be decomposed as an asymptotic temperature
θ1 (ξ → +∞) and a transient term

θ = θ1 + θ2. (7)

When ξ → +∞, there is

∂θ1

∂ξ
= 0,

∂2θ1

∂ξ2 = 0. (8)

Subsequently, after substituting Eq. (7) and Eq. (8) into
Eq. (4) and Eqs. (5a) to (5c), we obtain two sets of di-
mensionless energy equations and boundary conditions
for θ1 and θ2

∂2θ1

∂η2 = −Br
(
∂u∗

∂η

)2

, (9)

∂θ1

∂η
= 0 at η = 0, (10a)

θ1 = −4C1
∂θ1

∂η
at η = 1, (10b)

and

1
4

u∗
∂θ2

∂ξ
−

1
Pe2

∂2θ2

∂ξ2 −
∂2θ2

∂η2 = 0, (11)
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∂θ2

∂η
= 0 at η = 0, (12a)

θ2 = −4C1
∂θ2

∂η
at η = 1. (12b)

Through solving Eq. (9) with boundary conditions
Eqs. (10a) and (10b), the asymptotic temperature θ1 is
obtained,

θ1 =
Br
C2

2

(
−3
4
η4 +

3
4

+ 12C1

)
. (13)

According to references [33–36], the solution θ2 of the
homogeneous partial differential Eq. (11) can be written
as

θ2 =

∞∑
n=1

An fn(η)exp
(
−β2

nξ
)
. (14)

In this infinite series, each term consists of a magnitude
An, a function fn and an exponential term depending on
ξ. After substituting Eq. (14) into Eq. (11), Eq. (12a)
and Eq. (12b), the following equation and boundary
conditions can be obtained

d2 fn(η)
d η2 + β2

n

(
1
4

u∗ +
β2

n

Pe2

)
fn(η) = 0, (15)

d fn(η)
d η

= 0 at η = 0, (16a)

fn(η) = −4C1
d fn(η)

d η
at η = 1, (16b)

where fn(η) and βn are eigenfunctions and eigenvalues,
respectively.

Now, we define two new variables

fn(η) = exp
(
−1
2
βn

√
k2η

2
)

gn(zn), (17a)

zn = βn

√
k2η

2. (17b)

With the dimensionless velocity in Eq. (6), boundary
condition in Eq. (16a) and variable transformation in
Eqs. (17a) and (17b), Eq. (15) can be reformulated as

zn
d2gn(zn)

dz2
n

+

(
1
2
− zn

)
dgn(zn)

dzn
− gn(zn) ·

−β3
n − k1Pe2βn − k2Pe2βn + Pe2 √k2

4Pe2
√

k2
= 0.

(18)

Eq. (18) is the standard confluent hypergeometric equa-
tion, whose solution can be expressed as

gn(zn) = 1F1(an, bn; zn) =

∞∑
m=0

(an)(m)(zn)m

(bn)(m)m!
, (19)

where 1F1(an, bn; zn) is the confluent hypergeometric
function [37] and an and bn are

an =
−β3

n − k1Pe2βn − k2Pe2βn + Pe2 √k2

4Pe2
√

k2
,

bn =
1
2
.

(20)

After substituting Eq. (19) into Eq. (17a), the eigenfunc-
tions fn(η) become

fn(η) = exp
(
−1
2
βn

√
k2η

2
) ∞∑

m=0

(an)(m)(zn)m

(bn)(m)m!
. (21)

These eigenvalues βn can be determined via applying
the boundary condition in Eq. (16b).

Therefore, θ2 in Eq. (14) can be calculated from

θ2 =

∞∑
n=1

An

 ∞∑
m=0

(an)(m)(zn)m

(bn)(m)m!
exp

(
−1
2
βn

√
k2η

2
) ·

exp
(
−β2

nξ
)
,

(22)

where an, bn, and zn are shown in Eq. (20) and Eq. (17b),
respectively.

Substituting Eq. (22) and Eq. (13) into Eq. (7), we
can obtain

θ =
Br
C2

2

(
−3
4
η4 +

3
4
− 12C1

)
+

∞∑
n=1

An· ∞∑
m=0

(an)(m)(zn)m

(bn)(m)m!
exp

(
−1
2
βn

√
k2η

2
) exp

(
−β2

nξ
)
.

(23)

The summation constants An may be obtained from
the boundary condition in Eq. (5a) by using the Gram-
Schmidt orthogonal approach which is illustrated in de-
tail in Appendix A. The algorithm of this method is out-
lined in Appendix B.

Once unknown eigenvalues βn and summation coeffi-
cients An are determined, we can obtain the dimension-
less temperature θ in the microchannel or nanochannel.
The dimensionless bulk temperature θb for fluid flow
through the parallel channel and the local Nusselt num-
ber which is the ratio of convective to conductive heat
transfer normal to the wall boundary can be calculated
from following equations, respectively:

θb (ξ) =

∫ 1

0
u∗ (η) θ (ξ, η) dη, (24)
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NuL =
hDH

k
= −

4
θb (ξ)

∂θ(ξ, η)
∂η

∣∣∣∣∣
η=1

. (25)

The bulk temperature Tb for fluid is

Tb (x) =

∫ H
0 ρu (y) WcpT (x, y) dy∫ H

0 ρu (y) Wcp dy

=

∫ H
0 u (y) T (x, y) dy∫ H

0 u (y) dy

=
1

Huave

∫ H

0
u (y) T (x, y) dy

=
1
H

∫ H

0
u∗ (y) T (x, y) dy.

(26)

3. Validation of the analytical solution

The infinite series in Eq. (22) can be truncated to the
first N terms to approximate the non-dimensional tem-
perature θ2 with the reduced computational cost. At
N = 20, the dimensionless bulk temperature can be con-
verged to 5 significant figures. Then N = 20 is used
in the following sections, the same as adopted in refer-
ences [30, 36].

Then, we compare our results with those of Jeong et
al. [26] to validate the accuracy of our non-dimensional
analytical solution of the energy equation. After sub-
stituting the first 20 eigenvalues and summation co-
efficients determined via using the Gram-Schmidt or-
thogonal approach (see AppendixB) into Eq. (25) and
Eq. (24), the rarefied effect on local Nusselt and how
viscous dissipation affects the fluid bulk temperature
distribution are shown in Fig. 3 and Fig. 4, respectively.
It can be seen that our results are in excellent agreement
with the reference [26].

In addition to that, we also redefine non-dimensional
variables and re-address the dimensionless energy equa-
tion in literature [30]. The asymptotic Nusselt number
at P̃e = 1.0,Kn = 0, Br = 0 computed using the present
approach is 4.0273, which is nearly equal to 4.027 from
the reference [30].

All comparisons, therefore, indicate that our non-
dimensional analytical solution has sufficient accuracy.
In the following section, this approach is utilized to an-
alyze how viscous dissipation, axial conduction and rar-
efied affect heat transfer characteristics.

ξ

Figure 3: Effects of rarefied on local Nusselt number when axial con-
duction and viscous dissipation are neglected.

ξ

θ

Figure 4: Viscous dissipation effects on fluid bulk temperature.

4. Results on the overshoot of fluid temperature

The key finding of the present work is that the fluid
bulk temperature reaches a value higher than the con-
stant wall temperature, even when the fluid at the inlet
is cooler than the wall, as shown in Fig. 5. This value is
constant at a given set of Pe, Br and Kn, which repre-
sent the viscous dissipation, axial condition and rarified
effects.

To detailedly illustrate this convergence development
of the fluid bulk temperature at various inlet conditions,
we test the developments of Tb at various viscous con-
ditions represented by |Br|, as shown in Fig. 6. The rar-
ified effect and axial conduction are excluded by setting
Kn = 0 and Pe = 106, as will be explained later in the
following sections. Br > 0 and Br < 0 correspond to
the cases where the fluid inlet temperature is higher and
lower than the constant wall temperature, respectively,
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as defined in Eq. (3). For both cases, the asymptotic
dimensionless fluid temperature converges to the same
value θbF (θbF =

TbF−Tw
Ti−Tw

). This result is robust even
when the initial conditions (∆T and ∆T ′ in Fig. 6) are
varied. A similar temperature overshoot without an ex-
act value was reported before in separated cooling and
heating tests [38, 39]. In the present study, it is clarified
that, because viscous dissipation generates an additional
amount of heat, the asymptotic temperature of the fluid
is always higher than the constant wall temperature, re-
gardless of the inlet condition of the fluid. Further, the
exact temperature overshoot and its dependence on Pe,
Br and Kn are obtained. In addition, care must be taken
that there is a critical point denoted as ξc in Fig. 6 as
reported in literatures [17, 24, 25]. The fluid bulk tem-
perature is equal to the wall temperature at this point for
Br < 0 cases. Clearly, ξc can be interpreted as the ef-
fective length of the channel for cooling. It is also seen
in the figure that a higher temperature overshoot cor-
responds to a lower length of the channel for effective
cooling.

Figure 5: The contour of temperature in the 2D channel at Pe =

106,Kn = 0.00, Br = −1.0 (The inlet temperature of the fluid and
the wall temperature are 300 K and 350 K, respectively).

Then we turn to the development of the fluid non-
dimensional bulk temperature at more general condi-
tions. Fig. 7 shows the profile of the bulk temperature at
various viscous and rarified conditions, while the axial
conduction is still neglected by setting Pe = 106. At
Br = 0, where there is no viscous dissipation, θbF = 0
for all the cases considered. With increasing Br, θbF in-
creases almost linearly for all Kn considered. Also, θbF

roughly reduces at higher Kn. Here Kn quantifies the
rarified effects as will be shown later and as it increases,
the fluid flow moves from the continuous flow regime
(Kn = 0 corresponds to the continuum flow regime as

ξ

∆

ξ

∆

Figure 6: Fluid dimensionless bulk temperature profile.

θ

Figure 7: Fluid asymptotic dimensionless bulk temperature profile
when neglecting axial conduction.

reported by [40]) to the slip-flow regime (see Fig. 7).
Similar results (not shown here) have been observed for
Pe = 10, where the axial conduction effect is activated.

These observations indicate that the magnitude of the
overshooting fluid dimensionless bulk temperature is a
linear function of Br, and it vanishes when the viscous
dissipation is neglected. This overshoot reduces with
Kn, the rarified effect, but is insensitive to Pe, the axial
conduction effect.

The critical point ξc observed in Fig. 6, at which the
temperature of fluids is equal to the wall temperature,
deserves further studies and the variation of ξc with re-
spect to Br, Pe and Kn is investigated. In Fig. 8a, 36
cases (considering six values of Kn and six values of
Br at each Kn) are studied to reveal effects of Kn and
Br on ξc when neglecting axial conduction by setting
Pe = 106, and then 45 cases including five values of Kn
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ξ

(a)

ξ

(b)

Figure 8: Distribution of the critical length ξc. (a) ξc changes with Br
and Kn when neglecting axial conduction. (b) ξc profile at different
Pe.

and Br (nine values of Pe at each group of Kn and Br)
are conducted to further examine how Pe affects ξc in
Fig. 8b. Clearly, ξc reduces with larger Br and Pe and
smaller Kn, corresponding to stronger viscous dissipa-
tion, weaker axial conduction and weaker rarified effect,
respectively.

5. Parameter dependence of the heat transfer

It has been shown that three parameters Kn, Pe and
Br have critical roles in the temperature overshoot. Each
of them will be studied individually in this section to
illustrate their effects on the heat transfer between the
fluid and the channel, quantified by the local and asymp-
totic Nusselt number, dimensionless temperature jump
and non-dimensional bulk temperature profiles.

5.1. Effect of viscous dissipation

The effect of Br on NuL when neglecting the rarefied
effect and axial conduction is illustrated in Fig. 9. Based
on Eq. (3), Br > 0 and Br < 0 mean that the inlet tem-
perature of the fluid is higher or lower than the uniform
wall temperature, respectively. Br = 0 indicates that the
viscous dissipation is not taken into consideration. It
can be seen from the figure that if neglecting Kn and Pe
effects the asymptotic Nusselt number with or without
viscous dissipation is 17.5 or 7.54 (the latter value is in
agreement with previous studies [26, 41], which further
validates the present analytical solution approach of the
2D energy equation), respectively. Clearly, these val-
ues suggest that Br = 0 is a singular point where the
change of Nusselt number is discontinuous. This sin-
gularity can be validated analytically. After substituting
Eq. (7) and Eq. (24) into Eq. (25), NuL can be written
as

NuL =

−4
[
∂θ1(η)
∂η

∣∣∣∣
η=1

+
∂θ2(ξ,η)
∂η

∣∣∣∣
η=1

]
∫ 1

0 u∗ (η)
[
θ1(η) + θ2(ξ, η)

]
dη
, (27)

where θ1 and θ2 are shown in Eq. (13) and Eq. (22),
respectively. For all cases mentioned in this sub-section,
NuL is

NuL =

−4
[
−3Br +

∂θ2(ξ,η)
∂η

∣∣∣∣
η=1

]
24
35 Br +

∫ 1
0 u∗ (η) θ2(ξ, η) dη

. (28)

When Br , 0 and ξ → +∞, θ2(ξ, η) tends to 0. Hence,
the asymptotic Nusselt number is

NuF =
12Br
24
35 Br

= 17.5. (29)

Obviously, if Br = 0, we have

NuF = lim
ξ→+∞


−4 ∂θ2(ξ,η)

∂η

∣∣∣∣
η=1∫ 1

0 u∗ (η) θ2(ξ, η) dη

 = 7.54. (30)

Moreover, it is worth noting that Br < 0 induces a
singular point where NuL approximates infinity. This is
caused by the definition of the Nusselt number (NuL =

− 4
θb(ξ)

∂θ(ξ,η)
∂η

∣∣∣∣
η=1

). There is a point where the dimension-

less bulk temperature of fluid is equal to wall tempera-
ture (so θb is equal to 0.) as can be found in Fig. 10.

The bulk dimensionless temperature profiles at vari-
ous Br number without Pe and Kn effect are described
in Fig. 10. The difference between asymptotic fluid
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ξξ

Figure 9: Viscous dissipation effect on local Nusselt number

ξ

θ

θ

ξ

Figure 10: Viscous dissipation effect on bulk dimensionless tempera-
ture

bulk temperature and inlet temperature of fluid increases
with a reduction in Br if Br > 0. The asymptotic fluid
temperature equals to wall temperature for Br = 0 cor-
responding to neglecting viscous dissipation. As men-
tioned in Section 4 for Br < 0 cases, it can be still ob-
served that there is a critical point ξc. θb equal to 0 at
this point, which means the fluid temperature equal to
the wall temperature. For ξ > ξc, θb will be less than 0,
suggesting that the fluid temperature exceeds the wall
temperature, and the effective cooling length is reduced
with an increase in |Br|. These observations indicate that
the cooling effect will be over-estimated when neglect-
ing viscous dissipation.

5.2. Effect of axial conduction

It is well known that axial conduction can rise in
instances of small Re and Pr since thermal diffusion

becomes more important than advection. The dimen-
sionless Pe is usually applied to characterize the ef-
fect of axial conduction. As discussed in the intro-
duction, there has been no consensus on the impact of
axial conduction on heat transfer. Hence, nine cases
(Pe = 1, Pe = 2, Pe = 3, Pe = 5, Pe = 7, Pe = 10, Pe =

20, Pe = 100, Pe = 106) are performed to clarify its
influence.

ξ

(a)

(b)

Figure 11: Local Nusselt number at various Pe number when consid-
ering rarefied effects and viscous dissipation (a) or not (b).

As shown in Fig. 11a, local Nusselt numbers for
nine cases converge to various asymptotic values when
neglecting the rarefied effect and viscous dissipation.
However, for Pe = 1 or below, Nu is much larger
than other cases especially in the thermal developing
region. δNu (defined as the relative difference of NuL

, δNu =
NuL– NuL |Pe=106

NuL |Pe=106
× 100%) decreases rapidly and

then maintains a constant level along the flow direc-
tion. The value of δNu is below 10% for Pe = 20,
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Pe = 10, Pe = 7, Pe = 5, Pe = 3 and Pe = 2 at ax-
ial non-dimensional coordinate ξ > 0.039, ξ > 0.081,
ξ > 0.118, ξ > 0.17, ξ > 0.301, ξ > 0.478, respec-
tively. δNu for Pe = 100 is always less than 7%, while
δNu for Pe = 1 is greater than 10% along the flow direc-
tion. This indicates that: (1) the axial conduction effect
on asymptotic Nusselt number NuF can be neglected if
Pe > 10. (2) its influence on local and asymptotic Nus-
selt number is negligible when Pe > 100. (3) if Pe < 1,
the axial conduction must be considered.

The variation of NuL is examined at various values
of Pe with Kn = 0.04 and Br = −0.4 to take the rar-
efied effect and viscous dissipation into consideration
in Fig. 11b. When ξ > 0.512 (or ξ > 0.375), δNu at
Pe = 10 (or Pe = 20) is less than 10%. Also, δNu at
Pe = 1 is always high than 50% and δNu at Pe = 100 is
below 5%. Hence, similar conclusions about the axial
conduction effect can be drawn when considering the
rarefied effect and viscous dissipation. The consider-
ation of Kn and Br effects induces a singular point at
which NuL approaches infinity because the denominator
θb vanishes (see Eq. (25)) at the critical point ξc as can
be seen from Fig. 12b. Moreover, ξc gradually moves
toward the inlet of the channel at larger Pe, which is in
agreement with Fig. 8b.

Then the effects of axial conduction on the bulk non-
dimensional temperature θb are examined, as shown in
Fig. 12a. Here the rarefied effect and viscous dissipa-
tion are not considered by setting Kn = 0 and Br = 0.
It is seen from the figure that, the rate of bulk temper-
ature variation for Pe = 1 is obviously much slower
than the other cases, as convection plays a more impor-
tant role than conduction for extremely small Pe num-
ber. The relative difference of bulk temperature profile
δθ (δθ =

θb− θb |Pe=106

θb |Pe=106
) for Pe = 100 is less than 0.04 in

all the fluid flow direction although θb|Pe=106 may cause
other mathematical difference as this value tends to be
0 at the end of the channel. The effects of axial con-
duction on bulk dimensionless temperature, therefore,
are negligible in the range Pe > 100. When the Kn ef-
fect and Br effect are accounted, as shown in Fig. 12b,
similar results on the axial conduction can be observed.

5.3. Rarefied effect

The effect of Kn number characterizing rarefaction
on the local Nusselt number is examined, as described
in Fig. 13. Pe = 106 and Br = 0 are adopted, lead-
ing to negligible axial conduction and viscous dissipa-
tion. Along the ξ axis, the Nusselt number only varies
around the entrance and then reaches a constant value.
The asymptotic Nusselt number NuF is 7.54 at Kn = 0

ξ

θ

θ

(a)

(b)

Figure 12: Bulk dimensionless temperature profile when neglecting
rarefied effects and viscous dissipation (a) or not (b).

as reported in Section 5.1. Also, NuF decreases nonlin-
early with the increasing of Kn.

As shown in Fig. 14, unlike the Nusselt number
which approaches quickly to an asymptotic value in the
axial direction, the fluid temperature jump occurs over
the entire channel and becomes more obvious at higher
Kn number. In addition, the temperature jump θs is 0
for Pe = 106, Br = 0.00,Kn = 0.00, and it can be also
seen obviously that the fluid temperature near the wall
is equal to zero from Eq. (5c) for the same case. This
indicates that the truncation of the infinite series in Sec-
tion 2 does not cause a significant difference in the an-
alytical solution of the dimensionless energy equation
and further validates the present method.

Fig. 15 is for the non-dimensional fluid bulk temper-
ature distribution along the flow direction without ax-
ial conduction and viscous dissipation. Similarly with
θs, the bulk temperature also varies across the whole
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ξ

Figure 13: Rarefied effect on local Nusselt number

ξ

θ

Figure 14: Rarefied effect on dimensionless temperature jump at the
wall

ξ

θ

Figure 15: Rarefied effect on bulk dimensionless temperature

channel. At Kn = 0, the bulk temperature keeps a
constant value in the second half of the channel. This
indicates that, in this continuous regime, heat transfer
between the fluid and the solid materials only occurs
around the first half of the channel. As Kn increases,
however, the bulk temperature variation along the axis
becomes more mild, revealing the potential to deliver
cooling effect along the whole channel. This will be
particularly useful when cooling a hot surface through
micro or nanochannels.

6. Conclusions

We apply the separation of variables method and the
variable substitution approach to obtain an infinite se-
ries solution of the 2D energy equation with a first-order
velocity slip model and a first-order temperature jump
model. In this novel approach, firstly, the energy equa-
tion is represented by the sum of two sub-functions via
the separation of variables method. One subfunction
can be solved immediately, and the other one can be
written as the infinite series form whose terms consist
of an exponential function, an unknown function and an
underdetermined coefficient. The undetermined func-
tion can be represented by the product of the Kummer’s
confluent hypergeometric function and another expo-
nential function through the variable substitution ap-
proach. Then, the unknown coefficient is determined
via applying the Gram-Schmidt orthogonalization ac-
companied with Gauss-Legendre quadrature. Finally,
the analytic solution of the energy equation is obtained,
and applied to study effects of the viscous dissipation,
axial conduction and rarefaction on heat transfer. The
following conclusions can be drawn from this study:

• The asymptotic non-dimensional bulk temperature of
fluid |θbF | converges to a constant value higher than
the wall temperature regardless of the inlet condition
at a given set of Pe, Br (Br , 0) and Kn. This value
increases linearly with Br, drops slightly at higher
Kn, and is almost independent on Pe.

• If a fluid is used to cool the wall with uniform tem-
perature, there is a critical point where the fluid bulk
temperature reaches the same value as wall temper-
ature and the Nusselt number becomes ill-defined at
this point. This point moves much closer to the chan-
nel entrance at increasing |Br| or Pe. On the contrary,
the point moves towards the end of the channel with
increasing Kn.

• By eliminating the rarefied effect and axial conduc-
tion, the asymptotic Nusselt number with or without
viscous dissipation is 17.5 or 7.54, respectively.
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• The axial conduction effect on asymptotic Nusselt
number can be neglected if Pe > 10 while the ef-
fect of axial conduction on the local Nusselt number
and bulk non-dimensional temperature are negligible
when Pe > 100.

• The rarified effect on the local Nusselt number is lo-
calized around the entrance of the channel, but is
across the whole channel for the bulk temperature and
temperature jump. At a larger Kn, the bulk tempera-
ture variation along the axis becomes milder, reveal-
ing the potential to deliver cooling effect along the
whole channel.
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Appendix A. Gram-Schmidt orthogonal approach

Let us assume a series of orthogonal function gi to
make

θ2 =
∑

An fnexp(−β2
nξ) =

∑
Bngnexp(−β2

nξ), (A.1)

where Bn is also the summation coefficient. The relation
between gi and eigenfunction is

g1 = f1 (A.2a)
g2 = f2 − α21 f1 (A.2b)
g3 = f3 − α31 f1 − α32 f2 (A.2c)
g4 = f4 − α41 f1 − α42 f2 − α43 f3 (A.2d)
...

gN = fN −

N−1∑
j=1,N>=2

αN j f j, (A.2e)

where αi j are constants. In the following step, efforts
are made to calculate these constants before determin-
ing orthogonal functions gi. For convenience, we apply
a symbol ⊗ and define∫ 1

0
f · g dη = f ⊗ g. (A.3)

Now by multiplying Eq. (A.2b) with g1 and integrating
over the domain (0 6 η 6 1) based on the property of
orthogonal function, we can obtain

g2 ⊗ g1 = f2 ⊗ g1 − α21 f1 ⊗ g1 = 0, (A.4)

and then α21 is

α21 =
f2 ⊗ g1

f1 ⊗ g1
. (A.5)

Then we respectively multiply Eq. (A.2c) with g1, g2
and perform integration in domain (0 6 η 6 1)

g3 ⊗ g1 = f3 ⊗ g1 − α31 f1 ⊗ g1 − α32 f2 ⊗ g1 = 0 (A.6a)
g3 ⊗ g2 = f3 ⊗ g2 − α31 f1 ⊗ g2 − α32 f2 ⊗ g2 = 0 (A.6b)

The above Eqs. (A.6a) and (A.6b) can be written as a
matrix

[
f1 ⊗ g1 f2 ⊗ g1
f1 ⊗ g2 f2 ⊗ g2

] [
α31
α32

]
=

[
f3 ⊗ g1
f3 ⊗ g2

]
. (A.7)

Similarly, we can also multiply respectively Eq. (A.2d)
with g1, g2 and g3, and Eq. (A.2e) with g1, g2, · · · gN−1,
integrate all terms in these equations over the zone (0 6
η 6 1) and rearrange these into matrix form

 f1 ⊗ g1 f2 ⊗ g1 f3 ⊗ g1
f1 ⊗ g2 f2 ⊗ g2 f3 ⊗ g2
f1 ⊗ g3 f2 ⊗ g3 f3 ⊗ g3


α41
α42
α43

 =

 f4 ⊗ g1
f4 ⊗ g2
f4 ⊗ g3

 (A.8a)

...
f1 ⊗ g1 f2 ⊗ g1 · · · fN−1 ⊗ g1
f1 ⊗ g2 f2 ⊗ g2 · · · fN−1 ⊗ g2
...

...
...

...
f1 ⊗ gN−1 f2 ⊗ gN−1 · · · fN−1 ⊗ gN−1


αN1
αN2
...

αNN−1

 =


fN ⊗ g1
fN ⊗ g2
...

fN ⊗ gN−1

 . (A.8b)

In addition to that, according to Eqs. (A.2a) to (A.2e)
and property of orthogonal function, we can get

fm ⊗ gn = 0, i f (m < n). (A.9)
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Hence, Eq. (A.7) and Eqs. (A.8a) and (A.8b) could be
simplified to

[
f1 ⊗ g1 f2 ⊗ g1

0 f2 ⊗ g2

] [
α31
α32

]
=

[
f3 ⊗ g1
f3 ⊗ g2

]
, (A.10a)

 f1 ⊗ g1 f2 ⊗ g1 f3 ⊗ g1
0 f2 ⊗ g2 f3 ⊗ g2
0 0 f3 ⊗ g3


α41
α42
α43

 =

 f4 ⊗ g1
f4 ⊗ g2
f4 ⊗ g3

 (A.10b)


f1 ⊗ g1 f2 ⊗ g1 · · · fN−1 ⊗ g1

0 f2 ⊗ g2 · · · fN−1 ⊗ g2
...

...
...

...
0 0 · · · fN−1 ⊗ gN−1

 ·
αN1
αN2
...

αNN−1

 =


fN ⊗ g1
fN ⊗ g2
...

fN ⊗ gN−1

 . (A.10c)

These above equations can be simply written as a matrix
equation

L · V = R. (A.11)

From Eqs. (A.2a) to (A.2e) and (A.10a) to (A.10c), all
coefficients αnm and orthogonal functions gi could be
obtained. In the following section, we will make effort
to determine coefficients Bn from initial boundary con-
dition ξ = 0, θ = 1. Based on θ = θ1 + θ2 and the
boundary condition, we can get

θ = θ1 + θ2 = θ1 +
∑

An fnexp(−β2
nξ)

= θ1 +
∑

Bngnexp(−β2
nξ) = 1.

(A.12)

Multiply Eq. (A.12) with gn and conducting integration
in zone [0, 1] and then coefficients Bn may be calculated
from

Bn =
(1 − θ1) ⊗ gn

gn ⊗ gn
. (A.13)

When ξ = 0, the Eq. (A.1) is transformed into

∑
An fn =

∑
Bngn. (A.14)

Then, Eqs. (A.2a) to (A.2e) are substituted in Eq. (A.14)

∑
An fn =

∑
Bngn

= B1g1 + B2g2 + B3g3 + B4g4 + · · · + BNgN

= B1 f1 + B2 ( f2 − α21 f1) + B3 ( f3 − α31 f1 − α32 f2)

+ B4 ( f4 − α41 f1 − α42 f2 − α43 f3)

+ · · ·

+ BN

 fN −

N−1∑
j=1,N>=2

αN j f j


= (B1 − α21B2 − α31B3 − α41B4 − · · · − αN1BN) f1
+ (B2 − α32B3 − α42B4 − · · · − αN2BN) f2
+ (B3 − α43B4 − · · · − αN3BN) f3
+ (B4 − · · · − αN4BN) f4
+ · · ·

+ BN fN .

(A.15)

Hence, coefficients An become

A1 = B1 − α21B2 − α31B3 − α41B4 − · · · − αN1BN

A2 = B2 − α32B3 − α42B4 − · · · − αN2BN

A3 = B3 − α43B4 − · · · − αN3BN

A4 = B4 − · · · − αN4BN

· · ·

AN = BN .

(A.16)

That is

An = Bn −

N∑
m=n+1

αmnBm at 1 6 n 6 N − 1

AN = BN .

(A.17)

Appendix B. The algorithm about applying the
Gram-Schmidt orthogonal approach
to determine summation constants

Start of the algorithm determining coefficients An by
applying Gram-Schmidt orthogonal procedure.

Step 1. Determine eigenvalues βn (1 6 n 6 N) from
the boundary condition in Eq. (16b). N is the
number of eigenvalues or eigenfunctions.

Step 2. Define a user function that can integrate the
product of two arbitrary functions over the arbi-
trary domain [a, b](a < b) by using the Gauss-
Legendre quadrature method as this method can
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calculate numerical integration with high accu-
racy and short CPU times.

Step 3. Input βn, Pe, an, bn, N to obtain fn(η).
Step 4. Calculate g1 on the basis of Eq. (A.2a), α21

from on the basis of Eq. (A.5)and g2 based on
Eq. (A.2b) respectively. Store g1 and g2 into a
list named g.

Step 5. Set an index number p=3.
Step 6. Apply the user definition integration function in

Step 2 to determine the left matrix L, the right
matrix R and vector V in Eq. (A.11) and gp.
Store gp in a list g and set p = p + 1.

Step 7. Compare the p and N
if (p 6 N)
a go to Step 6.
else
a move to the next step.

Step 8. Calculate coefficients Bn based on boundary
condition.

Step 9. Determine coefficients An from Eq. (A.17).

End of the algorithm.

Appendix C. First 20 eigenvalues and coefficients

Two tables given below show the first 20 eigenvalues
and summation coefficients determined via using the
Gram-Schmidt orthogonal approach at various Knudsen
number and Brinkman number.

Table C.1: First 20 eigenvalues and coefficients for Pe = 106, Br =

0.00

n Kn=0.00 Kn=0.04 Kn=0.08

βn An βn An βn An

1 2.7460 1.2010 2.3336 1.1768 2.0341 1.1481
2 9.2588 -0.2997 8.1700 -0.2517 7.5513 -0.2007
3 15.7882 0.1616 14.1779 0.1160 13.4858 0.0781
4 22.3192 -0.1085 20.2895 -0.0667 19.6004 -0.0401
5 28.8507 0.0810 26.4707 0.0431 25.7994 0.0241
6 35.3824 -0.0644 32.6992 -0.0299 32.0425 -0.0159
7 41.9142 0.0535 38.9603 0.0219 38.3110 0.0113
8 48.4460 -0.0458 45.2446 -0.0167 44.5954 -0.0084
9 54.9779 0.0401 51.5457 0.0131 50.8901 0.0065
10 61.5098 -0.0359 57.8592 -0.0106 57.1921 -0.0052
11 68.0417 0.0326 64.1822 0.0087 63.4994 0.0042
12 74.5737 -0.0301 70.5125 -0.0073 69.8104 -0.0035
13 81.1056 0.0282 76.8486 0.0062 76.1244 0.0030
14 87.6376 -0.0268 83.1893 -0.0054 82.4407 -0.0025
15 94.1695 0.0258 89.5338 0.0047 88.7588 0.0022
16 100.7015 -0.0253 95.8814 -0.0042 95.0784 -0.0019
17 107.2334 0.0254 102.2315 0.0038 101.3991 0.0017
18 113.7654 -0.0263 108.5839 -0.0035 107.7208 -0.0016
19 120.2973 0.0290 114.9380 0.0034 114.0434 0.0015
20 126.8293 -0.0380 121.2937 -0.0037 120.3667 -0.0015
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18 113.7654 -0.0263 113.7654 -0.0262 113.7654 -0.0264
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