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Abstract
Mathematical models based on probability density functions (PDF) have been exten-
sively used in hydrology and subsurface flow problems, to describe the uncertainty
in porous media properties (e.g., permeability modelled as random field). Recently,
closer to the spirit of PDF models for turbulent flows, some approaches have used
this statistical viewpoint also in pore-scale transport processes (fully resolved porous
media models). When a concentration field is transported, by advection and diffu-
sion, in a heterogeneous medium, in fact, spatial PDFs can be defined to characterise
local fluctuations and improve or better understand the closures performed by clas-
sical upscaling methods. In the study of hydrodynamical dispersion, for example,
PDE-based PDF approach can replace expensive and noisy Lagrangian simulations
(e.g., trajectories of drift-diffusion stochastic processes). In this work we derive a joint
position-velocity Fokker–Planck equation tomodel themotion of particles undergoing
advection and diffusion in in deterministic or stochastic heterogeneous velocity fields.
After appropriate closure assumptions, this description can help deriving rigorously
stochastic models for the statistics of Lagrangian velocities. This is very important to
be able to characterise the dispersion properties and can, for example, inform velocity
evolution processes in continuous time random walk dispersion models. The closure
problem that arises when averaging the Fokker–Planck equation shows also interesting
similarities with the mixing problem and can be used to propose alternative closures
for anomalous dispersion.
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1 Introduction

The evolution of solute and particle transport in heterogeneous porous media is deter-
mined by the heterogeneity of the medium, the consequent flow heterogeneity and
small scale diffusion (Saffman 1959; de Josselin de Jong 1958; Bear 1972). These
processes determine the average transport behaviours and also the fluctuation dynam-
ics. For example, small scale velocity fluctuations and mass transfer processes give
rise to large scale transport dynamics characterised by hydrodynamic dispersion, but
also non-Fickian transport characteristics such as long tails in breakthrough curves and
non-linear evolution of solute dispersion (Liu and Kitanidis 2012; Kang et al. 2014;
de Anna et al. 2013; Dentz et al. 2018a; Puyguiraud et al. 2019). The understanding of
these behaviours plays a central role in a series of applications across different fields
and applications ranging from geothermal energy to packed bead reactors. The prob-
ability density functions (PDFs) of Eulerian and Lagrangian velocities, their relation
with medium properties, and their evolution with travel distance and time provide
quantitative insight into the mechanisms of hydrodynamic dispersion and mixing in
porous media.

The pioneering study of Moroni and Cushman (2001) used 3-dimensional particle
tracking velocimetry to analyze velocity PDFs in the context of a non-local theory
for hydrodynamic dispersion in porous media. The works by de Anna et al. (2013)
and Kang et al. (2014) studied intermittency in purely advective Lagrangian velocity
series in 2- and 3-dimensional synthetic porous media and modelled their evolution
using a continuous time randomwalk approach. Siena et al. (2014) analysed the scaling
behaviours of Eulerian velocity statistics in 3-dimensional digitised rocks and find
stretched exponential distributions for the stream-wise velocities. Similar statistics
were found for the distribution of stream-wise Eulerian velocity for 2-dimensional
synthetic fibrous media Matyka et al. (2016). Jin et al. (2016) analysed correlations
in medium and flow properties as well as distributions of stream-wise velocities for
different 3-dimensional porous media. These authors find similar behaviours for flow
and structural correlation functions. Holzner et al. (2015) and Morales et al. (2017)
used particle tracking velocimetry to study Lagrangian velocities, accelerations and
dispersion in 3-dimensional bead packs, which are modelled using spatial velocity
Markov models. Holzner et al. (2015) propose a model to relate pore size and velocity
distributions. de Anna et al. (2017) analysed Eulerian velocity distributions in 2-
dimensional synthetic porous media and revealed a relation between the pore aperture
distribution and the distribution of the Eulerian velocitymagnitude, which is explained
by Poiseuille flow in individual pores combined with approximately constant pressure
drops (Saffman 1959). Meyer and Bijeljic (2016) analysed Lagrangian velocity time
series in 3-dimensional porous media, based on which they propose a stochastic model
for the evolution of particle velocities. Alim et al. (2017) proposed a velocity model
based on mass conservation and independence of the flow rates in neighboring pore
throats to explain exponential tails for the stream-wise velocity distribution in simple 2-
dimensional porous media. Puyguiraud et al. (2019) conducted a thorough analysis of
Eulerian and Lagrangian flow attributes for a digitised 3-dimensional Berea sandstone
sample with the aim of predicting and characterising anomalous dispersion processes
at the pore scale (Puyguiraud et al. 2019).
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The above cited works focus on Eulerian and Lagrangian flow attributes for
purely advective particle motion. The classical works by de Josselin de Jong (1958)
and Saffman (1959) considered the stochastic motion of particles in porous media in
the presence of diffusion to derive expressions for longitudinal and transverse hydrody-
namic dispersion coefficients. Saffman (1959) provides an approach for the estimation
of the Eulerian velocity distribution based in 3-dimensional porous media based on
Poiseuille flow in individual pores and the approximation of a constant pressure drop
across different pores. It is argued that diffusion homogenises the particle velocities
within pores. Dentz et al. (2018a) used a similar approach to analyse the tailing of
breakthrough curves in a 3-dimensional synthetic porous medium within a continuous
time random approach parametrised by the Eulerian velocity distribution combined
with diffusive mass transfer. Most et al. (2016) use a copula based method to investi-
gate advective–diffusive particle motion in 3-dimensional porous media. Many of the
works cited above are based on phenomenological understanding, rather than rigor-
ously derived from the microscopic underlying mathematical equations. While more
rigorous analytical upscaling techniques for partial differential equations (PDEs), such
as homogenisation and volume averaging, can be extended to deal with non-Fickian
dispersion and non-equilibrium effects (Icardi et al. 2019), they lead to challenging
non-local closure problems.

We focus here on an alternative approach based on probability density functions,
in the following termed PDF methods (Pope and Pope 2000). PDF methods have
been pioneered in turbulence research (Lumley 1962; Lundgren 1967; Port and Stone
1976; Pope 1994), and specifically in the context of turbulent combustion (Pope 1985;
Fox 2003; Haworth 2010). In these contexts, the PDFs of Lagrangian and Eulerian
velocities and their relations have been studied in order to systematically quantify the
statistical nature of turbulent flow. In the context of turbulent combustion, PDFmethods
provide an elegant way to systematically quantify the non-linear interplay of turbulent
mixing and chemical reaction. PDFmethods have been used to determine, for example
the distribution function of transported passive and reactive scalars, and the densities of
particles that are dispersed in a turbulent flow field (Pope 1994), or by molecular diffu-
sion (Einstein 1905; von Smoluchowski 1906; Langevin 1908). For flow and transport
processes in porous media, PDFmethods have been used for the analysis of the impact
of spatial heterogeneity on Darcy scale transport and reaction. This includes studies
that map, numerically or analytically, the statistics of random porous media flow on
the velocity and concentration statistics for purely advective (Shvidler and Karasaki
2003) and advective–dispersive transport under transient and steady state conditions
(Nowak et al. 2008; Sanchez-Vila et al. 2009; Dentz and Tartakovsky 2010; Meyer
et al. 2010; Dentz 2012; de Barros and Fiori 2014). Other works apply PDF meth-
ods to advective–reactive transport characterized by steady random flow and reaction
conditions (Lichtner and Tartakovsky 2003; Tartakovsky et al. 2009; Tartakovsky and
Broyda 2011; Venturi et al. 2013).While these works derive concentration PDFs based
on the advection–dispersion or advection–reaction equation for the transported scalar,
other PDF approaches (Bellin and Tonina 2007; Suciu et al. 2015, 2016) start from
Langevin equations for the stochastic evolution of scalar concentration, and obtain
the PDF models from the corresponding Fokker–Planck equations. PDF methods in
porous media have also been used both for the upscaling of fluctuating small scale
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dynamics of mixing and reaction, and in the context of probabilistic risk assessment
(Tartakovsky 2013).

In this paper we introduce an equation for the joint distribution of particle position
and velocity under advection and diffusion and apply statistical mechanics techniques
to obtain the equation that describes the evolution of the velocity PDF. This is done
by conditional expectations and perturbation techniques. This approach has not been
applied before for porous media flows although it can be regarded as a special case
of coarse-graining or model reduction (Givon et al. 2004) of the high-dimensional
Langevin governing equations for particle position and velocity. While this has been
extensively studied for Hamiltonian-type systems (Hijón et al. 2006; Di Pasquale
et al. 2019), the coarse-graining of general advection-diffusion models has been only
recently studied for the overdamped Langevin equation (Duong et al. 2018; Legoll
and Lelièvre 2010; Hudson and Li 2018).

In Sect. 2, we derive a system of Langevin equations for the evolution of particle
position and velocity and the equivalent Fokker–Planck equation for their joint prob-
ability density function (PDF). Section 3 focuses on the evolution of the marginal
velocity PDFs and closure models. Section 4 provides some simplified models and
exact solutions for the velocity PDF in deterministic linear shear flows. Eventually
some preliminary numerical results and observations are presented in Sect. 5.

2 Joint position-velocity PDF equation

Scalar and particle (advective and diffusive) transport can be modelled with the Ito
(also known as overdamped Langevin) stochastic differential equation (SDE)

dX = u(X)dt + √
2D dW (1)

with X(t = 0) = X0, where W is a n-dimensional Brownian motion, D a diffusion
constant, and u(x) is a space-dependent constant velocity field. If X,V,u are con-
sidered dimensionless, it is enough to replace D with the inverse Péclet number, Pe.
Equivalently, this can be described by the Fokker–Planck equation

∂c

∂t
= −∇x · (u(x)c) + Δx (Dc) (2)

where Δ is the Laplacian operator, with initial conditions c(x; t = 0) = δ(x −
X0). The probability density function (PDF) c = c(x; t) can be also interpreted as a
concentration field as it is obtained by the SDE Eq. (1) as

c = 〈δ(X − x)〉 (3)

where the operator 〈·〉 indicates the average with respect to the Brownian motion
(stochastic average).

The problem with this formulation is that we lose completely the information on
the trajectories and, particularly, on the Lagrangian velocities U = u(X) and their
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time evolution. One way to restore it is to introduce a joint position-velocity PDF. We
can extend the Markovian variable to the joint variable (X,U) and write a system of
Ito SDEs, by writing U using Ito’s lemma and remembering that we have a steady
flow field so that the time derivative disappears. Equivalently one can think of it as a
Taylor expansion around the point X

dU = du(X) = ∇xudX + 1

2
dXT∇2

xudX + O(dX3) (4)

where u = u(X) is the velocity field evaluated in the position X and, and ∇2 indi-
cating the Hessian operator. Note that Ito’s lemma requires an expansion of dU up to
second order in dX in order to obtain a consistent expansion in dt because the random
increment dW is of order dt1/2. Substituting Eq. (1) in Eq. (4) we obtain an explicit
SDE for the Lagrangian position and velocity. Considering only the first order terms
and remembering that dW 2 = dt ,

d

(
X
U

)
=

(
u

GU + DΔu

)
dt + √

2D

(In×n

G

)
dW (5)

where G = G(X) = ∇u
∣∣
X is the deformation tensor evaluated at X and In×n is the

identity matrix of order n (spacial dimensions and length of vectors U and X). If we
assume that u is the solution of a stationary Stokes flow, then the term Δu = 1

μ
∇ p,

where p is the pressure.
The corresponding Fokker–Planck equation (Van Kampen 2007; Gardiner 2009)

for the joint PDF f (x, v; t) can be therefore written as1

∂ f

∂t
= −∇x · [v f ] + Δx [Df ] − ∇v · [(Gv + DΔu) f ] + ∇2

v :
[
D(GGT ) f

]
+2∇x∇v : [DG f ] (6)

where we have denoted the Frobenius double inner product with “:” notation.
Equation (6) can also be written in a fully conservative way, as follows:

∂ f

∂t
= ∇x · [(−v + D∇x) f ] + ∇v ·

[(
−Gv − DΔu + DGGT∇v

)
f
]

(7)

where the change of sign of the term DΔu is due to a cancellation with the integration
by parts of the mixed derivative. Another useful formulation is obtain by bringing
outside derivatives all terms:

∂ f

∂t
+ v · ∇x f + (Gv + DΔu) · ∇v f = DΔx f + D(GGT ) : ∇2

v f (8)

1 We are dealing with a 2n-dimensional Fokker–Planck equation whose 2n × 2n diffusion matrix is

1

2

(√
2DIn×n√
2DG

)(√
2DIn×n√
2DG

)T

= D

(In×n GT

G GGT

)
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In the equivalence of these three forms of the joint position-velocity PDF, we have
assumed here non-inertial particles2 (i.e., ∇vu = 0 such that ∇vG = 0) and an
incompressible flow field (∇x · u = 0).3

These equations represent a novel point of view in the analysis of transport and
mixing in heterogeneous media. While the advection and diffusion in space might
look similar to the standard advection–diffusion equation, their coefficients are no
longer explicitly depending on space but only on the now internal coordinate v. This
means that the advection term∇x ·[v f ] can now be integrated and/or averaged in space
with no closure. This is at the expenses of introducing three additional dimensions for
velocity. As we will discuss in the next section, if the equation is averaged spatially,
the closure problems arise instead from the terms that contain derivative in the velocity
space.

Let us focus our analysis here to Eq. (7). Two different velocity-drift (advection)
terms (i.e., acceleration/deceleration) can be identified, and the diffusion term in the
velocity. The latter, compared to the standarddiffusion in space, has nowanon-constant
coefficient that depends on the local shear rate tensor. The diffusivity also enters
into the second velocity-drift advection term due to the diffusion-induced changes of
velocities. This can be explained by considering the effect that spatial diffusion has on
the velocity. For example, if a particle lies in the slowest (w.r.t. fastest) regions of the
flow, the diffusive jumps will cause a change in the velocity that is not isotropic (like
for changes of position in spatial diffusion) but instead weighted by the local shear and
will depend on the local velocity, causing therefore an additional velocity-drift term
(similarly to a non-constant diffusion in space that cause an additional drift term).

3 Velocity marginal PDF and closures

In certain cases, we can be interested solely on the evolution of the velocity PDF.
We can therefore marginalise the general Eq. (6), by defining F = ∫

f dx = f as
the global spatial average4 and neglecting all the boundary terms arising from spatial
derivatives (assuming an infinite or periodic domain), obtaining

∂ F

∂t
= −

∫
∇v · [(Gv − DΔu) f ] dx +

∫
D(GGT ) : ∇2

v f dx (9)

2 This means that the advective velocity is always equal to the flow velocity and depends only on the spatial
coordinates. In the case of inertial particles this it not true anymore since one can define a advective velocity
that is a function of the fluid velocity. This will be studied in our future work.
3 In fact, when Gv is taken out of the velocity derivative

∇v · (Gv f ) = tr(G) f + (Gv) · ∇v f

and the first is null only for incompressible fluids.
4 This is not to be confused with the stochastic average used above. To distinguish, the spatial average is
denoted by ·, while the stochastic average with respect to the Brownian/dispersive motion will be denoted
by 〈·〉.
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A similar result would be obtained by local spatial averages (filtering) with the dif-
ference that the spatial derivative will not disappear. In this work, we want to focus
on the closure of the terms that depend on derivatives in the velocity space, and in the
dynamics in the velocity space. Local spatial averages will be the subject of further
investigations.

Equation (9) is now an equation in 3 + 1 dimensions (velocity and time), that
represent the evolution of Lagrangian particle velocities in the whole space. This is
however unclosed as the last two terms contain non-trivial spatial integrals of velocity
gradients (G and Δu) weighted by the joint pdf f . To approximate these integrals,
we can decompose f (x, v; t) = f (x|v; t)F(v; t) and, denoting conditional averaging
over f (x|v; t) with superscript x|v, the equation can be written as

∂ F

∂t
= −∇v ·

[(
G

x|v
v − DΔu

x|v)
F

]
+ Δv

(
DGGT

x|v
F

)
(10)

In general, compared to the simplified case considered in Sect. 4.2, the flow map
that links each position to a velocity might not be invertible, making the conditional
expectations not trivial to compute. Furthermore, the conditional expectations in gen-
eral depend on time. To better understand the physical meaning of these conditional
expectations, we can rewrite the conditional PDF (see also an alternative derivation in
“Appendix A”), using Bayes formula, as:

f (x|v; t) = f (v|x) f (x; t)
F(v; t) = δ(v − u(x))c(x; t)

F(v; t) (11)

where the marginal PDF of position f (x; t) = c(x; t) is the concentration field, and
the conditional probability f (v|x) is a deterministic function that maps each position
into its velocity,5 i.e., it is the delta function δ(v − u(x)). The appearance of the delta
function inside the conditional probability results in the closure integral terms to be
evaluated only on the domain Ωv = {x | u(x) = v} with the concentration field as a
weight, i.e., for a generic function g = g(x),

g(x)
x|v =

∫
Ωv

g(x)c(x; t)dx

As we will see in Sect. 3.1, this closure gives an exact analytical formula for simple
shear flows. More generally, in Eq. (10), one has to compute these closure terms as
functions of velocity v and time t , or relying on equilibrium approximations (see
Sect. 3.2), in which the invariant (long-time) concentration (position PDF) ce is used
instead, and the corresponding marginal velocity PDF at equilibrium Fe(v), defined
as:

Fe(v) = lim
t→∞ F(v; t) (12)

5 Since ourmodel assume that the particles instantaneously relax to the local, constant in time, fluid velocity
field.
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3.1 Constant shear

For the simple case of constant shear rate,G is a constant matrix, and Eq. (10) can be
explicitly closed and written as an advection diffusion reaction equation

∂ F

∂t
= −(Gv) · ∇vF − tr(G)F + D(GGT ) : ∇2

v F (13)

where we have taken (Gv) out of the derivative and tr(G) = 0 for an incompressible
fluid. The stationary (equilibrium) velocity PDF Fe(v), can be calculated by removing
the time derivative. This can be formally integrated (similarly to the stationary distri-
bution of the Ornstein–Uhlenbeck process), provided that G is an invertible matrix,
resulting in a Gaussian solution

Fe(v) ∝ exp−vTGTG−1Gv

This is, however, a well-defined probability only for positive definite matrixG, which
is in contradiction with assumption of it being traceless. A physical explanation of this
is that an incompressible fluid in an infinite domain with a constant shear necessarily
brings particles towards region of infinite velocity. If we drop instead the assumption of
incompressibility and we assume a positive definite G, the particles will all be driven
into the origin and oscillate around it by diffusion, assuming therefore a Gaussian
distribution of velocities.

3.2 Equilibrium Eulerian velocity PDF

At equilibrium, the concentration c(x, t), for solenoidal (divergence-free) velocity
fields u, tends to a constant value6 ce. Therefore, the joint PDF at equilibrium is
constant inx and simplyproportional to Fe(v), and the conditional expectations (spatial
averages against the conditional distribution), for a generic function g, are defined as

g(x)
e|v =

∫
Ωv

g(x) fe(x|v)dx =
∫

Ωv

g(x)
δ(v − u(x))ce

Fe(v)
dx (14)

where, as above, we have used Bayes formula to express the equilibrium conditional
probability. As it can be seen, this expectation is now independent of time, as long as
the velocity field does not depend on time.

The stationary version of Eq. (10), i.e.,

∇v ·
[(

G
e|v

v − DΔu
e|v)

Fe
]

= Δv

(
DGGT

e|v
Fe

)
(15)

6 Provided appropriate boundary conditions, such as local periodicity. For more general cases, with reac-
tions, sources or sinks, or with non-solenoidal velocity fields, the equilibrium concentration can be a
non-constant function.
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is therefore the equation satisfied by the equilibrium velocity PDF Fe(v) which, in
this case, it is equivalent to the Eulerian velocity PDF, i.e., the velocity PDF obtained
by sampling uniformly7 the whole domain.

3.3 Perturbation near equilibrium

To obtain a simpler dynamics, we can now decompose the velocity PDF near the
equilibrium as:

F(v, t) = Fe(v) + F∗(v, t)

and decompose also the conditional expectations as:

f (x, t |v) = fe(x|v) + f ∗ (x, t |v) 
⇒ gx|v = ge|v + g∗|v

where the latter, being the difference between two conditional distributions, is not a
distribution (e.g., it does not integrate to one but instead its integral is null) and it is
not directly computable from fluctuations c(x, t)− ce, as the conditional distributions
in Eqs. (11) and (14) have a different denominator.

Applying these decompositions to Eq. (10), and using the definition of Fe, Eq. (15),
we obtain:

∂ F∗

∂t
+ ∇v ·

[(
G

e|v
v − DΔu

e|v)
F∗] − Δv

(
DGGT

e|v
F∗) = −τ(v, t, F∗)

(16)

where

τ(t, v, F∗) = ∇v ·
[(

G
∗|v

v − DΔu
∗|v)

F∗] − Δv

(
DGGT

∗|v
F∗) (17)

where we have used the fact that τ(t, v, Fe) = 0 to preserve the correct equilibrium.
Equation (16) is now an equation for F∗ with coefficients constant in time. They

have however a possibly complex dependence on the independent variable v, through
the conditional expectation. Furthermore, the forcing term τ is still a complex time-
dependent term that still needs a closure.

Since f ∗ (x|v) = 0, the easiest closure, used below in the numerical example in
Sect. 4.2, is to assume the terms to be averaged are uncorrelated with f ∗, resulting in
τ = 0. Alternatively, another possibility that will be considered in future works, is to
lump this term into an relaxation term to drive the system towards equilibrium, i.e.,
τ(t, v, F∗) ≈ τ0(v)F∗.

7 Since we have here assumed a constant equilibrium concentration.
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3.4 Interaction by exchange with themean

We introduce here two simplifying assumptions that allows to rewrite the parameters
given by the conditional expectations in Eq. (16), that still depend in a complex way on
the independent variable v, in a simpler form. Similarly to the IEMmodel (interaction
by exchange with the mean) in turbulent mixing (Pope and Pope 2000), and to the
Mori Projector inStatisticalMechanics (Grabert 2006), by assuming that velocityv and
velocity gradientG are spatially distributed according to a joint Gaussian distribution,
or, equivalently, approximating G as a linear function of v, we can rewrite8 the first
two conditional expectations in Eq. (16) as follows:

G
e|v ≈ (v − u)T u′u′T −1

u′ ⊗ G (18)

Δu
e|v ≈ − (v − u)T u′u′T −1

GGT (19)

where we have assumed that G = 0 and u′ = u − u. All averages are now uncon-
ditional averages and can be taken out of the derivatives. These averages are now
more easily computable from the Eulerian velocity field. u′u′T is, in fact, the spatial
correlation matrix of the velocity field and GGT , that appears with an opposite sign
due to the integration by parts, is a contraction of the full velocity gradient covariance
G ⊗ G.

One could apply the same closure also for the third expectation in Eq. (16) related
to the second order velocity derivative. However, here, assuming that GGT is a lin-
ear function of v (or equivalently a joint Gaussian) is not consistent with the same
assumption for G. Also, applying this closure, we can end up with possibly negative
diffusion coefficients in the velocity space.

This IEM approximation could have been equally applied directly to Eq. (10) but,
without the equilibrium approximation, all the averages would still depend on time
through the concentration that would act as a weighting function in the spatial averag-
ing. This means that the evolution equation for the velocity PDF would noto be fully
closed since it would require the solution of the concentration field at all times.

4 Deterministic shear flows

Consider the following 2D shear-flow dynamics

d

(
X
Y

)
=

(
u(y)
v

)
dt +

(√
2Dx 0
0

√
2Dy

)
dW (20)

8 Using the formula for conditional expectations of joint Gaussian distributions

E[Y |X ] = E[Y ] + cov(X , Y )

var(X)
(X − E[X ])

or, equivalently, interpreting the conditional expectation as a projection into the reduced space span by
linear functions of v.
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where u is a shear flow depending on y only (and possibly in a random manner), v is
a generic function (specified later), and W is a two-dimensional Wiener process. In
the following we will consider a few special cases of this dynamics.

Let us assume Dx = 0, i.e., molecular diffusion is acting only on y. The joint
position-velocity PDF can be written for f = f (x, y, u, v; t) where the dependence
on the velocity field is only through the velocity gradient9 σ = ∂u

∂ y
and, from now on,

u represents only the internal velocity coordinate.
Under these assumptions,

G =
(
0 σ

0 0

)
GGT =

(
σ 2 0
0 0

)

and a few simplifications can be made on the general Fokker–Planck Eq. (7), leading
to the following equation:

∂ f

∂t
= − ∂

∂x
(u f ) − ∂

∂u
(σv + Dσ ′) f + D

∂2 f

∂ y2
+ D

∂2

∂u2

(
σ 2 f

)
(21)

where σ ′ = ∂σ

∂ y
. Since no significant dynamics happens in the y-component of the

velocity, v, if we start from an initial condition f0 = δ(v)g(u, x, y), the term σv
∂ f

∂u
can be disregarded.

As done for the general case (see Sect. 3), we now perform the marginalisation to
obtain an equation for the velocity PDF F(u, t). In an infinite channel, the derivatives in
x disappear, while integrating along the channel height y, the second-order derivative
in y can be written as a diffusive flux at the boundary walls. Since no particles can
enter or exit through the walls, they are null and we obtain:

∂ F

∂t
= −D

∂

∂u
(Mσ ′F) + D

∂2

∂u2
(Mσ 2F

)
(22)

where Mσ ′(u; t) = ∫
σ ′ f (y|u; t)dy and Mσ 2(u; t) = ∫

σ 2 f (y|u; t)dy. As shown
inSect. 3, this depends, in general on time, as f (y|u; t) ∝ δ(y−y(u))c(y; t).However,
as expected in a stratified flow, the evolution of velocities is due solely to the diffusion.

4.1 Constant shear (Couette flow)

Couette flow is characterised by σ = σ0. The velocity marginal PDF does not need
any closure. This reduces to a simple heat equation for F(u).

∂ F

∂t
= Dσ 2 ∂2F

∂u2
(23)

9 We assume the velocity field is smooth enough, i.e., with a Gaussian correlation. In this way the derivative
exists and it is Gaussian itself with Gaussian correlation function.
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As expected, starting from any initial condition, the particles will reach a final equi-
librium velocity distribution which is a linear function between the two values of
velocity at the boundaries. At early times, starting from a delta-distributed concentra-
tion of particles, the velocity PDF will evolve as a Gaussian distribution before feeling
the presence of the walls.

4.2 Linear shear (Hagen–Poiseuille flow)

This is the case of a two-dimensional channel flow with σ = −2y u0
L2 and σ ′ = −2 u0

L2 .
In this case, there exists a deterministic relation between y and u, i.e., u(y) = u0

L2 (L −
y)(L + y) = u0(1 − y2

L2 ), such that y
2 = L2

(
1 − u

u0

)
and the solution for long time

limits, near equilibrium, can be computed analytically.
Equilibrium closure With the equilibrium closure, considering a constant concentra-
tion c(x, y) = ce,Mσ ′ andMσ 2 are constant in time. Equation (22) can be therefore
closed as an inhomogeneous diffusion in the velocity space:

∂ F

∂t
= 4Du20

L2

∂2

∂u2

((
1 − u

u0

)
F

)
+ 2Du0

L2

∂ F

∂u

= 2Du0
L2

∂

∂u

(
2 (u0 − u)

∂ F

∂u
− F

)
(24)

The stationary solution of this equation is given by:

F ∝
(
1 − u

u0

)−1/2

(25)

This solution is, in fact, consistent with the fact that, when particles are uniformly
spread throughout the channel, their velocity is simply given by the inverse function
of the velocity profile.

In Fig. 1, we test the equilibrium closure and its convergence to the Eulerian velocity
PDF. Equation (24) is solved with the Matlab library Chebfun (Driscoll et al. 2014),
for L = 1, u0 = 1, D = 1, on the domain [0, 1], with no-flux boundary conditions.
The initial conditions (crosses) are such that particles (or solutes) are injected only
in 20% highest (red dot-dashed, wrt 20% lowest, blue dashed) velocity regions, and
the evolution towards the Eulerian velocity distribution (black continuous curve with
asterisks) is depicted for different times (t = 0.005; 0.1; 0.2; 0.4; 0.8; 1.6). As it can
be seen, both the initial conditions converges relatively fast towards the equilibrium
distribution. In this equation only diffusion is the driving force for this relaxation,
therefore, rescaling appropriately the time, the solution is independent of the Péclet
number.
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Fig. 1 Evolution of the Lagrangian velocity PDF for Poiseuille flow, starting from particles concentrated
in fast (red dot-dashed curves) or slow (blue dashed curve) regions. The initial conditions are recognisable
by added cross symbols. The equilibrium (Eulerian velocity) distribution is represented by the black solid
line with symbols). The different curves show the evolution for dimensionless (advective-based) times
t = 0.005; 0.1; 0.2; 0.4; 0.8; 1.6 (colour figure online)

5 Discussion and conclusions

In this paper, we have derived a joint position-velocity probability density function
(PDF)model for passive particles flowing in a porous medium or a heterogeneous flow
field. This is achieved by extending the phase space and writing down the stochastic
differential equation (SDE) and the corresponding Fokker–Planck partial differen-
tial equation (PDE). While the (Smoluchowki) position-only PDF equation contains
classical advection terms u∇xc, this new formulation requires only first and second-
order derivatives of the flow field that often have higher-frequency oscillations and
therefore, better mixing/averaging properties. This aspect, possibly leading to more
accurate macroscopic models, will be explored in our future works.

Another advantage of this joint position-velocity formulation is that it can be easily
extended to full second-order models with velocity increments given, for example, by
the drag force as follows:

d

(
X
U

)
=

(
u

U−u(X)
St

)
dt + √

2D

(
0

In×n

)
dW (26)

Here St is the Stokes number, that depends on the particle size and density, and the slip
velocity (difference between particle velocity and local fluid velocity) is U − u(X)).
In this alternative model, it is more appropriate to put the random fluctuating term in
the momentum, as in the classical Langevin dynamics. This problem is more complex
as the particle velocities are no longer divergence free. This case will be studied in
future works.
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Since the joint PDF model is defined on a high-dimensional space (6 + 1 dimen-
sions), we have studied reduced equations obtained by integrating (marginalising)
over space (assuming therefore periodicity or ergodicity) to focus on the evolution
of Lagrangian particle velocities. Connections with the theory of coarse-graining are
established and several possible closures are proposed. This approach, first derived for
a general flow field, is then applied for two-dimensional shear flows. Here, the effect
of the equilibrium, and short-time approximations are analysed.

The study of the evolution of particle Lagrangian velocities is motivated by recent
studies that highlight the importance of modelling the evolution of Lagrangian veloc-
ities (Dentz et al. 2016, 2018) for predicting anomalous transport in heterogeneous
media. For the first time, in this work, we propose a rigorous approach to derive an
evolution equation for the Lagrangian velocity PDF.

Future works will include the application of this theoretical study to three-
dimensional periodic and random porous media will be performed, the derivation
of local averaged joint pdf equations (averaged in a small spatial and velocity repre-
sentative volume), as well as the consequences of the closures proposed for developing
improved Lagrangian and Eulerian non-Fickian transport models.
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A Appendix: Alternative derivation of F and f

Starting again from Eq. (4), one can also formally write f

f (x, v, t) = 〈δ (v − V(t)) δ (x − X(t))〉 = 〈δ (v − u (X(t))) δ (x − X(t))〉
= δ (v − u (x)) 〈δ (x − X(t))〉 = δ (v − u (x)) c (x; t) (27)

Similarly, one can define directly the marginal velocity PDF F as

F(v, t) = 〈δ(v − u(X(t)))〉 =
∫

dx 〈δ(v − u(x))δ(x − X(t))〉

=
∫

dx δ(v − u(x)) 〈δ(x − X(t))〉 =
∫

dx δ(v − u(x))c(x, t)

=
∫

dx |G|−1δ(x − x0(v))c(x, t)

(28)
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where the last step is well defined only locally or when flowfield is invertible and x0(v)
is the inverse of the function u(x) (i.e., the point in space whose velocity is v). This
highlights the relation between the joint PDF f and the usual spatial concentration
PDF c(x, t) = 〈δ(x − X(t))〉 and the role of the velocity gradientG. In particular, in an
homogeneous state, when c(x) = const , the velocity PDF is equivalent to the inverse
of the velocity gradient determinant composed with the inverse velocity function
x0(v)

F(v, t) = |G|−1(x0(v)).
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