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Abstract—Electric vehicle charging facility location is a critical
component of long-term strategic planning. Integration of electric
vehicles into mainstream adoption has unique characteristics as it
requires a careful investigation of both electric and transportation
networks. In this paper, we provide an overview of recent
approaches in location analyses of electric vehicle charging
infrastructures. We review approaches from classical operations
research for fast and slow charging stations. Sample formulations
along with case studies are presented to provide insights. We
discuss that classical methods are appropriate to address the
coverage of charging networks which is defined as average time
or distance to reach a charging station when needed. On the other
hand, calculating required capacity, defined as the individual
charging resources at each node, is still an open research topic.
In the final part, we present stochastic facility location theory
that uses queuing and other probabilistic approaches.

Index Terms—location theory, electric vehicle charging sta-
tions, transportation networks, power grids

I. INTRODUCTION

To meet net-zero carbon emission goals, there has been a
global push towards mass-adoption of plug-in electric vehi-
cles (PEV). In line with such environmental goals, various
countries including the United Kingdom, France, Norway, and
India have announced a ban on the sale of new diesel vehicles
by 2040 onwards [1]. On the other hand, widespread PEV
adoption requires supporting charging infrastructure to provide
necessary coverage and capacity to fuel a large numbers
of trips comparable to gas station networks. To that end,
this paper presents a literature overview of charging station
location analyses to spatio-temporal electric vehicle demand.

In order for a fast transport-electrification, the supporting
charging infrastructures need to compete with well-established
supply chain practices of petroleum downstream industry. The
primary differences between electric transportation and the
existing carbon-based are on the storage and delivery of the
supply. Power grids are real-time supply demand systems with
limited storage capacities and tight control on supply-side.
Due to the increasing shares of variable renewable generation,
power grids are becoming more stressed, hence, the transition
towards electric mobility requires a careful investigation of
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Fig. 1: Overview of charging network capacity and coverage needs.

potential disruptive impacts of PEV chargings [2]. Previous
research shows that even small clusters of simultaneous PEV
charging could lead to grid problems such as premature aging
of distribution transformers [3], power quality deterioration
[4], shortages [5], and possibly increase peak system demand.
Therefore, laying the foundations for sustainable charging
infrastructures is a critical step for a seamless integration
of PEVs [2]. On the other hand, there is a century-old
industry on the delivery and storage of petroleum products for
transportation systems supporting millions of gasoline vehicles
worldwide.

PEV charging facility deployment is a complex long-term
planning that has two key components, coverage and capacity.
The first one is described as the ability of PEVs to find a
charging node within a certain time and travel duration. Wide-
coverage of charging services is critical to boost PEV sales.
On the other hand, as PEV sales grow, there is a need to
increase charging capacity by deploying additional chargers
and upgrading network elements. Charging nodes may require
hosting different charging types [6] or use on-site storage
units to meet PEV demand [7]. Moreover, decision making
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involves both power and transportation networks and different
cost components that have short and long-term impacts. An
overview of charging station siting problem is depicted in Fig.
1.

Furthermore, mass PEV adoption requires addressing a
chicken-egg problem: the PEV sales are linked to the con-
venient access to charging nodes (the chicken problem), thus
more charging service is needed. On the other hand, business
owners are not likely to expand charging networks if the
penetration rates do not offer profitability (the egg prob-
lem). Moreover, the location of charging facilities will impact
electricity consumption, and power grid operations. Hence,
different from any other facility location problem, the proper
deployment of PEV stations has impacts on environment,
electricity, and petroleum industries.

In general, location theory aims to find an appropriate
location for facilities to optimise single or multiple quantifiable
objectives related to customer needs, power grid constraints,
associated capital cost, and environmental goals such as low-
emission zones in city centres [8]. Although, the literature on
facility theory contains a rich body of literature [9]–[14], the
applications for PEV charging location is sparse and requires
further investigation [15]–[20]. The primary reason is that the
electrification rates are still low (e.g., less than 5% of all
cars) and the real-world challenges on vehicle, driver, and
charging infrastructure are still unknown. In this paper, we first
explain classical facility location problems, approaches, and
applications. Next, we explain unique characteristics of charg-
ing station problems and differentiate slow and fast charging
facility location problems. Moreover, we discuss probabilistic
approaches and conclude the paper with multidisciplinary
approaches.

II. FACILITY LOCATION PROBLEMS: CLASSICAL
APPROACHES

A. Background

The facility location problems were first addressed by the
pioneering studies of Alfred Weber in 1909, in which the
location problem of warehouses is considered to minimise
the distance between the customers and the facility. Later,
Alfred Hotelling studied facility location of two facilities on
a line model [12]. In this case, customers are assumed to be
uniformly distributed along a line and they prefer to go to
the nearest facility to minimise travel cost. Hence, the optimal
facility locations for both facilities are readily found to be at
the middle points.

The interest in facility location problems flourished during
mid-1960s in parallel to the expansion of the telecommuni-
cation networks. In such networks, the main goal was decide
on the optimal locations of telephone switching facilities to
minimise the cost associated with the infrastructure. Over the
next consecutive years, researchers addressed a number of pri-
vate and public sector facility problems. In the private sector,
location problems considers banks/ATMs, industrial plants,
and retail facilities. In the public sector, urban operations
research focuses on locating emergency vehicles, schools,

hospitals, and fire stations [9]–[12]. It is noteworthy that the
private sector priorities minimisation of monetary cost, while
public sector aims to optimise access time by the public. A
similar dichotomy arises in the context of charging station
deployment. The currently operational stations are owned by
the private sector, while they are, at the same time, incentivised
by the governments. Thus, location problems may need to
consider competing, and even perhaps opposing objectives,
where one tends to reduce the siting cost and another one
to improve accessibility.

B. Design Objectives

Charging station facility location problems are capital-
intensive onetime decisions that have long-lasting ramifica-
tions. We differentiate charging station location problems into
two groups as efforts for fast and slow charging stations. Fast
chargers are designed to mimic gas stations and designed to
host a few vehicles (e.g., 5-10) at the same time. On the
other hand, slow charging stations, typically composed of level
2 chargers, are located at parking lots of shopping malls,
universities, hospitals, and airports. For the case of fast (50
kW) and ultra-fast (>50 kW) charging stations [21], the high
cost of electrical equipments, energy storage systems, and land
acquisition make decision-making of such facilities a long-
term investment. Moreover, station location may need to incor-
porate future changes in the vehicle distribution, driving routes
between the points of interests, and changes in population
profiles. On the other hand, locating slow-charging stations
is a relatively less complicated problem since chargers will be
deployed at existing public spaces.

Location analyses of charging stations involves the follow-
ing components; (1) density of PEVs in a given geographical
area; (2) the charging facilities/types to be installed; (3) a space
in which stations are located; and (4) a metric that measures
the distances or commute time between stations and the PEVs.
Such analyses need using proper models for facility locations
and address the following questions:

1) Where should each station be located in a given well-
confined region?

2) How many charging facilities should be located to guar-
antee a pre-determined quality of service goals?

3) What should be the capacity of each charging station?
4) What type of chargers should be chosen?
5) Should the charging facilities be sited as clusters or sets

of interconnected regions?
Moreover, additional challenges might emerge due to im-
pending developments such as resource planning based on
renewables and storage units at each station. Addressing these
research challenges depend on the context in which station
locations is formulated and solved. For example, in urban
city centres, city planners may prefer installing fast-charging
facilities as users may not have access to parking lots for
long hours. However, the availability of physical land in small
towns makes slow-charging facilities more attractive, as the
driving ranges of the daily commutes are short. A comparison
of slow and fast charging stations are presented in Table I.



TABLE I: Characteristics of slow and fast charging station location
problems.

Slow Charging Fast Charging

Single Charger Power 6-12 kW 50+ kW
Typical Station Size 20-100 chargers 2-10 chargers
Service Duration 3-8 hours 20-30 min
Vehicle Status Parked Mobile
Candidate Locations Discrete - parking lots Continuous- anywhere
Relevant Theory Discrete location (Fig 3) Flow Capturing
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Fig. 2: Facility coverage trade-off for basic coverage problem. Data
set is presented in [22].

C. Discrete Network Models for Slow Charging Location

Classical facility location problems aim to provide a certain
level of coverage for a given set of demand nodes in a network.
Since, customer demand is typically unevenly distributed,
increasing the number of facilities does not necessarily bring
the same level of coverage. We provide a sample case study
to clarify the matters. We consider a case where we want to
deploy charging stations in a given city such that any vehicle
can drive to a charger under D miles. Hence, the objective
is to minimise the number of chargers needed so that all
customers can reach a station within the D miles. This kind
of problems are studied under set covering problems [22].
Even though deploying minimum number of chargers to cover
entire customer demand may help to beat range anxiety, a
number of charging nodes may be under-utilised due to uneven
demand. Assume that locating N charging stations satisfies
the D miles requirement. Then, the penalty for closing one
station, that is the network will be not serving a portion of
the load, is considerably lower than than 1/N [22]. Hence, an
alternative approach would be to maximise demand that can
be served with a given number of stations. In location theory,
this problem is known as the Maximum Covering Problem and
an example is presented in Fig. 2 adopted from [22]. In this
case study, eight charging stations are needed to serve 100%
customer demand. If the station operator decides to sacrifice
small 1-2% of the demand, then the deployment cost reduces
about one eighth. The third location model assumes that the
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Fig. 3: Discrete location problems.

station operator has a fixed budget and aims to minimise the
maximum driving distance with P stations (referred as P -
center problem). A sample formulation for P -center problem is
presented next. The goal is to minimise the maximum distance
d. Let N represent the set of nodes, S ⊂ N is the set of
potential sites for charging facilities. We further employ a
binary decision variable bp, which is equal to one if site p
is selected, and set to zero otherwise. The problem can be
formulated as below,

minimize d
s.t. d−

∑
p∈S

wndnanp ≥ 0 ∀n ∈ N∑
p∈S

anp = 1, ∀n ∈ N

anp − bp ≤ 0, ∀n ∈ N , j ∈ S∑
j∈S

bp = P

anp, bp ∈ {0, 1}, ∀n ∈ N , j ∈ S

(1)

where anp is a binary variable and is set to 1 if the demand n
is assigned to facility p, and it is zero otherwise. The location
problems discussed above focus on providing QoS guarantees
for the worst-case scenarios. Alternatively statistical measures
can be considered minimising the average driving distance
between any given number of charging stations. It is also
possible to use median driving range as the statistical measure
and the problem becomes P -median covering problem. Using
similar notation, we formulate P -median problem as

minimize
∑
n∈N

P∑
p=1

wndn(xp, yp)anp

s.t.
P∑

p=1
anp = 1, ∀n ∈ {1, . . . , N}

anp ∈ {0, 1}, ∀n ∈ N, p ∈ {1, . . . , P}

, (2)

An overview of discrete location problems are presented in
Fig. 3.

D. Continuous Network Models for Fast Charging Station

In the previous section, we discuss that discrete location
models are more suitable for slow charging stations as such



chargers are deployed at candidate parking lots. Fast chargers,
on the other hand, can be deployed anywhere in a network
as long as there is supporting grid infrastructure. Hence,
continuous network models are better suited for fast charging
networks since they are smaller and can be located in any part
of the network. The continuous location problems typically
use d-dimensional real spaces. Distances between any two
location is calculated according to Minkowski distances with
the parameter p. For example, the `p distance between two
separate points (xi, yi) and (xj , yj) with i 6= j is defined as

dpij = [|xi − xj |p + |yi − yj |p]1/p.

Most of the continuous models consider three values to p. For
p = 1, `1 norm represents the Manhattan distance metric, that
is,

dij = |xi − xj |+ |yi − yj |.

For p = 2, `2 is the Euclidean distance and can be calculated
as

d2ij =
√
|xi − xj |2 + |yi − yj |2.

Finally, p = ∞ case corresponds to the Chebyshev metric
and distance can be calculated as

d∞ij = max{|xi − xj |, |yi − yj |}.

In fast charging station location, the deployment principle
is based on maximising the capture of the traffic flow be-
tween some origin and destinations. Flow-capturing location
problems (FCLPs) present mathematical frameworks [23] and
an illustrative example is presented in Fig. 4. In this example,
two PEV charging stations are located on a route of possible 4
origin-destination pairs (O-D1, O-D2, O-D3, and O-D4). The
serving region of two stations are shown circled and the traffic
flows in O-D2 and O-D3 pairs can access to a charging station,
while the other flows will not be captured by the located
facilities. The FCLP problem only considers the case when a
vehicle is captured or a region is covered. Such models does
not consider service duration, vehicle types, or other related
parameters. Hence, similar to discrete models, flow-capturing
models do not address capacity of the charging nodes. Some
application of flow capturing models include [24], [25], and
[26].

Next, we proceed to discuss a toy example to show flow
capturing models in a highway network. As shown in Figure
5, an electric vehicle repeatedly travels 110 miles between
the two cities, or an origin and destination pair. Suppose that
PEV has a full battery at the origin and we aim to locate a fast
charger along the O-D path. It is clear that the optimal charging
location depends on the all-electric range (AER) of the vehicle.
If the PEV has an AER of 220 miles (e.g., Tesla models) or
more, then, the station can be sited at any location along the
path since vehicle can complete its journey. As a second case,
consider the case when the AER is 150 miles and the vehicle
needs to recharge its battery either at destination D or some
middle point on B-D path. Now, consider a third case in which
the PEV has 85 miles of AER (a mainstream PEV model). In

EV Charging 
Station

EV Charging 
StationD1  

D4 

D3  

D2   

O

Fig. 4: Flow-capturing facility location problem for fast charging
stations.

Origin O
Destination D

A

B
10 mi 25 mi 75 mi

Fig. 5: Case study for fast charging stations.

this case, locating charging station exactly at nodes 0, D, A,
or B does not allow PEV to complete trip. If the model only
allows for discrete locations, then there would be a need for
at least two charging points (at nodes B and D). If stations are
allowed to be deployed in middle points, then locating a station
between B and D. More specifically, stations can be located
at anywhere that is 25 to 42.5 miles away from point D. This
case study shows that continuous models lead to less number
of charging points. A similar approach is used in [27] where
optimal fast charging locations are investigated for California’s
highway network for different AER vehicles. In flow capturing
models, the optimisation model takes a set-of O-D pairs and
the associated traffic volumes as inputs. The model enumerates
all different combinations of facility locations and aims to
find the optimal one. Each combination is evaluated by the
following typical mixed integer programming model [2],

maximize
∑
q∈Q

fqcq

s.t.
∑
h∈H

uqhvh ≥ cq, ∀q ∈ Q

ehnan ≥ vh, ∀h ∈ H; e|ehn = 1∑
n∈N

an = P

an, vh, cq ∈ {0, 1}, ∀n ∈ N, ∀h ∈ H, q ∈ Q
(3)

where, Q is the set of all O-D pairs in a given region and q
is the index of 0-D pairs. Moreover, fq denotes PEV traffic
demand along O-D path q, and cq is one if the traffic is
captured and zero otherwise. H denotes set of all potential
station combinations, h is the index of set H, ehn is one if
charging node n is in combination of h, and zero otherwise.

III. PROBABILISTIC LOCATION METHODS

Classical location theoretic approaches could be instru-
mental in providing coverage for PEV networks during the
early phases of PEV integration. However, as the PEV sales
increase, the capacity at one charging node may not be



sufficient to provide good quality of service. In addition,
there are a number of different factors affecting the design of
charging stations. Depending on the location problem, factors
enumerated below can be used as a part of objective function
or take place in the constraint of the problem. Some of the
most important ones are listed as below:

• Station Cost Factors: Components such as construction,
operating, and maintenance costs. Construction cost con-
tains physical equipments such as cabling, protection,
chargers, and possibly storage units.

• Customer-related Factors: PEV driving and parking pat-
terns, vehicle types, customer willingness to wait or defer
service due to congestion.

• Technology-related Factors: Due to different standards
and technologies, there are compatibility issues among
charging stations PEVs (e.g., Tesla Super charger).

• Grid-related Factors: Available capacity on the support-
ing grid components such as substation, transmission
lines, and local transformer.

In addition, charging station may employ storage units or re-
newable generators that can be used to support grid operators.
Hence, there could be additional uncertainties in the supply
side of the stations which may impacts grid operations [28]. In
the next sections, we present an overview of stochastic models
used in station location problems.

A. Spatial Queuing

In the field of urban operations research [29], spatial queu-
ing models are widely used to locate distributed urban ser-
vice systems such as police stations, ambulances, emergency
repair, delivery vehicles, and transportation services. Larson
[29] proposed a hypercube queueing model (HQM) which
combines the queueing theory in facility location allocation
problems given above. Spatial queueing is a descriptive model
for designing spatially distributed server systems. The idea is
to model each server (e.g., chargers) with a state space idle
(0) or busy (1) for a given time instance.Then, entire charging
network is represented by a multi dimensional system states.
For a three server example, state (110) denotes the case when
the first two servers are busy and the last one is idle. The
solution of the model gives steady state probabilities of server
utilisation, hence, associated performance measures such as
average service rate, loss rate, waiting durations, etc. This
model assumes that cities are divided into zones, which is
already the case due to urban planning, and each charger is
located in the middle of the zone. It is further assumed that
N servers are used to meet the demand originating at M
locations, where N < M . Therefore, one of the important
topic of interest is to devise complex dispatch policies such as
assigning servers to customers in a way to optimise network-
wide performance. In spatial queuing models, location prob-
lems are solved by searching the best locations based on
aforementioned performance metrics.

B. Other Stochastic Models

Due to the probabilistic nature of electric vehicle de-
mand, stochastic modelling and optimisation have been widely
adopted to locate and model charging networks. Queueing
models enable designers to quantify important station per-
formance parameters such as average or worst case waiting
durations or probability of not getting a service. These metrics
are used to determine the capacity of stations. Inspired from
locating cellular networks near highways, [30] developed a
station location framework using M/M/s queuing and fluid dy-
namics. In this mode, PEV arrivals and departures are assumed
to be exponential and each station has s fast-chargers. Location
and capacity problem of charging networks are further studies
in Ref. [31] where customer demand is modelled with an
M/M/s queueing model and customer convenience, measured
with waiting times, are used as input for the optimisation
model. Reference [32] considers both transportation and power
grid constraints and solves placement problem by minimisa-
tion of station operation and investment cost. PEV demand is
modelled by an M/M/s queue based on a given O-D pairs. In
[33], authors developed a Bass diffusion model to forecast
the PEV sales and determine the size of charging stations
for the upcoming years. Furthermore, a queuing model was
developed to optimise the location of charging facilities and
an exhaustive search method was used to compare all cases
and find minimum cost.

C. Station Cost Minimisation

A number of charging station location studies are studied
from station cost minimisation perspective. In Ref. [34], sta-
tion deployment cost is assumed to have three components,
namely, charger cost, distribution network expansion cost,
voltage regulation cost, and protection device upgrades. The
location problem for urban areas is solved with a convex
optimisation and subject to a number of constraints such as
line current, power flow, voltage, and monetary limits. This
type of approach is suitable for system operators and does not
consider customer side dynamics. In addition, station siting is
solved by hierarchical hybrid approaches that couples traffic
models, both queuing and flow-capturing models, and cost
minimisation. In [35], fast charging location problem is solved
for highway networks. A similar approach is applied in [19],
while each individual load is modelled by an M/M/s/s meaning
that there is no waiting space in charging stations.

D. Station Capacity and Load Management

While the main focus of this paper is to discuss deploy-
ing charging networks, locating enough number of charging
points may be limited by power grid constraints such as
line congestion and transformer loadings. Moreover, customer
demand and vehicle distribution may not perfectly align. In
this case, instead of increasing station capacity, customers
can be dispatched to other neighbouring stations. Vehicle
routing can be facilitated through financial incentives [36].
By employing similar financial incentives, PEV load can be



deferred in time to off-peak hours to lower station capacity
[37].

IV. CONCLUSIONS

The success of electrification of transportation depends
on the supporting grid infrastructure to provide necessary
coverage and capacity to spatially distributed electric vehicles.
In this paper, we presented a review of facility location
theory for electric vehicle charging stations. We argued that
classical operations research methods are suitable to address
coverage issue, while capacity planning can be addressed
by queueing models. Furthermore, for coverage models we
showed that discrete network models are more appropriate
for slow charging networks, while flow capturing models are
suitable for fast charging stations. In the last part, we showed
stochastic modelling approaches that captures the probabilistic
nature of the PEV demand and station performance parameters
such as average waiting time and customer rejection rates.
Moreover, we discussed efforts on incentive based methods to
manage loads at charging stations.
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