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Abstract

This paper considers wave loads on bottom mounted vertical cylinders in the regime relevant

to offshore wind turbine monopiles, examining the higher harmonics of the loading from non-

breaking waves which are important in engineering design. Although we consider measurements

of total force, our focus is on the moments applied about the seabed which have received much less

attention in the literature. We consider an empirical ‘Stokes-like’ model whereby the magnitude

of the higher harmonics of force or moment are dependent on the linear force or moment time-

series raised to an appropriate power and a fixed coefficient. We compare this representation

to high quality wave flume measurements and fully non-linear potential flow simulations. In

general we find good agreement for all of the harmonic structure except for the triple frequency

component where there are significant discrepancies. We also extend the Stokes-like model and

show that harmonics of moments can be robustly predicted from the force harmonic and an

appropriate constant moment arm for each harmonic, so a more elaborate calculation is generally

not necessary.
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1. Introduction

In many locations around the world ocean waves produce important dynamic loads on offshore

wind turbines. The typical relatively small Keulegan-Carpenter (KC) number for offshore wind

turbine monopiles implies that inertia loading will dominate and drag forces can be neglected

for non-breaking waves. The inertia load produces a force at the same frequencies as the incom-5
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ing wave. However, there will be higher harmonics in the loading from large waves and these

can make up a significant part of the magnitude of the total load. The higher harmonic loads

will tend to act near the free surface and therefore have a higher moment arm than the linear

loads – and hence increase moment around the sea-bed. However, perhaps most importantly

these higher harmonic loads may potentially act at around the lowest natural frequency for which10

an offshore wind turbine is designed for (see Kallehave et al. 2015). The resonance associated

with column-supported offshore structures has been described as ‘ringing’. The higher-harmonic

ringing loads on a vertical surface-piecing cylinder have been investigated in the literature e.g.

(Krokstad and Stansberg, 1995; Stansberg, 1997; Chaplin et al., 1997; Grue and Huseby, 2002;

Riise et al., 2018b,a). This loading at the natural frequency is of obvious concern for structural15

and geotechnical design and therefore improving the understanding of the higher harmonics of

wave loading is of importance. Further, the approach in the present paper moves towards devel-

oping computationally fast methods of including these components in time-domain simulations of

structural and geotechnical responses where complex fluid mechanics simulations or experiments

are not practical.20

Analytical approaches have been developed for calculating higher harmonic loads on cylinders.

Second-order diffraction theory has been developed by a number of authors (Kim and Yue, 1989;

Chau and Eatock Taylor, 1992; Huang and Eatock Taylor, 1996; Newman, 1996). This was pushed

further by Faltinsen et al. (1995). They developed a third-order diffraction model (referred

to as FNV) for approximating the third-order wave force on a slender cylinder, based on the25

assumptions of deep water and that the incident wave amplitude is in the same order as the

cylinder radius. Recent experiments (Huseby and Grue, 2000; Chen et al., 2018; Kristiansen

and Faltinsen, 2017) have generally shown good agreement with FNV theory in the regime for

which the theory is valid, although some discrepancy in phase is apparent. Malenica and Molin

(1994, 1995) (referred as M&M) made a complete third-order diffraction analysis following the30

perturbation method and utilising a semi-analytical solution for the third-order potential. The

predictions of FNV model and M&M differ appreciably in the magnitude of the third-order force

when the incident frequency became relatively high and markedly in the phase of the force. As the

underlying perturbation assumptions in FNV and M&M are different, the results of one cannot

be regarded as a special case of the other. Teng and Kato (2002) also reported the third-order35

wave loading at the triple frequency on fixed truncated bodies. Good agreements between their

model and experiments were found at low wave frequencies; however, their results at third order
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were under-predicted at high wave frequencies. For harmonics higher than the third there are at

present no analytical solutions. However, Chen et al. (2018) have shown experimentally that the

loading above this can be modelled using a harmonic type representation. The recent numerical40

work in Chen et al. (2019) shows that higher harmonic loads can be extracted even considering

the interactions of waves and sheared currents.

In the regular wave tests in Kristiansen and Faltinsen (2017), discrepancies between the FNV

model and measurements at the third harmonic were found to increase with wave steepness. The

addition of a drag term in the FNV model, as is done in Morison’s equation, could not explain the45

discrepancies. They observed a noticeable runup at the rear of the cylinder and this runup was also

captured by Navier-Stokes simulations and believed to be caused by a high-pressure zone due to

flow separation. Nevertheless, their simulations were in 2D and the effects from the nonlinear free

surface condition and the fluid viscosity cannot be distinguished. More experimental investigation

with carefully extracted higher harmonic loads and nonlinear numerical models are needed.50

This study analyses experimental results from the Kelvin tank in the University of Strathclyde

and ‘fully non-linear’ potential flow simulations. The objectives of the present study are as follows:

1. To produce high quality experimental estimates of the higher harmonics of force on columns.

This builds on the previous work of Chen et al. (2018). Compared to this study we used

‘four-phase separation’ rather than ‘two-phase’. Further in the present work the timing55

of the tests was known so that phases did not have to be aligned in post-processing as

was necessary in the previous study. This improved methodology allows more accurate

determination of the forces and allows extraction of higher harmonics.

2. To examine the harmonics of the moment (nominally around the sea-bed). Although mo-

ments are probably of more engineering significance that forces, these have been examined60

far less in the literature, presumably due to the difficulty of measuring these experimentally.

To our knowledge moments have not previously been analysed with the Stokes-type model

used here. For example in the present paper we investigate whether each moment harmonic

can be represented by the equivalent force harmonic multiplied by an appropriate moment

arm. This would simplify the calculation process.65

The experimental and numerical data sets are complementary rather than the primary purpose

being for one to directly validate the other although where there are agreements and discrepancies

is obviously of interest. There are subtle differences between the exact scenarios due to the nature
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of the tests. Most obviously, the numerical simulations are limited in the maximum steepness

that can be run due to the nature of the code, whereas the experiments are limited by the lowest70

steepness that can be run due to measurement accuracy of the small higher harmonics. Other

differences include the column not extending to the bed in the experiment (for practical reasons)

although it does in the numerics.

2. Methods

2.1. Experimental setup75

The experimental campaign was undertaken at the Kelvin Hydrodynamics Laboratory at the

University of Strathclyde, Glasgow, United Kingdom. The tests were carried out in the lab’s 76

m long, 4.6 m wide wave flume with a constant water depth of 1.8 m. The tank is equipped with

a hinged ‘flap-type’ wavemaker at one end consisting of four paddles with force-feedback wave

absorption. The four paddles are side-by-side extended over the width of the tank, and they are80

prescribed with the same input wave signal – we generate two-dimensional waves. A 13 m-long

sloping beach covered with a porous carpet acts as a passive absorber at the other end. A single

surface-piercing vertical cylinder of diameter 0.315 m was placed at the centreline of the tank,

with its centre 35.315 m away from the wavemaker. Figure 1 shows a sketch of the experimental

setup. As the tank width is not large compared with the peak wavelength we tested, reflection85

from the side walls is expected. We select the appropriate time window such that the wave profile

at the wave focusing is not disturbed by the reflected waves from the side walls. Additionally,

this possible reflection will not significantly affect much the inline wave forces due to symmetry

and these reflected waves travelling normal to the inline direction.

The cylinder was rigidly supported at its upper end by a six-degree-of-freedom load cell90

mounted on a stiff frame (see Figure 2(a)). The bottom of the cylinder was fixed to a frame

attached to the tank floor via a three-degree-of-freedom load cell attached to a bearing assembly

which released the bending moments. The lower support raised the end of the cylinder slightly

above the tank floor; the resulting cylinder draught was 1.6 m. The upper end of the cylinder

is located just under 1.0 m above the still water surface, to allow for the substantial run-up of95

the large focused waves. The arrangement allows the calculation of the total inline force and the

inline moment about the bearing, so that the moment arm may be found. Figure 2(b) shows

a wide view of the cylinder viewed from the wavemaker as a wave passes, with the inset image

showing the side view. The setup was found to have a relatively high system natural frequency of
4



Figure 1: The schematic overview of the experimental setup.

(a) (b)

Figure 2: The experimental setup in the Kelvin Hydrodynamic Laboratory (a) load cell on top of the cylinder;
(b) the vertical cylinder in the tank.

10.7 Hz by a hammer test, that is, 25 times the peak frequency of the tested wave groups. Such100

a high natural frequency suggests the possible cylinder dynamics is negligible in the frequency

range of interest, allowing the measurement of the pure hydrodynamic loads without the necessity

of eliminating the contribution due to structural dynamics (see Chen et al. 2018).

In this study we use wave groups to load the structure. These have the advantage over regular

or random waves that there are no issues with reflections either from the beach or the side of105

the tank. We use the NewWave approach (see Tromans et al. 1991) so that the wave that would

hit the structure would be the expected shape of an extreme event in an input seas state. As

wave-group evolution has significant non-linearities in unidirectional waves (Lo and Mei, 1985;

Baldock et al., 1996; Adcock and Taylor, 2009) iteration was used to produce the focussed wave

group. The input timeseries used is identical to that used in the study of Santo et al. (2018).110

A JONSWAP spectrum of peak frequency fp with γ = 3.3 was used to generate the wave
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Case fp(Hz) kp(m
−1) kpR kph A(m) kpA KC

1 0.429 0.82 0.129 1.476 0.134 0.110 2.671
2 0.429 0.82 0.129 1.476 0.147 0.120 2.927
3 0.429 0.82 0.129 1.476 0.160 0.131 3.185
4 0.429 0.82 0.129 1.476 0.169 0.138 3.366
5 0.429 0.82 0.129 1.476 0.179 0.146 3.562
6 0.429 0.82 0.129 1.476 0.206 0.169 4.110
7 0.429 0.82 0.129 1.476 0.241 0.197 4.802
8 0.429 0.82 0.129 1.476 0.256 0.210 5.115
9 0.477 0.973 0.153 1.751 0.162 0.158 3.237
10 0.531 1.169 0.184 2.104 0.160 0.188 3.200

Table 1: Test parameters. The peak frequency fp is used in JONSWAP spectrum. The wavenumber kp for the
wave group is computed from the linear dispersion relation using the peak frequency. Amplitude A(m) is the
linear component of the focused wave group defined in the NewWave model. The Keulegan-Carpenter number
(KC) is computed by KC = πA/R, where R is the cylinder radius and A is the target amplitude.

groups. The discretized spectrum cut-off is 0.5fp−3.0fp. Wave groups with varying wave steepness

were tested to investigate the nonlinear effects on the higher-order wave loads. The tested wave

groups are listed in Table 1.

The test conditions give a range of the ratio A/R = (0.6 - 1.9), that is, the wave group115

amplitude is mostly of the same order with the cylinder radius, R (implying the FNV model for

third-order force ought to be applicable). The corresponding wave steepness kpA is (0.10 - 0.25).

No wave breaking of the undisturbed waves is expected or was observed in this range. With the

KC number smaller than 5 (except Case 8), we expect the wave force to be inertia dominated.

Local viscous effects near focusing might be expected to play a role when KC > 4.0. However, we120

see little evidence of this in the present paper and viscous effects appear relatively unimportant in

this analysis. In particular, we do not think these explain the discrepancy between the potential

flow model and experimental results in a few cases.

2.2. Numerical model

The fully nonlinear potential flow model ‘OxPOT’ presented in Bai and Eatock Taylor (2006)125

and Bai et al. (2014) is employed. The model solves the velocity potential satisfying the Laplace

equation in the time domain. The exact free-surface dynamic and kinematic boundary conditions

are satisfied. A rectangular Numerical Wave Tank is set up in the model where a piston-type

wavemaker is located at one end of the tank and a numerical damping beach at the other.

Impermeable conditions are satisfied on the tank side walls and bottom and on the fixed structure130

wetted surface. Waves are generated and controlled through the movement of the wavemaker
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which is modelled as a horizontally moving solid wall. The boundary value problem for the fluid

flow enclosed by the tank, and the body wetted surface and the free water surface is solved

numerically in the time domain.

A higher-order boundary element method is employed to formulate the boundary integral135

equations (BIEs). The computational boundaries are discretized by quadratic isoparametric ele-

ments. The quantities within an element can be computed through its nodal points using local

shape functions. For discretization, structured 8-node quadrilateral elements are distributed on

the vertical tank walls and body surfaces. On the free surface, unstructured 6- node triangular

elements are generated by Delaunay triangulation. Mesh density is controlled by the mesh size140

at the edges of the boundaries. Once the velocity potential and velocity are obtained by solving

a set of algebraic linear equations resulting from BIEs, the hydrodynamic forces acting on the

structures can be computed by integrating the pressure over the structure surfaces.

During the simulation, the exact free surface is captured at every time step. To update the

nonlinear free surface in the time domain, the Mixed Eulerian-Lagrangian algorithm is adopted145

in the model. The free surface nodes follow the Lagrangian trajectory of the fluid particles and

are interpolated to the new surface in the Eulerian frame. The time marching scheme is the

4th-order Runge-Kutta algorithm, which has been shown to be numerically stable and accurate.

Detailed numerical implementation on the numerical wave tank techniques, such as the damping

beach and numerical integration with a free-surface/solid boundary singularity, can be found in150

Bai and Eatock Taylor (2006) and Bai et al. (2014).

In the numerical simulation, the cylinder is modelled as bottom mounted, i.e. its draft is 1.8

m. The numerical tank is shorter than the experimental to save on computation time. The length

is 35 m long and the width remains the same as the physical tank. This length is about 4 times

the dominant wavelength and is long enough to ensure the water surface near the cylinder is free155

from reflection. The numerical damping beach at the end of the tank is shown to be effective in

the previous studies Bai et al. (2014) and Feng et al. (2019). The same JONSWAP spectrum is

used to define the incident wave group in both the simulations and experiments.

2.3. Harmonic decomposition

In this paper we utilise phase controlled harmonic decomposition to extract the different160

harmonics. With the assumption of a relatively narrow-banded spectrum, the focused wave

group can be assumed to have a slowly-varying amplitude A(t) near focusing and the wave force
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is expanded with respect to wave steepness as

F (t) = <[AF11 exp (ßωt) + A2(F20 + F22 exp (2ßωt)) + A3(F31 exp (ßωt) + F33 exp (3ßωt))

+ A4(F40 + F42 exp (2ßωt) + F44 exp (4ßωt)) +O(A5)]
(1)

up to fourth order of the steepness kA. The coefficients Fmn represent complex functions cor-

responding to sum (m = n) and difference (m − n = 2, 4 . . .) harmonics. These are complex as165

there is in general a phase difference between the free surface and the force component. The

complex form here is used for compactness. In the rest of the manuscript phase differences are

given. In general, these coefficients Fmn can be regarded as wave-to-force transfer functions. In

the Stokes’ perturbation expansion model for free surface waves in irregular seas, apart from the

free wave there are super- and sub- harmonic contributions to the total nonlinear elevation, due to170

wave-wave interactions. These harmonics are written in a form of transfer functions multiplying

the corresponding frequency harmonics Am exp(nßωt). Analogous to the nonlinear wave-wave

interactions, here Fmn are the wave-to-force transfer functions that represent the magnitudes of

the wave forces at higher harmonics.

This model is fundamentally empirical although it makes intuitive sense given the differential175

equations which describes wave mechanics. It will not work for structures which are too slender

or too large. If too slender then drag becomes important and the non-linearity of drag terms

means they cannot be described with the model used here. For structures which are sufficiently

large for diffraction to become important we would again not expect our approach to work.

To separate the different harmonics we use the phase manipulation technique presented in180

Fitzgerald et al. (2014) The approach varies the phase at which the waves are generated so that

four runs are carried out with phases: ϕ0 = 0◦, 90◦, 180◦ and 270◦. By linearly combining the

four corresponding responses F0, F90, F180 and F270, harmonics may be separated:

(
AF11 + A3F31

)
cosωt+O(A5) = (F0 − FH

90 − F180 + FH
270)/4, (2a)(

A2F22 + A4F42

)
cos 2ωt+O(A6) = (F0 − F90 + F180 − F270)/4, (2b)

A3F33 cos 3ωt+O(A5) = (F0 + FH
90 − F180 − FH

270)/4, (2c)

A2F20 + A4F40 + A4F44 cos 4ωt+O(A6) = (F0 + F90 + F180 + F270)/4. (2d)

where the series is truncated to fourth order and the superscript H denotes the Hilbert transform

8



of the time signal. A discussion of the application and limitations of this approach (referred as185

‘4-phase’ method) is given in Adcock et al. (2019). Once the these composite time series have

been found, simple frequency filtering can be used to extract the harmonics as even for a mildly

broadbanded signal there is little overlap between adjacent harmonics. It should be mentioned

that the term F31 cannot be separated out from the linear term F11 by manipulation of different

phases of components. Nor will simple frequency filtering help since these occur at the same190

frequency. Note though these terms are two orders (kpA)2 different in Stokes scaling in wave

steepness. In the results extracted by the phase manipulate approach in the following, these are

neglected.

3. Demonstration of methodology

In this section we aim to demonstrate the accuracy of the tests and methodology used.195

3.1. Experimental results

We start by briefly presenting results showing measurements of the free surface at the location

35.315 m downstream the wavemaker at which the column is to be placed. This tests the accuracy

of the wavemaker in producing components at set phase differences to each other. Using the ‘4-

phase’ technique described above in section 2.3, with simple linear operation on four time signals,200

we can obtain four harmonically separated components. They are simply the ‘First’, ‘Second

sum’, ‘Third’ and ‘Fourth + second diff.’ components as indicated in Eqs. (2a)-(2d). These four

components are shown in the frequency domain in Figure 4. There is a small amount of ‘leakage’

between components – for instance a peak in most components can be seen around f/fp = 1.

However, this leakage is typically small and can be removed by filtering in the frequency domain.205

Individual harmonics extracted by appropriate frequency filtering are presented in Figure 3. The

top panel shows the total wave elevations measured for the four phases. The subsequent figures

are the components of the first, second-order difference, second-order sum, third, fourth and fifth

harmonic. Figure 3 presents a linear focused wave group with the focal time t = 64.5 s. The

second harmonic frequency component has a peak of about 24% the linear peak. The ratios for210

third, fourth and fifth harmonics are 7.5%, 2.8% and 1.0%, respectively. The envelope of the

linear component is directly computed from the linear time history and its Hilbert transform as

A(t) =
√
η21(t) + η21H(t). The approximated envelopes of the nth (n > 1) harmonics are calculated

by raising the linear envelope to the power of n and scaling to the magnitudes of the corresponding
9



harmonics. The scaling is based on the peak value of the component. It can be seen in Figure215

3 that the nth powered envelopes agree very well with the extracted harmonics, both the shape

and the peak phase – consistent with standard wave theory. For comparison, we compute the

envelopes directly from the time series of the extracted harmonics as shown in blue dash line.

Generally these envelopes show profiles in agreement with those computed from the ‘Stokes-like’

model. It is however clear that the higher orders are slightly contaminated with noise which is220

likely to be from sensor error as well as small misalignments in the phasing leading to energy

leakage. The noise level remains low and only becomes visible away from the main wave group

for fourth and fifth harmonics of the wave elevation. This is likely to be primarily due to sensor

noise. The force measurements are made with different sensors so this is not directly relevant to

the main results in this paper.225

Figure 5 presents the size of the second- and third- order harmonics of the free surface. At

the second order theoretical predictions have been made against the analytical results of Dalzell

(1999) (who corrected minor issues with Sharma and Dean 1981). There is some scatter which

we presume is due to measurement error. There is rather more scatter in the magnitude of

the third-order harmonics suggesting either energy leakage between components or measurement230

noise.

Overall, we conclude that the waves are produced sufficiently accurately for the harmonic

decomposition technique to be applied to force. It should be noted that forces (and moments)

are more non-linear than the free surface (i.e. higher harmonics play a larger role) and hence are

less liable to contamination.235

We now turn to consider the total force on the cylinder in the wave direction. Figure 6 shows

the decomposed spectra of the horizontal wave force for Case 8 with kpA = 0.21. The linear

force corresponding to the linear free wave component is between 0.5fp − 3fp in the black line

with its peak at f/fp = 1, while the second harmonic is between 1.0fp − 5fp in the red line. The

second difference component between 0.0fp − 2.0fp in the blue line can be easily separated from240

the fourth harmonic as there is little overlap between them. Again, a minor leakage to the first

harmonic from the second and third is observed. It is seen that the separation is clean up to 12fp.

With such cleanly separated spectra, we can extract harmonics up to 12th utilizing appropriate

bandpass frequency filters (see Zhao et al. (2017)).

Figure 7 summaries the results in the time domain for a typical case. Firstly, it can be seen245

that the linear (first order) force’s envelope is very similar in shape predicted by using a linear
10
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Figure 3: Harmonic components of wave elevation at the centre of the tank for Case 8, fp = 0.429 Hz and
kpA = 0.21. The top panel is the total wave elevation for four phases. The envelopes of the components are
in solid red. The linear envelope is directly computed from its time history. Envelopes of higher harmonics are
obtained by raising the linear envelope to nth power and scaling to its magnitude.
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Figure 4: Energy density spectra of wave elevation from four-phase combination for Case 8, fp = 0.429 Hz and
kpA = 0.21. The frequency is normalized by fp and the spectral density is shown on a log scale’.
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Figure 5: The non-dimensionalized coefficients for harmonic wave elevations with fp = 0.429 Hz. (a) Second order;
(b) Third order. The spectral peak frequency fp is used here for Stokes regular wave theory.
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wave input to Morison’s equation. The second order difference force is small and appears to be

a combination of the force due to the second order free long wave and a larger skew-symmetric

loading due to the return current under the wave-group. Again, we include the envelopes of higher

harmonics obtained by the Stokes-like model, i.e. raising the linear force envelope to nth power250

and scaling the peak to the measured peak value. The second harmonic agrees almost perfectly

with the envelope. The third harmonic force shows some inconsistency. It has a steep rise before

focusing and a slow decay. Notably the third harmonic peak force is smaller than the fourth

consistent with the work of Ma et al. (2009). The third harmonic, consistent with the previous

simulations of Fitzgerald et al. (2014), is however not always well captured by the Stokes-like255

model. For this harmonic, the agreement with the model varies significantly depending on the

case. We have no physical explanation for why the third order appears to agree less well with

our model than higher orders. This is not a viscous effect since it appears in potential flow

simulations. We have some evidence that there may be two processes going on at this frequency

which sometime cancel and sometimes superimpose. But we stress this is speculation and we260

have not been able to fully interpret our results using this idea. Kristiansen and Faltinsen (2017)

found that simply adding viscous effect (which is not considered in the numerical simulation and

the theoretical model) did not mitigate the discrepancy between measurement and prediction at

the third harmonic. In an experimental work, Molin et al. (2005) showed the significance of the

third order effect of the diffracted wave from the cylinder interacting with the incoming wave.265

Although there is no obvious evidence from the present tests on this tertiary interaction, the

high-frequency (third order) diffracted component is clearly captured and might play a role in

the behaviour of the third harmonic force. Higher harmonics appear to be extracted cleanly

with some structure still discernible at the 12th harmonic. This clean extraction is consistent

across all the tests run in the experimental campaign.270

The clean extraction of the harmonics allows the empirical model that the forces follow a

Stokes like expansion to be examined. If this model is correct the envelope of the harmonics

should follow the envelope of the linear force component raised to the appropriate power. For

components excluding the third the agreement is typically good across all tests until the forces

are small enough that they are seriously contaminated by sensor noise.275

The harmonic extraction approach described above is equally good for moments.
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Figure 6: Experimental spectra of horizontal wave force from four-phase combination for Case 8, kpR = 0.129 and
kpA = 0.21. The frequency is normalized by fp and the spectral density is shown on a log scale.

3.2. Numerical results

For the numerical experiments controlling the paddle to change the phase of the input is

trivial and so we do not repeat the above results showing the free surface. However, unlike for the

experiments, it is important to verify the accuracy of the model and determine its limitations.280

We note that simulating high orders of force necessitates using a very high density free surface

and body mesh so as to resolve the relevant small wavenumbers. A detailed description of the

verification cases undertaken for the present work is presented in Feng et al. (2019). Selected

results from this are presented here.

Mesh convergence is tested by varying the size of a typical element of the mesh based on285

the wave length of the incident wave, λ, at the spectral peak frequency fp. Three resolutions

were considered with element size λ/30, λ/48 and λ/60 which are described as ‘coarse’, ‘normal’

and ‘fine’. Note that around the body of the cylinder the element size is much smaller typically

being λ/300. Figure 8 shows the comparison of the horizontal wave force for the three mesh

configurations with fp = 0.429 Hz and A = 0.06 m. The loads are non-dimensionalized by290

ρgR2A. We see almost identical time histories of the forces for the three meshes in Figure 8(a).
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Figure 7: Harmonic components of wave force for Case 8, kpR = 0.129 and kpA = 0.21. The top left panel is
the total wave force for four phases. The envelopes of the components are in solid red. The linear envelope is
directly computed from its time history. Morison inertial force computed using linear elevation is in blue dashed
line. Envelopes of higher harmonics are obtained by raising the linear force envelope to nth power and scaling the
peak to the measured peak.
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Figure 8: Numerical convergence of the wave forces on the cylinder for kpR = 0.129 and kpA = 0.05. The
horizontal wave force is non-dimensionalized by ρgR2A. (a) Time history and (b) energy spectrum.

The force spectra are plotted in Figure 8(b). Up to third order, no difference is visible from

the spectra. However, small discrepancies can be seen at the fourth and higher orders between

âCoarseâ and the other resolutions. We use a mesh density similar to the âNormalâ configuration

in our simulations.295

A severe test of the accuracy of the numerical solver (for a non-dissipative model) is to run

the simulation forward and then reverse the time step and run the simulation backwards and see

if the initial conditions are recovered. In Figure 9 we present the free-surface level at the front

stagnation point of the cylinder for forward and backward runs. The difference of the normalized

elevation between the forward and backward runs is shown in Figure 3.2b. Given the non-linearity300

of the problem we consider the agreement between these to be excellent. Other elevation and

pressure data show equally good agreement.

As with the experimental results, Figure 10 presents a typical spectrum showing the decom-

position into harmonics. This is significantly ‘cleaner’ than for the experimental data. However,

it is clear from this that the beyond fourth harmonic the resolution of the simulations is starting305

to break down.

Figure 11 presents the harmonic decomposition of numerical results in the time domain. We

also present experimental results for the same case although we note that this case was close to

the steepness limit at which the numerical model went unstable. The clean decomposition of

the harmonics can be seen clearly. The linear force shows excellent agreement between numerics310

and experiments. The agreement beyond this is less good. The discrepancy in the second order
16
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Figure 10: Numerical force spectra of separated harmonics in log-scale with application of the phase-manipulation
approach for kpR = 0.129 and kpA = 0.110. The horizontal wave force is non-dimensionalized by ρgR2A.
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difference term, which is expected to act almost uniformly over the cylinder, can be explained by

the experimental cylinder not going to the bottom of the tank as the numerical cylinder does. The

discrepancies at the other harmonics are more of a concern, although there is excellent agreement

at the 4th harmonic. The third harmonic, as discussed above, is known to have unusual features:315

the discrepancy presented here is very significant.

4. Force

In this section we consider the harmonics of the inline force acting on the cylinder. Figure

12 presents a summary of the amplitude coefficient of the different harmonics with Figure 13

presented the phase of the component relative to the linear force. ‘Grue’ scaling is used, thus the320

amplitude of the nth harmonic is non-dimensionalised by F (n)/ρgAnR(3−n) (Huseby and Grue,

2000). The harmonics extracted from both experiments and numerics were based on the peak of

the envelope of the harmonic.

Theoretical calculations are included at the second order (Chau and Eatock Taylor, 1992;

Faltinsen et al., 1995) and at third order for FNV. The linear code is the result calculated from325

a potential flow model based on the linear panel method. We include on our plot the result from

the experimental study of Huseby and Grue (2000) (H&G). Their tests were for regular waves

with kR = 0.166. The water depth of these tests was 0.6 m which, due to their methodology

means their water depth varied between experiments (from a max of kh = 3.32 to kh = 5.67).

This compares to the value in our test of kph = 1.476. Our tests also used wavegroups which have330

a non-zero although relatively narrow bandwidth. We do not expect this to make a significant

difference to the harmonic coefficients (other than for the ‘difference’ term). We note that the

H&G tests typically agree rather well with those of Stansberg (1997) and so for clarity we simply

present these.

The linear force coefficients show good agreement with theory with little variation as a func-335

tion of wave steepness. The second, fourth and fifth harmonic coefficients show relatively small

variations with kpA suggesting the Stokes-like model is reasonable. At the second order there is

reasonable agreement with the analytical results of Chau and Eatock Taylor (1992) for both am-

plitude and phase. The experimental data in particular shows excellent agreement. As described

in the literature (Fitzgerald et al., 2014; Chen et al., 2018), and above, the third harmonic con-340

sistently shows the most variability compared to the other harmonics. This is true both between

different data sets and between the different numerical and experimental results. Fourth and fifth
18
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Figure 12: Variation of harmonic forces with increasing wave steepness kpA. The nth harmonic force F (n) is
non-dimensionalized by ρgAnR(3−n). The solid lines are the present measured results. The Huseby and Grue
(2000) (H&G) results are for regular wave tests with kR = 0.166 in a water depth 0.6 m and R = 0.03 m. Chau
and Eatock Taylor (1992) results are from the second-order diffraction theory.
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Figure 13: Variation of harmonic force phases with increasing wave steepness kpA for fp = 0.429 Hz (kpR = 0.129).

harmonics show good consistency across the range of steepnesses suggesting that the approach

works well for these.

The harmonic decomposition works reasonably well for cylinders in the ‘inertia’ range typical345

for offshore wind turbines. Figure 14 presents numerical results using the same methodology

for a larger cylinder with kpR = 1.0 (so approximately eight times that in the above analysis)

and KC = 0.4. The discrepancy between the scaled envelope and the extracted harmonics

shows that once diffraction effects become significant the assumed Stokes-like model might not

be appropriate, though the Stokes expansion remains applicable for low steepness waves. This is350

consistent with the expectations and the findings of Chen et al. (2018) and Chen et al. (2019).

The measured individual nonlinear force contributions occur earlier in time than is assumed in

our Stokes-like model. This would be consistent with these harmonics being driven principally

by wave-structure interactions on the upwave half of the cylinder.

We now examine the third harmonic force component and its relationship with the radius of355

the cylinder. Figure 15 presents the magnitude of the third order harmonic as a function of the
21
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Figure 15: Third harmonic forces over kpR. For the experimental and numerical results the envelope peak values
are utilized.

non-dimensionalised radius. We only have experimental results for relatively slender cylinders.

Our data is compared to the analytical results of FNV theory and M&M. The former assume

the cylinder to be slender and so agreement would only be expected for relatively small kR. The

theoretical predictions of M&M however show reasonable qualitative agreement across the range360

of values studied here although there are significant quantitative differences. Likewise, the fifth

harmonic force also acts close to the mean water surface, now slightly higher than the fourth, so

apart from a data point (case 4) now slightly above still water.

5. Moment

We now turn to examining moments in detail. We choose to analyse the moment acting365

around the base of the column (i.e. the ‘mudline’) as this is of most significance to practical

engineering design. Unlike forces, there are only a few studies which directly examine moments,

presumably due to the difficulty in accurately measuring these experimentally.

To evaluate the nonlinear effects on the higher harmonic moment, we non-dimensionalise for

the nth harmonic of moment using ρgAnR3−nh which adds the mean water depth to the scaling370

of force introduced by Huseby and Grue (2000). The variation of the non-dimensionalized peak
23
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Figure 16: Variation of peak harmonic mudline moments with increasing wave steepness kpA. The nth harmonic
moment M (n) is non-dimensionalized by ρgAnR(3−n)h. The solid lines are the present measured results.

harmonic moment against increasing wave steepness is plotted in Figure 16. The overall trend for

each harmonic component is similar to that of the horizontal force. Except for the third harmonic,

the non-dimensionalized moment coefficient is almost a constant value with increasing steepness

kpA. However we notice that the numerical results slightly over-predict the measurements for the375

second and third harmonics. The reason might be that slight energy ‘leakage’ occurs from the

second and third harmonics to the first in the tests, as can be seen from the spectra in Figure 6,

while no leakage is present in the numerical simulation in Figure 10.

To understand the moment values further, it is useful to consider an effective point on the

cylinder at which the force ‘acts’. The force is, of course, oscillatory and therefore we consider380

24



0.05 0.10 0.15 0.20 0.25
kpA

−1.5

−1.0

−0.5

0.0

0.5

z
(m

)

1st

2nd

3rd

4th

5th

Figure 17: The moment arm of each harmonic force on the cylinder for kpR = 0.129. The vertical axis shows the
z-coordinate along the cylinder. The bold solid line represents the cylinder.

the ratio of the envelope of the moment to the envelope of the force,

Ln =
max(

√
M2

n +M2
nH)

max(
√
F 2
n + F 2

nH)
, (3)

and we use the maximum values of envelopes of the harmonic moment and force.

The locations of the moment arm for each harmonic of moment and force in the physical

experiments are illustrated in Figure 17. We show the vertical coordinates of the harmonic force

locations and the bold solid line represents the cylinder (not in scale). It is seen that the linear385

force position is constant at 0.6 m below still water surface with increasing kpA, which is about

one third of the submerged cylinder and consistent with linear theory. The second harmonic

force position is stable as well, with only very small movement closer to the still water surface.

The third harmonic shows the most significant variation with the line of action sometimes being

above and sometimes below the free surface. This can be compared to FNV theory where at the390

third order the force can be approximated as a point force at the free surface. The fourth and

fifth harmonic forces also act close to the free surface with rather less variation than the third

harmonic.
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6. Nonlinear load estimation based on linear load

The harmonic decomposition utilised in this paper should allow a non-linear force time series to395

be reconstructed given a known linear loading. The equations for this are given in the Appendix.

It is assumed that the linear loading is relatively straightforward to calculate: for a sufficiently

compact cylinder the linear inertia component in the Morison equation or from the McCamy-

Fuchs expression for slightly larger cylinders. To use the present approach for the harmonics,

amplitude and phase coefficients for these higher harmonics are needed. For the experiments in400

the present study these are presented in Table 2.

As a check on the consistency of the approach taken in the present paper, we now use this

approach to reconstruct the force and moment time histories from only the linear time histories

and the non-dimensional coefficients. Figure 18 shows the reconstructed force which is in almost

perfect agreement with that measured. Figure 19 presents moment and shows a small discrepancy405

around the troughs either side of the main crest for the third harmonic. The reason for this

discrepancy is unclear but given moment is more non-linear than force it may be that this is

due to our truncation of analysis at the 5th harmonic. We also include a reconstruction of the

different individual harmonics, again highlighting discrepancies at the third harmonic. Finally,

in Figure 20 we use our reconstructed force and turn this into a moment using the effective410

moment arm calculated from the peaks of the force and moment envelopes. There is slightly

larger disagreement in this case which is unsurprising given that further assumptions have been

made. But it is encouraging that the phase of the measured and predicted moment harmonics

still match well. Overall, this re-construction based on the simple Stokes-like force and moment

arm approach may be adequate as an efficient engineering model. All that is required is the415

linear force time history, a complex coefficient for each force harmonic (so as to model both the

magnitude and phase) and an appropriate vertical location for the effective point of action for

each force harmonic.

7. Conclusions

In this paper we have investigated the higher harmonics of force and moments acting on an420

inertia dominated surface-piercing cylinder. Care was taken to ensure that the cylinder was rigid

and no significant structural dynamics was excited. High quality experiments are backed up by

fully non-linear potential flow numerical simulations.
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Case Harmonics Force Phase for force Moment Phase for moment Moment arm
(/ρgAnR(3−n)) (/π) (/ρgAnR(3−n)h) (/π) (/h)

1

1 5.36 – 3.57 – 0.67
2 0.69 0.38 0.61 0.40 0.91
3 0.15 0.25 0.14 0.29 1.02
4 0.096 0.081 0.087 0.08 1.01
5 0.053 0.09 0.049 0.08 1.03

2

1 5.38 – 3.58 – 0.67
2 0.62 0.40 0.58 0.41 0.93
3 0.11 0.23 0.11 0.29 1.04
4 0.089 0.098 0.077 0.12 0.97
5 0.038 0.17 0.035 0.19 1.03

3

1 5.37 – 3.57 – 0.67
2 0.59 0.40 0.54 0.41 0.94
3 0.10 0.17 0.09 0.25 0.97
4 0.084 0.055 0.072 0.08 0.97
5 0.033 0.12 0.030 0.16 1.02

4

1 5.39 – 3.59 – 0.67
2 0.55 0.41 0.52 0.42 0.94
3 0.10 0.15 0.09 0.23 0.99
4 0.083 0.053 0.072 0.08 0.97
5 0.029 0.13 0.026 0.18 0.98

5

1 5.35 – 3.55 – 0.66
2 0.62 0.41 0.58 0.42 0.92
3 0.08 0.12 0.08 0.22 1.04
4 0.085 0.051 0.073 0.08 0.97
5 0.030 0.17 0.028 0.21 1.02

6

1 5.32 – 3.53 – 0.66
2 0.59 0.43 0.54 0.44 0.92
3 0.07 -0.03 0.06 0.09 0.89
4 0.076 0.029 0.066 0.07 0.97
5 0.028 0.20 0.025 0.26 1.02

7

1 5.31 – 3.51 – 0.66
2 0.62 0.44 0.55 0.47 0.91
3 0.09 -0.22 0.07 -0.21 0.92
4 0.082 -0.041 0.070 0.06 0.98
5 0.028 0.16 0.027 0.23 1.02

8

1 5.30 – 3.48 – 0.66
2 0.65 0.48 0.59 0.49 0.90
3 0.11 -0.45 0.10 -0.51 0.95
4 0.084 -0.085 0.076 0.05 1.00
5 0.030 0.14 0.029 0.22 1.03

Table 2: Experimentally derived force and moment coefficients from the experiments in this study with kpR=0.129,
kph=1.478, kpA = 0.11− 0.21 (see Table 1 for details of the different cases).
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Figure 18: Reconstruction of nonlinear force for Case 8, kpR = 0.129 and kpA = 0.21.

For cylinders in the ‘inertia’ range, the Stokes-like model of harmonics for both force and

overturning moment appears to work well. Consistent with previous studies, the third harmonic425

does not fit this model as well as the second, fourth and fifth harmonics. The reason for this

is not clear, although we do not think that it is due to drag effects given that it appears in the

potential flow models of Fitzgerald et al. (2014). It should be possible to extract coefficients

of the higher order harmonics experimentally or numerically. However, the very high numerical

resolution required to capture the very higher order harmonics means that at present it may be430

easier to do this experimentally. For larger cylinders diffraction becomes more important and

the Stokes-like model breaks down. We found reasonable agreement between numerical results

and the analytical formulation of Malenica and Molin (1995). For cylinders with a large radius

relative to the wavelength then diffraction becomes important and the Stokes-like model is no

longer acceptable. Although not examined directly in this paper the model presented here will435

also not work for structures sufficiently slender that hydrodynamic drag becomes significant.

The analysis in this paper also looks at the moment on the cylinder. This is more non-linear

than force (i.e. higher harmonics are relatively larger) as the higher harmonics effectively act

higher up the cylinder – indeed these typically ‘act’ near the free surface. The approach of

decomposing these into Stokes-like harmonics is again an acceptable model for moment.440

The simple Stokes-like model for higher harmonics explored in this paper is a good but not

perfect physical model for loading on a slender cylinder. However, it does capture much of the

structure of the higher harmonics and as such we believe it can serve as a useful, computationally
28
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Figure 19: Reconstruction of harmonic moments for Case 8, kpR = 0.129 and kpA = 0.21.
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Figure 20: Reconstruction of harmonic moments for Case 8, kpR = 0.129 and kpA = 0.21. Moments reconstructed
from force coefficients multiplied by the effective moment arm.

fast, engineering model. The approach would for instance be able to generate quickly a very long

simulations of loads on monopiles such as those currently used in the offshore wind industry. To445

calculate base shear and moment for a structure a transfer function would have to be employed.

Such simulations would be useful for fatigue analysis which in some locations is a design driver

for these structures.
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Appendix A.

The reconstruction of the nonlinear force and moment relies on the Stokes-like model of the455

harmonic components. We first write the linear component as

F (1) = F (1)f1 (A.1)
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where f1 carries the group structure and phase information for the linear loading, and F (1) carries

the information of the linear force amplitude. Then the total force can be estimated as

F

ρgR3
=
F (1)

ρgR3
f1 + SFF2

( F (1)

ρgR3

)2

f2 + SFF3

( F (1)

ρgR3

)3

f3

+ SFF4

( F (1)

ρgR3

)4

f4 + SFF5

( F (1)

ρgR3

)5

f5

(A.2)

where

fn = αFFnfαn + βFFnfβn, n = 2, 3, 4, 5 (A.3)

with460

fα2 = f 2
1 − f 2

1H

fβ2 = 2f1f1H

fα3 = f1(f
2
1 − 2f 2

1H)
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1H)

fβ5 = [(f 2
1 − f 2

1H)2 − (2f1f1H)2]f1H + 4f 2
1 f1H(f 2

1 − f 2
1H)

(A.4)

At each higher harmonic, SFFn carries the non-dimensional force coefficient, and the phase coef-

ficients αFFn and βFFn are approximated by

αFFn =

∫
fnfαndt∫
f 2
αndt

, βFFn =

∫
fnfβndt∫
f 2
βndt

. (A.5)

The phase of the harmonic force relative to the linear force component is then defined as φn =

arctan(βFFn/αFFn).

The moment reconstruction model is similar to the force as465

M

ρgR3h
=
M(1)

ρgR3h
m1 + SMM2

( M(1)

ρgR3h

)2

m2 + SMM3

( M(1)
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+ SMM4

( M(1)

ρgR3h

)4

m4 + SMM5

( M(1)

ρgR3h

)5

m5

(A.6)
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with SMMn as the nth harmonic moment coefficient and mn carrying the group structure and

phase information.

Finally, given the effective moment arm hn at each harmonic, one would be able to approximate

the moment from the force by

M

ρgR3h
=
h1
h

F (1)

ρgR3
f1 + SFF2

h2
h

( F (1)

ρgR3

)2

f2 + SFF3
h3
h

( F (1)

ρgR3

)3

f3

+ SFF4
h4
h

( F (1)

ρgR3

)4

f4 + SFF5
h5
h

( F (1)

ρgR3

)5

f5.

(A.7)
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• Higher harmonics of wave loading on offshore wind turbine monopiles is 
investigated using experimental and numerical methods 

• Non-linearity in forces and moments can be captured using a “Stokes-type” 
approach 

• Third order forces and moments so significantly more variation than second, fourth 
and fifth harmonics 

• The approach can be used to quickly generate timeseries of wave loading with a 
good representation of the higher harmonics for geotechnical and structural 
calculations 



Declaration of interests 

 

☒ The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 

☐The authors declare the following financial interests/personal relationships which may be considered 

as potential competing interests:  

 

 
 
 

 

 


