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Abstract: Leishmaniasis is a vector-borne parasitic disease that has been neglected in priority for
control and eradication of malaria, tuberculosis, and HIV/AIDS. Collectively, over one seventh of the
world’s population is at risk of being infected with 0.7–1.2 million new infections reported annually.
Clinical manifestations range from self-healing cutaneous lesions to fatal visceral disease. The first
anti-leishmanial drugs were introduced in the 1950′s and, despite several shortcomings, remain
the mainstay for treatment. Regardless of this and the steady increase in infections over the years,
particularly among populations of low economic status, research on leishmaniasis remains under
funded. This review looks at the drugs currently in clinical use and how they interact with the host
immune response. Employing chemoimmunotherapeutic approaches may be one viable alternative
to improve the efficacy of novel/existing drugs and extend their lifespan in clinical use.

Keywords: leishmaniasis; chemotherapy; immunochemotherapy; host directed therapy; immunity

1. Introduction

Leishmaniasis, one of the World Health Organisation (WHO) top 20 neglected tropical diseases
(NTDs), is caused by infection with kinetoplastid protozoans of the genus Leishmania (Table 1).
These parasites are transmitted by phlebotomine sandflies of the genus Phlebotomus (in the Old
World) or Lutzomyia (in the New World) during the process of taking a blood meal. Traditionally,
infection is classified into three clinical types: self-healing cutaneous leishmaniasis (CL), disfiguring
mucocutaneous leishmaniasis (MCL), and lethal visceral leishmaniasis (VL) [1], each type has diverse
immunopathologies and levels of morbidity and mortality.
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Table 1. Different Leishmania species and their geographical location and pathologies.

Leishmania Spp Vector OW/NW Location Type of Disease

Leishmania major

Phlebotomus papatasi
P. ansari

P. caucasicus
P. bergeroti
P. sergenti

OW Middle East, North
Africa, Asia CL

Leishmania donovani

P. argentipes
P. martini

P. chinensis
P. orientalis
P. alexandri

P. celiae

OW East Africa, India
subcontinent VL

Leishmania infantum

P. alexandri
P. ariasi

P. langeroni
P. longicuspis

Lutzomyia migonei
L. longipalpis
L. cortelezzii

OW

Central and South
America,

Mediterranean
regions,

Asia

VL

Leishmania
siamensis

Sergentomyia (Neophlebotomus)
gemmea NW

Thailand, USA,
Central and

Western Europe
DCL/VL

Leishmania
braziliensis

L. longipalpis
L. ayrozai
L. lichyi

Warileya rotundipennis
L. shawi

L. whitmani
L. (Pintomyia) fischeri

L. wellcomei

NW South America MCL

Leishmania mexicana

L. gomezi
L. trapidoi

L. anthophora
L. ovallesi

L. diabolica

NW North and South
America CL

Leishmania
amazonensis

L. evansi
L. diabolica

L. longipalpis
L. (Nyssomyia) flaviscutellata

NW Amanzonas CL/MCL

Leishmania
venezuelensis

L. olmeca
L. lichyi

L. rangeliana
NW Western Venezuela CL

Leishmania
aethiopica

P. longipes
P. sergenti OW East Africa CL/MCL

Leishmania tropica
P. guggisbergi

P. arabicus
P. chabaudi

OW
Middle East, North

Africa,
Asia

CL

Leishmania
panamensis

L. panamensis
L. gomezi NW Panama, Colombia CL

Leishmania
equatoriensis L. hartmanni NW Ecuador CL/MCL

Leishmania
peruviana

L. verrucarum
L. peruensis NW Peru CL

Leishmania pifanoi L. flaviscutellata NW Venezuela CL/DCL
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Table 1. Cont.

Leishmania Spp Vector OW/NW Location Type of Disease

Leishmania
colombiensis

L. gomezi
L hartmanni

L. panamensis
NW Santander,

Columbia CL

Leishmania
guyanensis

L. anduzei
L. umbratilis

L. shawi
NW Brazil CL

Leishmania naiffi L. ayrozai
L. squamiventris NW Brazil CL

Leishmania lainsoni L. ubiquitalis
L angelsi NW

Amanzonas,
Ecuador,

Peru, Bolivia
CL

Leishmania enriettii L. gomezi
L. correalimai NW Ghana, Florida,

Central Europe CL

OW: Old World leishmaniasis; NW: New World leishmaniasis; and DCL: Diffuse cutaneous leishmaniasis [2–4].

Leishmania has two main life-forms: the extracellular promastigote stage, which is present in the
vector, the female sandfly, and the intracellular amastigote, which is the form present in the mammalian
host. During sandfly feeding, deposited metacyclic promastigotes are endocytosed by phagocytes,
where they differentiate into the amastigote forms, which survive the hostile oxidative environment of
the host cell phagolysosome because of their robust superoxide dismutase and trypanothione redox
systems [5,6]. Amastigotes multiply within infected cells, until cells burst releasing parasites that
disseminate to species-specific sites of infection, ultimately causing the clinical symptoms associated
with CL, MCL, or VL. Reservoir hosts such as dogs, are very important in the transmission of VL
in endemic areas, and these hosts should be considered in clinical and veterinary Leishmania control
programmes [7,8].

The WHO has identified leishmaniasis as a control priority; however, it is often overlooked
in favour of research funding for HIV/AIDS, malaria, and tuberculosis. These diseases received
42.1% of the WHO health development research budget whilst NTDs only received 0.6%, which
seems inadequate given their severity and associated mortality. This lack of investment may have a
greater impact on the well-being of people in low-income countries, where up to five NTDs may be
endemic [9,10]. NTDs such as leishmaniasis can also cause devastating lifestyle changes in terms of
school attendance, intellectual abilities, labour productivity, and social stigma [11]. Between 700,000 to
1 million Leishmania infections are reported annually and one billion people residing in 98 countries are
at risk of infection [12]. Leishmaniasis is estimated to cause 2.4 million disability-adjusted life years
and 20,000–40,000 deaths/year [13,14]. Comorbidities are an added risk factor and VL is a common
complication for human immunodeficiency virus (HIV) infected individuals. Co-infection increases
susceptibility to VL by 23.2%, whilst VL elevates the progression of HIV to AIDs by 100−2320 × [15–17],
as immune mechanisms required to control either disease is impaired [16]. Therefore, VL may pose a
greater heath risk in Leishmania-endemic countries where HIV infected populations are present [18],
although the total burden of this co-infection is underreported, partly due to the remoteness of
affected areas.

Although various chemotherapeutic agents have proven effective against leishmaniasis,
the number of effective and affordable drugs are progressively declining due to the long treatment
regimens, emergence of drug-resistant parasites, and treatment failure, making joint treatment protocols
a preferred option. Ideally a vaccine to prevent infection is required but currently there is no clinically
approved vaccine nor new drugs to combat drug resistant strains. Progress is impeded by a poor
understanding of immune mechanisms that could elicit a long-lasting memory response by both B
and T cells, which would allow clear criteria for predicting efficacy against the different Leishmania
spp. [19,20]. On a more positive note, studies in our laboratory and that of collaborators have shown
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that host-protective immunity is achievable as an effective IFN-γ, T helper (Th)1-mediated immune
response can aid in controlling the infection and enhancing treatment [21–24]. Therefore, with the
new roadmap embarked by tropical disease research of the WHO towards prevention and control of
leishmaniasis by 2030, and the Sustainable Development Goals (SDG1, SDG9, SDG11, SDG13, and
SDG16) [25], a concerted effort is required from all stakeholders in order to move from bench to bed side.
Platforms giving free access to characterized compounds e.g., OpnMe from Boehringer Ingelheim and
Lilly’s Open Innovation Drug Discovery platform, is one option to facilitate novel drug development.

Another way of improving drug treatment is to use chemoimmunotherapeutic approaches, where
the host immune response is used to enhance the efficacy of a drug (Figure 1). Below, we discuss
some of the drugs currently used in treatment of leishmaniasis, including drug resistance mechanisms
and drug effects on host immune responses. We then further discuss types of immunotherapies and
host-directed therapies that could be combined as immunochemotherapies towards a novel treatment
regimen, whilst bearing in mind that any intervention must not select for genetic changes that enhance
parasite survival within the host.

Figure 1. Proposed outcome of management of leishmaniasis using chemoimmunotherapeutic
approach. (A): Therapeutic success can be achieved via three possible routes. Administration of
drugs achieves clinical cure which inhibits parasite replication within host cells. In parallel, the host
immune response could be activated by immune-mediators and directly or indirectly disrupt parasite
growth or magnify drug uptake in host cells via upregulation of a specific Th1 response. This drives
the activation of macrophages. Since both of these approaches are associated with different levels of
success, a third approach is to combine the drug with a host-directed therapeutic or therapeutics in a
chemo-immunotherapeutic approach, where host immune responses are targeted in conjunction with
the drug, overall, potentiating an enhanced Th1 response and leishmanicidal effect. (B): Therapeutic
failure occurs if an antileishmanial drug does not reach the appropriate sites of infection. Alternatively,
this occurs if the drug induces genetic changes by selecting for “fitter” parasites that are resistant to
the drug and/or oxidative stress or if intracellular parasites induce modifications to alter drug uptake
and/or efflux from infected host cells, both of which render parasites less responsive to treatment.
In parallel, Leishmania parasites are immunosuppressive; hijacking host immunity and impairing Th1
differentiation by inducing factors that enable disease by reducing the efficacy of the host immune
responses such as, downregulating macrophage-derived nitric oxide whilst concomitantly, enhancing
IL-10 to deactivate macrophage killing effector functions. An expert understanding of the host immune
response is needed to implement the third approach as a chemoimmunotherapeutic regimen could
exacerbate inflammatory responses. Enhanced inflammation could enhance recruitment of host-cells
for parasite replication, select for fitter parasites, which are drug-resistant and unresponsive to host
antileishmanicidal products, or induce a cytokine storm that is ultimately detrimental to the host.
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2. Benchmark Drugs for Leishmaniasis

Leishmaniasis was identified in the 1900′s and the first drugs were introduced in 1950. Seventy
years later, we are still using these drugs [26,27]; hence, this infection remains a major public health
problem in endemic areas where management relies solely on chemotherapy.

2.1. Pentavalent Antimonials

2.1.1. Dosage and Side-Effects

Pentavalent antimonials (Sbv), sodium stibogluconate (SSG), or meglumine antimoniate, have been
used extensively in the treatment of all clinical forms of leishmaniasis since the 1950′s [28,29]. Sbv drugs
are absorbed rapidly in the bloodstream of the host with a half-life of 2 h and a terminal mean half-life
of 76 h when given intravenously [30]. These compounds have, however, faced several challenges
in clinical settings. Antimony therapy requires daily parenteral administration for at least three
weeks (20 mg Sbv/kg/day for 20–30 days) [31] and a registered medical practitioner for administration.
Treatment can be associated with injection pain and toxic side-effects such as cardiotoxicity and renal
failure [32]. This has influenced non-compliance leading to suboptimal dosing in resource-limited
areas and probably caused emergence of drug resistant parasites [33]. Additionally, the long course of
drug administration allows for cumulative effects, such as acute interstitial nephritis, myalgia, or death
during or after treatment; hence, SSG therapy requires careful medical supervision [34,35]. These
effects may lead to cessation of treatment before attaining curative levels.

2.1.2. Mechanism of Action and Immune Response

The mode of action for antimonials is still poorly understood despite their long use for leishmaniasis.
Several studies have demonstrated that Sbv drugs are prodrugs, reduced to the more toxic and active
anti-leishmanial SbIII form, either in the parasite and/or the host cell [28,36,37]. Parasite-derived
trypanothione reductase (TR) and a zinc-finger protein have been identified as potential molecular
targets of SbIII [31]. The L. major DNA hexamer binding protein (HEXBP), made up of nine CCHC
zinc finger motifs, binds to the glycoprotein Gp63 on the promastigote surface, is involved in the
process of DNA replication [38]. The TR system is crucial for maintaining cytosolic redox homeostasis
and protects the parasite from toxic heavy metals, hence SbIII stimulates a fast efflux of TR and thus
reduces the thiol buffering capacity of the parasite [39]. Parallel investigations reported that adenine
nucleoside and deoxynucleoside complexes inhibit purine transporters in Leishmania spp. and may
act synergistically with other cytotoxic nucleoside products [40]. Antimonials are less effective in
immunocompromised individuals [41] highlighting that immunocompetency is required for complete
efficacy. Murine studies revealed that effectiveness of Sbv relies on CD4+ and CD8+ T-cell subsets,
the action of type-1 and type-2 cytokines (IL-2, IL-4, IL-12, IFN-γ and TNF) [42–46] and activation of
reactive oxygen species and nitric oxide (NO) production in mouse macrophages [47]. Co-treatment
of infected macrophages with exogenous IFN-γ and TNF-α significantly enhanced parasite killing
and led to Sbv accumulation, indicating that immunostimulation increases drug efficacy [43]. Studies
in mice have demonstrated that SSG-mediated parasite clearance is organ-dependent, with the liver
being more amenable to treatment compared with the spleen or bone marrow [48]. This can be partly
explained by the pharmacokinetics profile of the drug, as very little SSG reaches the bone marrow
after treatment [49]. VL is associated with granuloma formation in the liver and these immunological
structures enhance the inherent activity of SSG [50].

2.1.3. Antimony Resistance

Antimonials are no longer a first-line treatment for VL in some areas e.g., India, since emergence
of parasite resistance limited its efficacy. Understanding how drug resistance has developed can help
manage the usage of new drugs, so that clinical utility is not compromised [51–54]. The mechanisms
responsible for Sb resistance in different species are still under-investigation as there are species-specific
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differences in efficacy. For example, L. major amastigotes in mouse macrophages are significantly
less sensitive to SSG than L. donovani amastigotes [55], and L. mexicana is less sensitive to Sbv than
L. braziliensis [55]. There are now several studies published in this area [56–58] and important for
resistance are parasite proteins involved with drug efflux e.g., LABCG2 [59] and aquaglyceroporin
1 [60].

2.2. Amphotericin B

2.2.1. Dosage and Side-Effects

Amphotericin B (AmB) was introduced in the 1970′s for the management of systemic fungal
infections [61]. It is administered intravenously due to it poor absorption by the gastrointestinal tract.
For leishmaniasis, an infusion of 1 mg/kg, given daily for 20 days or 15 infusions of the same dose over 30
days, had a 95% cure rate [62–64]. However, infusion-related side effects e.g., nephrotoxicity, exacerbated
by a long-treatment regimen, compromised its efficacy [43,65,66]. The induced nephrotoxicity affects
blood vessels and epithelial cells leading to a decrease in glomerular filtration and tubular dysfunction,
respectively [65]. Treatment with lipid formulations of AmB e.g., liposomal AmB (AmBisome®), AmB
lipid complex (Abelcet®), and AmB cholesterol dispersion (Amphocil®) reduced drug toxicity and
allowed shorter treatment regimens. Cure rates of 90–100% have been achieved in VL using a 5–7-day
treatment regimen [62,67,68], and treatment at higher doses e.g., 10 mg/kg AmB. The liposomal carrier
system improved the drug’s pharmacokinetic profile such that more of the drug was targeted to
parasitized host cells in tissues rather than the kidneys [69]. Initially, clinical use was limited due to
the high cost of liposomal AmB, but this was reduced from $200 per 50-mg vial to $20 per vial, making
its use viable in resource-limited developing countries [70,71]. Response rates to lipid formulations of
AmB varies, and hence higher doses are administered in Brazil, Eastern Africa, and the Mediterranean
to induce cure [63], which may be parasite/host related. Despite excellent data on VL, there are scanty
investigations on the role of liposomal AmB on CL and MCL and most are retrospective studies [72–74].
For HIV-Leishmania co-infected patients, liposomal AmB is the first line drug, where a cumulative dose
of 40 mg/kg is recommended by the WHO [75,76].

2.2.2. Mechanism of Action and Immune Response

The activity of AmB against Leishmania is linked to its ability to bind ergosterol in the parasite’s cell
membrane, inducing pore formation and lysis of the parasite [77,78]. Indeed, ketoconazole-induced
depletion of ergosterol in L. mexicana promastigotes reduced the lytic effect of AmB [79]. Studies
indicate that AmB activity is not reliant on an intact immune system as AmB was equally active in
clearing parasites in L. donovani-infected euthymic and nude BALB/c mice lacking T-cells [45]. However,
AmB has been shown to have immunomodulatory effects as it can accumulate NO (nitric oxide)
and ROS (reactive oxygen species), stimulate surface receptors and production of multiple immune
mediators (cytokines, chemokines, and prostaglandins) [77]. Accordingly, joint treatment of AmB
and immunological mediators (IL-12 or anti-IL-10 receptor) to boost host Th1 responses significantly
enhanced the activity of AmB against L. donovani [80]. This may explain why HIV-Leishmania coinfection
is associated with an increased risk of drug unresponsiveness, relapse and therapy-related mortality [81].

2.2.3. AmB Resistance

Resistance to AmB was experimentally induced in L. donovani strains and clinically detected in
2012 [82], associated with an alteration in ATP-binding cassette transporters, membrane composition,
ROS scavenging and upregulated thiol metabolic pathways [82]. Omic studies have identified a
mutated sterol 14α-demethylase as an AmB resistance marker, which triggers a change in sterol
metabolism [83]. Having a resistance marker to map emergence of drug resistance foci and knowing
the exact mechanism(s) a drug uses is essential for developing a management plan to ensure that a
drug remains in clinical practice for as long as possible.
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2.3. Paromomycin

2.3.1. Dosage and Side-Effects

Paromomycin (PR) is an inexpensive antibiotic with broad-spectrum activity against bacteria [84]
and intestinal parasites [85,86]. PR is used in the treatment of CL, via topical and parenteral
administration, and VL, via parenteral administration only [87–89]. At a dose of 15 mg/kg (11 mg base)
for 21 days, PR gives a 95% cure rate in VL patients [54]. Nephrotoxicity, vestibular, and cochlear
are associated side-effects; however, there are as yet no reported cases of this in VL therapy [90].
Ototoxicity has been reported in 2% of 442 patients on PR, with the most frequent side-effect being
injection site pain [91]. Topical formulations of PR are the most commonly used since the hallmark of
CL is skin lesions and it is therapeutic against both Old World leishmaniasis (OW) and New World
leishmaniasis (NW) CL [92,93]. Evidence suggests that using the drug is beneficial but there are
contradicting data/results [92], which probably relate to poor drug penetrance, which may be related
to CL lesion pathology.

2.3.2. Mechanism of Action and Immune Response

Mechanistically, PR alters the viscosity of the lipid-bilayer, respiratory chain, essential
mitochondrial activities and lipid metabolism of the parasite [94,95], but the main target is thought
to be inhibition of protein production. Studies have shown that PR targets the decoding A site of
the small subunit of ribosomes within the cytoplasm rather than the mitochondria, where it causes
misreading and translation inhibition [96]. There are no studies showing that PR has a direct effect on
host immune responses.

2.3.3. PR Resistance

Paromomycin resistant strains of Leishmania promastigotes or amastigotes can be induced
experimentally [97,98]. A Nepalese strain of L. donovani had a high natural resistance to PR and increased
resistance to NO was noted. PR resistance was shown to be associated with lipidomic and metabolomic
strain-specific changes [99]. A recent study using chemically induced mutagenesis identified a putative
calcium dependent protein kinase (LinJ.33.1810) as a potential resistance marker [56].

2.4. Miltefosine

2.4.1. Dosage and Side-Effects

Miltefosine (MIL), an alkyl phosphocholine originally used for cancer treatment, has been
repurposed as the only oral drug for the treatment of VL and CL. MIL was approved for use in
India in 2002, for kala-azar, after 50 mg and 100 mg doses achieved a 94% cure rate in a randomized,
open-label, phase 3 clinical trial [100,101]. This was supported by a phase 4 study in an outpatient
setting in India [102]. Regardless, in eastern Africa, MIL did not achieve up to 90% cure rate; this
regional difference could be attributed to genetic diversity and drug susceptibility in Leishmania
strains [103]. In Ethiopia, MIL is safer but less effective than Sb in HIV-Leishmania infected patients
but is not inferior to standard Sb therapy in non-HIV infected patients [104]. Hence, treatment of
VL in eastern Africa remains a big problem as both AmBisome and MIL are suboptimal. MIL is
effective against CL, but results vary between species. For instance, in Columbia, MIL achieved a
per-protocol cure-rate of 91% for CL caused by L. panamensis, whereas in Guatemala, only a 53%
per-protocol cure-rate was obtained for L. braziliensis and L. mexicana [105], well below the cure-rate
achieved by antimony. However, MIL (75% cure rate) proved to be more efficacious than antimony
(53% cure rate) in Brazilians with CL caused by L. braziliensis, signifying intrinsic sensitivity of this
Leishmania spp. in different regions [106]. There is a high risk of relapse associated with MIL treatment,
probably because host immunity contributes to drug efficacy [107]. Altogether, MIL is the main CL
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recommended leishmanicide because it is the only orally administered drug and is tolerable with
low-grade side-effects.

2.4.2. Mechanism of Action and Immune Response

As with most of the anti-leishmanial drugs, the mechanism of action of MIL is not well-defined.
It is believed that the drug disrupts lipid metabolism, mitochondrial dysfunction, and induces
apoptosis [108]. This may be partly caused by the drug’s ability to disrupt calcium homeostasis,
resulting in an increase in intracellular calcium accumulation [109]. However, the action of MIL
on host immune responses may also contribute to its antiparasitic efficacy. For instance, MIL
treatment increased IFN-γ, TNF-α, and IL-12 production by Leishmania-infected mice and patients [110].
Additionally, treatment of macrophages with MIL increases macrophages phagocytosis and could
significantly increase NO production of infected but not uninfected macrophages [111]. Finally, MIL
increases macrophage expression of IFN-γ and IL-12 production via enhanced CD40 expression or
CD40-induced p38MAPK phosphorylation [112]. Overall, these studies indicate that MIL would
favour the development of a protective Th1 immune response.

2.4.3. MIL Resistance

Studies have revealed that Leishmania resistance to MIL is possible and is associated with decreased
drug accumulation, caused by overexpression of an ATP-binding cassette transporter P-glycoprotein,
or decreased uptake through the inactivation of the MIL transporter LdMT and its beta subunit
LdRos3 [113]. However, MIL resistance was associated with strain-specific changes and deletion of
the LdMT gene only occurred in one strain. Moreover, MIL resistance is linked with metabolites
associated with the Kennedy pathway in MIL resistant parasites [114]. A reduction in treatment efficacy
was reported in India in 2012 [115] and Nepal in 2013, but analysis of drug susceptibility did not
relate relapse with increased parasite drug resistance [33]. However, by 2017 isolates with enhanced
resistance to MIL were identified [116], indicating that the only oral drug may be compromised if its
use is not controlled.

2.5. Host-Directed Therapeutics

Host-directed therapies (HDTs) focus on improving the ability of the host to defend itself against
infectious (and non-infectious) agents [117]. Pathogen survival can be negated by modulating redundant
host molecules or immune pathways that are essential for invasion, survival/replication, or clearance
of the parasite [118]. HDTs may be implemented as a sole treatment approach targeting immunological
pathways as an immunotherapy (Figure 2) or in conjunction with established drug treatments as
chemoimmunotherapy [119]. Hierarchically, chemoimmunotherapy is superior as it offers a synergistic
approach, with activation of the immune system combined with a direct parasiticidal action of drugs
against the pathogen. Importantly, it has the potential to mitigate drug resistance because resistance to
host molecules, while not completely impossible, is less frequent and is significantly more complex
than antimicrobial resistance, which may be a single point mutation in the pathogen [120].

Leishmania infection involves a complex interplay between the host and parasite; hence, drug
efficacy could be enhanced or compromised by the host’s immune response. Studies have shown that
Th1-related cytokines can be used to control Leishmania infection and an additive effect is achieved
when co-administered with chemotherapy. Accordingly, treatment with IL-2 reduced L. donovani
parasite burdens by 50% [121], IL-12 treatment reduced parasite burdens by 47%, and IFN-γ treatment
by 40% [122]. Treatment with IFN-γ alone was only marginally effective in VL patients [123] but
was more effective in combination with meglumine antimoniate, which significantly improved the
clinical condition for 14 out of 17 patients, who had manageable side effects such as fever, fatigue,
myalgia, and headache [124]. Similarly, combination therapy with IL-12 or an anti-CD40 antibody
to manipulate costimulatory pathways, increased the efficacy of a suboptimal dose of AmB against
L. donovani [80]. Anti-CD40 therapy has been tested in cancer patients and has been shown to cause



Microorganisms 2020, 8, 1069 9 of 18

a dose-related upregulation of costimulatory molecules after treatment [125]. Joint treatment with
anti-CD40 antibody in combination with cisplatin and pemetrexed resulted in long term survival of
three out of 15 patients, but a “cytokine storm” reaction occurred in all patients [126]. This highlights
the need to ensure that the immunostimulator does not induce adverse side-effects. Furthermore,
cytotoxic T lymphocyte Ag-4 (CTLA-4), a negative regulator of T cell activation [127], is a promising
immunomodulatory target. Inhibiting CTLA-4 enhanced the frequency of IFN-γ and IL-4-producing
cells in both spleen and liver of L. donovani-infected mice and augmented the development of hepatic
granulomas (Figure 2), altogether enhancing host resistance to infection [128]. Co-administration of
antimonial with anti-CD40 and anti-CTLA-4 [129], or an OX40L fusion protein and anti-CTLA4 [130]
synergistically enhanced leishmanicidal activity and boosted granuloma maturation in mice. Evidently,
costimulation-based immunochemotherapies are promising and warrant clinical investigations in
Leishmania-endemic regions are needed.

Figure 2. Host-directed therapies and immunochemotherapies and the protective roles they play
in the mammalian host. (1) Various organs (A, infected spleen; B, infected skin; C, infected bone
marrow; D, infected liver; and E, infected lymph node) are infected with Leishmania, the site depending
on the infecting spp. (2) Administration of a drug in combination with an immunomodulator e.g.,
cytokines, co-stimulatory/inhibitory molecules, immune cells, which increase the antileishmanial Th1
population and boosts subsequent parasite clearance (3–5), represents a host-directed therapeutic
drug target. (3) The administration of statins (an inhibitor of hydroxy-3-methylglutaryl coenzyme
A reductase) enhanced host macrophage phagosome and killing effector function by lowering host
cholesterol. (4) Inhibiting the cytotoxic T lymphocyte Ag-4 led to increased granuloma formation
and IFN-γ and IL-4 production by the liver and spleen, which induced host-protective immunity.
(5) Fucoidan activated p38 and ERK1/2 pathways leading to increased iNOS production, whereby p38
increased IL-12 levels and ERK1/2 enhanced TNF-α and NF-κB signal transduction for host-protective
immunity. (6) Combination of drugs and HDTs leads to parasite clearance. Figure was created in
BioRender.com.

Dendritic cells (DCs) prime CD4+ and CD8+ T cell responses forming a critical link between
innate and adaptive immunity. Studies have shown that early IL-4 instruction of DCs to produce
IL-12 via decrease of IL-10 may mediate a beneficial Th1 response [130–133]. This is interesting
because IL-4 is generally recognized as a canonical Th2 cytokine, yet paradoxically it can instruct Th1
immunity [134,135], suggesting that DCs may represent a checkpoint in chemo-immunomodulation.
Furthermore, vaccination with soluble Leishmania donovani Ag-pulsed DCs combined with Sb treatment
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resulted in sterile immunity in L. donovani infected mice [136]; thereby, substantiating the use of
immune cells as alternate immunochemotherapeutics. In fact, any compound capable of enhancing
the phagocytic ability and oxidative burst of phagocytic cells (macrophages, neutrophils, or DCs)
would constitute ideal targets for immunochemotherapy in Leishmania. Apart from modulating
DC presentation, IL-10 also downregulates Th1 responses, macrophage activation, and pathways
necessary for reactive nitrogen intermediates [137]. Accordingly, the demonstration that anti-IL-10R
was remarkably active by itself to limit IL-10 functionality, inducing a curing phenotype, and acted
synergistically with antimony, substantiates its potential for immunochemotherapy [138–140].

There are other types of HDTs that could be combined with chemotherapy as
immunochemotherapies. For example, it has been shown that Leishmania relies on host lipids
to evade and manipulate the immune system [141], which can be alleviated by treatment with
simvastatin, a cholesterol lowering drug that targets hydroxy-3-methylglutaryl coenzyme A reductase
in cholesterol biosynthesis. Simvastatin treatment enhanced host specific Th1/Type 1 immunity by
increasing leishmanicidal activities of host macrophages (Figure 2) and accelerated tissue repair of
L. major lesions in a murine model [142]. Differentiation from promastigote to amastigote requires
higher cholesterol levels [143] and within the parasitophorous vacuole in the mammalian host,
simvastatin treatment can restrict this need since amastigote cholesterol originates from host membrane
cholesterol [144]. This suggests that topical and systemic simvastatin could be used in conjunction
with current anti-Leishmania drugs to enhance host-protective immunity and accelerate healing of
lesions [144]. Likewise, formulations with stearylamine (SA)-bearing phosphatidylcholine liposomes
together with paromomycin [145], sodium-antimony gluconate [146], or AmB [145] promote a beneficial
Th1 response with concomitant downregulation of IL-10.

Impaired Th1 responses and killing-effector functions in the host during leishmaniasis is linked
to downregulation of the mitogen-activated protein kinase (MAPK)/NF-κB and JAK/STAT signaling
pathways [147] via a decrease in macrophage-derived TNF-α, NO, iNOS, IFN-γ, and IL-12 [148].
Fucoidan, a natural polysaccharide isolated from brown algae, suppresses this response by activating
p38 and ERK1/2 related to the MAPK/NF-κB pathway to increase levels of IL-12, IFN-γ, iNOS, and
TNF-α (Figure 2) [149,150]. As killing of intracellular Leishmania is critically dependent on IL-12, IFN-γ,
and TNF-α, which enhances iNOS-derived NO production via classically activated macrophages,
Fucoidan could provide a novel immunochemotherapeutic approach. Another target with similar
effect is cystatin, a natural cysteine protease inhibitor, which activates ERK1/2, NF-κB, and JAK/STAT
pathways for a curative effect to experimental VL [151]. Since MIL restores IFN-γ responsiveness
together with IFN-γ-induced STAT-1 and p38MAP kinase phosphorylation [112], combination of
Fucoidan or cystatin with MIL warrants further investigation as immunochemotherapies.

3. Conclusions

Leishmaniasis is a severely neglected disease despite the immense suffering it places on the host,
especially in regions of economic instability. In turn, this leads to continued poverty and retarded
socioeconomic development. Unfortunately, our arsenal of chemotherapeutic agents, in use since the
1950s, do not achieve a sterile cure and are generally toxic. In view of this, the WHO has strongly
recommended more research into new drugs for leishmaniasis to reach a zero-death rate by 2030, in line
with the SDG goals. Such strategies should aim to potentiate chemotherapeutic agents with specific
immunomodulators or identify novel compounds that are both parasiticidal and immunomodulatory.
There are limited studies on immunological treatments to boost the efficacy of drugs; however,
researchers could use therapeutics identified in other studies (e.g., cancer treatment), as co-treatments
and ensure they do not induce adverse side-effects e.g., cytokine storm [152]. Most drug discovery
programs focus on cytotoxicity and efficacy of compounds, and overlook their dependence on innate
and adaptive immunity, which could be harnessed to improve efficacy. This is rather unfortunate
as different aspects of the host immune response such as regulation of cytokines, costimulatory
pathways, macrophage activation, and cell signaling pathways, are clearly promising targets for
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immunochemotherapy. There are few clinical studies in this area, and this probably reflects the high
cost of cytokine-, cell-, or antibody-based therapeutics for a NTD, but essentially, more are needed. To
this end, drug-discovery platforms and pharmacological studies need to include immunomodulation
in their analysis, so that their experimental models “mimic” the type of immunosuppression that can
occur in the clinic.
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