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Supplementing a differential equation with delays results in an infinite-
dimensional dynamical system. This property provides the basis for a
reservoir computing architecture, where the recurrent neural network is
replaced by a single nonlinear node, delay-coupled to itself. Instead of
the spatial topology of a network, subunits in the delay-coupled reser-
voir are multiplexed in time along one delay span of the system. The
computational power of the reservoir is contingent on this temporal mul-
tiplexing. Here, we learn optimal temporal multiplexing by means of a
biologically inspired homeostatic plasticity mechanism. Plasticity acts
locally and changes the distances between the subunits along the de-
lay, depending on how responsive these subunits are to the input. After
analytically deriving the learning mechanism, we illustrate its role in
improving the reservoir’s computational power. To this end, we inves-
tigate, first, the increase of the reservoir’s memory capacity. Second, we
predict a NARMA-10 time series, showing that plasticity reduces the nor-
malized root-mean-square error by more than 20%. Third, we discuss
plasticity’s influence on the reservoir’s input-information capacity, the
coupling strength between subunits, and the distribution of the readout
coefficients.

1 Introduction

Reservoir computing (RC) (Jaeger, 2001; Maass, Natschläger, & Markram,
2002; Buonomano & Maass, 2009; Lukoševičius & Jaeger, 2009) is a
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computational paradigm that provides both a model for neural informa-
tion processing (Häusler & Maass, 2007; Karmarkar & Buonomano, 2007;
Yamazaki & Tanaka, 2007; Nikolić, Häusler, Singer, & Maass, 2009) and
powerful tools for carrying out a variety of spatiotemporal computations.
This includes time series forecasting (Jaeger & Haas, 2004), signal gener-
ation (Jaeger, Lukoševičius, Popovici, & Siewert, 2007), pattern recogni-
tion (Verstraeten, Schrauwen, & Stroobandt, 2006), and information storage
(Pascanu & Jaeger, 2011). RC also affords a framework for advancing and
refining our understanding of neuronal plasticity and self-organization in
recurrent neural networks (Lazar, Pipa, & Triesch, 2007, 2009; Toutounji &
Pipa, 2014).

This article presents a biologically inspired neuronal plasticity rule to
boost the computational power of a novel RC architecture that is called
a single node delay-coupled reservoir (DCR). The DCR realizes the same
RC concepts using a single nonlinear node with delayed feedback (Ap-
peltant et al., 2011). This simplicity makes the DCR particularly appealing
for physical implementations, which has already been demonstrated on
electronic (Appeltant et al., 2011), optoelectronic (Larger et al., 2012; Paquot
et al., 2012), and all-optical hardware (Brunner, Soriano, Mirasso, & Fischer,
2013). The optoelectronic and all-optical implementations use a semicon-
ductor laser diode as the nonlinear node and an optical fiber as a delay line,
allowing them to maintain high sampling rates. They are also shown to
compare in performance to standard RC architectures in benchmark com-
putational tasks.

The DCR operates as follows. Different nonlinear transformations and
mixing of stimuli from the past and the present are achieved by sampling
the DCR’s activity at virtual nodes (v-nodes), along the delay line. While
neurons of a recurrent network are mixing stimuli via their synaptic cou-
pling, which forms a network topology, the v-nodes of a DCR are mix-
ing signals via their (nonlinear) temporal interdependence. Therefore, the
v-nodes’ temporal distances from one another, henceforth termed v-delays,
are made shorter than the characteristic timescale of the nonlinear node.
Thus, v-nodes become analogous to the connections of a recurrent net-
work, providing the DCR with a certain network-like topology. In analogy
to the spatial distribution of input in a classical reservoir, stimuli in a DCR
are temporally multiplexed (see Figure 1). To process information, the ex-
ternal stimuli are applied to the dynamical system, thereby perturbing the
reservoir dynamics. Here, we operate the DCR in an asymptotically stable
fixed point regime. To render the response of the DCR transient (i.e., re-
flecting nonlinear combinations of past and present inputs), the reservoir
dynamics must not converge to the fixed point, where it becomes domi-
nated by the current stimulus. To ensure this, a random piecewise constant
masking sequence is applied to the stimulus before injecting the latter to
the reservoir (Appeltant et al., 2011). The positions where this mask may
switch value match the positions of the v-nodes, which are initially chosen
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Figure 1: Comparing classical and single node delay-coupled reservoir com-
puting architectures. (A) A classical RC architecture. The input δ is spatially
distributed by input weights M to a RNN of size n. The activity of the RNN is
then linearly read out. (B) A single node delay-coupled reservoir. The input δ is
temporally multiplexed across a delay line of length τ by using a random binary
mask M of n bits. Each mask bit Mi is held constant for a short v-delay θi, such
that the sum of these delays is the length of the delay line τ . The masked input
is then nonlinearly transformed and mixed with past input by a nonlinear node
with delayed feedback. At the end of each v-delay θi, there resides a v-node from
which linear readouts learn to extract information and perform spatiotemporal
computations through linear regression.

equidistant. However, given the fact that the v-delays directly influence
the interdependence of the corresponding v-nodes states, and therefore the
nonlinear mixing of the stimuli, it is immediately evident that v-delays
are important parameters that may significantly influence the performance
of the DCR.
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To optimize the computational properties of the DCR, we employ neu-
roscientific principles using biologically inspired homeostatic plasticity
(Davis & Goodman, 1998; Zhang & Linden, 2003; Turrigiano & Nelson,
2004) for adjusting the v-delays. Biologically speaking, homeostatic plastic-
ity does not refer to a single particular process. It is, rather, a generic term
for a family of adaptation mechanisms that regulate different components
of the neural machinery, bringing these components to a functionally desir-
able operating regime. The choice of the operating regime depends on the
functionality that a model of homeostatic plasticity aims to achieve. This
resulted in many flavors of homeostatic plasticity for regulating recurrent
neural networks in computational neuroscience (Somers, Nelson, & Sur,
1995; Soto-Treviño, Thoroughman, Marder, & Abbott, 2001; Renart, Song,
& Wang, 2003; Lazar et al., 2007, 2009; Marković and Gros, 2012; Remme &
Wadman, 2012; Naudé, Cessac, Berry, & Delord, 2013; Zheng, Dimitrakakis,
& Triesch, 2013; Toutounji & Pipa, 2014), neurorobotics (Williams & No-
ble, 2007; Vargas, Moioli, Von Zuben, & Husbands, 2009; Hoinville, Siles,
& Hénaff, 2011; Dasgupta, Wörgötter, & Manoonpong, 2013; Toutounji &
Pasemann, 2014), and reservoir computing (Schrauwen, Wardermann, Ver-
straeten, Steil, & Stroobandt, 2008; Dasgupta, Wörgötter, & Manoonpong,
2013). Here, we use a homeostatic plasticity mechanism to regulate the
v-delays so as to balance responsiveness to the input and its history on
the one hand, against optimal expansion of its informational features into
the high-dimensional phase space of the system, on the other hand. Fur-
thermore, we show that this process can be understood as a competition
between the v-nodes’ sensitivity and their entropy, resulting in a functional
specialization of the v-nodes. This leads to a high increase in the DCR’s
memory capacity and a significant improvement in its ability to carry out
nonlinear spatiotemporal computations. We discuss the implications of the
plasticity mechanism with respect to the DCR’s entropy, as well as the
virtual network topology, and the resulting regression coefficients.

2 Model

In this section, we describe the RC architecture that is based on a single
nonlinear node with delayed feedback. We then formulate this architecture
using concepts from neural networks.

2.1 Single Node Delay-Coupled Reservoir. Generally, RC comprises
a set of models where a large dynamical system called a reservoir (e.g., a
recurrent neural network) nonlinearly maps a set of varying stimuli to a
high-dimensional space (Jaeger, 2001; Maass et al., 2002). The recurrency al-
lows a damped trace of the stimuli to travel within the reservoir for a certain
period of time. This phenomenon is termed fading memory (Boyd & Chua,
1985). Then, random nonlinear motifs within the reservoir nonlinearly mix
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past and present inputs, allowing a desired output to be linearly combined
from the activity of the reservoir, using a linear regression operation. As
the desired output is usually a particular transformation of the temporal
and spatial aspects of the stimuli, the operations that a RC architecture is
trained to carry out are termed spatiotemporal computations.

In a classical RC architecture, past and present inputs δ ∈ R
m undergo

nonlinear mixing via injection into a recurrent neural network (RNN) of
n nonlinear units. This spatial distribution of the input is a mapping f :
R

m × R
n → R

n. The dynamics are modeled by a difference equation for
discrete time,

x(t + 1) = f (x(t), δ(t)), (2.1)

or an ordinary differential equation (ODE) for continuous time,

ẋ(t) = f (x(t), δ(t)), (2.2)

where x(t) ∈ R
n is the network activity and ẋ(t) the activity’s time deriva-

tive.
In a single node delay-coupled reservoir (DCR), the recurrent neural

network is replaced by a single nonlinear node with delayed feedback.
Formally, the dynamics can be modeled by a forced (or driven) delay dif-
ferential equation (DDE) of the form

ẋ(t) = −x(t) + f (x(t − τ ), δ(t)) (2.3)

where τ is the delay time and x(t), x(t − τ ) ∈ R are the current and delayed
DCR activities. Figure 1 illustrates the DCR architecture and compares it to
the standard RNN approach to reservoir computing.

Solving system 2.3 for t ≥ 0 requires specifying an appropriate initial
value function φ0 : [−τ, 0] → R. As is already suggested by the initial condi-
tions, the phase space of system 2.3 is a Banach space C1,τ = C

(
[−τ, 0], R

) �
φ0 which is infinite dimensional (Guo & Wu, 2013). Using a DDE as a reser-
voir, this phase space thus provides a high-dimensional feature expansion
for the input signal, which is usually achieved by using an RNN with more
neurons than input channels.

To inject a signal into the reservoir, it is multiplexed in time. The DCR
receives a single constant input u(t̄ ) ∈ R

m in each reservoir time step t̄ =
� t

τ
�, corresponding to one τ -cycle of the system. During each τ -cycle, the

input is again linearly transformed by a mask M ∈ [0, τ ]m that is piecewise
constant for short periods θi, representing the temporal spacing, or v-delays,
between sampling points of i = 1, . . . , n virtual nodes, or v-nodes, along
the delay line. Accordingly, the v-delays satisfy

∑n
i=1 θi = τ , where n is
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the effective dimensionality of the DCR. Here, the mask M is chosen to be
binary with random mask bits Mi ∈ {−μ,+μ}m, so that the v-node i receives
a weighted input Miu(t̄ ). In order to ensure that the DCR possesses fading
memory of the input, system 2.3 is set to operate in a regime governed by a
single fixed point in case the input is constant. Thus, the masking procedure
effectively prevents the driven dynamics of the underlying system from
saturating to the fixed point.

A sample is read out at the end of each θi, yielding n predictor variables
(v-nodes) xi(t̄ ) per time step t̄. Computations are performed on the pre-
dictors using a linear regression model for some scalar target time series y,
given by ŷ(t̄ ) = ∑n

i=1 αixi(t̄ ) where xi with i = 1, . . . , n denote the DCR’s
v-nodes (see equation 2.6) and αi are the coefficients determined by regres-
sion, for example, using the least squares solution minimizing the sum of
squared errors

∑
t̄

(
y(t̄ ) − ŷ(t̄ )

)2
.

In what follows, our model of choice for the DCR nonlinearity is an input-
driven Mackey-Glass system (Glass & Mackey, 2010) that is operating, when
not driven by input, at a fixed point regime,

ẋ(t) = −x(t) + η
(
x(t − τ ) + γ Mδ(t)

)
1 + (

x(t − τ ) + γ Mδ(t)
) , (2.4)

where γ and η are model parameters. In addition to favorable analytical
properties that are to be stated in turn, the current choice of nonlinearity
is motivated by the superior performance it achieves on spatiotemporal
computations. It can also be approximated by electronic circuits (Appeltant
et al., 2011). Figure 2A shows the response of the DCR governed by equation
2.4 to a single-channel input.

2.2 The DCR as a Virtual Network. The goal is to optimize the com-
putational properties of the DCR as a network given a vector of v-delays
	 = (θ1, . . . , θi, . . . , θn) of its n v-nodes. In the case of equidistant v-delays,
approximate v-node equations were already derived by Appeltant et al.
(2011), who also conceptualized the DCR with equidistant v-delays as a
network. We extend this result to account for arbitrary v-node spacings on
which our plasticity rule can operate. To that end, we first need to define
the activity x(t) of the DCR given θi for i = 1, . . . , n.

First, we solve the DDE, equation 2.3 by applying the method of steps
(see appendix A for details on solving and simulating the DCR). If system
2.3 is evaluated at (ν − 1)τ ≤ t ≤ ντ , where a continuous function φν ∈
C[(ν−2)τ,(ν−1)τ ] is the solution for x(t) on the previous τ -interval, we can
replace x(t − τ ) by φν(t − τ ). Consequently, the solution to equation 2.3
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Figure 2: DCR activity superimposed on the corresponding mask (A) before
and (B) after plasticity. (C) Comparison between the DCR’s activity before and
after plasticity.

subject to x((ν − 1)τ ) = φν((ν − 1)τ ) is given by

x(t) = φν((ν − 1)τ )e(ν−1)τ−t + e(ν−1)τ−t
∫ t−τ

(ν−2)τ

f (φν (s), δ(s))e
s−(ν−2)τ ds.

(2.5)

Let the DCR activity at a particular v-node xi(t̄ ) = x((ν − 1)τ + ∑i
j=1 θ j),

its nonlinearity fi(t̄ ) = f (xi(t̄ − 1), Mi · u(t̄ )), and the DCR time step t̄ =
� t

τ
� = ν. As shown in appendix A, the solution mapping equation 2.5 to the

DCR can be approximated by assuming f (·) to be piecewise constant at each
θi. This is a valid approximation since θi 
 τ , and it yields the following
expression of the DCR activity at a v-node i as a function of {θ1, . . . , θi}:

xi(t̄ ) = e− ∑i
j=1 θ j xn(t̄ − 1) +

i∑
j=1

(1 − e−θ j )e− ∑i
k= j+1 θk · f j(t̄ ). (2.6)

Equation 2.6 suggests that the activity of v-node i is a weighted sum of
the nonlinear component of the preceding v-nodes’ activity, down to the
last v-node n in the cyclic network, the activity of which is carried over from
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Figure 3: Virtual weight matrix of a DCR (A) before and (B) after plasticity. The
magnified section corresponds roughly to connectivity within part of the delay
span τ shown in Figure 2.

the previous reservoir time step. The resulting directed network topology
is shown as a virtual weight matrix for equidistant v-nodes (θi = τ/n) in
Figure 3A.

3 Plasticity

An important role of the randomly alternating mask M is to prevent the
DCR dynamics from saturating, and thus losing history dependence and
sensitivity to input. However, the random choice of the mask values and the
equal v-delays do not guarantee an optimal choice of masking. A simple
example that already illustrates this point is given by the occurrence of
sequences of equal valued mask bits, as shown in Figure 2A, which leads
to unwanted saturation. In general, many more factors exist that determine
optimal computation in the reservoir and need balancing.

Our goal in this section therefore is to develop a plasticity mechanism
that optimizes the resulting v-delays with respect to sensitivity, while re-
taining a suitable nonlinear feature expansion into the DCR’s phase space.
As we show in section 5.1, this results in a trade-off between sensitivity
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and entropy of the v-nodes. Entropy and sensitivity counteract each other,
thus forcing v-nodes to specialize. In a first step set out in section 3.1, we
develop a partial plasticity mechanism that maximizes solely the sensitiv-
ity of individual v-nodes. In a second step in section 3.2, the mechanism is
augmented by a counteracting regulatory term that tries to retain diverse
feature expansion of the input. The delay τ , together with the number n of
v-nodes, the mask M, and the parameters γ and η of the delayed nonlinear-
ity, are given hyperparameters that are kept constant, and they determine
the particular DCR that is subjected to the optimization process.

3.1 Sensitivity Maximization. We measure a v-node’s sensitivity by the
slope of its activity at the readout point (i.e., the end point of the θi interval),
where a bigger slope corresponds to less saturation. The objective is to
maximize the overall sensitivity of the DCR for all v-nodes simultaneously.
First, we use the approximate solution mapping of a v-node’s dynamics
from equation 2.6 to derive a formula of a v-node’s activity as a function of
the v-delay θi from the previous v-node alone:

xi(t̄ )= e−θi xi−1(t̄ ) + (1 − e−θi ) fi(t̄ ), i = 2, . . . , n, (3.1)

x1(t̄ )= e−θ1 xn(t̄ − 1) + (1 − e−θi ) fn(t̄ − 1). (3.2)

In addition, the dynamics of the DCR at a particular v-node i in units of
reservoir time steps t̄ is given by

ẋi(t̄ ) = −xi(t̄ ) + fi(t̄ ). (3.3)

Substituting equation 3.1 into 3.3 yields the following expression for the
sensitivity of a v-node i as a function of θi:

Si(t̄ ) = ẋi(t̄ ) = (−xi−1(t̄ ) + fi(t̄ ))e−θi . (3.4)

From equation 3.4, we define a sensitivity vector S ∈ R
n. To optimize the

overall sensitivity of the DCR, we maximize an objective function under
the constraint that the sum of the v-delays stays equal to the overall delay
τ ,

arg max
	≥0

{‖S‖2
2} subject to

n∑
i=1

θi = τ. (3.5)

where ‖ · ‖2 is the Euclidean norm.
To find the vector 	 that solves the constrained optimization problem 3.5,

we follow the direction of the steepest ascent, which is the gradient of the
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objective function, and we project the outcome to the simplex
∑n

i=1 θi = τ .
The element-wise gradient is given by

∇i ‖S‖2
2 = ∂‖S‖2

2

∂θi
. (3.6)

By iteratively inserting expression 3.1 into the sensitivity formula 3.4 and
eliminating the iteration with equation 3.2, we can show that the sensitivity
of a v-node i depends on the v-delays θ j of all the preceding v-nodes j ≤ i,

Si(t̄ ) = e− ∑i
k= j+1 θk · Sj(t̄ ) + �(θ j+1, · · · , θi), (3.7)

where �(·) is a term independent of θ j. However, since the term e− ∑i
k= j+1 θk

decays exponentially the farther the v-node i is from the v-node j, one can
ignore the contribution of θ j to the sensitivity of the v-node i for i > j. This
simplifies the element-wise gradient to

∇i ‖S‖2
2 = ∂S2

i

∂θi

= −2(−xi−1(t̄ ) + fi(t̄ ))2e−2θi . (3.8)

3.2 Homeostatic Plasticity. The optimization problem 3.5 maximizes
the sensitivity of a v-node i by decreasing θi, its temporal distance from the
previous v-node, as is suggested by the element-wise gradient, equation
3.8. As a result, the v-node becomes more sensitive to the input history
delivered from its predecessor. This, however, leads to a loss of diversity
in expanding informational features of the input, since the smaller the time
allotted to a v-node is, the less excitable by input it becomes. In addition,
the optimization objective prefers small θi, many of which may even go
to 0, despite the constraint

∑n
i=1 θi = τ , which leads to a reduction of the

reservoir’s effective dimensionality.
We hypothesize that good spatiotemporal computational performance

is achieved when diversity and sensitivity are balanced. To this end, we
introduce a regulatory term into the sensitivity measure that punishes
small v-delays, thus counteracting sensitivity by enforcing an increase in a
v-node’s distance from its predecessor. The choice of the regulatory term is
motivated by favorable analytical properties (mentioned later in this sec-
tion) and by allowing flexibility in the choice of regulation between diversity
and sensitivity. As entropy is a natural measure of informational diversity,
we later support the current intuitions behind our choice of the regulatory
term by a rigorous mathematical argumentation. Namely, we show in sec-
tion 5.1 how a plasticity mechanism that solely maximizes entropy of the
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v-nodes leads to an unbounded increase of v-delays and therefore presents
a proper counterforce to sensitivity.

The sensitivity measure with regulatory term has the form

Siρ (t̄ ) = θρ
i · ẋi(t̄ ) = θρ

i (−xi−1(t̄ ) + fi(t̄ ))e−θi , (3.9)

where ρ > 0 is a regulating parameter that modulates the penalty afflicted
on the decrease in θi. Lower ρ leads the objective to favor smaller v-delays
and vice versa.

From equation 3.9, we define a homeostatic sensitivity vector Sρ ∈ R
n

and an optimization problem,

arg max
	≥0

{O(	) = ‖Sρ‖2
2} subject to

n∑
i=1

θi = τ, (3.10)

and we maximize O by following the direction of the steepest ascent. Since
the contribution of θ j to the sensitivity of a v-node i for i > j is ignorable,
following the argumentation from equation 3.7, the element-wise gradient
is simplified to

∇i O(	) = ∂S2
iρ

∂θi

=−2θ2ρ−1
i (θi − ρ)(−xi−1(t̄ ) + fi(t̄ ))2e−2θi . (3.11)

Defining a v-node’s scaling factor σi(t̄ ) = (−xi−1(t̄ ) + fi(t̄ ))2 ≥ 0, the
maximized function S2

iρ = σiθ
2ρ
i e−2θi is unimodal, which entails the existence

of a global maximum θi = ρ, despite S2
iρ not being convex (For nonnega-

tive v-delays, S2
iρ has one inflection point when ρ ≤ 0.5 and two inflection

points otherwise). This ensures convergence to the global maximum of the
unconstrained optimization problem. The homeostatic plasticity learning
rule for a single v-node i then reads

θi(t̄ + 1) = θi(t̄ ) − 2ασi(t̄ )(θi(t̄ ) − ρ)θ2ρ−1
i (t̄ )e−2θi(t̄ ), (3.12)

where the term (θi(t̄ ) − ρ) homeostatically balances between the v-delay’s
increase and decrease, depending on the choice of the regulating term ρ.

Given the above, the update rule of the vector 	 = (θ1, · · · , θn) is given
by

	 ← πV (	 + α · JO(	)), (3.13)
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where α is a scalar learning rate, JO = ∇ O(	) is the Jacobian matrix of O
with respect to 	, and πV is an orthogonal projection that ensures that 	

remains on the constraint simplex V defined by
∑n

i=1 θi = τ (see appendix B
for details of the constraint satisfaction). The global maximum belongs to V
only when ρ = τ/n, which leads to the convergence to equidistant v-nodes.
Otherwise, the constrained gradient leads to the point on V closest to the
global maximum.

4 Computational Performance

We next test the effect of the homeostatic plasticity mechanism, equation
3.12, on the performance of the DCR. Simulations are carried on 100 DCRs;
the activity of each is sampled at 600 v-nodes that are initially equidistant
with θ = 0.8. Each DCR is completely distinguishable from the other by its
binary mask M, and the 600 mask values are randomly chosen from the
set {−0.1,+0.1}. Simulation starts with a short initial period for stabilizing
the dynamics, followed by a plasticity phase of np = 500 time steps, each
corresponding to one τ . The learning rate α is set to 0.01 and the regulating
parameter ρ to 1.0. Afterward, readouts are trained on nt = 5000 samples
for both the original and modified v-delays θi and validated on another nv =
1000 samples. The model parameters of the Mackey-Glass nonlinearity (see
equation 2.4) are set to γ = 0.05 and η = 0.4. The DCR is subject to uniformly
distributed scalar input u(t̄ ) ∼ U[0,0.5]. At this positive input range, the DCR
dynamics resulting from the Mackey-Glass nonlinearity is saturating, as
illustrated in Figure 2A. This condition ensures that the approximation,
equation 2.6, is accurate enough that a decrease in a v-delay does increase
a v-node’s sensitivity.

Given a task-dependent target time series y and a linear regression esti-
mate ŷ(t̄ ) = ∑n

i=1 αixi(t̄ ) (xi being the DCR’s v-nodes response to the input
u), we measure the performance using the normalized root-mean-square
error (nrmse):

nrmse(y, ŷ) =
√∑

n
v

(y − ŷ)2

nvvar(y)
. (4.1)

4.1 Memory Capacity. The memory capacity of a reservoir is a measure
of its ability to retain, in its activity, a trace of its input history. Optimal
linear classifiers are trained for reconstructing the uniformly distributed
scalar input u(t̄ ) ∼ U[0,0.5] at different time lags �. Figure 4 compares the
memory capacity of DCRs before and after plasticity. For time lags |�| > 5,
where the ability to reconstruct the input history starts to diverge from
optimal (see Figure 4A), the increase of the DCR’s memory capacity can
reach up to 70%. The improvement is measured as the relative change in
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Figure 4: Memory capacity before and after plasticity. (A) Performance on
memory construction before and after plasticity for different time lags. The
inset shows performance on memory construction 10 time steps in the past
(� = −9), before and after plasticity. (B) Relative improvement measured by
the decrease in nrmse after applying homeostatic plasticity. The inset shows
the improvement on memory construction 10 time steps in the past (� = −9).
(A, B) The dotted lines are the medians of the corresponding plots, and the
shaded areas mark the first and third quartiles. In addition to marking the quar-
tiles, the insets show whiskers that extend to include data points within 1.5 times
the interquartile range (the difference between the third and first quartiles).
The crosses specify data points outside this range and correspond to outliers.

nrmse at each time lag due to plasticity. Only 1 of the 100 DCRs showed
an approximately 20% deterioration in memory capacity after plasticity for
the largest time lag (see the inset in Figure 4B).

4.2 Nonlinear Spatiotemporal Computations. A widely used bench-
mark in reservoir computing is the capacity to model a nonlinear autore-
gressive moving average (NARMA) system y in response to the uniformly
distributed scalar input u(t̄ ) ∼ U[0,0.5]. The NARMA-10 task requires the
DCR to compute, at each time step t̄, a response

y(t̄ ) = 0.3y(t̄ − 1) + 0.05y(t̄ − 1)

10∑
s̄=1

y(t̄ − s̄ )

+ 1.5u(t̄ − 1)u(t̄ − 10) + 0.1. (4.2)

Thus, NARMA-10 requires modeling quadratic nonlinearities, and it
shows a strong history dependence that challenges the DCR’s memory
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Figure 5: Spatiotemporal computational power before and after plasticity.
(A) Performance on the NARMA-10 task before and after plasticity for dif-
ferent time lags. The inset shows performance at zero time lag before and after
plasticity. (B) Relative improvement, measured by the decrease in nrmse, after
applying homeostatic plasticity. The inset shows the improvement at zero time
lag. (A, B) The dotted lines are the medians of the corresponding plots, while
the shaded areas mark the first and third quartiles. In addition to marking the
quartiles, the insets show whiskers that extend to include data points within 1.5
times the interquartile range. The crosses specify data points outside this range
and correspond to outliers.

capacity. Figure 5 compares the performance in nrmse of DCRs before and
after plasticity for different time lags. Even with no time lag |�| = 0, the
task still requires the DCR to retain fading memory. This is in order to ac-
count for the dependence on inputs and outputs 10 time steps in the past.
The plasticity mechanism achieves an approximately 22.8% improvement
in performance on average, surpassing state-of-the-art values in both classi-
cal (Verstraeten et al., 2006) and delay-coupled reservoirs (Appeltant et al.,
2011) with an average nrmse of 0.138 ± 0.02SD. Only in five trials did the
performance deteriorate (see the inset in Figure 5B). The improvement de-
creases for larger time lags due to the deterioration in the DCR’s memory
capacity observed in Figure 4 but remains significant for |�| < 5.

5 Discussion: Effects of Plasticity

In order to explain the observed results, we analyze and discuss the effects
of the homeostatic plasticity mechanism, equation 3.12, on the system’s en-
tropy H(x), virtual network topology, and the readout weights distribution
p(α). We also discuss the role of the regulating parameter ρ.
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5.1 Entropy. In section 3.2, we stated that expanding the informational
features of present input requires a mechanism that counteracts the reduc-
tion of a v-delay due to the maximization of the v-node’s sensitivity. To
prove this hypothesis, we derive a learning mechanism that explicitly max-
imizes the mutual information between the DCR’s response and its present
input. Again, we assume the v-nodes are independent, and for a particular
v-node i, we maximize the quantity

I(xi; u) = H(xi) − H(xi|u), (5.1)

where H(xi) is the entropy of the v-node’s response, while H(xi|u) is the
entropy of the v-node’s response conditioned on the input. In other words,
H(xi|u) is the entropy of the response that does not result from the input.
Bell and Sejnowski (1995) argued that maximizing equation 5.1 with respect
to some parameter θ is equivalent to maximizing H(xi), since the condi-
tional entropy H(xi|u) does not depend on θ ; that is, maximizing a v-node’s
input-information capacity is equivalent to maximizing its self-information
capacity or entropy.

The entropy of xi is given by H(xi) = −E
[
ln px(xi)

]
, where px(xi) is the

probability density function (PDF) of the v-node’s response. Since xi is an
invertible function of the Mackey-Glass nonlinearity fi (see equation 3.1),
which is itself an invertible function of the input u (if the nonlinearity is
chosen appropriately, such as in equation 2.4), the PDF of xi can be written
as a function of the PDF of fi:

px(xi) =
p f ( fi)

| ∂xi
∂ fi

|
. (5.2)

The entropy of the v-node’s response is then given by

H(xi) = E
[

ln
∣∣∣∣∂xi

∂ fi

∣∣∣∣
]

− E
[
ln p f ( fi)

]
. (5.3)

The term −E
[
ln p f ( fi)

]
measures the entropy of the nonlinearity fi and is

independent of θi. From equation 5.3, and taking into account equation 3.1,
we can derive a learning rule that maximizes the entropy of the response
by applying stochastic gradient ascent:

�θi ∝ ∂H(xi)

∂θi
= ∂

∂θi

(
ln

∣∣∣∣∂xi

∂ fi

∣∣∣∣
)

=
(

∂xi

∂ fi

)−1
∂

∂θi

(
∂xi

∂ fi

)

= (1 − e−θi )−1 ∂

∂θi
(1 − e−θi ). (5.4)
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This leads to the following learning rule:

�θi = α
e−θi

1 − e−θi
, (5.5)

where 0 < α 
 1 is a learning rate.
The update term, equation 5.5, is a strictly positive monotonic function

of the v-delay θi. This entails that, when unconstrained, maximizing a v-
node’s informational feature expansion results in an unbounded increase in
its v-delay: θi → +∞. On the other hand, the plasticity rule, equation 3.12,
can be rewritten as

�θi = αςiρ − αςiθi, (5.6)

where ςi = 2σiθ
2ρ−1
i e−2θi > 0. The term αςiρ in the plasticity mechanism,

equation 5.6, is also positive. This entails that it results, similar to equation
5.5, in an unbounded increase in the v-delay and, as a corollary, in an
increase in the v-node’s informational feature expansion.

Given the above, the homeostatic plasticity mechanism, equation 3.12,
for a particular DCR with delay τ , improves spatiotemporal computations
by leading v-nodes to specialize in function. This is mediated by a com-
petition between the v-nodes’ sensitivity and their entropy. Some v-nodes
become more sensitive to small fluctuations in input history, while others
are brought closer to saturation where their entropy is higher and, as such,
their ability for expanding informational features.

5.2 Virtual Network Topology. The effects of the homeostatic plasticity
mechanism, equation 3.12, on the DCR’s network topology can be deduced
from equation 2.6, according to which self-weights are given by wii = (1 −
e−θi ), and the weights the v-node i receives from the preceding v-node
j = i − 1 are wi j = (1 − e−θ j )e−θi .

When θi decreases, so does the v-node’s self-excitation wii, which is con-
sistent with less saturation of the v-node’s activity. In addition, the choice
of the regulating parameter ρ describes the tendency of the v-node i to con-
verge toward a particular self-excitation level wii = (1 − e−ρ ). This entails
that for higher ρ, the v-node’s target activity level increases, which also
corresponds to higher entropy, as discussed in section 5.1.

The decrease in θi also leads the corresponding v-node’s afferent wij to
increase. This in turn increases the v-node j’s influence on the activity of the
v-node i, which results in a higher correlation between the two (or higher
anti-correlation, depending on the signs of the corresponding mask values
Mj and Mi). The increase of correlation is in agreement with simulation
results and in accord with the decrease of the v-node’s entropy as its v-
delay decreases. This is the case since the influence of the current input is
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Figure 6: (A) Average improvement in performance and (B) reduction in av-
erage absolute values of the readout coefficients |ᾱ| for different values of the
regulating parameter ρ in comparison to the equidistant v-nodes case ρ = 0.8.

overshadowed by information from the input history that is delivered from
the preceding v-node j, which now drives the v-node i. Figure 3B shows
an exemplary virtual weight matrix following plasticity, which illustrates
these changes in network topology due to the repositioning of v-nodes on
the delay line.

5.3 Homeostatic Regulation Level. Introducing the parameter ρ is nec-
essary for regulating the trade-off between sensitivity and entropy, that is,
increasing and decreasing θi, as discussed analytically in section 5.1. It is also
the defining factor in the v-node’s tendency to collapse, as is evident from
the form of the plasticity function, equation 5.6. The collapse of v-nodes
is tantamount to a reduction in the DCR’s dimensionality, which may be
unfavorable with regard to the DCR’s computational performance.

We test the latter hypothesis and the choice of the regulating parameter
by running 1000 NARMA-10 trials for different ρ values that range between
0 and 2. Each trial shares the same mask M and the same NARMA-10 time
series. As shown in Figure 6, the average improvement in performance in
comparison to the reference equidistant case ρ = τ/n = 0.8 increases for
smaller ρ values but drops again for ρ = 0. An increase in ρ > 0.8 also
increases the improvement of performance, but this increase saturates at
ρ = 1.6. This is the case since the increase in v-delays favored by high ρ

values makes the collapse of other v-delays inevitable in order to preserve
the DCR’s constant delay τ .

In a more detailed analysis, for each of the 1000 trials, we ranked dif-
ferent ρ values according to the resulting improvement of performance
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Figure 7: Performance of 1000 NARMA-10 trials for regulating parameter ρ

values between 0 and 2. (A) Percentage of trials that achieved the first, second,
and third highest improvement in performance for each ρ value. (B) Relative
improvement measured by the decrease in nrmse, after applying homeostatic
plasticity, given for each trial the best choice in ρ. The box plot marks the median,
as well as the first and third quartiles. Whiskers extend to include data points
within 1.5 times the interquartile range. The crosses specify data points outside
this range and correspond to outliers.

in reference to the equidistant case ρ = τ/n = 0.8. We then calculated the
percentage of trials that achieved the highest improvement in performance
(first rank) for some ρ value, compared to all other ρ values. We carried out
the same procedure for the second and third ranks as well. Figure 7 confirms
the previous results, as it shows that for ρ = 0, it is still possible to achieve
the best improvement in performance, but it is less likely than other val-
ues. Figure 7 also illustrates a striking result. For none of the trials was the
equidistant case, where no plasticity took place, the best choice regarding
the computational power of the DCR. Only in 0.3% of the trials did the non-
plastic equidistant case rank third. As a result, for a given DCR setup, there
always exists a choice of ρ that results in nonequidistant v-nodes where spa-
tiotemporal computations are enhanced. This is also summarized in Figure
7B, which shows the improvement in performance given the best choice in
the regulating parameter ρ for each trial. The nrmse is reduced by approxi-
mately 33.7%, with an average performance that reaches an unprecedented
value of nrmse approximately equal to 0.117 ± 0.01SD.
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We point out that the homeostatic plasticity mechanism, equation 3.12,
also reduces the average absolute values of the readout coefficients |ᾱ|
(see Figure 6B), which is similar in effect to an L2-regularized model fit.
This is not only advantageous with respect to numerical stability, but L2-
regularization also allows for a lower mean-square error on the validation
set, as compared to an unregularized fit (Hoerl & Kennard, 1970).

We now briefly discuss the effects of the homeostatic regulation level
ρ on the virtual network topology. As expected, and due to the simplex
constraint, both smaller and larger values of ρ lead to a more uniform
distribution of v-delays. However, most of the distribution’s mass remains
concentrated at θi = τ/n, that is, most v-delays remain unchanged or change
only slightly. This has no effect on the qualitative features of the virtual net-
work topology as outlined in section 5.2, but quantitatively, more weights
approach the extremes of the range [0, 1].

6 Commentary on Physical Realizability

We demonstrated that the suggested plasticity mechanism, equation 3.12,
leads to spatiotemporal computational performances that surpass those of
state-of-the-art results. An intuitive alternative to the plasticity mechanism
would be to increase the number n of v-nodes within the constant full delay
τ of the DCR. This solution, however, suffers from major drawbacks, par-
ticularly in regard to its realizability on physical hardware. Namely, there
exists a physical constraint on the sampling rate of the DCR’s activity, below
which the speed and the feasibility of physical implementation is jeopar-
dized. This imposes a minimal admissible v-delay within the full delay line
and thus represents an upper bound on the number of equidistant v-nodes.
This constraint is accounted for in the current approach by restricting the
updates of v-delays due to plasticity to discrete step sizes κ . The parameter
κ then corresponds to the minimal admissible v-delay (different from 0,
which results in pruning the DCR). This is the case since κ is chosen such
that τ/(κn) is an integer, where this integer refers to the number of minimal
v-delays that fit in one τ/n, the v-delay in the equidistant v-nodes case. In
the current results, κ was chosen such that τ/(κn) = 100 in order for the
discretization to present a good approximation of continuous v-delay val-
ues. Nevertheless, simulations show that improved computational power
persists even for τ/(κn) = 8, which corresponds to κ , that is, an order of
magnitude larger than the minimal experimentally viable v-delay. A strin-
gent comparison between the results for different values of κ is problem-
atic, since rougher quantization of v-delays, resulting from higher κ values,
leads to less predictable effects on the behavior of the optimization problem,
equation 3.10, particularly of how the discretized v-delay grid relates to the
global maximum, which itself depends on the choice of the regulating term
ρ. Nevertheless, the persistent improvement in performance stands in favor
of the method’s applicability in physical realizations.
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Furthermore, increasing the number of v-nodes poses a practical limi-
tation, even when v-delays remain within the constraints of physical im-
plementation. As expected, the average computational performance does
increase for larger numbers of v-nodes, but it saturates at some point. The
plasticity mechanism improves the computational performance and, most
important, reaches the saturation point of performance with a smaller num-
ber of v-nodes than the equidistant case. Beyond the performance saturation
point, plasticity becomes ineffective on average, that is, it leads some trials
to an increase and others to deterioration in computational performance.
However, the redundancy resulting from increasing the number of v-nodes,
even within the constraint of physical implementation, is disadvantageous
with regard to the computational resources of the DCR: the linear read-
out mechanism remains a bottleneck, since increasing the number of re-
gressors by sampling more v-nodes demands storing and inverting larger
matrices, a serious challenge for both simulation and physical implemen-
tations. Again, the comparison between the results for different numbers
of v-nodes is problematic, since changing the number of v-nodes modi-
fies the statistics of the mask pattern, which may affect the proper choice
of the regulating term ρ. With these considerations in mind, the plasticity
mechanism is suitable for physical realization, since it saves resources by
keeping the number of v-nodes smaller (and possibly pruning by leading
some v-delays to collapse) and is computationally beneficial within the con-
straint of physical implementation, since it approaches the saturation point
of computational performance using a smaller number of virtual nodes.
Nevertheless, further detailed investigation remains necessary for address-
ing boundary conditions and applicability on physical implementation of
the suggested plasticity mechanism.

7 Conclusion

We have introduced a plasticity mechanism for improving the computa-
tional capabilities of a DCR, a novel RC architecture where a single nonlin-
ear node is delay-coupled to itself. The homeostatic nature of the derived
plasticity mechanism, equation 3.12, relates directly to the information pro-
cessing properties of the DCR in that it balances between sensitivity and
informational expansion of input (see section 5.1). While the role of home-
ostasis in information processing and computation has only been discussed
more recently, its function as a stabilization process of neural dynamics has
acquired earlier attention (von der Malsburg, 1973; Bienenstock, Cooper, &
Munro, 1982). From the perspective of the nervous system, pure Hebbian
potentiation or anti-Hebbian depression would lead to destabilization of
synaptic efficacies by generating amplifying feedback loops (Miller, 1996;
Song, Miller, & Abbott, 2000), necessitating a homeostatic mechanism for
stabilization (Davis & Goodman, 1998; Zhang & Linden, 2003; Turrigiano
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& Nelson, 2004). Similarly, as suggested by the effects of the plasticity
mechanism (see equation 5.6) on the virtual network topology (see section
5.2), the facilitating sensitivity term −αςθ is counteracted by the depressive
entropy term +αςρ, which prevents synaptic efficacies from overpotentiat-
ing or collapsing.

In addition, rewriting equation 3.12 as �θ ∼ (θ − ρ) strongly relates the
derived plasticity mechanism to normalization models of neural homeo-
static plasticity. Normalization models consider plasticity rules that regu-
late the activity of the neuron toward a target firing rate. They are usu-
ally of the form �q ∼ (r − rtr), where q is some quantity of relevance for
learning, such as synaptic weights or the neuron’s intrinsic excitability; r
is an estimate of the neuron’s output firing rate; and rtr is the target firing
rate (Kempter, Gerstner, & Van Hemmen, 2001; Renart et al., 2003; Vogels,
Sprekeler, Zenke, Clopath, & Gerstner, 2011; Lazar et al., 2007, 2009; Zheng
et al., 2013; Toutounji & Pipa, 2014). In analogy, the v-delay estimates the
v-node’s activity, since a larger θi results in higher self-excitation wii, while
ρ defines the target activity of the v-node (see section 5.2). Furthermore,
entropy of a neuron’s output increases with its firing rate. As such, the
increase of the v-delay θ , in response to the higher regulatory term ρ, also
increases the v-node’s entropy, as confirmed analytically in section 5.1.

Currently, and similar to the target firing rate rtr, which is usually chosen
according to biological constraints, the regulating parameter ρ is left as a
free parameter, and its optimal choice for a particular DCR configuration is
decided by brute force (see section 5.3). However, the statistics in Figures 6
and 7 conclusively show that any choice of ρ within the tested range leads
to average and dominant improvement in computational performance in
comparison to the equidistant case ρ = τ/n = 0.8. Nevertheless, it is rea-
sonable to assume that heuristics exist for the optimal choice of ρ, given
a particular mask structure M, since the alterations in the mask values
influence a v-node’s sensitivity and entropy. A possible heuristic may re-
late the value of ρ to properties of maximum length sequences, by which
Appeltant, Van der Sande, Danckaert, & Fischer (2014) constructed mask se-
quences with equidistant v-nodes. Similarly, we speculate that the direction
and amplitude of a v-delay’s change, which are computationally advanta-
geous, depend on the corresponding and preceding v-node’s mask values
Mj for j ≤ i. The main difficulty arises from the fact that within the current
formulation of the DCR in equations 2.5 and 2.6, no terms exist for relating
different mask values to one another and to corresponding v-delays. This
is also the main obstacle facing the derivation of plasticity mechanisms
for updating the mask M beyond the binary pattern ±μ. The appropriate
choice of ρ is complicated further by its dependence on the demands of the
executed task in terms of memory, nonlinear computations, and entropy.
Finding criteria that connect these aspects to the optimal choice of ρ requires
extensive research, which is a subject of our current endeavors.
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Enhancing the temporal multiplexing of input to the nonlinear node was
the main goal of this article. We speculate that similar multiplexing may
suggest a further important functionality of the extensive dendritic trees
in some neuron types. On the one hand, Izhikevich (2006) discussed the
infinite dimensionality that dendritic propagation delays offer to recurrent
neural networks. On the other hand, several studies investigated the com-
putational role of the spatial distribution of active dendrites (Rumsey &
Abbott, 2006; Gollo, Kinouchi, & Copelli, 2009; Graupner & Brunel, 2012).
In this article, we advocate a unified computational account that may in-
tegrate both the temporal and spatial aspects of dendritic computations.
In particular, the spatial location of dendritic arbors may be optimized to
achieve computationally favorable temporal multiplexing of the soma’s in-
put, in the fashion suggested by the DCR architecture. Consolidating this
speculation will be the subject of future studies.

Appendix A: Solving and Simulating the DCR

In this appendix, we derive equations 2.5 and 2.6. We would like to solve
system 2.3 for x(t), with (ν − 1)τ ≤ t ≤ ντ . Due to the recurrent depen-
dency x(t − τ ), this is not possible right away. However, if we assume a
continuous function φν ∈ C[(ν−2)τ,(ν−1)τ ] is the solution for x(t) on the previ-
ous τ -interval, we can replace x(t − τ ) by φν(t − τ ). After the substitution,
system 2.3 becomes solvable by the elementary method of variation of con-
stants (Heuser, 2003). The latter provides a solution to an equation of type
ẋ(t) = a(t)x(t) + b(t) with initial condition x(t0) = c. The general solution
on the interval I to the inhomogeneous equation is then given by

x(t) = xh(t)

(
c +

∫ t

t0

xh(t)
−1b(t)dt

)
, t ∈ I,

where

xh(t) = exp

(∫ t

t0

a(t)dt

)

denotes a solution to the associated homogeneous differential equation.
Consequently, for a(t) = −1 and b(t) = f

(
φν(t − τ ), δ(t)

)
, the solution to

ẋ(t) = −x(t) + f
(
φν(t − τ ), δ(t)

)
,

subject to x
(
(ν − 1)τ

) = φν

(
(ν − 1)τ

)
, is given by

x(t) = e(ν−1)τ−t
(

φν

(
(ν − 1)τ

) +
∫ t−τ

(ν−2)τ

f
(
φν(s), δ(s)

)
es−(ν−2)τ ds

)
. (A.1)
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This expression can be used right away in a numerical solution scheme,
where the integral is solved using the cumulative trapezoidal rule. The
resulting simulation of the DCR has been shown to be comparable in its
accuracy and computational capabilities to adaptive numerical solutions,
while saving considerable computation time (Schumacher, Toutounji, &
Pipa, 2013).

Recall that ti = (ν − 1)τ + ∑i
j=1 θ j, with θ j being the temporal distances

between consecutive virtual nodes. To arrive at a manageable analytical
expression of the above solution for the sampling point ti of virtual node i
during the νth τ -cycle, we make the following approximation.

Let the DCR activity at a particular v-node xi(t̄ ) = x(ti), its nonlinear-
ity fi(t̄ ) = f

(
xi(t̄ − 1), Mi · u(t̄ )

)
, and the DCR time step t̄ = � t

τ
� = ν. If we

assume that f (·) is piecewise constant at each θi, which is a valid approxi-
mation since θi 
 τ , expression 6.1 simplifies further to

xi(t̄) = e− ∑i
j=1 θ j

⎛
⎝xn(t̄ − 1) +

i∑
j=1

fi(t̄)
∫ θ j

0
esds

⎞
⎠

= e− ∑i
j=1 θ j

⎛
⎝xn(t̄ − 1) +

i∑
j=1

fi(t̄)
(
eθ j − 1

)⎞⎠

= e− ∑i
j=1 θ j xn(t̄ − 1) +

i∑
j=1

(1 − e−θ j )e− ∑i
k= j+1 θk · f j(t̄ ).

Appendix B: Constraint Satisfaction

The sensitivity update rule of the virtual node distances θ j has to satisfy
the constraint

∑
j θ j = τ . This describes a constraint manifold for valid

virtual node distance vectors 	 ∈ R
n during learning. The manifold has the

structure of a simplex,

V :=
{

x|x = (x1, . . . , xn)T ,

n∑
i=1

xi = τ

}
,

with dimV = n − 1 and simplex corners given by τ ei (i = 1, . . . , n), where(
ei)

n
i=1 is the standard orthonormal basis of R

n. We implemented the con-
straint optimization problem by first computing an unconstrained update
for 	, followed by an orthogonal projection onto V. Due to the simple linear
structure of V, this strategy will converge onto the constrained optimum
for 	.

Denote by nV = τ
n

∑
i ei the central point of the constraint simplex, and

let
(
vi

)n−1
i=1 , vi ∈ R

n, be an orthonormal basis for V. The latter is computed
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from an orthogonal basis, which can be constructed by simple geometrical
considerations from the simplex corner point vectors as

(
−τ · · · −τ

τ In−1

)
∈ R

n×n−1, (B.1)

where In−1 denotes the (n − 1)-dimensional unit matrix. It is easily veri-
fied that this basis spans V and is indeed orthogonal. In conjunction with
the inhomogeneity nV, a normal vector with respect to V, any point on V
can be expressed via the vi. For some x ∈ R

n being the result of an uncon-
strained sensitivity update step, the constraint can be met by projecting x
orthogonally onto V via the mapping

πV (x) = nV +
n−1∑
i=1

(
(x − nV )Tvi

)
vi

= nV +
n−1∑
i=1

(
vT

i (x − nV )
)
vi

= nV +
(

n−1∑
i=1

viv
T
i

)
︸ ︷︷ ︸

:= M∈Rn×n

(x − nV )

= nV + M(x − nV ). (B.2)

The addition and subtraction of nV take care of the fact that V, being a
hyperplane, is translated out of the origin by the inhomogeneity nV. If the
V-plane was centered in the origin, (vT

i x)︸ ︷︷ ︸
∈R

vi would denote the orthogonal

projection of x onto the ith orthonormal basis vector. Accordingly, the linear
combination of these projections yields the representation of πV (x) with
respect to the basis

(
vi

)n−1
i=1 .
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Hoinville, T., Siles, C. T., & Hénaff, P. (2011). Flexible and multistable pattern gen-

eration by evolving constrained plastic neurocontrollers. Adapt. Behav., 19(3),
187–207.

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural Comput.,
18(2), 245–282.

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural
networks (Tech. Rep. GMD 148). Bremen: German National Research Center for
Information Technology.



1184 H. Toutounji, J. Schumacher, and G. Pipa

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304(5667), 78–80.
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