brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

A New Approach to Plan-Space Explanation: Analyzing
Plan-Property Dependencies in Oversubscription Planning

Rebecca Eifler,! Michael Cashmore,” Jorg Hoffmann,'
Daniele Magazzeni,® Marcel Steinmetz!
!'Saarland University, Saarland Informatics Campus, Saarbriicken, Germany,
2University of Strathclyde, Computer and Information Sciences, Glasgow, UK,
3 King’s College London, Department of Informatics, London, UK,
{lastname} @cs.uni-saarland.de, {firstname.lastname} @strath.ac.uk, {firstname.lastname} @kcl.ac.uk

Abstract

In many usage scenarios of Al Planning technology, users
will want not just a plan 7 but an explanation of the space
of possible plans, justifying 7. In particular, in oversubscrip-
tion planning where not all goals can be achieved, users may
ask why a conjunction A of goals is not achieved by m. We
propose to answer this kind of question with the goal conjunc-
tions B excluded by A, i.e., that could not be achieved if A
were to be enforced. We formalize this approach in terms of
plan-property dependencies, where plan properties are propo-
sitional formulas over the goals achieved by a plan, and de-
pendencies are entailment relations in plan space. We focus
on entailment relations of the form A\, c, 9 = ~ A, 5 9.
and devise analysis techniques globally identifying all such
relations, or locally identifying the implications of a single
given plan property (user question) /\ gea 9- We show how,
via compilation, one can analyze dependencies between a
richer form of plan properties, specifying formulas over ac-
tion subsets touched by the plan. We run comprehensive ex-
periments on adapted IPC benchmarks, and find that the sug-
gested analyses are reasonably feasible at the global level, and
become significantly more effective at the local level.

1 Introduction

Al plan generation technology serves to generate a plan 7
based on a world model. If the model and optimization ob-
jective reflect the real world and user preference with abso-
lute accuracy, then 7 can be executed as-is. Yet in many us-
age scenarios, that is not so. Often, models are approximate,
optimization objectives are highly complex and/or implicit
in the heads of the human users, and bad plan decisions can
be highly detrimental. A prominent example are space ap-
plications as discussed e. g. by Smith (2012), but arguably
also many other applications ranging from Industry 4.0 to
robot-aided disaster recovery. As Smith pointed out, plan-
ning should then be an iterative process in which the plan-
ning system suggests plan candidates, to be inspected and
criticised by human users for iterative plan improvement.
As Smith also pointed out, plan explanation is a crucial
step of such an iterative process, as a key means for user

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9818

inspection. In particular, questions of the form “Why does
the plan not achieve goal G?” or “Why don’t you satisfy
preference P?” need to be answered. Such answers require
insights about the space of possible plans. We propose to
address this by plan-property entailments, as in “Because
achieving G would necessitate to either forego G’ or use
> 100 energy units”. More formally, a plan property p is a
Boolean function on plans (e. g. G true at end), and p entails
q if all plans that satisfy p also satisfy ¢q. A user question
of the form “Why not p?” can then be answered in terms of
those ¢ entailed by p (e. g. G’ false at end or energy usage
> 100). We will refer to this as a local explanation, whereas
a global explanation shows the graph of all plan-property
entailments. The former makes sense in iterative planning
as outlined, the latter makes sense when an overview of plan
space is desirable. (For example, in simulated penetration
testing (Boddy et al. 2005; Hoffmann 2015), an overview of
the space of possible attacks may be useful.)

Our form of explanation falls into the class of contrastive
explanations as discussed e. g. by Miller (2019). Previous
work on local explanation, i.e., answering questions of the
form “Why not p?”, has suggested to generate a new plan 7’
that satisfies p, and answer the question based on comparing
7 and 7' (Smith 2012; Fox, Long, and Magazzeni 2017). A
weakness of this idea is that there may be differences be-
tween 7w and 7’ unrelated to p. Our approach replaces the ex-
istential answer generating a single alternative plan 7’ with
a universal answer determining shared properties of all pos-
sible such alternatives. From this perspective, our proposal
is a new, universal variant of contrastive plan explanation.

The concept of plan-property entailments is generic and in
principle applicable to many Al Planning contexts. Here, we
instantiate it for goal dependencies in oversubscription plan-
ning (OSP, e. g. (Smith 2004; Domshlak and Mirkis 2015)),
where not all goals can be achieved. The plan properties
we consider are goal-fact conjunctions /\ geA g or negations
=-A geB Y thereof, and we identify goal exclusion entail-
ments A\ ., 9 = =\ cp g stating that, if a plan achieves
all goals in A, then it must forego at least one goal in B.

We spell out our framework for this form of plan proper-
ties and entailment relations. We introduce algorithms for
computing local and global explanations, leveraging and

https://core.ac.uk/display/327072373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

extending recent nogood learning methods (Steinmetz and
Hoffmann 2017b; 2017a). We show that the same framework
can address a richer form of plan properties, namely action-
set properties defined as propositional formulas over atoms
{A,..., A, } asking whether an action subset A; is touched
by the plan. Action-set properties can be compiled into
goal facts relatively easily, leading to an effective entail-
ment analysis. We run comprehensive experiments on IPC
benchmarks adapted to OSP as in previous work (Domshlak
and Mirkis 2015; Katz et al. 2019), and on a collection of
benchmarks we extended with action-set properties. We find
that global explanations are reasonably feasible to compute,
compared to OSP and to optimal classical planning. Com-
puting local explanations is significantly easier.

Some related work will be discussed near the end of the
paper (Section 7), to not interrupt the text flow.

2 Background

We consider the finite-domain representation (FDR) frame-
work (Backstrom and Nebel 1995; Helmert 2009). An FDR
task 7 is a tuple 7 = (V, A, ¢, I, G) where V is the set of
variables, A is the set of actions, ¢ : A — Rar is the ac-
tion cost function, I is the initial state, and G is the goal. A
state, in particular 7, is a complete assignment to V; G is a
partial assignment to V'; each action ¢ € A has a precondi-
tion pre,, and an effect ¢ff ,, both partial assignments to V.
We will refer to variable-value pairs v = d as facts, and we
will identify partial variable assignments with sets of facts.
An action a is applicable in a state s if pre, C s. The out-
come state s[[a]] is like s except that s[[a]](v) = eff ,(v) for
those v on which eff, is defined. The outcome state of an
iteratively applicable action sequence 7 is denoted by s|[r]].
An oversubscription planning (OSP) task is a tuple
T = (V,A,c,I,G" G b) like an FDR task but with
two goals — the hard goal G'¢ and the soft goal G*°, as-
sumed to be defined on disjoint sets of variables — as well
as an additional cost bound b € RJ. A plan is an ac-
tion sequence m whose summed-up cost is < b and where
G C T [[ﬂ']J Good plans achieve a “maximally valuable”
subset of G*°''. The latter is usually defined based on goal-
fact rewards. Here we assume instead that the user’s pref-
erences over G are difficult to specify and/or elicitate,
and planning is an iterative process as described by Smith
(2012). We are concerned with the analysis of plan-property
dependencies within G to support that process.

Figure 1: Running example from IPC NoMystery.

We will also consider planning with non-reproducible re-
sources, encoded as discrete FDR state variables. This can
be viewed as a special case of our OSP formulation. In our

9819

experiments, among others we will use resource-constrained
planning (RCP) benchmarks by Nakhost et al. (2012), which
allow to control resource constrainedness (basically the ratio
between available vs. required resource amounts).

For illustration, we will use an RCP running example
from IPC NoMystery, a transportation domain with fuel con-
sumption. The variables encode truck and package positions,
actions drive trucks or load/unload packages. Drive actions
consume an amount of fuel (of the respective truck) depend-
ing on the road connection taken. As a concrete example, we
will use the task with two trucks and three packages illus-
trated in Figure 1. Fuel consumptions are indicated at road
segments. The packages are initially at Ly (shown in blue);
their goal locations are L4, Ls,and L5 (shown in red).

3 Goal-Property Dependencies in OSP

We next spell out our framework for plan properties, entail-
ment relations between them, and the forms of explanations
we aim at. We do so in FDR-based OSP as defined above,
but in principle our definitions are generic and can be instan-
tiated for arbitrary plan properties and planning frameworks.
We will discuss the definitions from that perspective.

3.1 Plan Properties and Property Entailment

The plan properties we consider here are formulas over the
soft goals:

Definition 1 (Plan Properties). Let 7 = (V, A, ¢, I, G,
G*°"'b) be an OSP task, and 11 its set of plans.

A plan property is a function py : I — {true, false}
where ¢ is a propositional formula over the atoms G*°", and
pe(m) = true iff ¢ evaluates to true under the truth value
assignment where g € G*° is true iff g € I[[r]]. py is
conjunctive if ¢ has the form /\gEA g or — /\gEB qg.

We identify p, with the characterizing formula ¢. Our
analyses are formulated for conjunctive plan properties
(which through compilation can address arbitrary pg).

In general, a plan property can be any function mapping
a task and an action sequence to a Boolean value. Examples
are temporal plan trajectory constraints, deadlines, bounds
on resource consumption, and the aforementioned action-set
properties. To the extent that such properties can be com-
piled into goal facts, conjunctive plan properties can be used
to analyze their dependencies. We will explore this possibil-
ity here with a compilation for action-set properties.

We formalize plan-property dependencies as entailments
in the space of plans II:

Definition 2 (II-Entailment). Let T (V, A, c, I,GM,
G*°'b) be an OSP task, and 11 its set of plans.

We say that m € 11 satisfies a plan property ¢, written
T = ¢, if pp(m) = true. We denote by M (¢) = {n |1 €
I, |= ¢} the subset of plans that satisfy ¢. We say that ¢
[-entails 1), written 11 |= ¢ = 1, if M (¢) C Mpu(¥).

This definition views II in the role traditionally taken by
a knowledge base, identifying a set of “possible worlds”
within which entailment over plan properties is considered.
Observe that, given this, II-entailment is more than stan-
dard entailment: ¢ = v implies that IT = ¢ = 4, but

not vice versa. [I-entailment captures entailments specific to
the space of plans II. For example, in our illustrative No-
Mystery task, say that all goals are soft, Tj has initial fuel
supply 13, and T} has no fuel. Then 1T = at(Py, Ly) =
= (at(Py, L3) A at(Ps, L5)) because, if we achieve the goal
for Py, there is insufficient fuel to transport both other pack-
ages. If we set the initial fuel supply of T} to 16, on the other
hand, then the knowledge base changes — II becomes more
permissive — and that entailment no longer holds.

Note that the definition of II-entailment is agnostic to the
specification of II. The definition applies unchanged to arbi-
trary planning frameworks and plan sets I1.

Our primary focus here will be on goal exclusions:

Definition 3 (Goal Exclusions). Let 7 = (V, A, ¢, I, G",
G*°"', b) be an OSP task, and 11 its set of plans.

A goal exclusion is an entailment of the form 11 =
Ngea 9 = —Nyep 9 The entailment is non-dominated

if there is no pair (A’,B") where A’ C A, B’ C B,
(A/,BI> 7é (A7B), andn ': /\geA’g = “/\geB/ g- The
entailment is non-rhs-dominated if there is no B’ where
B/ g Band]:[): /\geAg:> _‘/\geB/g.

Goal exclusions are of interest in OSP as they reflect the
detailed (soft-)goal trade-offs in the user’s quest for a good
plan. A non-dominated goal exclusion has subset-minimal
A and B. This dominates entailments with larger A and/or
B as it has a weaker left-hand side A (smaller conjunction)
entailing a stronger right-hand side — B (smaller disjunction,
after moving the negation inside). If A is fixed, then only
the right-hand side B needs be minimal. We will use non-
dominated entailments to give more compact explanations.

3.2 Local and Global Explanations

As previously hinted, we propose to employ the concept of
plan-property entailment for the purpose of giving local and
global explanations of the plan space II.

For local explanations, we assume a user question of the
form “Why do you not achieve property ¢?”, which we an-
swer with the set of plan properties v entailed by ¢:

Definition 4 (Local Explanation (LE)). Let 7 = (V, A, ¢, I,
Ghard Gt b) be an OSP task, and 11 its set of plans.

For a plan property ¢, the local explanation (LE) for ¢
is the set {1 | Il |= ¢ = ¢} of plan properties I-entailed
by ¢. For ¢ = N\ gea 9> the goal-exclusion LE for ¢ is {v]
V¥ ==N,ep 9. 11 E ¢ = 1 is non-rhs-dominated}.

Such an answer makes sense if the entailed properties
1) are undesirable. This is the case, in particular, for goal-
exclusion LEs. In our example with Tj fuel 13, the answer
to ¢ = at(Py, Ly) “Why do you not achieve the goal for
Py?” would be ¢ = —(at(Py, L) A at(Ps, Ls)) “Because
that would necessitate to forego the goal for either P, or P»”.

From a general perspective, plan properties here serve as
an abstraction level at which to explain II to a user. The
underlying assumption is that II is large and/or the mech-
anisms that generate II are complex, so that an abstract form
of explanation is needed. The abstraction level can be con-
trolled through the number and granularity of plan proper-
ties. Given this, while here we simply talk about all formulas

9820

over soft-goal facts, it can make sense to instead fix a more
specific set P of plan properties the user has a vested interest
in (raising the new sub-problem how to choose P).

Note that, if the user question “Why do you not achieve
property ¢?” refers to a concrete given plan candidate m,
then a simpler variant of local explanation is to return only
those entailed ¢» where 7 [~ 1), i.e., currently false plan
properties that would become true when enforcing ¢. This is
easier to compute and yields smaller explanations. In our ex-
periments, we will only use explanations as per Definition 4,
yielding an upper bound on computational hardness and ex-
planation size, and avoiding the bias incurred by a particular
method for generating candidate plans 7.

A canonical notion of global explanation arises directly
from the above. Instead of showing the implications of one
specific plan property, one can show all such implications:

Definition 5 (Global Explanation (GE)). Let 7 = (V, A, c,
I,GPad G b) be an OSP task, and 11 its set of plans.
Denote by [¢ln = {¢ | Mu(¢) = Mu(y)} the I1-
equivalence class of ¢. The global explanation (GE) for T
is the strict partial order =11 over the classes [where

[Pl =n [V iff [plu # [Wln and 11 |= ¢ = 3.

The only somewhat non-obvious design decision here is
to group plan properties into equivalence classes. That said,
while this definition makes sense at the formal level, it is
of doubtful practical value. There can be many plan proper-
ties (here: all propositional formulas over G*°') and many
equivalence classes (here: in the worst case, one class for
every set of truth-value assignments to G*°™'). This makes it
questionable whether the GE can be processed by a user.

It therefore makes sense to focus on more limited forms
of GEs, and to find ways to represent these more compactly.
Here, we focus on non-dominated goal exclusions:

Definition 6 (Goal-Exclusion GE). Ler T (V,A ¢, I,
Ghard Gt b)Y be an OSP task, and 11 its set of plans.

The goal-exclusion GE for T is the strict partial order
=11 over conjunctive plan properties where ¢ =11 Y iff
IT = ¢ = 4 is a non-dominated goal exclusion.

Equivalence classes are not needed here because we con-
sider only goal exclusions Il = A .9 = = A,cp9:
so plan properties cannot entail each other. Our results on
benchmarks suggest that the goal-exclusion GE is reason-
ably feasible to compute, and is often small.

Consider again our example, with T fuel 13. Taking the
freedom to notate goal facts by the respective packages, IT =
P() = _|(P1/\P2),H ’: P = _‘(PO/\PQ), and II ':
P, = —(Py A Py) are non-dominated goal exclusions. They
are not the only ones though: IT = Py A P, = —P; also
satisfies the definition, and so does any way of distributing
the three packages across the left-hand vs. right-hand sides
of the entailment. So the size of the goal-exclusion GE, in
terms of the ordering relations it contains, is eight.

Note that this GE is equivalent to the statement “G*°" is
not solvable as a whole, but each of its subsets is”. Indeed, as
we shall spell out next, for the special case of goal exclusions
the GE is equivalent to the collection of minimal unsolvable
goal subsets. We exploit this connection in our algorithms.

4 Computing Goal-Exclusion Explanations

We start with the algorithms for GEs, from which those for
LE:s follow easily.

4.1 Global Explanations

The special case of goal exclusions — though not the analy-
sis of plan-property dependencies in general — boils down
to the computation of minimal unsolvable goal subsets
(MUGS). A soft-goal set G C G*f is a MUGS if G cannot
be achieved but every G’ C G can:
Proposition 1 (GE from MUGS). Let 7 = (V, A, ¢, I, G"9,
G*°'', b) be an OSP task, and 11 its set of plans.

Then Il = N\, c4 9 = =\ ep 9> and that entailment is
non-dominated, if and only if AU B is a MUGS.

Proof. A ll-entailment Il = A\ c 4, 9 = = A cp g clearly
holds iff A U B is unsolvable. Non-dominated entailments
result from set-inclusion minimal A and B, corresponding
to the set-inclusion minimality of MUGS. O

We can hence represent goal-exclusion explanations more
compactly, showing one MUGS G for each set of goal-
exclusion entailments with A U B = G. In our example,
the only MUGS is {at(Py, L4), at(P1, L3), at(Ps, Ls)}.

The question now is how to compute all MUGS. This can
be done through a search over goal sets, that we refer to as
systematic weakening (SysW):

(1) the start node of the search is G*°'';

(2) each search step selects an open node G, calls a planner
to test whether G is solvable in 7, caches the result, and
expands G if it is unsolvable;

(3) the children of a node G are those G’ C G where |G'| =
|G| — 1.

Upon termination, the MUGS are those nodes G all of whose

children are solvable.

Dually, systematic strenghtening (SysS) starts from (),
with search steps expanding solvable nodes, and children
adding one more goal fact. Upon termination, the MUGS
can be easily obtained from the unsolvable search nodes.

In both algorithms, the worst-case number of planner calls
is exponential in |G*°%|, i.e., the number of goals whose
dependencies are being analyzed. Intuitively, SysW is bet-
ter suited if solvable goal subsets are large (and thus are
encountered early), while SysS is better suited if they are
small (unsolvable subsets are encountered early). For illus-
tration, in the example SysW expands the single search node
G*°"', while SysS expands all solvable subsets before reach-
ing Gsoft_

Search enhancements are important for scalability. In par-
ticular, goal sets can be reached from the start node by per-
mutations of goal-fact removal/addition steps. For effective
results re-use, we assign goal sets unique integer IDs and fix
an ascending expansion order. When expanding a node G
and considering a possible child G, there are three possibil-
ities: 1. id(G’) > id(G): G’ not seen yet, insert into open
list; 2. id(G’) < id(G) and result for G’ cached: use that
result; 3. id(G") < id(G) and result for G’ not cached: then
the search was previously cut off above G’, so we know that
G’ is solvable (SysW) respectively unsolvable (SysS).

9821

We created synergy with recent nogood learning tech-
niques, conjunction learning (Steinmetz and Hoffmann
2017b) and trap learning (Steinmetz and Hoffmann 2017a).
These techniques refine dead-end detection methods (no-
goods) based on the unsolvable states encountered in state
space search on a planning task. Trap learning identifies un-
escapable non-goal regions of the state space. Conjunction
learning enriches the critical-path heuristic h© with more
atomic conjunctions, and learns clauses by dead-end-state
reduction. As the children tasks in our searches are closely
related to their parents, the refined nogoods are likely to be
useful still. So we transfer the nogoods along search paths,
resulting in iteratively stronger and stronger nogoods.

For both forms of learning, the nogoods learned depend
on the goal, so that only some of the nogoods remain valid
for transfer in SysW where children remove goals. To iden-
tify that nogood subset, in conjunction learning we remem-
ber the subset G' of goals proved to be unreachable by h¢
in a learning step. Clause validity is preserved so long as
at least one member of G is still present. In trap learning,
the validity test checks, for every node of the trap, whether
the node is still either mutex with the goal, or is still proved
unsolvable by the heuristic function.

We extended conjunction learning to deal with OSP plan-
cost bounds, by checking not whether h®(s) = oo but
whether 7 (s) exceeds the remaining available cost. For
trap learning, no straightforward extension exists, as trap
nodes represent sets of states and thus would need to reason
about bounds on remaining available cost. As trap learning
is not the focus of our work, we leave this open for future
research and use trap learning on RCP benchmarks only.

We acknowledge that the basic structure of SysW and
SysS is simple, and relates to various prior works addressing
conflict analysis in one or the other form. Our contribution
here consists in assembling the algorithms in a form suited to
our purposes, plus the described enhancements. We briefly
discuss related work in Section 7.

4.2 Local Explanations

For local explanation, we are given a soft-goal subset A
whose non-rhs-dominated entailments we wish to identify.
This corresponds to fixing A and minimizing only B -
which in turn corresponds to moving A into the hard goals
and computing MUGS on the modified task.

Precisely, assume an OSP task 7 (V, A, c, I,GM,
GSOf‘, b), with set of plans II. Consider the modified task
= (V,A e, I,G" U A, G\ A, b). Clearly, we have
the goal exclusion Il = A\ .4 9 = =\ cpgiff B is un-
solvable in 7/; and B is minimal in 7 iff the goal exclusion
is non-rhs-dominated. So the MUGS in 7’ yield exactly the
goal-exclusion LE for A as per Definition 4.

Observe that 7/ has fewer soft goals, so MUGS computa-
tion becomes easier, resulting in an advantage of local analy-
sis over global analysis. That advantage grows with | 4], i.e.,
intuitively, with how specific the user question is. At the ex-
treme end, A = G*° and both SysW and SysS on 7’ contain
a single search node testing solvability of G"&d U Gs°ft !

' As previously indicated, given a concrete candidate plan 7 one

5 Action-Set Properties

The analyses just described can, in principle, be used to ana-
lyze dependencies between arbitrary plan properties, so long
as these can be compiled into goal facts. Given the well-
known power of compilation in planning languages (e. g.
(Gazen and Knoblock 1997; Nebel 2000; Edelkamp 2006;
Palacios and Geffner 2009; Baier, Bacchus, and Mcllraith
2009)), there is large potential in this idea. As an example,
here we consider what we refer to as action-set properties:

Definition 7 (Action-Set Properties). Let T (V, A, e,
I,GMard GOt b) be an OSP task, 11 its set of plans, and
Ay, A, C A

An action-set property for T and A1, . .., A, is a function
pe : II — {true, false} where ¢ is a propositional formula
over the atoms Ay, ..., Ay, and ps(m) = true iff ¢ evalu-
ates to true under the truth value assignment where A; is
true iff ™ contains at least one action from A;.

As before, we identify action-set properties py with the
characterizing formulas ¢. Arguably, action-set properties
are practically relevant. They allow to express things like
“objective x is covered by satellite y”, “route x is not used”,
“passengers x and y ride in the same vehicle”, if these are
desirable but could be traded against other soft preferences.
At the same time, the simple syntax of action-set properties
lends itself to effective compilation, as follows.

Given 7, II, and A4, ..., A, as in Definition 7, to obtain
a compiled task 7/

e introduce Boolean flags isUsed; that are initially false
and set to true by any action from A;;

e introduce formula-evaluation state variables and actions
evaluating each py based on the isUsed; flags (follow-
ing (Gazen and Knoblock 1997; Nebel 2000)), setting
Boolean flags isTruey storing the outcome values;

e introduce a separate 1. planning phase vs. 2. formula-
evaluation phase, and a switch action allowing to go from
1. to 2. if G"9 is satisfied.

Then the planning-phase prefixes in 7/ are in one-to-one cor-
respondence with II, and given such a prefix 7 the evaluation
phase in 7’ can achieve is True iff py(7) = true.

Now say that we want to analyze the dependencies across
a given set P of action-set properties (e. g. possible unde-
sirable consequences of not using route X). We are given
7, 11, and P; we want to identify dependencies of the form
I = Agea® = = Ayep - With the above, this can be
done by considering 7’ with soft goals {isTrueys | ¢ € P},
and identifying each isTrueg with ¢ in the outcome.

In the NoMystery domain action-set properties that can
make sense are, for example, uses T; (L,,L,) (truck T;
drives at least once from L, to L, or vice versa), doesn’t use
T; (L, Ly) (the opposite), or same truck P, P, (both pack-
ages are delivered by the same truck). In our example task,
say we fix the package destinations as hard goals, and we
want to analyze the properties 1. uses Ty (L2, L3); 2. same

could choose to restrict the answer to entailments = A _ 5 g where
7 = A\ e 9- This corresponds to removing all g with 7 [~ g from
G*™"in 7/, further simplifying the computation.

9822

truck Py Po; 3. uses Ty (L4, L3); 4. same truck Py Pp; 5.
doesn’tuse Ty (Lo, L5); 6. uses Ty (Ls, Ly4). Say initial fuel
is 16 for T and 7 for 7. Computing the MUGS over the soft
goals representing the six action-set properties, it turns out
there are seven minimal unsolvable subsets of these proper-
ties, each of size three. A user could, for example, ask “Why
do you not avoid the road Ly — L5 (which has a lot of traffic
at the moment)?”, translating into the question “Why do you
not achieve property 5?”. One of the non-rhs-dominated en-
tailments of property 5 is —(property 2 A property 4), corre-
sponding to the answer “Because if you don’t use that road,
then you cannot deliver all packages with a single truck.”
We remark that, in a preliminary exploration, we imple-
mented a compilation for LTL plan properties based on pre-
vious work (Edelkamp 2006; Baier, Bacchus, and Mcllraith
2009). Our results are promising, yet indicate that algorith-
mic optimizations are needed to obtain good performance
for complex properties. This remains a topic for future work.

6 Experiments

We implemented our approach in Fast Downward (FD)
(Helmert 2006). We evaluate it, in turn, on IPC benchmarks
modified for OSP planning, and on a selection of IPC bench-
marks we extended with action-set properties.

The base planner called by our SysS and SysW algorithms
on each search node runs forward search using AfF (Hoff-
mann and Nebel 2001), optionally with conjunction or trap
learning. The experiments were run on a cluster of Intel E5-
2660 machines running at 2.20 GHz, with time (memory)
cut-offs of 30 minutes (4 GB).

6.1 IPC-Based OSP Benchmarks

Following Katz et al. (2019), for every IPC benchmark task
(V, A, ¢, I, @) with smallest known plan cost C' as per plan-
ning.domains (Muise 2016), we obtained three OSP tasks
by setting the cost bound to b x x C" where © €
{0.25,0.5,0.75}. We used soft goals only, i.e., G¥ = G
and G" = (). For implementation reasons, we omitted
tasks with > 32 goals (which would be infeasible for MUGS
analysis anyhow). We consider conjunction learning, but not
trap learning as that cannot deal with OSP cost bounds.

IPC Global Explanations Figure 2 shows our data for
global explanations, i.e., computing all MUGS. Note first
the #MUGS data in the rightmost part of the table. As the
data shows, the size of this global explanation is often small.

The rest of the figure focuses on computational perfor-
mance. As a measure to compare against, we use optimal
planning and OSP as reference points. The A"M" column
gives coverage for A* with h"™M-"t (Helmert and Domsh-
lak 2009) run on the original IPC instance without a cost
bound, as a comparison to solvable optimal planning. The
OSP column gives coverage for the most recent OSP plan-
ner (Katz et al. 2019). It is expected that our algorithms,
solving a more complex problem, will perform worse than
the reference points. The question is, how much worse?

As a short summary of the answer provided by Figure 2 to
that question, compared to optimal planning, with the small-
est cost bound x = 0.25 our analysis is actually more effec-

Reference Coverage Systematic Strengthening/Weakening Coverage, © = Search Tree Fraction, x = #MUGS, © =
pLM-cut osp 0.25 0.5 0.75 0.25 0.5 0.75 025 05 075025 05 075
r = SysS SysW SysS SysW SysS SysW Sys Sys Sys

domain 025 05 075 nC nC nC nC nC nC s w|l s w| s w average max
agricola (20) 0 0 0 Of[20 20 20 20| 12 13 11 3] 2 2 1]/ 1.00 0.50[1.00 0.50 [1.00 0.50 1.0 1.0 1.0 1 1 1
airport (50) 28| 28 24 22| 25 35 24 3420 21 19 21| 20 16 20 16||0.60 0.81|0.87 0.73|1.00 0.61 38 20 1.4 6 5 4
barman (34) 4 18 11 4] 18 18 15 18| 11 4 10 4] 8 37 4057 0.94]0.88 0.88|1.00 0.50 69 42 25 10 6 4
blocks (35) 28| 35 28 21 35 3 29 3525 29 22 29| 18 26 18 26([0.15 0.97[0.35 0.95[0.80 0.64 11.0 124 137 59 40 57
childsnack (20) 0 2 0 0 0 4 0 4| 0 0o 0 0| 0 0 0 0]0.34 098 - - - - 16.8 - -l 20 - -
data-network (20) 12 13 13 13 9 20 19 20| 17 18 16 18| 13 17 13 15([0.72 0.73]0.79 0.70 [0.91 0.66 2.1 1.8 L5 4 3 3
depot (22) 7 16 11 7 15 16 12 16| 7 9 7 10 6 36 31024 0.96|0.54 0.90|0.89 0.68 83 70 65| 29 13 15
driverlog (20) 13 15 13 10(| 15 15 15 15| 11 12 11 12/ 9 10 9 10{[0.17 0.98|0.59 0.86|0.87 0.50 81 161 111 18 45 21
elevators (50) 40 22 22 22| 49 47 49 48| 44 38 43 37| 43 27 41 27 [0.35 0.94]0.67 0.89]0.90 0.67 46 5.1 5.9 14 12 21
floortile (36) 13 18 6 20| 15 8 6 8| 3 2 2 20 2 2 2 2010 0.99]0.67 0.80[0.96 0.30||3162 137.0 455| 622 321 54
freecell (80) 15 77 30 21 51 76 41 76 25 30 21 30| 15 18 15 18([0.31 0094 |0.62 0.94|0.88 0.76 40 43 33 4 6 5
ged (20) 15 20 20 20 16 16 15 20| 15 10 10 12| 10 7 10 71]0.25 0.90|0.47 0.80|0.58 0.70 133 387 125| 30 101 38
grid (5) 2 5 3 2 4 5 4 50 3 33 4| 2 3 2 31054 0.84]0.83 0.75]|1.00 0.54 40 25 1.0 7 4 1
gripper (20) 7 11 8 8 8 5 6 5|1 5 4 5 4] 5 3 5 311021 0.980.65 0.88|0.96 0.46 [|783.5 228.0 156.0 | 3060 792 495
hiking (20) 9 19 14 13 9 20 19 20| 14 16 13 17| 14 11 13 10 [[0.81 0.69|0.83 0.67 | 1.00 0.63 1.8 1.7 1.0 2 2 1
logistics (60) 26| 27 20 16 7 15 6 15| 4 6 4 6| 3 33 4035 095[0.73 0.81[0.98 0.73 72 13 28 18 22 4
miconic (150) 141 97 66 55| 75 66 60 64| 51 42 47 43| 45 35 45 36([0.30 0.92]0.73 0.82|0.95 0.61 81.3 382 188 452 285 98
mprime (35) 22 35 27 24| 3 35 35 35|28 35 28 35|25 35 24 35[[090 059|091 0.59]0.94 0.59 1.3 1.2 1.1 2 2 2
mystery (30) 121 29 27 21 30 30 30 30| 30 30 29 30| 21 30 20 30([0.89 0.61]0.90 0.61]0.93 0.61 13 1.2 1.1 2 2 2
nomystery (20) 141 20 14 10| 20 20 16 20| 10 12 10 12| 8 8 8 8(]0.15 098 |0.61 092|087 0.61 | 202 185 58| 61 47 13
openstacks (77) 47 63 56 52| 49 49 37 43| 47 45 29 39| 42 42 24 35(|0.03 0.99|0.04 0.99|0.12 0.98 153 149 103| 25 44 23
organic-syn-s (13) 10 8 8 8 8 8 7 8| 8 8 7 8| 7 6 6 61]0.19 0.960.21 0.95|0.28 091 53 73 83 1228 36
parcprinter (26) 24 26 22 18 10 10 12 14| 10 10 10 14| 10 10 10 12|/ 044 098|0.61 0.950.73 085 56 15 41 14 24 8
parking (40) 5 25 5 0 12 17 5 121 0 1 0 1 0 0 0 0[0.02 1.00{0.27 091 - -] 639 310 12 31 -
pathways (30) 5 5 4 4 5 7 5 7| 4 5 4 5| 4 4 4 4041 0.86]0.72 0.78 [0.91 0.70 113 38 1.8 50 10 3
pegsol (2) 2 2 2 2 0 0o 2 2| 0 0 2 2| 0 0 2 2 - - - - - - 7.0 235 640 8 41 122
pipesworld-nt (50) 171 45 30 23|| 42 46 38 46| 26 25 24 26| 21 15 20 15]]0.31 0.94(0.68 0.830.88 0.66 50 56 43 13 31 24
pipesworld-t (50) 121 33 20 16| 23 39 20 40| 14 18 13 17 11 139 11(][035 095]0.63 0.86|0.88 0.65 40 42 32 12 15 12
psr-small (50) 49 50 50 50|| 48 48 49 50| 47 47 48 49| 46 46 48 48([0.76 0.63|0.94 0.55|0.97 0.47 40 27 20 20 13 11
rovers (40) 8 16 8 6 12 12 12 12 7 7 7 7| 7 5 7 511031 095(0.74 0.84|092 0.55|| 21.0 114 43| 95 35 12
satellite (36) 7 9 7 6 9 12 7 12| 6 6 6 7 5 6 6(]0.12 098|049 094|090 0.68 || 31.1 233 20.5| 136 76 56
scanalyzer (40) 231 26 21 21 9 17 9 151 9 9 9 9| 9 5 9 911022 099(0.53 0.86|0.75 0.83 || 352 378 62.6| 106 71 130
snake (17) 6 17 17 14 7 7 6 7| 3 3 3 3| 3 3 111016 0.93(0.32 0.86 |0.58 0.74 114 203 383 17 25 59
sokoban (50) 49 50 49 45| 50 50 49 50| 48 43 48 43| 44 31 44 29([0.59 0.85|0.86 0.72|0.96 0.49 49 40 22| 56 32 14
spider (12) 11 12 12 12 6 6 1 1 5 1 0 0| 0 0 0 0[0.00 1.00 - - - S| 21.0 324 23| 36 57 -
storage (30) 15 20 17 15 18 18 18 18| 16 16 16 16| 15 14 15 141|057 0.83[0.85 0.75(0.98 0.57 50 43 89 15 11 5
termes (20) 6 20 16 12| 20 11 13 10 15 2 3 3 7 0 1 0028 0.80]0.53 0.53 - - 38 6.0 10 18 24
tetris (17) 6 17 14 11 8 9 7 7| 5 303 3 3 2 3 21((0.23 0980.81 0.77|0.97 041 || 382 438 73| 79 89 11
tidybot (40) 23| 40 38 32(| 40 40 39 40| 32 31 25 28| 14 13 8 14([0.38 092|047 091 [0.69 0.79 3.1 33 29 4 6 6
tpp (30) 7 9 7 6 8 9 8 9| 7 7 6 7| 6 5 6 51036 0.890.66 0.82]0.96 0.66 80 89 42| 33 25 11
transport (70) 23| 24 24 24| 42 42 37 42| 34 34 34 33| 31 23 33 26([037 094|059 0.89]0.73 0.69 53 41 27 22 10 10
trucks (30) 10 12 8 6 12 14 9 14| 7 7 6 7| 6 4 6 4018 098]0.68 089093 0.62|| 302 174 77| 137 32 21
visitall (14) 14 14 14 13 13 13 10 10 100 10 8 10| 6 6 7 81020 093036 0.91|0.79 0.75 || 99.6 166.0 115.1| 313 602 466
woodworking (35) 29| 25 12 10f| 23 23 13 15 9 9 7 9| 5 5 5 5(/0.02 1.00[0.22 094072 0.52|[1980 951 19.8| 532 182 28
zenotravel (20) 13 13 10 8 13 13 12 13| 10 9 8 9] 8 9 8 9([0.34 094]|0.65 0.88]0.86 0.64 105 67 26| 36 31 4
Sum (1517) 828 [1088 828 705[[963 1026 846 1005|714 690 637 694|580 522 547 528

Figure 2: Global explanation results on IPC benchmarks modified for oversubscription planning (OSP), with cost bounds set to
x times optimal cost. Reference: A* with h"M-% on original task, and OSP planning (Katz et al. 2019). SysS and SysW with vs.
without conjunction learning h¢ . Search tree fraction: fraction of worst-case search tree explored. #MUGS: average/maximum
number of MUGS, i. e., global explanation size. Best performance in each part shown in boldface.

tive. But that changes for larger cost bounds where the base
planner’s search space is larger and accordingly our analysis
becomes harder. Taking the per-domain best of our four al-
gorithm configurations, for x = 0.25 we get equal or better
coverage in 37 of the 45 domains, for z = 0.5 that number is
25, for x = 0.75 it is 16. Compared to OSP planning, these
numbers are 29, 18, and 22. Overall, it seems fair to say that
our analysis is reasonably feasible: in many domains, it is on
par with the most closely related simpler problems.

The search tree fraction explored by SysS increases with
larger cost bounds, which is expected as solvable goal sub-
sets become larger. For the same reason, the search tree frac-
tion explored by SysW decreases; but this does not outweigh
the increased base planner effort. Conjunction learning helps
mostly for small cost bounds and/or when using SysW.

Explanation Examples To complement the purely com-
putational evaluation of our approach with a view on the ex-
planations provided, we now discuss a number of example
domains and instances. We consider x = (.75, arguably the
most interesting setting. We selected five domains to cover
a range of intuitively different structure. From each of these
domains, we selected an instance whose size was feasible
for us to discuss here.

e Blocksworld (instance 5-0): The goal facts are 1. on(a,),

2. on(b,d), 3. on(d,c) and 4. on(e,b). The MUGS are
{1,3}, {1,4}, {2,3,4}. So, for example, the question
“Why don’t you stack a on €?” is answered with “Because
then I can’t achieve the goals for d and e.”

e Elevators (opt2008 instance 04): The goals are 1.
at(po,n1), 2. at(p1,m3), 3. at(p2,n4) and 4. at(ps, no).
The MUGS are {1,2,4}, {1,3}, {2,3}, {3,4}. So the
question “Why don’t you transport p3?” is answered with
“Because then I can’t transport anybody else.”

e Freecell (instance 01): The goals are 1. home(clubss),

2. home(spadesy), 3. home(heartsy) and 4.
home(diamondssy). The MUGS are {1,2,3}, {1,2,4},
{1,3,4}, {2, 3,4}. So the question “Why don’t you finish
clubs and spades?” is answered with “If I do that, then I
cannot finish the other suits.”
An interesting aspect of this example is the symmetry in
the MUGS. A more compact and more general explana-
tion would be “It is only possible to finish two card suits.”,
making clear that clubs and spades are no exception. It
should be possible to identify opportunities for such ex-
planations automatically (which might also be relevant in
other contexts (Yu et al. 2017; Lauffer and Topcu 2019));
this remains a topic for future work.

e Rovers (instance 04): The goal facts are 1. soil_data(ws),

9823

2. rock_data(wn), and 3. image_data(oy, high_res). The
MUGS are {1, 3}, {2, 3}. So the question “Why don’t you
take the image?” is answered with “Because then I can’t
take any of the samples.”

e Woodworking instance Ol(optO8): There are
the goals 1. colour(py, mauve), 2. colour(ps,
green), 3. surface_condition(pg, verysmooth), 4.

surface_condition(py, smooth). Among the MUGS
there are {1, 4,5}, {2,4,5}. So the question “Why don’t
you grind pg and p; 7" is answered with “Because then |
cannot paint them.”

IPC Local Explanations For local explanations — entail-
ments of soft-goal conjunctions A gcA g — We set up an ex-
periment where we used only benchmark tasks with > 6
goals (resulting in 37 non-empty domains), scaled question
size |A| from 1 to 5, and randomly selected 10 questions
of each size. Figure 3 shows the data for SysW with con-
junction learning at the most challenging cost bound 0.75.
Averages are taken over instances where all questions were
solved, as otherwise the results are distorted by large in-
stances solved only for high values of |A|. As expected,
computational effort and explanation size decrease with |A.

0.25

coverage

0.2

0.15

Figure 3: Local explanation results on IPC benchmarks, cost
bound 0.75, for SysW as a function of | A|. Left: coverage,
i.e., fraction of solved questions (dashed, right y-axis); and
average runtime (solid, left y-axis). Right: average #MUGS.

These results are consistent across domains, and are much
stronger in some cases. For example, while for |A| = 1 our
coverage is higher than that of K™% in only 2 domains
here, for |A| = 5 that is so in 6 domains. Compared against
OSP, the number of domains with higher coverage rises from
5 to 13. Local explanations are typically small even for do-
mains where global explanations can be large as shown in
Figure 2: the average number of MUGS for |[A| = 5is < 7
in all but 3 domains, and is < 15 except in Visitall (21.81).

6.2 Action-Set Properties

To evaluate the use of our framework with more complex
plan properties, we experimented with the compilation of
action-set properties as per Section 5. We extended four do-
mains with action-set properties: NoMystery, Rovers, and
TPP as per (Nakhost, Hoffmann, and Miiller 2012), with
controlled resource constrainedness (cf. Section 2); plus the
Blocksworld as an intuitively differently structured domain.
In NoMystery, the action-set properties are as in our illus-
trative example. In Rovers, the properties ask which rover
or camera is used for which observation. In TPP, they ask

9824

which road segments are used, and which goods are bought
at which markets. In Blocksworld, we include two hands and
the properties ask which hand is used for which blocks. We
set the original goal facts as hard goals, so that the analysis
determines exclusion relations over conjunctions of action-
set properties.

We encoded resource consumption into the FDR state
variables, enabling the use of trap learning which turns out
to be highly beneficial here. We generated benchmarks of
sizes around the feasibility borderline, and we experimented
with resource constrainedness = € {1.0,1.25,1.5,2.0}. For
reference, we ran A* with hEM-<Ut g5 before, on all goal facts
(original plus compiled action-set properties). Current OSP
planners cannot handle hard goals, so we used our base plan-
ner with trap learning instead as a second reference point.

AL AL

AR

0 -IL

1

o
o

1.0

10

xr=
=
o

o
|
o

(=]
o

10

ll B syss B0 syew BB syss trap B0 SysW trap -~ pLM-cut™ —— trap‘

o
o

1.5

Tr=
-
o

o
o

)

Figure 4: Coverage for global action-set property explana-
tion at z = 1.0 and x = 1.5. Number of properties on x-
axis, scaling from 1 to 10. Blocksworld top left, NoMystery
top right, Rovers bottom left, TPP bottom right.

Figure 4 shows performance data for global explanation.
We consider x = 1.0 and x = 1.5 as representatives of
the overall picture. At x = 1.0, computing global action-set
property explanations is feasible compared to the reference
points. SysS with trap learning matches reference point cov-
erage except for moderate losses in NoMystery. As more re-
sources becomes available, similarly to before our analysis
problem becomes harder to solve, and the coverage gap to
the reference points increases. Rovers is an exception to this

300 | . -
100 |- NS ..
\\M. o .__‘.-- e
g SSeb-inkin IS § B i
0 | | | | | 0 | | | | |
1 2 3 4 5 1 2 3 4 5

Figure 5: Local action-set property explanation at z = 1.0
(top) and = = 1.5 (bottom) SysS with trap learning. Aver-
age runtime (left) and average #MUGS (right) as a function
of | A|. Blocksworld solid, NoMystery dashed, Rovers dash-
dotted, TPP dotted.

because, there, all pairs of action-set properties are unsolv-
able, which trap learning discovers quite effectively.

Figure 5 shows performance data for local explanation.
As before, this form of analysis becomes much easier as
question size grows. runtime decreases significantly. Cov-
erage (now shown in the figure to avoid cluttering the plots)
increases accordingly. Explanation size, i.e., the number of
MUGS, decreases as well (with the exception of Rovers as
already pointed out).

7 Other Related Works

Various works relate to our computation of MUGS. In SAT
and CP, minimal unsatisfiable cores (MUC, e. g. (Chinneck
2007; Laborie 2014)) are related to MUGS, yet rely on
constraint-conflict analysis and are non-exhaustive, i.e., do
not aim at finding all MUC:s. Similarly, in the temporal plan-
ner IxTeT, an analysis of resource conflicts finds minimal
critical sets (effects over-consuming a resource) (Laborie
and Ghallab 1995). On the exhaustive side, problems and
algorithms involving some form of solvability borderline
within a lattice of problem variants have been considered
since a long time (e.g. (de Kleer 1986; Reiter 1987)). In
particular, the diagnosis framework by Grastien et al. (2011;
2012) can cast maximum solvable goal subsets as preferred
diagnoses. That work uses SAT instead of a base planner,
but an encoding into planning has been devised and ideas
for search enhancements may be transferrable.

Some prior work (Yu et al. 2017; Lauffer and Topcu 2019)
aims at suggesting goals to drop in oversubscribed situa-
tions, through conflict analyses related to finding a MUGS.
At the technical level, both works are quite different from
ours though as they use constraint-based problem encodings.

Prior work on other forms of plan-space explanation
addressed unsolvable tasks, identifying minimal model
changes resulting in solvability (Gobelbecker et al. 2010),

9825

or minimal differences between a solvable user model vs.
unsolvable system model (Sreedharan et al. 2019).

We remark that our approach can be viewed as a form of
domain/task analysis, or as a form of model checking ap-
plied to planning models. Both have been explored before,
but addressing very different problems (e. g. (Fox and Long
1998; Rintanen 2000; Vaquero et al. 2013)).

Finally, to the reader versed in classical planning tech-
niques, action-set properties may be reminiscent of dis-
junctive action landmarks (Karpas and Domshlak 2009;
Helmert and Domshlak 2009), a technique used for comput-
ing heuristic functions. Disjunctive action landmarks corre-
spond to atomic action-set properties. Propositional combi-
nations other than conjunction (landmark collections) have
not been considered though, and the previous purpose of dis-
juntive action landmarks is entirely different from ours.

8 Conclusion

Our approach analyses plan space in terms of plan proper-
ties and their dependencies. This naturally addresses chal-
lenges raised in previous work on iterative planning, and
performance is reasonable in IPC benchmark studies. The
approach can be easily generalized to almost arbitrary plan-
ning frameworks and plan-property languages, and we hope
it will inspire other researchers too. To name just one ex-
ample, plan properties and their dependencies might help in
plan verbalization (Rosenthal, Selvaraj, and Veloso 2016),
as an abstraction level (plan properties: “I did X”) as well
as a means for justification (dependencies: “I did not do Y
because ...”).

An interesting challenge is to answer deeper “why”” ques-
tions regarding an entailment IT |= p = ¢. Possible ideas are
to include additional plan properties elucidating the causal
chain between p and ¢; or to find a minimal relaxation (su-
perset) of the plan set IT for which p no longer entails ¢, thus
elucidating the circumstances under which that entailment
holds. A computational idea worth trying is to represent the
plan set II symbolically and use that representation to iden-
tify entailment relations. We aim to apply and evaluate our
approach in concrete use cases such as simulated penetration
testing and AUV mission control (Cashmore et al. 2014).

Acknowledgments

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA9550-18-1-0245. Rebecca Eifler was also supported by
the German Research Foundation (DFG) as part of CRC
248 (see perspicuous-computing.science). Daniele Maga-
zzeni’s group has also received support by EPSRC grant
EP/R033722/1: Trust in Human-Machine Partnerships. Part
of this work was performed while Jorg Hoffmann was vis-
iting NASA Ames Research Center. We thank J. Benton,
Minh Do, Jeremy Frank, and David Smith for insightful dis-
cussions.

References

Biickstrom, C., and Nebel, B. 1995. Complexity results for SAS™
planning. Computational Intelligence 11(4):625-655.

Baier, J. A.; Bacchus, F.; and Mcllraith, S. A. 2009. A heuristic
search approach to planning with temporally extended preferences.
Al 173(5-6):593-618.

Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course of
action generation for cyber security using classical planning. In
Proc. ICAPS, 12-21.

Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Magazzeni,
D. 2014. AUV mission control via temporal planning. In Proc.
ICRA, 6535-6541.

Chinneck, J. W. 2007. Feasibility and Infeasibility in Optimization:
Algorithms and Computational Methods. Springer-Verlag.

de Kleer, J. 1986. An assumption-based TMS. Al 28(2):127-162.

Domshlak, C., and Mirkis, V. 2015. Deterministic oversubscription
planning as heuristic search: Abstractions and reformulations. JAIR
52:97-169.

Edelkamp, S. 2006. On the compilation of plan constraints and
preferences. In Proc. ICAPS, 374-377.

Fox, M., and Long, D. 1998. The automatic inference of state
invariants in TIM. JAIR 9:367-421.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable planning.
In Proc. IJCAI’17 Workshop on Explainable Al

Gazen, B. C., and Knoblock, C. 1997. Combining the expressive-
ness of UCPOP with the efficiency of Graphplan. In Proc. ECP,
221-233.

Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and Nebel,
B. 2010. Coming up with good excuses: What to do when no plan
can be found. In Proc. ICAPS, 81-88.

Grastien, A.; Haslum, P.; and Thiébaux, S. 2011. Exhaustive di-
agnosis of discrete event systems through exploration of the hy-
pothesis space. In Proc. International Workshop on Principles of
Diagnosis (DX).

Grastien, A.; Haslum, P.; and Thiébaux, S. 2012. Conflict-based
diagnosis of discrete event systems: Theory and practice. AAAI
Press.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proc. ICAPS,
162-169.

Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191-246.

Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Al 173:503-535.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253-302.

Hoffmann, J. 2015. Simulated penetration testing: From “Dijkstra”
to “Turing Test++". In Proc. ICAPS.

Karpas, E., and Domshlak, C. 2009. Cost-optimal planning with
landmarks. In Boutilier, C., ed., Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI’09),
1728-1733. Pasadena, California, USA: Morgan Kaufmann.

Katz, M.; Keyder, E.; Winterer, D.; and Pommerening, F. 2019.
Oversubscription planning as classical planning with multiple cost
functions. In Proc. ICAPS, 237-245.

Laborie, P., and Ghallab, M. 1995. Planning with sharable resource
constraints. In Proc. IJCAI, 1643—-1649.

Laborie, P. 2014. An optimal iterative algorithm for extracting
mucs in a black-box constraint network. In Proc. ECAI, 1051—
1052.

9826

Lauffer, N., and Topcu, U. 2019. Human-understandable explana-
tions of infeasibility for resource-constrained scheduling problems.
In Proc. 2nd Workshop on Explainable Planning (XAIP’19).

Miller, T. 2019. Explanation in artificial intelligence: Insights from
the social sciences. Al 267:1-38.

Muise, C. 2016. Planning.domains. In /CAPS System Demonstra-
tions and Exhibits.

Nakhost, H.; Hoffmann, J.; and Miiller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk approach. In
Proc. ICAPS, 181-189.

Nebel, B. 2000. On the compilability and expressive power of
propositional planning formalisms. JAIR 12:271-315.

Palacios, H., and Geffner, H. 2009. Compiling uncertainty away in
conformant planning problems with bounded width. JAIR 35:623—
675.

Reiter, R. 1987. A theory of diagnosis from first principles. A/
32(1):57-95.

Rintanen, J. 2000. An iterative algorithm for synthesizing invari-
ants. In Proc. AAAI, 806-811.

Rosenthal, S.; Selvaraj, S. P.; and Veloso, M. M. 2016. Verbaliza-
tion: Narration of autonomous robot experience. In Proc. IJCAL

Smith, D. E. 2004. Choosing objectives in over-subscription plan-
ning. In Proc. ICAPS, 393-401.

Smith, D. 2012. Planning as an iterative process. In Proc. AAAI
2180-2185.

Sreedharan, S.; Srivastava, S.; Smith, D.; and Kambhampati, S.
2019. Why couldn’t you do that? explaining unsolvability of clas-
sical planning problems in the presence of plan advice. In Proc.
IJCAL

Steinmetz, M., and Hoffmann, J. 2017a. Search and learn: On
dead-end detectors, the traps they set, and trap learning. In Proc.
1JCAL

Steinmetz, M., and Hoffmann, J. 2017b. State space search nogood
learning: Online refinement of critical-path dead-end detectors in
planning. Al 245:1-37.

Vaquero, T. S.; Silva, J. R.; Tonidandel, F.; and Beck, J. C. 2013.
itsimple: towards an integrated design system for real planning ap-
plications. Knowledge Engineering Review 28(2):215-230.

Yu, P.; Williams, B. C.; Fang, C.; Cui, J.; and Haslum, P. 2017.
Resolving over-constrained temporal problems with uncertainty
through conflict-directed relaxation. JAIR 60:425-490.

