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Abstract—Based on recent results of applying graph signal
processing (GSP) to narrowband angle of arrival estimation for
uniform linear arrays, we generalise the analysis to the case
of arrays with elements placed arbitrarily in three dimensional
space. We comment on the selection of the adjacency matrix,
analyse how this new approach compares to the multiple sig-
nal classification (MUSIC) algorithm, and provide an efficient
implementation. We demonstrate that the GSP approach can
perform as well as the MUSIC algorithm in terms of accuracy
and computational cost. Simulations indicate that the proposed
GSP approach avoids the severe performance degradation with
which MUSIC is associated at low signal to noise ratios.

I. INTRODUCTION

An important task in array processing is to estimate the

angle of arrival (AoA) of any sources that illuminate the

sensors. This is often based on the second order statistics of

the array data. For example, the ‘classic’ multiple signal clas-

sification (MUSIC) algorithm [1] estimates the data covariance

matrix; from its eigenvalue decomposition (EVD), MUSIC

then derives a subspace decomposition that enables the AoA

estimation. More than three decades after its publication, the

MUSIC algorithm still remains subject to further investigations

and extensions, see e.g., [2]–[4].

Although array processing algorithms such as MUSIC are

not necessarily restricted to discrete data, many implemen-

tations operate on regularly spaced sampling in time and

space. This however is not necessary: sampling in time can

be non-uniform [5] particularly in the case of compressive

sensing [6], and sampling in space can deviate from the linear

uniformly spaced array (ULA), either deliberately or because

of array deformation or calibration errors, to arbitrary array

configurations [7], [8].

Graph signal processing (GSP) and graph spectral analysis

allow the characterisation and efficient analysis of data that

has been obtained on an irregularly sampled grid [10], and

therefore provide an interesting fit to an array whose elements

may be arbitrarily arranged in space. To date, two papers

have attempted to harness GSP for array signal processing and

AoA estimation in particular: [11] experimentally established a

coarse correspondence of the graph Fourier transform (GFT)

coefficients to the AoA for a single source in a ULA; also

for a ULA, [12] have chosen the graph topology, and hence
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the GFT, such that a MUSIC-like subspace projection can be

exploited to estimate the AoA of a source. Specifically, the

graph is constructed so that the steering vector for the source

signal is an eigenvector (with unit eigenvalue) of the graph’s

adjacency matrix. Hence, in the noise-free case, the array data

will be orthogonal to the subspace defined by the remaining

eigenvectors.

The ULA in [11], [12] defines a simple and straightforward

adjacency between sensor elements, and derives a cyclic

spatial graph structure by connecting each sensor node with

its two nearest neighbours using unweighted [11] or weighted

edges [12]. In [12], temporal samples acquired by each sensor

are also modelled by a cyclic graph. Modelling the ULA by

a cyclic graph leads to a sparse graph adjacency matrix [18]

that contains only two non-zero elements in each row.

In this paper, we further develop the approach in [12]

and particularly consider the case of non-uniform sampling,

i.e. the case where arrays may be arbitrarily distributed in three

dimensional space [9]. Since for an arbitrary array, spatial

adjacency of sensors is not clearly defined, and sparsity of a

graph’s adjacency matrix has no implications on the sparsity

of the GFT, we replace the adjacency matrix used in [12] for

a fully connected graph in both spatial and temporal domains.

The resulting algorithm has a similar philosophy to that in [12]

but differs in detail. We further develop a low complexity

scheme, and highlight the performance difference between

the GSP and MUSIC approaches. We show that the former,

including its particularisation in [12], operates as a matched

subspace detector [13].

First, we provide a brief review of the array signal model

and MUSIC algorithm in Sec. II. Based on this, the graph

topology and the GFT are motivated in Sec. III. Our GSP-

based AoA estimation approach is then analysed in Sec. IV

and compared to MUSIC via simulations in Sec. V.

II. SIGNAL MODEL AND ANGLE OF ARRIVAL ESTIMATION

A. Signal Model

We assume M sensors located arbitrarily in space, such

that rm ∈ R
3 is the Cartesian coordinate vector for the mth

sensor, with m = 1, . . . ,M . With respect to this array, a

far-field source has a planar wavefront with normal vector

kϕ,ϑ = [sinϑ cosϕ, sinϑ sinϕ, cosϑ]
T

travelling across the

array, whereby the source direction is given in spherical

coordinates by azimuth ϕ and elevation ϑ. When normalised
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by the propagation speed c in the medium, kϕ,ϑ/c is also

known as the source’s slowness vector.

The time delay which the wavefront experiences at the mth

element relative to the origin is tm = 1
c
kT
ϕ,ϑrm. If the unit

length in the coordinate system is chosen as half the minimum

wavelength, then |kϕ,ϑ| = 1 = λmin/2 = c/(2fmax) = cTs,
where Ts is the sampling period assuming critical sampling in

time. Therefore, tm = τmTs with

τm = kT
ϕ,ϑrm , (1)

which measures the wavefront’s delay relative to the origin in

samples.

If the array is illuminated by a narrowband source (labelled

i) from direction {ϕi, ϑi}, then its normalised angular fre-

quency Ωi turns the delay in (1) into a phase shift. The steering

vector, which uniquely describes the phase shift for a source

characterised by {Ωi, ϕi, ϑi}, is

aΩi,ϕi,ϑi
=

1√
M

[

ejΩiτ1 , . . . , ejΩiτM
]H

, (2)

with τm, m = 1, . . . ,M , depending on {ϕi, ϑi} via (1). Also

note that with the relative time lag between the mth and µth

sensor being

τm,µ = kT
ϕi,ϑi

(rµ − rm) , (3)

the corresponding phase shift between the two sensors is

reflected in the complex gain e−jΩiτm,µ .

Using the steering vector in (2), and assuming no loss in

gain across the array, the M sensor signals xm[n] ∈ C, m =
1, . . . ,M with time index n, can be collected into a vector

x[n] ∈ C
M ,

x[n] =

I
∑

i=1

aΩi,ϕi,ϑi
si[n] + v[n] , (4)

where si[n], i = 1, . . . , I, is the ith of I narrowband

source signals illuminating the array, each with parameters

{Ωi, ϕi, ϑi}. The term v[n] ∈ C
M in (4) represents spatially

and temporally uncorrelated zero-mean Gaussian noise with

E
{

v[n]vH[n− τ ]
}

= σ2
vIδ[τ ], where E{·} is the expectation

operator, I is the identity matrix, and δ[τ ] the impulse function.

B. Covariance Matrix and its Eigenvalue Decomposition

For independent narrowband sources with Ω1 = · · · = ΩI ,

the second order statistics of the data are captured by the

spatial covariance matrix

R = E
{

x[n]xH[n]
}

=

I
∑

i=1

σ2
i aΩi,ϕi,ϑi

aHΩi,ϕi,ϑi
+ σ2

vI , (5)

where σ2
i is the power of the ith source. Thus, R contains

information on the angles of arrival {ϕi, ϑi} via the steering

vectors aHΩi,ϕi,ϑi
, i = 1, . . . , I .

The covariance matrix can be factorised via the EVD R =
QΛQH =

∑M
m=1 λmqmqH

m with unitary Q = [q1, . . . ,qM ]
containing the eigenvectors and Λ = diag{λ1, . . . , λM} the

eigenvalues of R. This factorisation is structurally similar to

(5), but the EVD generates orthogonal eigenvectors, a property

that is not necessarily shared by the steering vectors in (5).

Therefore, the eigenvectors do not provide direct access to the

steering vectors and thus to the source parameters {ϕi, ϑi}.

However, if eigenvalues are arranged in descending order, the

EVD provides a subspace partitioning

R = [Qs Qn]

[

Λs 0

0 Λn

] [

QH
s

QH
n

]

, (6)

where Λn = σ2
vI, and Λs ∈ R

I×I contains the dominant

eigenvalues and all source steering vectors lie in the signal-

plus-noise subspace spanned by their corresponding eigenvec-

tors in Qs ∈ C
M×I . The remaining noise-only subspace is

spanned by the columns of Qn ∈ C
M×(M−I). Hence all the

source steering vectors should be orthogonal to this noise-only

subspace.

C. Multiple Signal Classification

In the multiple signal classification (MUSIC) algorithm [1],

we estimate the space-time covariance matrix R̂ from the data.

Due to finite sample size, such that x[n], 0 ≤ n < N , is only

available for N snapshots, there will be a finite approximation

error (R− R̂) that depends on both R and N [14]. As in (6),

we perform a subspace decomposition

R̂ =
[

Q̂s Q̂n

]

[

Λ̂s 0

0 Λ̂n

] [

Q̂H
s

Q̂H
n

]

, (7)

where the columns of Q̂s and Q̂n span the estimated signal-

plus-noise and noise-only subspaces, respectively. The estima-

tion error in R̂ will perturb these estimated subspaces w.r.t. the

ground truth in (6) [15].

Given a steering vector aΩ,ϕ,ϑ for a particular AoA {ϕ, ϑ},

we then test how much it leaks into the estimated noise-only

subspace Q̂n, i.e.

ξ−1
MUSIC(ϕ, ϑ) = ‖Q̂H

n aΩ,ϕ,ϑ‖22 . (8)

This is repeated for each AoA {ϕ, ϑ} of interest. The function

ξ−1
MUSIC(ϕ, ϑ) is zero if a steering vector lies entirely outside

the estimated noise-only subspace. Typically, in MUSIC, in-

stead of looking for zeros/dips of ξ−1
MUSIC(ϕ, ϑ), we inspect

ξMUSIC(ϕ, ϑ) for poles/spikes.

III. GRAPH TOPOLOGY AND GRAPH SIGNAL PROCESSING

In the following, akin to [11], [12], we operate with a single

source, I = 1 (for brevity, let Ω1 = Ω), and investigate how

GSP could assist us with the AoA estimation problem.

A. Spatial Adjacency Matrix

In [12], the adjacency matrix takes into account the phase

shift between neighbouring nodes in a ULA, which induces

sparsity. For the arbitrary 3-d array considered here, defining

neighbourhood or ordering of the sensors is less straightfor-

ward, and hence we work with the cross-correlation between

nodes. This leads to a fully connected graph. Since all elements

have the same gain towards the source signal, they have an



instantaneous cross-correlation of identical magnitude. Hence

for a single narrowband source with frequency Ω, we have

As =
1

M











0 e−jΩτ1,2 . . . e−jΩτ1,M
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e−jΩτM,1 . . . e−jΩτM,(M−1) 0











= aΩ,ϕ,ϑa
H
Ω,ϕ,ϑ − 1

M
I , (9)

where aΩ,ϕ,ϑ is the steering vector defined in (2). The lag τi,j
is the relative delay experienced by the source signal between

the ith and jth sensor elements as defined in (3). The only

sparsity of As in (9) are the zero values on the diagonal. The

much sparser arrangement in [12] has little consequence, since

the EVD of As generally will not reflect this sparsity.

B. Temporal Adjacency Matrix

If N snapshots of x[n], n = 0, . . . (N − 1), are available,

then this temporal window of the data can be embedded into

the graph structure. Similar to the cyclic graph structure for

the spatial ULA component, in [12] the temporal dimension is

embedded as a cyclic graph for each sensor element, such that

the overall adjacency matrix emerges as a Kronecker product

between the spatial and the temporal adjacency matrices.

For a narrowband signal at frequency Ω, the snapshots will

induce a phase progression which can be gathered in a vector

aΩ ∈ C
N ,

aΩ = 1√
N

[

1, ejΩ, . . . , ej(N−1)Ω
]H

, (10)

that is similar to a steering vector. Thus, we formulate

At = aΩa
H
Ω − 1

N
I (11)

as an N×N adjacency matrix of the temporal graph associated

with each sensor. With this and (9), the overall adjacency

matrix of the graph connecting all sensors in both spatial and

temporal domains becomes A = As⊗At, with ⊗ denoting the

Kronecker product (see Fig. 2 in [12] for the ULA example).

C. Graph Fourier Transform

Following [12], we use the graph Fourier transform (GFT)

[18] to analyse signals defined on graphs. It is based on the

EVD of the adjacency matrix A = As ⊗At,

A = QΛQH . (12)

Note that with the EVDs As = QsΛsQ
H
s and At = QtΛtQ

H
t ,

(12) simplifies [12] to Λ = Λs ⊗ Λt and Q = Qs ⊗ Qt,

whereby the latter represents the GFT matrix, containing the

GFT basis in its columns [19].

For the EVD of As, given (9) it is easy to show that

As = [aΩ,ϕ,ϑ Vs]Λs

[

aHΩ,ϕ,ϑ

VH
s

]

(13)

where Λs = diag
{

M−1
M

,− 1
M
, . . . ,− 1

M

}

. Due to the eigen-

value λs = − 1
M

possessing an algebraic multiplicity of

(M − 1), Vs ∈ C
M×(M−1) can be selected arbitrarily with

orthogonal columns such that VH
s Vs = I and VH

s aΩ,ϕ,ϑ = 0.

For the temporal component At of the adjacency matrix,

based on (11) and analogously to (13), we have that

At = [aΩ Vt]Λt

[

aHΩ
VH

t

]

, (14)

with Λt = diag
{

N−1
N

,− 1
N
, . . . ,− 1

N

}

and Vt ∈ C
N×(N−1)

arbitrary such that VH
t Vt = I and VH

t aΩ = 0.

This defines the GFT matrix Q in terms of the spatial and

temporal steering vectors aΩ,ϕ,ϑ and aΩ, and their orthogonal

complements Vs and Vt. It is not difficult to show, when the

array configuration is reduced to a ULA, that this Q is identical

(up to ambiguities w.r.t. Vs. and Vt) to the GFT associated

with the sparse adjacency matrices selected in [12].

IV. MUSIC-LIKE SPECTRUM BASED ON GRAPHS AND

GRAPH SIGNALS

A. Scanning Subspaces

Given a fully-connected graph defined by the adjacency

matrix A = As ⊗ At, we define the graph signal as the

concatenation of the snapshots x[n], i.e.,

x
H =

[

xH[0], xH[1], . . . , xH[N − 1]
]

. (15)

In the noiseless case, this graph signal x for a source defined

by {Ω, ϕ1, ϑ1} is aligned with the principal eigenvector of

the GFT matrix Q, i.e. aΩ,ϕ1,ϑ1
⊗ aΩ. Consequently, x is

orthogonal to the space spanned by the other eigenvectors.

Similar to the MUSIC algorithm, for robustness when noise

is present (or for multiple sources), instead of probing for

the alignment of x with this principal eigenvector, we check

for the leakage of x into the complement V of the principal

eigenvector, which is given by

VΩ,ϕ,ϑ = [aΩ,ϕ,ϑ ⊗Vt , Vs ⊗Qt] . (16)

The columns of VΩ,ϕ,ϑ therefore span the noise-only subspace

of the graph signal. With this, we scan the graph signal

for leakage into the noise-only subspace, i.e. we look for

zeros/dips in

ξ−1
GSP(ϕ, ϑ) = ‖VH

Ω,ϕ,ϑx‖22 , (17)

with Ω = Ω1 fixed,s or akin to MUSIC, check ξGSP(ϕ, ϑ) for

poles/spikes.

B. Comparison to MUSIC

The approach in (17) is similar to MUSIC in (8) in the

sense that a noise-only subspace is scanned. The difference

lies in which quantities are estimated, and which quantities

are used to scan a range of parameters. In the GSP approach

for ξGSP(ϕ, ϑ) in (17), the noisy data contributes the vector

x while we obtain VΩ,ϕ,ϑ deterministically for a range of

values {Ω, ϕ, ϑ}. In contrast, MUSIC estimates the noise-only

subspace from the (noisy) sample covariance matrix, and scans

this with the deterministic steering vector aΩ,ϕ,ϑ.

As a further difference, the GSP approach for ξGSP(ϕ, ϑ)
utilises a vector space of dimension MN , and attempts to

average out noise through the matrix multiplication in (17).



MUSIC averages across the temporal window of N snapshots

to calculate an M ×M sample space time covariance matrix,

such that the dimension of the vector used for scanning is only

M .

C. Numerical Efficiency

For both MUSIC and GSP approaches (8) and (17), we need

to evaluate a norm of the form ‖VHy‖22. Therefore, we have

that

‖VHy‖22 = ‖VVHy‖22
= ‖(I−V⊥V⊥,H)y‖22 , (18)

where [V⊥, V] is unitary. The first step is easy to confirm

via an SVD of V, and the second step is based on subspace

projections [16].

Identifying V⊥ = Q̂s ∈ C
M×1 and y = aΩ,ϕ,ϑ, MUSIC

can thus be evaluated equivalently as

ξ−1
MUSIC(ϕ, ϑ) = ‖aΩ,ϕ,ϑ − Q̂s(Q̂

H
s aΩ,ϕ,ϑ)‖22 . (19)

Calculating (19) only requires 2M complex multiply accu-

mulates (MACs) per tested angle pair {ϕ, ϑ}. However to

determine Q̂s, MUSIC additionally requires the evaluation of

R̂, which over N snapshots absorbs 1
2M(M + 1)N MACs,

and the calculation of its EVD at a cost of O(M3).
For the GSP approach, in (18) we identify V⊥ = aΩ,ϕ,ϑ ⊗

aΩ and y = x, such that instead of (17), we can evaluate

ξ−1
GSP(ϕ, ϑ) = ‖x− (aΩ,ϕ,ϑ⊗aΩ)(aΩ,ϕ,ϑ⊗aΩ)

H
x‖22. (20)

This requires 2MN MACs for the evaluation of an angle

pair {ϕ, ϑ}, but no cost needs to be expended on covariance

estimation or an EVD.

V. SIMULATIONS AND RESULTS

To compare the GSP approach and MUSIC, we assume

an array of M = 5 sensors that lies within a cube of unit

side length, where unity refers to critical spatial sampling at

Ω = π. The three spatial coordinates for each sensor are

drawn—once for all simulations—from a uniform distribution

U(0, 1), while the source signal at a narrowband frequency

Ω1 = π
2 illuminates the array from an azimuth ϕ1 = 20◦

and an elevation ϑ1 = 70◦. As in [12], we collect N = 41
snapshots of data at an adjustable signal-to-noise ratio (SNR).

Over a grid of azimuth and elevations angles {ϕ, ϑ}, Figs. 1

to 4 show the evaluations of (19) and (20) for Ω = Ω1 and two

different SNR regimes. For the high SNR scenario of 30 dB in

Figs. 1 and 2, both the GSP approach and MUSIC provide an

accurate extremum at the source parameters {20◦, 70◦}, with a

sharper lobe for MUSIC. For the lower SNR scenario of 0 dB

in Figs. 3 and 4, the peaks are of lower intensity compared

to the 30 dB scenario, with ξMUSIC(ϕ, ϑ) still providing a

sharper peak compared to ξGSP(ϕ, ϑ).
To assess the accuracy of the proposed GSP-based method,

we evaluate the estimated AoA using the cost functions in (19)

and (20) as

{ϕ̂1, ϑ̂1} = argmin
ϕ,ϑ

ξ−1
i (ϕ, ϑ) (21)
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Fig. 1. GSP-based metric ξGSP(ϕ, ϑ) for M=5 and N=41 at 30 dB SNR.
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0.055

180

0.06

135 180

0.065

90

0.07

90
0

45 -90
0 -180

ϑ/[◦]

ξ
G
S
P
(ϕ
,
ϑ
)

ϕ/[◦]

Fig. 3. GSP-based metric ξGSP(ϕ, ϑ) for M=5 and N=41 at 0 dB SNR.
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Fig. 4. MUSIC metric ξMUSIC(ϕ, ϑ) for M = 5 and N = 41 at 0 dB
SNR.

with i = {MUSIC, GSP}. This non-linear optimisation prob-

lem is solved by the simplex algorithm [17], and performed

over an ensemble of 104 realisation with different noise vectors

v[n] in (4) for every SNR value under test. As a metric,

we measure the angle between the direction kϕ1,ϑ1
of the

source, and the direction associated with the estimated source

parameters, k
ϕ̂1,ϑ̂1

via

ψ = ∠{kϕ1,ϑ1
,k

ϕ̂1,ϑ̂1
} = arc cos(kH

ϕ1,ϑ1
k
ϕ̂1,ϑ̂1

) (22)

i.e. the Hermitian angle between the two direction vectors.

Varying the SNR over the range from -20 dB to 20 dB, mean

values of ψ for the GSP-based approach and for MUSIC are

shown in Fig. 5. For high SNR, as expected from the surface of

the metrics in Figs. 1 and 2, the mean performance is identical.

To give an insight into the spread of the distribution of the

ensemble of 104 experiments per SNR, Fig. 5 also contains the

quartiles, which highlight that the MUSIC and GSP provide

asymptotically identical accuracy as the SNR increases.
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Fig. 5. Ensemble results for measuring the deviation of the estimated direction
from the true one, ψ in (22), in dependency of the SNR of the data.

Towards low SNRs, the covariance matrix estimate R̂

becomes increasingly poor, leading to larger perturbation of

the subspaces in (7) as compared to (6). For MUSIC, this

subspace leakage is known to reach a cliff-edge type perfor-

mance degradation as the estimation error increases [3]. This

degradation can be observed in Fig. 5 for SNR region below

0 dB; similar results have been observed in e.g. [4]. Albeit

that neither algorithms produce very accurate results, the GSP-

based approach degrades gracefully and hence at lower SNR

values outperforms MUSIC, since (20) essentially represents

a matched filter using a beamformer [13], which is known to

be optimal for the single user case.

For the above simulations, solving (21) under Matlab on an

Intel CPU N3350 1.1GHz with 4GB RAM takes on average

11.9 ms CPU time for the GSP approach, while MUSIC takes

11.0 ms. Since for the selected parameters MN ≈ O(M3),
the two computational costs from Sec. IV-C are in balance.

VI. CONCLUSIONS

In this paper we have investigated a GSP approach for angle

of arrival estimation. Starting from [12], we have extended the

approach from a ULA to an arbitrary sensor array, investigated

the similarities and differences to the MUSIC algorithm, and

provided a numerically efficient approach over [12] to the

evaluation of both the GSP approach and MUSIC: while MU-

SIC estimates the noise-only subspace from data, and probes

it with accurate steering vectors, in the GSP approach, the

subspace is obtained from the adjacency matrix and therefore

deterministically from the graph topology, which is probed by

the potentially noisy graph signal.

For the selected simulation scenario and its parameters,

both algorithms were of similar computational complexity.

Simulations suggest that as SNR increases, the GSP approach

asymptotically performs like MUSIC. At low SNR however,

the GSP approach, implementing an optimum single user

matched filter, avoids the fast degradation that is associated

with MUSIC due to subspace leakage. This implies that the

GSP approach, acting as a matched subspace detector, cannot

provide any new gains for AoA estimation. This is perhaps

unsurprising since GSP draws its advantages from additional

information [18], while the matched subspace detector already

operates optimally on all available data.

Because of the arbitrary three-dimensional array configura-

tion, we have not embedded any measure of physical adjacency

of sensors in the graph topology, and both the graph and

its adjacency matrix were selected non-sparse. While this

does not impact on the GFT and hence the results in this

paper, sparsity in the adjacency matrix can be important when

seeking distributed implementations [20] and will therefore be

worth investigating as a future step.
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