
Research Article Vol. 37, No. 9 / September 2020 / Journal of the Optical Society of America A B53

On-machine surface defect detection using light
scattering and deep learning
Mingyu Liu,1,* Chi Fai Cheung,2 Nicola Senin,1,3 Shixiang Wang,2 Rong Su,1 AND
Richard Leach1

1ManufacturingMetrology Team, Faculty of Engineering, University of Nottingham, Nottingham, UK
2State Key Laboratory of Ultra-precisionMachining Technology, Department of Industrial and Systems Engineering,
The Hong Kong Polytechnic University, Kowloon, Hong Kong
3Department of Engineering, University of Perugia, Perugia, Italy
*Corresponding author: mingyu.liu1@nottingham.ac.uk

Received 1 April 2020; revised 12 June 2020; accepted 16 June 2020; posted 16 June 2020 (Doc. ID 394102); published 24 July 2020

This paper presents an on-machine surface defect detection system using light scattering and deep learning.
A supervised deep learning model is used to mine the information related to defects from light scattering patterns.
A convolutional neural network is trained on a large dataset of scattering patterns that are predicted by a rigorous
forward scattering model. The model is valid for any surface topography with homogeneous materials and has been
verified by comparing with experimental data. Once the neural network is trained, it allows for fast, accurate, and
robust defect detection. The system capability is validated on microstructured surfaces produced by ultraprecision
diamond machining.
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1. INTRODUCTION

Microstructured surfaces [1] can have a range of functionalities
and have attracted much research attention from the perspective
of their machining [2], measurement [3], and characterization
[4]. In-process detection of defects in surface manufacturing is
critical as it can ensure quality and save material, machine hours,
and energy, ultimately reducing production costs.

Optical methods for areal surface topography measure-
ment [5], such as coherence scanning interferometry, imaging
confocal microscopy, and focus variation microscopy, strug-
gle to accurately measure complex surface structures, such as
sharp edges and vee-grooves where multiple scattering effects
cannot be ignored [6,7]. Also, most optical methods for topog-
raphy measurement require vertical scanning, and thus they
are slow. On-machine measurement of microstructured sur-
faces using atomic force microscopy (AFM) [8] and scanning
tunneling microscope (STM) [9] has been demonstrated, but
besides the low scanning speed, AFM and STM are limited by a
compromise between range and resolution [10].

Light scattering techniques such as scatterometry are used for
in-process defect detection, as they can infer surface information
from scattering patterns [11], with the advantages of being high
speed, noncontact, and low cost. Scatterometry has been widely
used for the measurement of periodic structures in semicon-
ductor chips [12], but is usually limited to the measurement of

surface features with relatively small surface height variations
[11] (typically less than half the wavelength of the light source).
To measure large features, one possible solution is to increase
the wavelength of the light source, e.g., using infrared [13].
The commonly used scattering models in scatterometry, such
as rigorous coupled wave analysis [12], can only model small
periodic features, while finite element model methods [14]
and finite-difference time-domain model methods [15] are
computationally expensive when modeling far-field scattering.

In scatterometry, the far-field scattering pattern is inter-
rogated to extract the surface characteristics. A library search
method is commonly used, which contains reference scattering
patterns that can be created for surfaces of interest, by experi-
ment and/or simulation. The characteristic of the surface to be
measured can be predicted using the measured scattering signal
by searching for the closest dataset in the library [16], typically
using minimum root-mean-squared error methods. However,
this “library search method” can be slow, particularly when the
library is large, as all datasets in the library need to be searched,
which leads to a drawback for in-process implementation. To
address this issue, neural networks were introduced to replace
the library search methods [17,18]. However, neural networks
have the drawback of high computational complexity, and in
their standard formulation (where each part of the scattering
spectrum is assigned to a different input node) they cannot
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capture any dependency between neighboring portions of the
scattering spectrum [19], which is essential to the analysis of
scattering signals [20].

In this paper, a novel light scattering and deep learning
method is presented for on-machine surface defect detection.
A rigorous scattering model based on a boundary element
method (BEM) [21,22] that is capable of addressing multiple
scattering effects is used to simulate the far-field scattering cor-
responding to specific types of surfaces. The simulated scattered
field can be used to train the deep learning model. Once trained,
the deep learning model can solve the inverse scattering problem
far quicker than the slow library search method. With the help
of the rigorous scattering model, large surface features can be
addressed by the method without using a long-wavelength light
source. The deep learning model is designed as a convolutional
neural network (CNN)-based model, which can learn the scat-
tering patterns in the training process and can extract surface
defect information more efficiently and intelligently. The BEM
model used was a 2D model, and one-directional surfaces such
as gratings were considered. A prototype system was built, and
experiments, including two types of defective surfaces fabri-
cated by high-precision diamond machining, demonstrate the
effectiveness of the proposed method.

2. LIGHT SCATTERING AND DEEP LEARNING
METHOD

A schema of the proposed method for surface defect detection is
shown in Fig. 1. A collimated laser beam illuminates the surface
of the sample, and the scattered light is captured by a photodi-
ode sensor in the far field. The measured scattering data is first
filtered with a median filter to remove outliers, and the intensity
of the signal is normalized to a zero to one interval. The scatter-
ing data is then fed into a trained deep learning model to detect
defects. The deep learning model uses a convolutional neural
network (CNN). A large number of nondefective and defective
surfaces with different surface parameters are artificially gener-
ated. Their associated scattering signals are then simulated using
a rigorous forward 2D BEM model [21,22], with which the
multiple scattering problem in the one-directional microstruc-
tured grating surfaces can be solved and scattering signals for
surfaces with features larger than the wavelength of the light
source can be simulated. The scattering signals are labeled and
used to train the supervised CNN. Once the CNN is trained, it
can recognize any scattering signals associated with the surfaces
within the range of the simulated parameters.

Fig. 1. Proposed scattering method for surface defect detection.

Fig. 2. Designed CNN.

A. Convolutional Neural Network Design

A CNN for defect detection using scattering patterns has been
designed as shown in Fig. 2. The CNN is designed as four
convolutional layers, two pooling layers, and two fully con-
nected layers. The input of the neural network is scattering
signal captured by the sensor over a range of angles. The CNN
is trained using BEM simulation data. Simulation of the scat-
tering patterns is implemented in Matlab and parallelized in
a high-performance computing (HPC) cluster (University of
Nottingham’s Augusta HPC, 115 compute nodes, 40 pro-
cessors, and 192 GB RAM/node). As the target surfaces are
one-directional gratings, simulated scattering patterns feature
a large number of repeated, zero-valued data points, except for
several peaks in different diffraction orders, which may cause
overfitting in the CNN during training. To avoid overfitting,
random noise is added to the simulated scattering signals, and
dropout is added to a fully connected layer. The power of the
noise was designed to be uniformly distributed between zero
and 1% of the peak signal. The output of the CNN is two real
numbers representing the probabilities of nondefective and
defective states for the measured surface. The CNN model is
implemented using Tensorflow/Keras and trained on hardware-
accelerated graphics processing units (NVIDIA Quadro P5000,
2560 CUDA cores, 16 GB RAM).

B. Prototype System and Setup of the On-Machine
Experiment

A prototype system was developed for on-machine experiments.
A schema and photograph of the system and the on-machine
experimental setup are shown in Fig. 3. A laser with a wave-
length of 633 nm is plane polarized, projected to a mirror with
an incidence angle of 45o, and reflected from the surface of
the measured sample. A sensor module (SM) consisting of a
pinhole, a focusing lens, and a photodiode is mounted on a
rotational stage to capture the scattered light over a range of
angles (0o to 120o). The scattering signal is first amplified and
passed through an analog-to-digital converter (AD). The system
is mounted on a diamond turning machine (Moore Nanotech
350FG) to perform on-machine experiments.

3. RESULTS AND DISCUSSION

Two different types of microstructured surfaces were designed,
machined, and measured to verify the proposed method. The
surfaces were manufactured on the diamond turning machine
shown in Fig. 3(b). The material of the samples was aluminum.
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Fig. 3. Prototype system: (a) diagram, (b) setup for the on-machine
experiment, and (c) enlarged view for the system.

A. Saw-Tooth Microstructured Surfaces

The design of the saw-tooth microstructured surface is shown in
Fig. 4. The angle of the saw-tooth is 90o and is machined using a
90o single crystal diamond tool. The pitch and height (peak-to-
valley) of the microstructures were designed as 8 µm and 4 µm,
respectively.

During the machining process, the diamond tool becomes
worn, and this can cause defects in the machined surface.
A sharp and a worn tool were used to machine the samples.
Figure 5 shows scanning electron microscope (SEM) images
for a sharp tool and a worn tool. The worn tool has a tip angle
equivalent to 157o.

Fig. 4. Designed saw-tooth microstructured surface.

Fig. 5. Two 90o diamond tools for the experiments: (a) a sharp tool
and (b) a worn tool with a tip angle equivalent to 157◦.

Fig. 6. Machined surfaces using the sharp tool and worn tool:
(a) SEM and (b) AFM results for the surface machined using the sharp
tool; (c) SEM and (d) AFM results for the surface machined using the
worn tool.

Table 1. Ranges for Surface Parameters and
Experiment Settings in the Simulation

Pitch/µm
Incidence
Angle/◦

Offset
(x)/mm

Offset
(z)/mm

Alignment
Error (SM)/◦

7.9 to 8.1 44.5 to 45.5 −1.0 to 1.0 −0.5 to 0.5 −1.0 to 1.0

Both the sharp and worn tools were used to machine the
designed saw-tooth surfaces, under the same machining condi-
tions. The machined surfaces were labeled as nondefective and
defective accordingly. Figure 6 shows the SEM and AFM results
for the surface machined using the two diamond tools. The
AFM result in Fig. 6(b) shows that the height of the microstruc-
tures machined by the sharp tool is approximately 2.5 µm,
which is smaller than the design value of 4 µm. This may be
caused by both the imperfection of the tooltip of the diamond
tool and the material swelling effect [23]. The AFM result in
Fig. 6(d) shows that the height of the microstructure machined
using the worn tool is approximately 0.6 µm, which is signifi-
cantly smaller than the design value and is smaller than the
calculated value (4/tan(157◦/2)= 0.81 µm) using the angle
of the tooltip (157o), which may also be due to the material
swelling effect.

Scattering signals for the designed surfaces, considering
different parameters and experimental settings, were simu-
lated. Forty-one different height values were equidistantly
sampled from 2.0 to 6.0 µm for the nondefective surface, 19
values from 0.1 to 1.9 µm, and 20 values from 6.1 to 8.0 µm
for the defective surfaces. To reflect the variations in the actual
setup, three different values for every considered parameter
and experiment setting were equidistantly sampled in the sim-
ulation, and their ranges are summarized in Table 1. Hence,
41× 35

= 9963 datasets were simulated as nondefective sur-
faces, and (19+ 20)× 35

= 9477 datasets were simulated as
defective surfaces. In total, 19,440 datasets were generated to
train the deep learning model. Eighty percent of the datasets
were used for training, and 20% were used for validation. After
200 epochs, the classification accuracies for the training and
validation datasets achieved 97.36% and 95.55%, respectively.
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Fig. 7. Measured scattering signals for the saw-tooth surfaces
machined with (a) the sharp tool and (b) the worn tool.

Table 2. Defect Detection Results for the Saw-tooth
Microstructured Surfaces

Machining Conditions Defective Nondefective Time

With sharp tool 0.002 0.998 3 ms
With worn tool 0.996 0.004 3 ms

On-machine experiments were conducted using the proto-
type system. The measured scattering signals for the two surfaces
are shown in Fig. 7. Both signals were filtered using a median
filter to remove outliers, and the peak intensities were normal-
ized to 1. As the scattering signal was found to have outliers in
the experiment, a median filter was implemented that was able
to sufficiently remove outliers, while at the same time preserving
the shape of the scattering pattern. After feeding the scatter-
ing signals into the trained deep learning model, the defect
detection results were obtained as summarized in Table 2. The
results show that both nondefective and defective surfaces were
correctly detected, with high probabilities. The computational
time for prediction was 3 ms in both cases, which is fast enough
to be suitable for real-time implementation.

B. Vee-Groove Microstructured Surfaces

The design of the vee-groove microstructure is shown in Fig. 8.
The vee-grooves have an angle of 25.5o and were machined
using a diamond tool with tooltip angle of 25.5o. The pitch
and height of the grooves were designed as 6 µm and 4 µm,
respectively, and there were flat regions between the grooves.
Two samples were machined: one using a sharp tool and one
with a worn tool. SEM images of the tools are shown in Fig. 9.
Figure 9(b) shows that the worn tooltip was skewed and its
angle was about 44o. Under the same machining settings, the

Fig. 8. Designed vee-groove microstructured surface.

Fig. 9. Two 25.5o diamond tools for the experiments: (a) a sharp
tool and (b) a worn tool with a tip angle equivalent to 44o.

vee-grooves machined by the worn tool are expected to have
a larger width on the top compared to those machined by the
sharp tool. The depth of the grooves can be maintained as 4 µm
due to the flat regions.

Two samples were machined using the same machining set-
tings using the sharp tool and the worn tool. Figure 10 shows the
SEM images of the machined surfaces. The results show that the
surface machined with the sharp tool has a smaller width than
that machined using the worn tool as expected.

For the BEM simulation, 22 different tooltip angles for the
vee-grooves were equidistantly sampled from 20.0o to 30.5o

for the nondefective surface, 10 angles from 15.0o to 19.5o,
and 31 angles from 31.0o to 44.5o for the defective surfaces.
To represent the variations in the actual setup, three different
values for every considered parameter and experimental set-
ting were equidistantly sampled, and their ranges are shown
in Table 3. Hence, 22× 36

= 16038 datasets were simu-
lated as nondefective surfaces, and (10+ 28)× 36

= 27702
datasets were simulated as defective surfaces. In total, 43,740
datasets were generated to train the deep learning model.
Eighty percent of the datasets were used for training, and
20% were used for validation. After 200 epochs, the model
reached a training accuracy of 89.44% and validation accuracy
of 99.46%.

After the deep learning model was trained, on-machine
experiments were conducted. The measured scattering sig-
nals are shown in Fig. 11, and the defect detection results are

Fig. 10. SEM images for machined surfaces with (a) the sharp tool
and (b) the worn tool.

Table 3. Ranges for Surface Parameters and
Experiment Settings in the Simulation

Height/µm Pitch/µm
Incidence
Angle/◦

Offset
(x)/mm

Offset
(z)/mm

Alignment
Error

(SM)/◦

3.9 to 4.1 5.9 to 6.1 44.5 to
45.5

−1.0 to
1.0

−0.5 to
0.5

−1.0 to
1.0
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Fig. 11. Measured scattering signals for the vee-groove surfaces
machined with (a) the sharp tool and (b) the worn tool.

Table 4. Defect Detection Results for the Vee-Groove
Microstructured Surfaces

Machining Conditions Defective Nondefective Time

With sharp tool 0.084 0.916 4 ms
With worn tool 0.998 0.002 4 ms

summarized in Table 4. The results show that both nonde-
fective and defective surfaces were successfully classified with
high probabilities. The computational time for prediction
was 4 ms in both cases, fast enough to be suitable for real-time
detection.

C. Comparison with Other Methods

1. ComparisonwithSupport VectorMachine

Compared to conventional methods such as a support vector
machine (SVM) [24], the proposed CNN-based method has
some advantages:

(1) The CNN-based method is more robust. The noise in the
scattering pattern affects the resolution of the maximizing
margin problem in the SVM, increasing the likelihood of
wrong predictions. On the contrary, the CNN is intrin-
sically designed to extract the relevant features from the
scattering pattern and thus is ultimately more robust to
noise.

(2) The output of the CNN-based method provides results
as probabilities, while the SVM method only outputs the
hard classification result (i.e., a true/false statement on
the recognized class). Probabilities indicate how close the
observation is to each class and thus provide a more detailed
depiction of the classification result.

To support the above claims, additional experiments were
conducted using the same datasets but trained with the SVM
method. Tables 5 and 6 show the defect detection results
for the saw-tooth and vee-groove microstructured surfaces
using the SVM. The classification results for the saw-tooth
microstructured surfaces shown in Table 5 are consistent with
our CNN-based method, but no probability information is
available to assess how close to each class the observations were

Table 5. Defect Detection Results for the Saw-tooth
Microstructured Surfaces Using the SVM Method

Machining Conditions Defective Nondefective Time

With sharp tool No Yes 2 ms
With worn tool Yes No 2 ms

Table 6. Defect Detection Results for the Vee-Groove
Microstructured Surfaces Using the SVM Method

Machining Conditions Defective Nondefective Time

With sharp tool Yes No 19 ms
With worn tool Yes No 18 ms

found to be. This lack of information makes it more difficult
to investigate the performance of the classifier and does not
allow assessment of the conditions where the machine learn-
ing classifier may be performing less robustly. Concerning the
results for the vee-groove microstructured surfaces shown
in Table 6, the surface machined with the sharp tool was
incorrectly detected as defective by the SVM. This may be
due to the high complexity of the training dataset and small
imperfections of the machined workpiece. This has also been
reflected in the results of the CNN-based method as shown in
Table 4, where the probability for correct detection is 0.916,
which is relatively low compared to the other results but is
still correct with high probability. The results show that the
CNN-based method is more robust than the SVM method. It
is interesting to note that, with different datasets, the trained
SVM models have different complexities (fitting to different
datasets), which result in different prediction time, i.e., 2 ms
for the saw-tooth microstructured surfaces (19,440 training
datasets) and 19 ms for the vee-groove microstructured surfaces
(43,740 datasets).

2. Comparisonwith Library SearchMethod

The performance of the proposed CNN-based method was also
compared with that of the conventional library search method.
The results are shown in Table 7 and Table 8. As the library
search method consists of searching for the closest dataset in
the library, it cannot output a probability associated with the
result. The library search method is slow compared to CNN-
based method. For the saw-tooth microstructured surfaces
with 19,440 datasets, the computational time for prediction is
approximately 88 s on average. For the vee-groove microstruc-
tured surfaces with 43,740 datasets, the computational time
is about 208 s. Both are slower than the proposed CNN-based

Table 7. Defect Detection Results for the Saw-tooth
Microstructured Surfaces Using the Library Search
Method

Machining Conditions Defective Nondefective Time

With sharp tool No Yes 87.15 s
With worn tool Yes No 89.19 s

Table 8. Defect Detection Results for the Vee-Groove
Microstructured Surfaces Using the Library Search
Method

Machining Conditions Defective Nondefective Time

With sharp tool Yes No 208.93 s
With worn tool Yes No 208.92 s
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method. It should be noted that the library search method was
implemented in Python running on a single CPU core; the per-
formance may be improved using parallel computing, but in all
likelihood, it would still not be comparable to the CNN-based
method.

Table 8 shows that the library search method detected the
workpiece machined with the sharp tool as a defective surface,
which is similar to the result determined by the SVM method in
the previous section, and it is incorrect. The classification error
may be caused by a large local deviation of the scattering signal,
influencing the library search method, which is based on min-
imizing the root-mean-square error. The results demonstrate
that the CNN-based method is more robust than the library
search method.

D. Discussion

Both experiments for the saw-tooth and vee-groove microstruc-
tured surfaces demonstrate the effectiveness of the proposed
scattering and machine learning method for defect detection.
As a demonstration, defects were caused by worn tools, reflect-
ing scenarios in actual manufacturing processes. Both types
of microstructures were difficult to accurately measure by
conventional optical or stylus instruments.

The proposed method successfully demonstrates that the
defect characteristics of the microstructured surfaces can be
determined at far-field distances and on machine, which is
critical in the manufacturing environment. The feature sizes
of both microstructured surfaces were of the order of several
micrometres, which are significantly larger than the wave-
length of the light source (633 nm). The results show that the
proposed method can overcome the limitations of traditional
scatterometry. The method can potentially be extended to a
wider range of applications for very rough surfaces, such as addi-
tive manufactured surfaces with a 3D BEM model [25], which
will be investigated in the near future. Although several hours
are needed to simulate the datasets and train the deep learning
model, once the model is trained, the prediction is fast (approx-
imately several milliseconds using Python in a modern desktop
PC) and suitable for on-machine implementation. Since a
large dataset is necessary for the training of the deep learning
model, using simulation data as opposed to experimental data
significantly saves time and experimental resources. Combining
light scattering with CNN-based deep learning benefits from
automatic feature learning and extraction, which makes the
proposed method capable of learning the complex patterns from
the scattering signals. It should be noted that as a demonstration
for the proposed method, the BEM model used in this work
is a 2D model, and this paper focuses on defect detection for
single-directional structured surfaces. The beam diameter of
the laser beam used in the experiment was about 1 mm, which
was significantly large compared to the microstructured fea-
tures in the experiment (several micrometers). Hence, each
scattering pattern is actually representative of the aggregated
contributions of multiple features over the illuminated area.
One difference between the simulated and real topography
should be noted. While the simulated surfaces only contained
the main features specific to each surface class definition, the
real surfaces may have contained additional features in the form

of localized defects, imperfections, debris, and other singu-
larities. These deviations may be the reason why classification
performance was slightly degraded (less than 10%) in some
cases. Further investigations on the effects of additional features
adding as disturbance factors needs to be considered. The com-
parison experiments with SVM and the library search method
also demonstrated the advantages of the proposed CNN-based
method in terms of accuracy and performance.

4. CONCLUSION

A method for on-machine surface defect detection using light
scattering and deep learning has been proposed. A deep con-
volutional neural network was trained using a large scattering
dataset simulated by a rigorous forward scattering model. With
the trained neural network, defect information for surfaces
within the range of simulated parameters can be predicted using
the scattering signal. The proposed technique is promising for
on-machine defect detection of surfaces with high speed and
robustness.
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