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We present Direct Numerical Simulations (DNS) of shock turbulent boundary layers interaction (SBLI) at Mach 2.9
over a 24◦ ramp. We study both the numerical accuracy and flow physics. Two classes of spatial reconstruction
schemes are employed: the Monotonic Up-stream-centred Scheme for Conservation Laws (MUSCL) and the Weighted
Essentially Non-Oscillatory (WENO), of accuracy ranging from 2nd to 11th-order. Using the canonical Taylor-Green
vortex (TGV) test-case, a simple and computationally inexpensive rescaling of the candidate stencil values – within the
context of the high-order WENO scheme – is proposed for reducing the numerical dissipation, particularly in under-
resolved simulations. For the compression ramp case, higher-order schemes are shown to capture the size of the SBLI
separation zone more accurately, a consequence of resolving much finer turbulence structures. For second and fifth-
order schemes, the energy of the unresolved small scale turbulence shifts the cascade of the turbulence kinetic energy
spectrum, thus resulting in more energetic large scale turbulent structures. Consequently, the λ -shock foot shifts further
downstream leading to a smaller separation bubble size. Nonetheless, other statistical quantities, such as the turbulence
anisotropy invariant map and the turbulence kinetic energy budget terms, show little dependence on the type and order
of the spatial reconstruction scheme. Finally, using the more accurate 9th-order WENO results, it is reasoned that the
interaction of the λ -shock with the post-shock relaxation region drives the low-frequency oscillation of the λ -shock.

I. INTRODUCTION

Design processes in complex engineering systems require
satisfying various degrees of constraints to adhere to design
quality standards. Through careful planning and availability
of instrumentation or apparatus that conforms to the neces-
sary specifications, experimental results can assist the design
of engineering systems considerably. However, most experi-
ments are deemed cumbersome and require considerable time
to plan, execute and later analyze. The above is particularly
true when a rigorous and arduous design cycle or an optimiza-
tion approach is needed early on in the design phase. Further-
more, the availability of diagnostic instrumentation limits the
amount of useful information, which can be obtained from the
experiments.

Computational methods offer the opportunity to obtain a
high turnover of results along with ample amounts of data,
typically within a relatively short time, allowing for a plethora
of key design parameters to be altered and assessed during the
initial development phase of a product. Computational meth-
ods have become increasingly more popular and widely used,
particularly at the early design phase of many engineering
applications, particularly those problems where experimental
data are scarce. However, the solutions provided can contain
significant inaccuracies. The uncertainties in computational
methods are associated with several assumptions regarding
turbulence modelling and the excessive numerical dissipation
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of discretization methods mainly when simulations are per-
formed on coarse grids. With the availability of ever more in-
creasing computational power, high-order large eddy simula-
tion (LES) has gradually started to become more feasible and
widely adopted in industrial applications. Furthermore, high-
resolution and high-order methods for compressible flows fea-
turing shock-waves and turbulence allow performing both im-
plicit Large Eddy Simulations (iLES) and DNS in the same
computational framework1–3.

A common phenomenon prevalent in high-speed flows
around aircraft is shock-wave boundary layer interaction
(SBLI). Typically, SBLI occurs wherever the surface of an
aerodynamic vehicle, travelling faster than the (free-stream)
speed of sound, protrudes abruptly towards the flow, as in the
case of a deflected flap or an inlet ramp. The ensuing complex
phenomena – including flow separation and re-attachment,
low-frequency unsteadiness and high local thermal loads – can
significantly affect the aerodynamic performance and struc-
ture of a supersonic vehicle. As a consequence, such phe-
nomena and interactions have been extensively – and still
are – actively investigated, both experimentally4–11 as well as
numerically12–27.

Provided that the shock-wave is sufficiently strong, a re-
circulation bubble in the boundary layer will appear where
the shock impinges to the surface of the aero-structure. Ob-
servations indicate that the shock-bubble interaction can os-
cillate with a characteristic frequency of one or two orders of
magnitude lower than the typical frequency of the supersonic
turbulent boundary layer (TBL), and with a length scale much
larger than the TBL thickness. The oscillation frequency is
often close to the structural resonance frequencies of the aero-
structure. Thus, it is essential to predict it accurately. Re-
searchers have directed their efforts towards the understand-
ing of the oscillatory behaviour of the separation shock-bubble
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system22,27–30. Yet, the physical mechanism behind the low-
frequency unsteadiness still remains elusive to-date and is
widely debated. The current literature suggests that its origin
is dependent on the flow properties, either upstream or down-
stream of the interaction. Clemens and Narayanaswamy 29

have given an extensive review on this topic. The aero-
structural response of structures at supersonic and hypersonic
conditions subjected to acoustic fatigue due to pressure fluctu-
ations beneath TBLs and SBLI has been the subject of recent
experimental studies31,32, as well as the present numerical in-
vestigation.

We have employed shock-capturing, high-order schemes
with nominal accuracy up to 9th-order, which has previously
used in wall-resolved implicit Large Eddy Simulations33–35 of
compressible turbulent boundary layers, amongst other flows,
and perform DNS of SBLI. Our motivation is to investigate
the effects of numerical dissipation on numerical accuracy in
the case of compressible DNS. We perform simulations for
an incoming fully-turbulent boundary-layer at a freestream
Mach number of 2.9 that forms an unsteady λ -shock wave
structure at the corner of a 24◦ compression ramp. The use
of a synthetic turbulence inflow allows for a smaller domain
in the streamwise direction. The results show that high-order
DNS methods are particularly well suited for simulating SBLI
and prove resilient to the excess numerical dissipation of low-
order reconstruction schemes. We show that the lower or-
der schemes under-predict the skin-friction coefficient before
the SBLI, as well as the size of the separation bubble. Us-
ing low-Mach correction36 with the MUSCL-type schemes is
found to offer slight improvement to the near-wall resolution
of the TBL and size of the separation bubble. For a freestream
Mach number of 2.9, the subsonic region of the “undisturbed”
(pre-SBLI) TBL is found to mostly reside within the viscous-
sublayer and lower buffer-layer (y+ < 12), which is “ener-
gized” by the frequent “injections” of turbulence generated
in the supersonic part of the TBL.

WENO schemes have been extensively used in the past to
increase the accuracy of compressible flow simulations37–40.
We propose a low-cost and straightforward normalization
technique of the WENO computational stencil values to im-
prove accuracy and stability. We use the canonical Taylor–
Green vortex (TGV) problem to show that the pre-treatment
of the WENO stencils helps to further reduce its numeri-
cal dissipation, particularly for coarser meshes. A physical
mechanism for the low-frequency oscillation of the oblique
shock wave is also proposed. We found that there is pressure-
driven reciprocity between the separated (free-shear) layer re-
attachment and separation bubble (edge locations), and the
acoustic propagation speed matches that of the measured low-
frequency oscillation.

II. GOVERNING EQUATIONS

The compressible Navier–Stokes equations (NSE) are
solved for an ideal gas using the finite volume method (FVM).

In integral form, the NSE are formulated as:

∂

∂ t

˚

V

ρ dV = −
‹

A

ρ (u · n̂)dA (1)

∂

∂ t

˚

V

ρudV = −
‹

A

ρ u(u · n̂)dA−
‹

A

p n̂dA

+

‹

A

(τ · n̂)dA
(2)

∂

∂ t

˚

V

ρedV = −
‹

A

ρ (u · n̂)edA−
‹

A

p(u · n̂)dA

+

‹

A

(u · τ) · n̂dA−
‹

A

(q · n̂)dA
(3)

where ρ is the density; u is the velocity vector; p is the static
pressure; n̂ is the outward pointing unit normal of surface el-
ement dA of the closed finite control volume dV; e is the total
energy per unit mass given by e = i+u ·u/2; i is the specific
internal energy, which for a calorically perfect gas is given by:

i = cvT =
p

ρ (γ−1)

T is the temperature, cv is the specific heat capacity at constant
volume, and γ is the heat capacity ratio (or adiabatic index)
defined as γ = cp/cv where cp is the specific heat capacity at
constant pressure and Rs = cp− cv = cv (γ−1) is the specific
gas constant.

For a Newtonian fluid, the shear stress tensor is given by:

τ = λb (∇ ·u) I+µ

[
∇u+(∇u)T

]
where I is the identity tensor; the bulk viscosity is given by
λb = −4µ/3 according to Stoke’s hypothesis; and µ is the
dynamic viscosity obtained by Sutherland’s Law as:

µ(T ) = µre f

(
T

Tre f

) 3
2 Tre f +Ts

T +Ts
(4)

where the free-stream values are used as the reference and the
Sutherland temperature is Ts = 110.4K.

The heat flux is calculated by Fourier’s Law of heat con-
duction:

q =−κ ∇T

where κ is the heat conductivity given by:

κ(T ) =
cp

Pr
µ(T )

and Pr = 0.72 is Prandtl’s number.
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III. NUMERICAL METHODS

We employ the block-structured grid code CNS3D that
solves the Navier–Stokes equations using the finite-volume
method (FVM). The advective terms are solved using the
Godunov-type (upwind) method, whose inter-cell numeri-
cal fluxes are calculated by solving the Riemann problem
using the reconstructed values of the primitive variables at
the cell interfaces. A one-dimensional swept unidirectional
stencil is used for the spatial reconstruction. Two different
slope limiting approaches have been implemented in conjunc-
tion with the approximate HLLC Riemann solver, namely
the: (i) Monotone upstream-centred schemes for conservation
laws (MUSCL), and (ii) Weighted essentially non-oscillatory
(WENO). In particular, the following slope-limiters are exam-
ined:

• MUSCL 2nd order Monotonized Central (M2)41;

• MUSCL 5th (M5) order42;

• WENO 9th (W9) order39.

Finally, we use a second-order central scheme for the vis-
cous terms. The solution is advanced in time by using
a five-stage (fourth-order accurate) optimal strong-stability-
preserving Runge–Kutta method43. Further details of the nu-
merical aspects of the code can be found in44,45 and references
therein.

A. Low Mach number correction

The accuracy of the above schemes, as well as of any other,
can be further enhanced in low-speed subsonic conditions by
implementing the low-Mach correction of Thornber et al. 36

(henceforth labelled LMC). The low-Mach correction primar-
ily involves an additional computational step that treats the
velocity vector via a progressive central differencing of its
components. The LMC ensures a balanced distribution of
dissipation of kinetic energy in the limit of zero Mach num-
ber, thus extending the validity of compressible flow codes
to Mach numbers as low as 10−5, and is mainly required for
schemes providing accuracy less than 5th-order44,45.

After the reconstruction of the velocities has been carried
out, the reconstructed left and right velocity components at
cell-face (i+1/2) are modified according to:

uL,new
i+1/2 = (us−uu)/2

uR,new
i+1/2 = (us +uu)/2

(5)

where

us = uL
i+1/2 +uR

i+1/2

uu =
(

uL
i+1/2−uR

i+1/2

)
Mmax

(6)

and the maximum local Mach number, Mmax, is given by:

Mmax = max
(

ML
i+1/2 , MR

i+1/2

)

Note that the density and pressure are not altered in any way
during this step, thus the internal energy component (ρi =
p/(γ − 1)) remains unchanged. The reconstructed left and
right total energies (e = i+ ek) are calculated using the modi-
fied velocities in the kinetic energy component (ek = u ·u/2).

B. WENO implementation

To address potential numerical instabilities due to
the process of choosing an essentially non-oscillatory
(ENO) stencil46, Weighted ENO (WENO) methods were
introduced37,47. WENO schemes use a convex combination
of all the ENO candidate stencils such that the numerical flux
is approximated with the higher order of accuracy in smooth
regions, while still retaining the ENO property in the flow re-
gions near discontinuities; see48,49 for an overview and further
references. For WENO implementations on structured grids,
when the solution is locally smooth enough, the convex com-
bination of the stencils of a rth-order ENO scheme results in a
(2r−1)th-order WENO scheme47.

Aiming to achieve a balance between accuracy and stabil-
ity, we enhance the WENO schemes of 3rd and 5th-order of
Jiang and Shu 37 (r = 2,3) and 7th, 9th and 11th-order of Bal-
sara and Shu 39 (r = 4,5,6) by combining the mapped WENO
approach of Henrick, Aslam, and Powers 38 (WENO-M) and
the relative total variation limiter approach of Taylor, Wu,
and Martín 40 (WENO-RLTV). WENO-M recovers the loss
of accuracy occurring near smooth critical points. WENO-
RLTV reduces the numerical dissipation by using the optimal
linear weights in regions sufficiently smooth instead of the
nonlinear smoothness-indicator-based weights. The numeri-
cal reconstruction can be performed at the level of conserva-
tive, characteristic, or primitive variables. The reconstruction
of the conservative variables is more common in the litera-
ture. However, past research has shown that such practice can
lead to inaccuracies in capturing shock waves; see Zanotti and
Dumbser 50 and references therein. Similar to other authors51,
we have opted to use the primitive variables in the high-order
numerical reconstruction. The characteristics-based variables
would be more expensive computationally.

We present below a step-by-step description of the WENO
procedure implemented to obtain the left reconstruction,
qL

i+1/2, of the primitive variables, q = [ρ,u, p]T , at cell face
i+1/2:

1. The full (left and right reconstruction) stencil
(

SG
i+1/2

)
is normalized, per variable, according to the transfor-
mation function:

SGz
i+1/2 =

SG
i+1/2−gmin

gmax
(7)

where

SG
i+1/2 = (qi−r+1, ... ,qi+r)
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and

gmin = min
(

SG
i+1/2

)
−1

gmax = max
(

SG
i+1/2−qmin

)
and the new kth candidate stencil for the left reconstruc-
tion, containing r cell center values, is given by:

SL
i+1/2;k = SGz

i+1/2 [i− r+1+ k, ... , i+ k]

where k = 0, ... ,r− 1. Eq. (7) simply normalizes the
values of the candidate stencils prior to the estimation
of the smoothness indicators (IS) in such a way that (i)
the maximum value of the full stencil becomes equal to
one, i.e. max(SGz

i+1/2) = 1, (ii) the minimum value takes

a positive and nonzero value, i.e. min(SGz
i+1/2) > 0, and

(iii) the value range scales as originally relative to the
maximum. By definition gmax is always positive and
non-zero and hence Eq. (7) will never result in an un-
defined operation and cause an exception. Using the
above normalization of the full stencil values, per vari-
able, is found to (i) prevent negative WENO smooth-
ness indicator values, (ii) reduce numerical dissipation,
and (iii) simplify the application of the proceeding step.
The stencil normalization was found to have no effect
for the MUSCL-type slope limiters.

2. Next, a modified version of the relative total variation
(TV) limiting procedure of Taylor, Wu, and Martín 40 is
implemented. The TV of each kth candidate stencil is
calculated according to:

TVk (Si;k) =
r−1

∑
l=1
|qi−r+k+l+1−qi−r+k+l | (8)

Eq. (8) is then used to obtain the maximum TV ratio
between the candidate stencils:

R(TV) =
max(TVk)

min(TVk)+ ε
(9)

If all of the stencils contain significant discontinuities,
then the value of R(TV) can be incorrectly small, i.e.
R(TV) ≈ 1. Thus, an additional criteria is introduced
in order to avoid such a situation. The linear weights
are used provided the following two conditions are sat-
isfied:

if
[
R(TV)< ATV

RL &

max(TVk)< BTV
RL

]
then

ω
r
k =Cr

k (10)

According to Ref.40, ATV
RL = 5, while for the second con-

dition, BTV
RL = 0.2(r− 1), where r is the order of the

polynomials used in the 2(r− 1)th-order WENO. Note

that the equation for BTV
RL is applicable only if the pre-

ceding pre-treatment/re-scaling of the candidate sten-
cils is carried out; otherwise it must be multiplied by
qmax. In essence, the second condition allows for an
average TV of 20% between two neighbouring cells of
the local stencils (SG

i ) maximum variable value, but this
value can be modified if necessary. Wu and Martin 16

used a value of BTV
RL = 0.2 for their 4th-order bandwidth-

optimized WENO implementation in their DNS study.

Eq. (10) assumes that for the linear weights the condi-
tion ∑

r−1
l=0 Cr

l = 1 is always satisfied.

3. If condition Eq. (10) is not satisfied, then the nonlin-
ear weights based on the smoothness indicators of each
candidate stencil are computed according to the follow-
ing two steps:

Ω
r
k =

Cr
k

(ISr
k)

p + ε
, ω

r
k =

Ωr
k

∑
r−1
l=0 Ωr

l

(11)

where p = r and ε = 10−41.

The standard WENO weights obtained in Eq. (11) are
modified according to the mapped WENO (WENO-M)
approach of Henrick, Aslam, and Powers 38 as:

ω̃
r
k =

Ω̃r
k

∑
r−1
l=0 Ω̃r

l

(12)

where, using the alternate formulation of Feng, Huang,
and Wang 52 , the mapped weights are given by:

Ω̃
r
k =Cr

k +
(Ωr

k +Cr
k)

K+1A
(Ωr

k−Cr
k)

KA+Ωr
k(1−Ωr

k)
(13)

and setting A = 1 and K = 2 results in the original map-
ping function38.

4. The reconstructed scaled variable value at the left-side
of cell-face i+1/2 is given by:

qL
i+1/2 =

r−1

∑
k=0

[
ω̃

r
k f (q)r

k

]
(14)

where

f (q)r
k =

r−1

∑
l=0

α
r
k;l qi−r+k+l+1 (15)

5. Finally, due to the initial “normalizing” of the stencil in
step 1, the reconstructed values obtained using Eq. (14)
needs to be “re-scaled” according to:

qL
i+1/2 = qL

i+1/2 gmax +gmin (16)

WENO reconstruction can lead to spurious oscillations, if
two or more shocks are too close to each other and WENO
cannot choose a single smooth stencil. To remedy this prob-
lem a procedure first introduced by Harten et al. 53 is adopted.
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5

If the reconstructed density and pressure values differ too
drastically from their cell-center average values, the order of
the WENO reconstruction is reduced. After completion of the
left and right reconstruction procedures at cell-face i+ 1/2,
the left and right reconstructed density and pressure values
are compared against their respective left and right cell-center
values: ∣∣∣ρL

i+1/2−ρi

∣∣∣> C−O or∣∣∣ρR
i+1/2−ρi+1

∣∣∣> C−O
(17)

where the order reduction threshold constant is set equal to
C−O = 0.7. If the condition in Eq. (17) is met, then the order
of the WENO scheme is reduced according to (r− 1). The
reconstruction procedure is then repeated for all variables, and
the condition is checked again. The process is repeated until
Eq. (17) is not satisfied any longer. For example, assuming
the condition is repeatably met, a 9th-order WENO would first
reduce to 7th-order, then to 5th, 3rd, and finally to the 2nd-order
MC MUSCL scheme. Titarev and Toro 54 showed that the use
of the above procedure does not degrade the high order of
accuracy for sufficiently smooth solutions.

C. HLLC Riemann solver implementation

The Riemann problem is solved here using the so-called
“Harten, Lax, van Leer, and (the missing) Contact” (HLLC)
approximate Riemann solver of Toro, Spruce, and Speares 55 .
More specifically, the adaptive non-iterative Riemann solver
(ANRS) variant proposed by Toro 56 (see §9.5.2) is imple-
mented. The following sequence details the approximate
HLLC Riemann solver procedure implemented:

1. To ensure high-order near the boundaries for high-order
FVM codes, typically the ghost-cell method is used to
apply the boundary conditions (BC). However, even
after careful programming of the boundary conditions
and reconstruction procedures, computer rounding er-
rors can persist and give rise to differences between the
left and right reconstructed states. Therefore, to ensure
the appropriate flux, we modify the left and right recon-
structed states for the following BCs: symmetry plane
(inviscid wall), heated (constant temperature) wall, and
adiabatic (zero heat-flux) viscous (no-slip) wall.

For a symmetry plane, the no penetration condition is
implemented for both advective and acoustic waves us-
ing the procedure described by Algorithm 1.

In the case of a viscous wall, Algorithm 2 is used in-
stead. For an isothermal wall, the temperature at the
ghost cells is linearly interpolated from the interior do-
main and the wall. In this case, it is advisable to restrict
the interpolated temperature range of values to be only
positive (T ∈ R>0), i.e. Tghosts > 10−15, which reduces
the likelihood of a non-physical solution from manifest-
ing.

if Left BC Symmetry then
ρL = ρR;
pL = pR;
uR = uR− (uR · n̂)uR;
uL = uR;

else if Right BC Symmetry then
ρR = ρL;
pR = pL;
uL = uL− (uL · n̂)uL;
uR = uL;

Algorithm 1: Ensure symmetry BC flux in HLLC.

if Left BC Viscous Wall then
pL = pR;
if Wall Temperature then ρR = pR

RsTW
;

ρL = ρR;
uL = uR = 0;

else if Right BC Viscous Wall then
pR = pL;
if Wall Temperature then ρL = pL

RsTW
;

ρR = ρL;
uL = uR = 0;

Algorithm 2: Ensure viscous wall BC flux in HLLC; if
Wall Temperature true isothermal, else adiabatic.

2. An initial estimate of the pressure in the Star Region,
that is the region defined in-between the two non-linear
convective wave-speeds (or characteristics), can be ob-
tained according to57:

p∗ = max
(
0, ppvrs

)
(18)

which for curvilinear coordinates ppvrs is obtained ac-
cording to:

ppvrs =
1
2

[
pL + pR +

(
u⊥L −u⊥R

)
ρ̄ s̄
]

ρ̄ = (ρL +ρR)/2 , s̄ = (sL + sR)/2
(19)

where the speed of sound is defined as s =
√

γ p/ρ and
u⊥ = u · n̂ is the magnitude of the velocity normal to the
cell-face.

The “averaged” value of p∗ given by Eq. (18), is en-
hanced by taking into account the local conditions.
The ANRS approach56 introduces two conditions as a
means to avoid unnecessary computations, i.e. updat-
ing the value of p∗ obtained by Eq. (18) with one that
is more accurate. The first condition requires that the
ratio between the maximum and minimum local recon-
structed pressures is greater than a predetermined con-
stant, i.e.

Q = pmax/pmin > Quser

where pmin = min(pL, pR), pmax = max(pL, pR) and it
is recommended that Quser = 2. The other condition
requires that p∗ does not lie between pmin and pmax,
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6

i.e. p∗ < pmin or p∗ > pmax. However, likewise to non-
differentiable (reconstruction) limiters, they hinder con-
vergence. Instead, the following relation is used imme-
diately after Eq. (18):

p∗ =


[

sL + sR− γ−1
2

(
u⊥R −u⊥L

)
sL/pz

L + sR/pz
R

] 1
z

if
(TRRS)

p∗ ≤ pmin

gL pL +gR pR− (u⊥R −u⊥L )
gL +gR

if
(TSRS)

p∗ > pmax

where

z =
γ−1

2γ
, AK =

2
(γ−1)ρK

, B =

(
γ−1
γ +1

)
pK

gK =

(
AK

p+BK

)1/2

, K = L,R

The abbreviations TRRS56 and TSRS56,58 stand for the
Two-Rarefaction Riemann Solver and Two-Shock Rie-
mann Solver, respectively.

3. Next, we compute the wave-speed estimates accord-
ing to a modified formulation which combines the ap-
proaches of Davis 59 and Toro, Spruce, and Speares 55 :

SL = min
(

u⊥L − sLqL , u⊥R − sRqR

)
SR = max

(
u⊥L + sLqL , u⊥R + sRqR

) (20)

where

qK =


1 if p∗ ≤ pK[

1+
γ +1

2γ

(
p∗
pK
−1
)]1/2

if p∗ > pK
(21)

Eq. (20) slightly increases the numerical diffusion as
it permits a greater range, but has favourable stability
in very high-speed flows and particularly near strong
shock-waves.

Using the above, the intermediate “missing” wave-speed,
S∗, and associated HLLC fluxes are computed according to
Toro 56 .

D. Taylor–Green Vortex

The Taylor–Green vortex (TGV) is a well-known and
widely used benchmark test-case used by the wider compu-
tational fluid dynamics community to assess the properties of
numerical schemes. Figures 1(a) and 1(b) show the kinetic en-
ergy dissipation obtained using the described WENO numer-
ical procedure without and with the stencil normalization for
various grid resolutions, respectively. We compare the present
DNS, performed on 2563 mesh, with the DNS of DeBonis 60 ,
which was conducted using a finer mesh (5123) and the 13-
point dispersion-relation-preserving (DRP) scheme of Bogey

ε

(a)

ε

(b)

FIG. 1. Comparison of the turbulence kinetic energy dissipation (ε)
for the Taylor–Green vortex test case using the 11th-order WENO
(r = 6) (a) without, and (b) with the stencil normalization.

and Bailly 61 . We calculate the energy and dissipation as fol-
lows:

Ek =
1

ρ0V

ˆ
1
2

ρ (u ·u)dV , ε2 =−
1

ρ0V

ˆ
p(∇ ·u)dV

ε1 =−
dEk

dt
, ε = ε1− ε2

The 11th-order WENO implementation with stencil nor-
malization significantly reduces dissipation (ε) when the grid
is significantly under-resolved, i.e. at the coarse mesh res-
olution (643). As the mesh resolution increases, any im-
provement offered becomes less apparent. An advantage
of very high-order methods, such as the 9th- and 11th-order
WENO schemes, is the excellent scaling they achieve on
high-performance computers (HPC) as demonstrated by Ri-
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7

tos, Kokkinakis, and Drikakis 34 . The computational overhead
of the stencil normalization according to Eq. (7) is found to be
small (< 1%) when applied to the computationally intensive
11th-order WENO scheme.

IV. COMPRESSION RAMP

SBLI over a compression ramp inclined at 24◦ angle was
numerically investigated by Wu and Martin 16 using DNS with
free-stream conditions of Mach= 2.9 and Reδ0 = 38,700. The
presence of the inclined surface gives rise to a shock wave,
which interacts with the incoming turbulent boundary layer
leading to the formation of a separation bubble and a λ -shock
wave structure. The intensity of the incoming turbulent flow
and the strength of the formed shock wave dictate the length
of the separation region. A schematic illustrating the most
important physical processes that take place is shown in Fig. 2.

A. Boundary conditions

Periodic boundary conditions are used in the spanwise (y)
direction while in the wall-normal (z) direction a no-slip
isothermal wall (Tw = 309K) is used. We impose a supersonic
outflow condition at the outlet and upper boundary opposite
to the wall. The boundary condition at the inlet requires accu-
rately assigning a turbulent boundary layer (TBL). The syn-
thetic turbulent digital filter approach of Rana, Thornber, and
Drikakis 62 , further modified in the present numerical study, is
employed to generate the incoming turbulent boundary layer
data.

The synthetic turbulent inflow boundary condition uses the
digital filter (DF) method previously developed18,63,64 and
validated3,62,65 in the framework of the present DNS code
CNS3D. Apart from the mean turbulent profile data, which
can be obtained from either previous studies or flat plate sim-
ulations, the digital filter technique requires also knowledge
of the integral length scales. In this study, an integral length
scale of L0x = 0.22δ0 is used for the streamwise direction,
whereas for the spanwise and wall-normal directions, the in-
tegral length scales are L0y = 0.2δ0 and L0z = 0.5δ0, respec-
tively.

The digital filter technique used herein effectively creates
a “synthetic” 2D random field of the state variables (qS)
to mimic that of a true turbulent field using known mean
turbulent properties as input parameters. The approach is
physically more representative of a TBL than simply using
a white noise pseudo-random algorithm. The 2D perturbed
flow properties are calculated similarly to Rana, Thornber, and
Drikakis 62 , but only every ∆tS = L0x/u∞. At the intermediate
time-instances the BC is set by interpolating two synthetic tur-
bulent inflow planar distributions according to:

qt
0 = wSqt1

S +(1−wS)qt2
S (22)

where

wS = e−πrt − rte−π , rt =
t− t1
t2− t1

=
t− t1
∆tS

(23)

t is the current time, t1 is the time of the previous synthetic
turbulent field, and t2 is the synthetic turbulent field at the fu-
ture time t1 +∆tS, such that t1 ≤ t ≤ t2. Alternatively, ∆tS in
Eq. (23) can also be estimated separately per mean boundary
layer height location, i.e. according to the local mean velocity
profile data rather that the free-stream value.

As the digital filter results in a perturbation of the velocity
field only, appropriate fluctuations for the pressure and density
need to be estimated. Invoking the Strong Reynolds Analogy
(SRA) means that the pressure fluctuations in the boundary
layer are considered negligible, i.e., p′ = 0. Thus, the follow-
ing relations are used to obtain the density and temperature
fluctuations:

ρ ′

ρ
=−T ′

T
(24)

and

T ′(y,z)
T (z)

=−(γ−1)M2
(z)

[
1+

cp
(
T w−T te

)
u(z)ue

]
u′(y,z)

u(z)
(25)

where Tw is the wall temperature, M(z) = u(z)/
√

γRsT (z) is
the Mach number at height z, ue is the velocity at the boundary
layer edge (z≈ 0.99δ ), u′(z,y) is the instantaneous planar ve-
locity fluctuation field obtained by the digital filter technique,
and

T̄te = Te

(
1+

γ−1
2

M2
e

)
is the total temperature at the boundary layer edge. Equa-
tion (25) was first introduced by Cebeci and Smith 66 in the in-
stantaneous form in an attempt to account for wall heat trans-
fer effects. Gaviglio 67 then referred to the root-mean-square
(RMS) form of this relation as an extended strong Reynolds
analogy (ESRA).

B. Flow properties

An incoming supersonic turbulent boundary layer (TBL)
with a freestream Mach number of M∞ = 2.9 and a Reynolds
number based on the boundary layer thickness of Reδ0 =
38,737 is considered. The physical properties and computa-
tional domain are similar to previous DNS studies16 and fur-
ther details are provided in Tables I and II, respectively.

Though the synthetic inflow perturbations cleverly
“mimic” (resemble) that of a fully turbulent flow, the result-
ing incoming turbulent-like solution still requires to re-adjust
and evolve to the physically correct condition as per the
numerical scheme and grid resolution. Therefore, the position
of the DF inflow is placed a further five boundary layer
heights (∼5δ0) upstream relative to the DNS. The spanwise
length is also increased to investigate possible large-scale
structures that may develop in the post-shock region after
re-attachment has occurred. Note that henceforth, x/δ0 = 0
will refer to the location of the compression corner.
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FIG. 2. Schematic illustrating the flow over a compression ramp.

TABLE I. Flow properties at the inflow for M∞ = 2.9

δ0 (m) U∞ (m/s) Tw (K) ρ∞ (kg/m3) T∞ (K)

0.0064 609.1 307 0.077 107.1

C. Grid parameters

Prior knowledge of the wall unit can be obtained using em-
pirical relations68. From the experiment of Bookey et al. 8 ,
both the values of the boundary layer momentum thickness,
θ = 0.43 mm, and thickness, δ = 6.7 mm, are known. Using
the relation proposed by Bies 69 :

θ =
δ

10.4+0.5M2 (1+2×10−8Rex)
1/3 (26)

it is possible to obtain an estimate for ReX , the Reynolds num-
ber based on the distance from the leading edge. A reasonable
value of the friction coefficient can then be obtained using the
Falkner formula:

C f =
2τw

ρ∞U2
∞

≈ 0.0263Re1/7
x (27)

as proposed by Smol’yakov 70 . An estimate for the y+ value
can thus be finally obtained according to y+ = yuτ/νw, where
the friction velocity is defined as uτ =

√
τw/ρw. However,

in order to calculate y+, an estimate for ρw and νw = µw/ρw
are also necessary. Assuming that the static pressure does not
change significantly across the turbulent boundary layer, the
density at the wall can be obtained according to the perfect
gas law:

ρw =
p

RsTw
(28)

where Rs = cv(γ − 1) is the specific gas constant. The dy-
namic viscosity at the wall can be obtained by setting T = Tw
in Eq. (4).

Solving Eq. (26) for Rex and using the experimental values
for δ and θ (6.4 mm and 0.43 mm)8 returns Rex ≈ 3.69×
107, which once substituted into Eq. (27) gives a coefficient
of friction of C f ≈ 0.00218. This empirically obtained value
is very close –slightly lower– to the measured experimental
value of 0.00225 and –slightly larger– to the DNS value of
0.0021716. According to Eq. (28), the density at the wall is
approximately ρw ≈ 0.0285 kg/m3, and the dynamic viscosity
according to Sutherland’s Law Eq. (4) is µw ≈ 1.94× 105.
Thus, for y+ = 1 a ∆y ≈ 2.143× 10−5 meters is estimated,
close to the value of ∆y≈ 2.16×10−5 m used in the reference
DNS16.

The density and kinematic viscosity at the wall could also
be obtained using the following two expressions, respectively:

ρw = ρ∞

T∞

Tw
, νw = ν∞

ρ∞

ρW

(
Tw

T∞

)r

while in the case of a adiabatic wall (zero heat-transfer), the
wall temperature (Tw ≡ Taw) can be calculated by

Taw = T∞

[
1+

r (γ−1)
2

M2
]

(29)

where r = 0.896 is the recovery factor.
Following typical resolution recommendations for LES

and DNS simulations71–73, a fine mesh for conducting wall-
resolved DNS is utilized. The mesh is clustered near the
corner in the streamwise direction and near the wall in the
wall-normal direction. The number of mesh points and corre-
sponding mesh spacing are summarized in Table II along with
the LES and DNS recommendations from the literature. The
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FIG. 3. Illustration of the structured curvilinear computational mesh employed; zoomed view at the location of the compression corner.

TABLE II. Mesh parameter comparison between the present DNS and the simulations of Wu and Martin 16 ; number of cells given.

Lx Ly Lz nx ny nz ∆x+ ∆y+ z+

DNS (present) 21.4 3.0 5.0 1128 120 168 5.9 7.4 1.0
DNS16 15.4 2.2 5.0 1023 159 127 7.2 4.1 0.2

present mesh spacing (∆y) is scaled using the conventional in-
ner variable method ∆y+ = uτ ∆y/νw, where uτ =

√
τw/ρw is

the friction velocity, νw, τw and ρw are the near-wall kinematic
viscosity, wall shear-stress and density, respectively. A previ-
ous mesh convergence study44 demonstrated that the current
mesh resolution is sufficiently fine to achieve highly accurate
results. Grid clustering is also used in the streamwise direc-
tion. At the compression ramp corner, ∆x+ ≈ 2.93; a value
of 3.4 was quoted for the same location in the DNS16. Fig-
ure 3 shows the mesh around the compression corner within
δ0 radius.

V. RESULTS

We initially performed the simulations for ∼200δ0/u∞ to
allow the turbulent inflow condition to exit the outlet of the do-
main several times to achieve a statistically steady state. The
simulations were carried out for a further ∼300δ0/u∞ to ob-
tain a statistically steady average representation of the turbu-
lent flowfield, with three-dimensional flowfield data collected
at intervals of ∼2δ0/u∞.

Kokkinakis and Drikakis 44 previously demonstrated that
the LM correction of Thornber et al. 36 particularly improved
the accuracy of low-order schemes (≤ 5th) in subsonic turbu-
lent boundary layer flows. Therefore, we will examine here
the LM correction only in context with the 2nd- (M2LM) and
5th-order MUSCL schemes (M5LM).

We have examined the correlation properties of the turbu-
lent inflow resulting from the digital filter technique by esti-
mating the 2nd order correlation (ri j) and its correlation co-
efficient (Ri j - the auto-covariance of the fluctuating velocity
u′i):

ri j(x,η ,τ) = u′i(x, t)u′j(x+η , t + τ) (30)

Ri j(x,η ,τ) =
ri j(x,η ,τ)√

u′2i (x)
√

u′2j (x+η)
(31)

The overbar denotes Reynolds time-averaging, where η is the
spatial and τ is the temporal separation. Here, we have con-
sidered the case τ = 0 and the x-direction. Figure 4 shows
the three normal correlations (i = j) at the digital filter inlet
and at a distance of 0.1δ0 from the wall. All three correlations
quickly drop to zero within about 0.5δ0 and after that begin
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FIG. 4. Autocorrelation of velocity fluctuations in the streamwise
direction at z = 0.1δ0 in the incoming boundary layer for the DNS.

to oscillate with a decaying amplitude as the downstream dis-
tance increases. The results suggest that a distance of 5δ0 is
sufficient for the artificial turbulent inflow to decorrelate, thus
not affecting the TBL statistics.

A. Mean flow

The streamwise distribution of the time and spatially aver-
aged mean wall pressure (Fig. 5) shows that the W9 scheme
provides more accurate results than the MUSCL schemes.
The W9 results are in excellent agreement with both the
DNS of Wu and Martin 16 and experiment of Bookey et al. 8 .
M5LM (green line) does not correctly capture the location
of the separation bubble because the resolution of finer flow
structures is weaker compared to W9. The above numerical
behavior leads to the formation of more energetic large scale
turbulent structures, which are responsible for “blowing” the
shock in the downstream direction. Our experience is that W9
can attain the same accuracy with the M5LM while using a
coarser mesh33–35,68,74.

The friction coefficient, C f , is calculated according to the
first equality in Eq. (27) and is plotted in Fig. 6. The low-
Mach number correction (LMC) does not improve C f signifi-
cantly due to the subsonic region of the undisturbed TBL con-
fined within the viscous sublayer. Though the subsonic re-
gion at the separation bubble can extend as high as 0.6δ0, also
evident by the sonic line depicted in Fig. 10, the position of
the shock remains largely unaffected. Any loss of accuracy in
this critical region should lead to significant errors in the SBLI
dynamics, as well as the turbulent flow characteristics down-
stream. However, analysis of the turbulence kinetic energy
budget terms carried out later in § V D and shown in Fig. 15,
reveals that the turbulence is relatively weak below the sonic
line. Therefore, the LMC is found to offer only a marginal

x / δ
0

p
 /
 p

∞

8 6 4 2 0 2 4 6

1

2

3

4

5
M2LM

M5LM
M5
W9
Wu et al. (DNS)

Bookey et al. (EXP)

FIG. 5. Normalized mean wall pressure, p/p∞, distribution along the
streamwise direction.

x / δ
0

C
f 
×

1
0

3
8 6 4 2 0 2 4 6

1

0

1

2

3

4

5
M2LM

M5LM
M5
W9
Wu et al. (DNS)

Bookey et al. (EXP)

FIG. 6. Skin friction coefficient, C f , distribution along the stream-
wise direction.

improvement of accuracy in this case.
The spatial order of the scheme has a substantial effect

on simulation accuracy. At x = −8δ0, the W9 accurately
predicts the skin friction coefficient, C f ≈ 0.0022, whereas
both the M5 and M2LM underestimate it: C f ≈ 0.00195 and
0.0019, respectively. The LMC improves the skin friction co-
efficient of the fifth-order MUSCL scheme (M5LM) by 2.5%
(C f ≈ 0.002). The corresponding value quoted by the DNS16

and experimental8 studies was C f ≈ 0.00217 and 0.00225, re-
spectively. The W9 gives the closest agreement to the exper-
imental locations at which the C f changes sign, which indi-
cates the extent of the SBLI separation bubble. The results
suggest that the ability of the scheme to accurately resolve
the turbulent structures in the supersonic region of the “undis-
turbed” TBL largely determine the accuracy in the prediction
of the size and location of the separation bubble.

Nonetheless, the computational overhead of the LMC is
found to be small, as also observed in previous studies44,45.
The increasing accuracy of the W9 compensates for the higher
computational cost. As shown in2,44, low-order schemes re-
quire much finer grids, and smaller time-step sizes, ultimately
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turning into an increased computational cost.
A comparison of the mean streamwise velocity profile at

−11δ0 and−8δ0 reveals the streamwise evolution of the TBL
created by the digital filter technique. The position x =−8δ0
corresponds to the inflow boundary condition of the reference
DNS16, which used a re-scaling method developed by Xu and
Martin 75 to generate the inflow condition, with the recycling
station located 4.5δ0 downstream of the inlet. Thus, to make a
credible comparison of the present DNS data to the reference
DNS, it is paramount that – at the very least – the mean flow
properties, such as the mean velocity profile, agree well at
the same location upstream of the compression ramp corner
(x =−8δ0).

The mean streamwise velocity profile at x = −8δ0 (Fig. 7)
shows excellent agreement to the DNS and experiment for all
three schemes investigated. However, the W9 is more accu-
rate near the wall (z < 0.1δ0), but only marginally in the re-
mainder of the profile. The synthetic turbulent field created
by the digital filter technique required approximately 6δ0 in
the streamwise direction to adjust, with the results suggesting
a minimum distance of around 3–4δ0 for the current synthetic
turbulence inflow implementation.

Once the flow reaches the intermittent region – where the
λ -shock foot interacts with the separation bubble formed as
illustrated in Fig. 2 – there is a considerable difference be-
tween the three schemes in the mean streamwise velocity pro-
file (Fig. 7(b)). The W9 gives the best agreement to the refer-
ence DNS profile at this location, a consequence of the more
precise size and location of the resolved separation bubble.
The differences between the second- (M2LM) and fifth-order
(M5LM) MUSCL schemes are much less significant, though
the M5LM shows some slight improvement.

Figure 7(c) plots the velocity tangential to the wall at x =
6.1δ0 near the outlet boundary:

ũ‖ = ũcos(24◦)+ ṽsin(24◦)

versus normal to the wall along the line defined by:

z
δ0

= tan(24◦−90◦)
(

x
δ0
−6.1

)
+6.1tan(24◦)

All three mean velocity profiles show some deviation from
the reference DNS but at different sections of the boundary
layer profile. The W9 scheme closely matches the DNS pro-
file in the upper layer (z≈ 2.3δ0), which is indicative of hav-
ing resolved the position of the oblique shock wave and, in
turn, the position of the separation bubble leading edge. Both
the M2LM and M5LM are in closer agreement to the ref-
erence DNS in the inner re-attached TBL region z < 0.5δ0;
however, we believe that this is incidental to the stencil in this
region and further investigation is required.

A qualitative comparison of the schemes accuracy can be
accomplished by plotting the isosurfaces of the coherent tur-
bulent structures (vortices). We have used the compressible
QM–criterion76,77, defined as:

QM = Q+ IIS > 0 (32)

δ

∞

(a) x = −8.0δ0

z / δ
0

u
 /
 u

∞

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(b) x = −1.9δ0

z / δ
0

u
||
 /
 u

∞

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

DNS

M2LM

M5LM

W9

(c) x = 6.1δ0

FIG. 7. Comparison of inflow streamwise velocity to the reference
DNS16 and Experiment8 at three different locations: (a) x =−8.0δ0,
(b) x =−1.9δ0, and (c) x = 6.1δ0.

where the standard (incompressible) Q–criterion is given by:

Q =
1
2
(
‖Ω‖2−‖S‖2) (33)
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and IIS is the second invariant of the strain-rate tensor S

IIS =
1
2

[
Tr(S)2−Tr

(
S2)] (34)

∇u consists of the symmetric strain-rate tensor S and anti-
symmetric vorticity tensor Ω:

S =
1
2

[
∇u+(∇u)T

]
, Ω =

1
2

[
∇u− (∇u)T

]
(35)

and the standard Frobenius tensor norm for a tensor T in three
dimensions takes the form

‖T‖=
√

Tr
(
TTT ) (36)

The QM isosurfaces (Fig. 8) reveals that increasing the spa-
tial order of the scheme provides a greater abundance of flow
structures, particularly upstream of and around the SBLI. In
the relaxation region downstream of the SBLI, the differences
become less apparent. The W9 resolves much finer scale vor-
tices throughout the height of the TBL. As a result, the W9
transfers and “injects” more effectively into the viscous sub-
layer a larger amount of mean kinetic energy, leading to an
increase in the resolved wall shear-stress (Fig. 6). The mech-
anism is that W9 captures the details of the vortices at the tur-
bulent/nonturbulent interfaces (TNTI), which carry turbulent
fluctuations into the TBL. This process takes place simultane-
ously with the fluctuations in the freestream, which are radi-
ated from inside the TBLs as reported by Duan, Choudhari,
and Zhang 78 .

Although the freestream flow is supersonic, the boundary
layer in the lower portion of TBL remains subsonic, com-
prising approximately 20 computational cells off the wall for
the grid employed in this study. According to Figure 9, the
“undisturbed” (pre-SBLI) TBL is subsonic up to z+ ≈ 11,
which contains the viscous sublayer and the lower part of
the buffer layer. The data indicates that only the streamwise
Reynolds stress (Rxx) peaks within the subsonic TBL region;
Ri j is defined later in Eq. (38). Both the maximum spanwise
(Ryy) and wall-normal (Rzz) Reynolds stress components oc-
cur in the supersonic region of the TBL, with the former lo-
cated as high as z+ ≈ 45, around the beginning of the log-
law layer. The turbulent motion transferred from higher-up
the TBL towards the no-slip wall is primarily governed by
the wall-normal fluctuations located in the supersonic portion
of the TBL. In terms of magnitude, the streamwise fluctu-
ations are much stronger than the wall-normal components,
Rxx ≈ 5.4Rzz, although nearer the wall viscous forces become
increasingly dominant.

B. Analysis of low-frequency oscillation

The mixing layer is identified as the region of high-density
gradient magnitude located between the separation bubble and
primary oblique shock wave (Fig. 10); that is the portion of the
TBL that detaches from the plain surface and later re-attaches
at the inclined surface (ramp). The secondary compression

(a)

(b)

(c)

FIG. 8. Isosurfaces of QM-criterion
(
2U2

∞/δ 2
0
)

coloured by Mach
number and 2D (x-z) contour plane of density gradient magnitude
|∇ρ| δ0/ρ∞ in grayscale using schemes (a) M2LM, (b) M5LM, and
(c) W9.

waves, or shocklets, are visible above the mixing layer along
the mean pressure isobar p̄/p∞ = 3, and merge onto the pri-
mary shock; these are also visible, to some extent, at the con-
tour surface (grayscale density gradient), Fig. 8. The above
isobar terminates onto the ramp surface very close to the re-
attachment of the mixing layer. Moreover, a change in the
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FIG. 9. Normalized normal Reynolds stress components, R j j /u2
∞, at

x =−9δ0.

angle of the mixing layer occurs as it is intersected by the
p̄/p∞ = 3 isobar, effectively splitting it into two distinct re-
gions. The diffuse appearance of the mean secondary com-
pression waves in Fig. 10 is indicative of their large scale os-
cillatory behavior, i.e. the wide spatial range over which they
form.

We have performed power spectral density (PSD) analy-
sis of the surface pressure loading only for the W9 scheme,
as it provides the best agreement with the experimental
measurements8. The position of the numerical pressure
probes is shown in Fig. 11: one prior to SBLI at x/δ0 =−6.9
(Point 1), and two before and after the separation bubble onset
at x/δ0 = −2.98 (Point 2) and −2.18 (Point 3), respectively.
The separation bubble onset is taken as the point at which the
friction coefficient, C f , changes sign. For the W9 scheme, it
occurs approximately at x/δ0 ≈−2.785.

The PSD at the three locations is plotted in Fig. 12. Both
pressure and frequency have been non-dimensionalized us-
ing outer-layer scaling; the freestream pressure normalizes the
fluctuating pressure signal, p′(t)/p∞, while the frequency, f ,
is normalized according to St = f δ0/u∞, where St is the di-
mensionless Strouhal number. We show the frequency up to
St∼10, which is near the grid resolution cut-off at the wall,
i.e. fmax ∼ sw/(2∆yw), where sw =

√
γRsTw is the speed of

sound at the wall and ∆yw is the largest cell edge; in this case
in the spanwise (y) direction.

For the undisturbed supersonic TBL, the peak PSD is at
the non-dimensional frequency of one. The energy is slowly
transferred from the large scales to f ≈ 1 (henceforth f ≡ St).
In general, the PSD follows the established cascade79 that has
been investigated for compressible flows35, and defines four
distinct frequency domains:

1. Low frequency f x: it is influenced by the turbulent mo-
tion in the outer part of the boundary layer, while the

viscosity and turbulent motion influence high frequen-
cies in the inner part of the boundary layer. For in-
compressible flows x = 2, while for compressible flows
x→ 0.

2. Mid frequency: it includes the spectral peak ( f 0);

3. Mid-to-High overlap frequency f−r where r = [0.7 −
1.1]: it appears at sufficiently high Re values and r is
influenced by the local Reynolds number. This region
is associated with pressure-induced eddies in the loga-
rithmic region of the boundary layer.

4. High frequency f−s: The spectrum scales with s = 7/3
in a region called “acoustic-transition". At higher fre-
quencies the spectrum decays more rapidly (s = 5) due
to the viscous sublayer (z+ < 20) and weaker compress-
ibility (local mean Mach number < 1).

Figure 12 reveals that the high-frequency domain scales as
f−5 in all three locations. The same behavior was also ob-
served by Bernardini, Pirozzoli, and Grasso 80 . Inhibition of
the higher frequencies is not observed downstream of the sep-
aration zone due to the sustained high-speed flow after the
oblique shock. This effect is in contrast to the case of a normal
shock, also associated with subsonic flow pocket as previously
reported80.

The mid-to-high frequency band (undisturbed TBL) is
found to be very narrow since the Reynolds number is not suf-
ficiently high for it to become perceptible. At the third point
located within the separation region, a much broader mid-to-
high overlap region forms, which is attributed to the break-
down and redistribution of the large-scale (or low-frequency
mode) energy content previously formed at the front of the
separation zone (point 2). Although the mean streamwise
velocity at position 2 is positive, its instantaneous variation
contains negative values. The above suggests that the separa-
tion bubble leading-edge oscillates in the streamwise direction
over time.

The abrupt increase in the PSD content at the low-end
frequency range of the wall pressure signal at x = −2.98δ0
(Fig. 12 - red line), alludes to the presence of a large scale
structure. This is in agreement with the observations made
by Bernardini, Pirozzoli, and Grasso 80 and further supported
by the similarity of the near-wall pressure fluctuation PSD
in the mid- to high-end frequency band between the λ -
shock foot (x =−2.98δ0) and the undisturbed supersonic
TBL (x =−6.9δ0).

The speed of sound at the wall (point 2) and the low-end
frequency range f ∈ [0.04, 0.08]u∞/δ0 over which the PSD
abruptly decreases, suggest a flow structure of a time-scale
of [12.5, 25]δ0/u∞. We have ruled out unsteadiness of the
recirculation vortex within the separation zone as the source
of the sudden frequency change at point 2. This is because the
time required for a full convective recirculation (of the outer
streamline) corresponds to the significantly lower frequency
of ∼0.01u∞/δ0.

Given the above, we believe that an acoustic (pressure
wave) mechanism is present. The acoustic propagation time
required to travel along streamline Ψ from the separation
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FIG. 10. Contour plot of mean density gradient magnitude (∇ρ̄ δ0/ρ∞); solid lines of p̄/p∞, dashed sonic line (M = 1), green line with arrows
depicts streamline Ψ over the recirculation bubble
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FIG. 11. Illustration of the location of the numerical probes relative
to the SBLI; contour-lines of p/p∞.
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FIG. 12. Power spectral density (PSD) of pressure signal at the three
probe locations; Welch function.

point to the re-attachment position in the relaxation region,
can be estimated by carrying out a line integral along the
streamline (path) Ψ joining (x,z)/δ0 from ∼(−2.98, 0.028)
to ∼(1.368, 0.623):

∆tΨ =

ˆ
Ψ

(γ p/ρ)−1/2 dψ (37)

where dψ is the length of a discrete segment along streamline
Ψ, i.e. dψ =

√
dx2 +dz2. The streamline Ψ is depicted in

Fig. 10 by the green solid line with arrows.
Equation (37) gives a time-scale of ∆tΨ ≈ 8δ0/u∞. Note

that the relatively large region of subsonic Mach number post-
SBLI allows acoustic waves to propagate upstream of the re-
attachment towards the SBLI. The mean convective transport
is ignored since its effect on the acoustic wave propagation
cancels out when carrying out both forward and backward in-
tegration along the streamline path.

Assuming that the acoustic wave travels along streamline
Ψ from the point of the mean flow separation to mean re-
attachment and back, it gives us an estimated time-scale of
∼16δ0/u∞. The above is within the observed low-frequency
range [12.5, 25]u∞/δ0 found to correspond to the abrupt in-
crease in the pressure fluctuation PSD at the λ -shock foot in
Fig. 12. We can obtain a value closer to the upper range value
of 25u∞/δ0 by integrating the acoustic speed propagation up-
stream along the wall surface. Nonetheless, ∆tΨ in itself does
not constitute sufficient evidence which unequivocally proves
that the observed low-frequency mechanism at the λ -shock
foot is induced by pressure reciprocity between the SBLI sep-
aration and re-attachment regions. The exact physical mech-
anism leading to this phenomenon is not yet well understood,
and further analysis is required.
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We hypothesize that unsteadiness in the secondary com-
pression waves, which are formed at the re-attachment of the
mixing layer in the relaxation region, causes a sufficiently sig-
nificant increase in the local mean pressure. The pressure in-
crease influences the upstream SBLI via the (substantial) sub-
sonic region present post-SBLI within the separation zone and
mixing layer, as evident by the mean sonic line in Fig. 10. The
local mean compression is attributed to the abrupt impinge-
ment (re-attachment) of the turbulent mixing layer onto the
ramp surface.

Schneider 81 showed that weak harmonic waves could prop-
agate upstream in a supersonic stream along a plane wall over
distances that are very large in comparison with the boundary-
layer thickness. However, the upstream propagation dis-
tance depends on the width of the subsonic layer. As the
Reynolds number increases, the sonic line rapidly approaches
the wall. In the experiment of Settles, Fitzpatrick, and Bog-
donoff 12 , the SBLI set-up was similar to the present study.
The Reynolds number was of an order of magnitude higher.
In the experiment, the sonic line in the undisturbed TBL was
around 0.01δ from the wall, i.e. 0.04δ0 of the present case.
However, the shock was still prone to unsteady low-frequency
oscillations. Though previous studies have shown that the
extent of the upstream influence is an active function of the
Reynolds number82,83, and it becomes weaker with increasing
Reynolds number, a separation layer and a subsonic region
will nonetheless still develop. The subsonic region can be sev-
eral orders of magnitude more extensive in the post-shock area
as Fig. 10 illustrates. The acoustic interaction, or reciprocity,
mechanism proposed here should be further investigated for
different ramp angles, higher Reynolds and Mach cases.

C. Reynolds stress anisotropy

We have investigated numerical accuracy regarding the tur-
bulent anisotropy using the barycentric map method of Baner-
jee et al. 84 . To enhance the clarity between the different
turbulence anisotropy states, we have instead implemented a
modified form of the map first suggested by Emory and Iac-
carino 85 . A description of the procedure follows.

The Reynolds stress, Ri j, and the Reynolds stress
anisotropy tensor, ai j, are calculated according to:

Ri j = ũ′′i u′′j = ρu′′i u′′j/ρ̄ (38)

and

ai j =
Ri j

2k
−

δi j

3
, where k =

Rkk

2

The three eigenvalues of the ai j (diagonal) tensor are obtained
such that λ1 ≥ λ2 ≥ λ3.

We use the eigenvalues to position the turbulence field on
the barycentric anisotropy invariant map84. We show that the
eigenvalues lie in the interval −1/3 ≤ λi ≤ 2/3 and that the
number of non-zero eigenvalues and equalities between them
can identify the limiting states of anisotropy. The limiting
states are known as spherical, pancake-like and rod or cigar-
like turbulence based on their visual description.

The first state corresponds to isotropic turbulence, or oth-
erwise a three-component state, i.e. X3c (λ1 = λ2 = λ3 = 0).
The above state represents turbulence where fluctuations ex-
ist in all directions at equal magnitude. The next state is the
isotropic two-component turbulence X2c (λ1 = λ2 = 1/6,λ3 =
−1/3), which describes turbulence where fluctuations exist
along two directions with equal magnitude. The last limiting
state is one-component turbulence X1c (λ1 = 2/3,λ2 = λ3 =
−1/3), which describes a flow where turbulent fluctuations
only exists along one direction.

A convex combination of the above limiting states can de-
scribe any turbulence state. An equilateral triangle is con-
structed to visualise the barycentric map. The peaks of the
graph represent the limiting states (Fig. 13). We can identify
both the intensity and the type of turbulence anisotropy. A
modified weights estimate85 is used to further distinguish the
different transition regions between the three limiting states of
anisotropy:

Xic =
(
Cic +Co f f

)Cexp (39)

where

C1c = λ1−λ2

C2c = 2(λ2−λ3)

C3c = 3λ3 +1

and Co f f = 0.65 and Cexp = 5.
The sides of the triangle (map boundaries) define the tran-

sition regions. The right side of the triangle, coloured ma-
genta in Fig. 13, corresponds to axisymmetric expansion in
which one diagonal component of the Reynolds stress tensor
is larger than the other two, equal components. Thus tur-
bulence has a prolate spheroid shape. The left side of the
triangle, coloured cyan, represents an axisymmetric contrac-
tion in which one component is smaller than the other two
parts, which are equal. Therefore, turbulence has an oblate
spheroid shape. The bottom side of the triangle, coloured yel-
low, shows the two-component turbulence which can be visu-
alized as an ellipse and is typically present near the solid walls
where the wall-normal component of the fluctuations vanishes
much faster than the other parts.

The tiny artificial perturbations generated at the digital fil-
ter inflow saturate the freestream Reynolds stress anisotropy
componentality. Therefore, each normal Reynolds stress
component is filtered when the velocity magnitude becomes
greater or approximately equal to the freestream, i.e. if |u| .
0.997u∞ then Rii = 4e−5u2

∞.
The results from the three numerical schemes, as evidenced

by Fig. 13, produce anisotropy invariant maps with minimal
differences between each other. A similar conclusion was
also previously drawn in the case of a supersonic plane turbu-
lent boundary layer flow33. A higher-order scheme just leads
to a sharper boundary defining the different componentality
(colour) regions, causing the latter to be identified more read-
ily. The freestream flow is purely isotropic and covers the ma-
jority of the domain away from the boundary layer. The shock
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(a)

(b)

(c)

FIG. 13. Contour plots of Reynolds stress anisotropy componentality for (a) M2LM, (b) M5LM and (c) W9 using Eq. (39) with Co f f = 0.65
and Cexp = 5.
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FIG. 14. Contour plots of Reynolds stress anisotropy componentality for W9 using Eq. (39) with Co f f = 0.80 and Cexp = 5.

itself is highlighted by a layer of one component turbulence as
expected.

In the undisturbed TBL and adjacent to the wall, we ob-
serve (as expected) a thin layer of two-component turbulence
(yellow colour). Slightly above the wall, a layer of one-
component turbulence exists (red colour). Both regions are
commonly encountered in the viscous sublayer and buffer
layer of a TBL, respectively; the former is indicative of the
elliptic disc-like structures within the viscous sublayer, while
the latter of the long streaky structures that develop just above
it in the buffer layer. Outside of the buffer layer, a signifi-
cant portion of the log-law region comprises turbulent struc-
tures alternating between a state of axisymmetric contraction
(oblate) and expansion (prolate). Though sufficient averaging
should result in a single colour, it is shown later, in Fig. 14,
that this is due to small alternations off the centre of the cur-
rent colour-map. Nonetheless, this still eludes to the presence
of a mix of oblate and prolate turbulent structures that domi-
nate the log-law region of the undisturbed TBL.

In the outer region of the TBL, close to the edge, a distinc-
tive colour alteration from blue to magenta and back to blue
occurs. We believe that the isotropic limit below the TBL edge
is a result of the high degree of mixing between the oblate
and prolate turbulent structures present below. The magenta
colour at the TBL edge indicates the dominating presence
of prolate spheroid-like structures (axisymmetric expansion),
which are the result of turbulent horseshoe vortices (Fig. 8).
Above the undisturbed TBL, the rod-like structures escape
into the freestream and quickly dissipate to three-component
isotropic turbulence. The authors had made a similar obser-
vation in the past33 while tracking the path of the Reynolds
stress componentality along with the height of a supersonic
plane turbulent boundary layer on a barycentric invariant map.

Downstream of the shock and in the proximity of the ramp
wall, the two-component limit turbulence (yellow) transforms
to two-component axisymmetric limit (green). In contrast,
the one-component turbulence layer (red) turns to axisymmet-
ric contraction (cyan) turbulence. Outwards, the turbulence
transforms to three-dimensional turbulent structures (blue)

followed by a sizeable axisymmetric expansion (magenta) re-
gion. The latter part before the SBLI was predominantly com-
posed of turbulence under axisymmetric contraction and the
change is attributed to the effect of the shock wave (amplifi-
cation of the streamwise Reynolds stress).

Using the anisotropy colour mapping Eq. (39) with con-
stants Co f f = 0.65 and Cexp = 5 leads to uncertainty around
the centre point of the colour-map legend (equilateral trian-
gle). Small variations off-centre but in different directions can
result in significant colour alterations. The above causes the
cyan and magenta colour alternation observed across most of
the undisturbed supersonic TBL before the SBLI (Fig. 13).
Instead, setting Co f f = 0.8 in Eq. (39) returns an alternative
colour-mapping that effectively “filters-out” a large portion
of the colour map surrounding the centre of the barycentric
map. The result is a colour map which essentially represents
only the anisotropy states near the boundaries.

The alternative colour-map helps reveal several distinct fea-
tures that were previously not discernible. The common
thought is that post-re-attachment, in the recovery region, tur-
bulence begins to evolve towards an equilibrium state again,
i.e. develops a TBL anisotropy state similar to pre-SBLI.
However, Fig. 14 suggests otherwise. A distinct magenta re-
gion forms in the outer region of the mixing layer, just above
the compression ramp corner post-SBLI. Immediately, it be-
gins to spread from the outer region of the re-attached mixing
layer inwards and towards the wall, while occupying an ever-
greater proportion of the redeveloping TBL. The expansion of
the anisotropy state is caused by the much larger magnitude
of the streamwise Reynolds stress, (Rxx), relative to the two
normal stress components.

The turbulence in the vicinity of the primary shock is pre-
dominantly of a single component, as defined by the intense
red colour in Figs. 13 and 14. We attribute the above be-
haviour to a significant increase in the wall-normal Reynolds
stress component (Rzz) relatively to the other two normal
components (though Rxx increases too). The magenta re-
gion following the primary shock is the result of the shock-
lets unsteadiness, as well as of the amplification of the weak
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freestream turbulence radiated outward from the undisturbed
supersonic TBL by the shock wave. Though the primary
shock amplifies the wall-normal Reynolds stress component,
it rapidly decays soon after. Consequently, the streamwise
Reynolds stress becomes the dominant component in the ma-
genta region found post-SBLI. In contrast, the magnitude
of the normal Reynolds stress component is relatively much
weaker (Rii < 5×10−4 u−2

∞ ).

D. Turbulence kinetic energy budget

For a compressible flow the turbulence kinetic energy
(TKE), k̃ = Tr(Ri j)/2, is given by

∂ ρ̄ k̃
∂ t

= C+P+Td +Tp +Dv− ε +M+Πp (40)

where the terms on the R.H.S. of Eq. (40) are given in Ta-
ble III.

Similar to the Reynolds stress invariant maps, the numerical
schemes predict very similar TKE budgets; thus, we present
only the results for the 9th-order WENO (W9). Figure 15
shows the two-dimensional distribution of all the turbulence
kinetic energy budget terms. The location of the SBLI signif-
icantly influences the turbulence kinetic energy (TKE). Rela-
tive to the SBLI location and post-SBLI flowfield, the magni-
tude of most budget terms is considerably lower in the undis-
turbed (upstream) TBL.

In most of the undisturbed TBL, the TKE transport term
(C) tends to zero, representing the balance between the pro-
duction and dissipation term, a typical characteristic of equi-
librium turbulence (Fig. 15(a)). In the SBLI region, and more
specifically in the λ -shock foot, the advective term sharply
increases above the area of the peak of the production term
(P). Thus, indicating the advective transfer of TKE towards
the outer region of the free-shear layer. This process contin-
ues along the entire length of the free-shear layer up until the
recovery region.

Following the re-attachment of the turbulent free-shear flow
on to the ramp wall, the advective term attains large negative
values in the lower half of the TBL, following a region of sig-
nificant dissipation. In the outer edges of the re-attached TBL,
the TKE due to advection begins to “mix” with the negative
TKE region. Provided that the ramp is sufficiently long, we
expect that these two regions would eventually cancel out as
the TBL gradually regains an equilibrium state.

The peak value of the production term P (Fig. 15(b)) occurs
(i) just above the separation bubble front in the vicinity of the
shockwave and separated shear layer, and (ii) in a short region
downstream of the separation point. The above behaviour is
due to the strong mean shear sustained around these regions19.

In the undisturbed TBL, the production term P encom-
passes a peak around y+ ≈ 8−9, that decays rapidly towards
the viscous sublayer (y+ < 5) and more gradually along the
log-law region, eventually disappearing at the wall and the
TBL edge. The production term notably peaks in the buffer
layer region 5< y+ < 45 and is thus the underlying turbulence
producing region sustaining the supersonic TBL.

TABLE III. Turbulence kinetic energy budget terms.

C =− ∂

∂x j

(
ρ̄ k̃ũ j

)
Advection

P =−ρu′′i u′′j
∂ ũi

∂x j
Production

Td =− ∂

∂x j

(
ρu′′i u′′i u′′j

)
Turbulent diffusion

Tp =−
∂

∂x j

(
p′u′′j

)
Pressure diffusion

Dv =
∂

∂x j

(
τ ′i ju

′′
i

)
Viscous diffusion

ε = τ ′i j
∂u′′i
∂x j

Dissipation

M = u′′i

(
∂ τ̄i j

∂x j
− ∂ p̄

∂xi

)
Mass flux

Πp = p′
∂u′′i
∂xi

Pressure strain / Dilatation

Away from the wall, the turbulence producing mechanism
transitions from boundary layer turbulence to free-shear tur-
bulence. In the recovery region post-SBLI, the production
term decreases as a result of the decay of the free-shear layer.
At the same time, the near-wall peak rises as a result of the
flow re-attaching and reverting to a turbulent boundary layer.

The turbulent transport term Td is most significant in the
SBLI region and free-shear layer (Fig. 15(c)). In the undis-
turbed TBL (before SBLI), Td increases from zero at the wall
to a maximum positive value at y+ ≈ 4.5 near the boundary
between the viscous sublayer and buffer region. In contrast,
in the range 6.4 < y+ < 19 within the buffer layer, Td is neg-
ative. This result is indicative of a diffusion process, which
transfers TKE from regions where it is the largest (source)
and reversely leading to an influx of TKE into lower-value ar-
eas (sink). The mechanism is identical to that reported for a
canonical flat-plate TBL by Li et al. 19 .

In the near-wall region both pre- and post-SBLI, the tur-
bulent transport/diffusion Td and viscous diffusion Dv terms
balance similarly. In the undisturbed TBL, the production
of TKE peaks at y+ ≈ 9, where the turbulent transport term
Td attains its most considerable negative value. The maxi-
mum positive value of Td is within the upper viscous sub-
layer at y+ ≈ 4.3. This result suggests that Td transports TKE
from the production region towards the outer viscous sublayer.
On the other hand, the viscous diffusion term Dv attains its
most substantial negative value at y+ ≈ 6.5, while its positive
value peaks at y+ ≈ 0.87, similarly to the dissipation term ε .
The above suggests that viscous diffusion is more effective
at transporting TKE from the upper viscous sublayer and to-
wards the wall. Apart from the more considerable value of
Dv at y+ ≈ 0.87, both terms attain a similar magnitude higher
up the undisturbed TBL, suggesting that they work in tandem,
transporting TKE from the central production region in the
buffer layer, towards the near-wall area where it is dissipated.

Above the viscous sublayer of the undisturbed TBL, when
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(a) C (b) P

(c) Td (d) Tp

(e) Dv (f) ε

(g) M (h) Πd

FIG. 15. Turbulence kinetic energy budget terms for the 9th-order WENO scheme: (a) Convection – C, (b) Production – P, (c) Turbulent
diffusion – Td , (d) Pressure diffusion – Tp, (e) Viscous diffusion – Dv, (f) Turbulent dissipation – ε , (g) Turbulent Mass-flux – M, and (h)
Pressure strain/dilatation – Πp.
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the magnitude of one term (Dv or Td) peaks the other be-
comes zero, which likely indicates the two terms are in some
way correlated. The same near-wall mechanism (between Td
and Dv) is present also in the relaxation region after the re-
attachment of the free-shear layer. However, now the maxi-
mum TKE production (P) is located a lot higher in the TBL.
Thus the mechanism is likely an intrinsic characteristic of a
TBL buffer region.

Turbulent diffusion, Td , sharply increases at the λ -shock
foot for both positive and negative near-wall ranges as a result
of the shock wave. Moreover, the SBLI is behind both positive
and negative value layers gradually expanding.

In contrast to the positive value Td layer (y+ < 4.5), the
SBLI causes the negative value layer (6.4 < y+ < 19) to be
“ejected” of the wall. More precisely, the SBLI causes the
undisturbed TBL to split at the boundary between the viscous
sublayer and the buffer layer into two separate flows. The
TBL above the viscous layer is first “uplifted” and directed
away from the wall at the λ -shock foot. It then travels over
the separation bubble resulting in the developing free-shear
layer.

The SBLI additionally leads to the formation of a new dis-
tinct outer positive Td layer at the λ -shock foot, just above the
negative value region. A significant portion of the produced
TKE transported towards the outer boundary layer edge as a
result of two Td processes:

• Separation of the negative value region contained in the
buffer region from the positive value layer contained
within the viscous sublayer.

• Transfer of TKE from the negative layer to the outer
positive layer in the free-shear layer.

Along with the oblique shock wave in Fig. 15(d), the pres-
sure diffusion, Tp, is over an order of magnitude larger than
the turbulent diffusion, Td . In contrast, the opposite holds
in the separated and re-attached TBL. Moreover, Tp attains a
substantially large positive value in the near-wall region be-
low both the λ -shock foot and the re-attached TBL and is the
primary mechanism of TKE transport towards the inner layer.
Both turbulent and pressure diffusion are equal in magnitude,
but opposite in sign, only within a narrow region at the λ -
shock foot just above the sonic line. Tp weakens in the vicin-
ity of the compression corner, particularly around the centre
of the separation bubble.

The viscous diffusion Dv (Fig. 15(e)) attains a relatively
large magnitude in the undisturbed TBL near to the wall. In
the undisturbed TBL at x =−8δ0, Dv comprises of three sep-
arate layers. The first layer is within the viscous sublayer
(y+ < 3.7) and causes an increase in TKE (k̃). The second
layer spans 3.7 < y+ < 15, occupying the upper region of the
viscous sublayer and lower part of the buffer layer, and causes
a decrease in k̃. The third region spans 15 < y+ < 46 and
causes only a small increase in k̃. The first two layers per-
sist downstream of the SBLI along the wall of the ramp. The
third layer, however, becomes amplified by the SBLI, which
also causes it to stem out towards the boundary layer edge.
After that, it gradually begins to decay as the TBL returns to

an equilibrium state in the relaxation region. In contrast to Td ,
the SBLI ejects only a small fraction of the second layer, since
the second layer of Dv is much nearer to the wall. The third
layer in the redeveloping TBL (relaxation region) cancels out
with the negative layer.

The reduction in k̃ caused by Dv in the second layer pre-
SBLI is correlated to the location of maximum TKE produc-
tion (P, Fig. 15(b)). It suggests that Dv “spreads” k̃ outwards,
towards both the inner (near-wall) and outer (edge) TBL re-
gions. The influx of k̃ received in the first layer results in the
sharp increase in Dv in the viscous sublayer. The viscous sub-
layer region thus acts like a TKE sink, receiving k̃ using Dv
and dissipating it via ε . This mechanism applies along the
entire length of the no-slip wall, pre- to post-SBLI.

The order of magnitude difference between the third layer
and the first two in the undisturbed TBL is a consequence of
the much stronger viscous effects present in the “lower” near-
wall region (viscous sublayer and lower buffer region) com-
pared to the “upper” near-wall region (upper buffer region).

Similar to the viscous diffusion term, Dv, the TKE dissipa-
tion is prevalent in the near-wall region along the entire length
of the wall boundary (Fig. 15(f)). In the undisturbed TBL,
the dissipation reaches a maximum value at y+ ≈ 0.9, which
indicates grids with a y+ > 1 will not accurately resolve this
location.

The TKE dissipation, ε , attains its largest magnitude at
the λ -shock foot (or foot of the separated free-shear layer),
as similarly reported in the previous numerical studies of Li
et al. 19 and Tong et al. 24 . It then weakens above the separa-
tion bubble but begins to increase again as the free-shear layer
re-attaches in the relaxation region. Both of the areas men-
tioned above either strongly correlate or are near regions of
large TKE production (P).

Along the ramp wall, the dissipation consumes TKE mostly
transferred there utilizing turbulent diffusion, Td , rather than
viscous diffusion Dv. Overall, however, the former plays a
more prominent role in strongly turbulent regions, while the
latter in the near-wall areas. Figure 15(c) shows the diffu-
sion of k̃ due to Td , indicated by the negative value (blue
coloured regions), at both of the high TKE production regions
(Fig. 15(b)).

In the mass-flux budget term (M), ai ≡−u′′i ≡ ρ ′u′i/ρ̄ is the
turbulent mass-flux velocity, which represents the coupling of
density and velocity fluctuations. It only appears in the case of
compressible or variable density turbulence and is the domi-
nant form of advection in buoyancy-driven turbulence such as
the Rayleigh–Taylor instability (ai ≈ ũi).

It can be shown than ai ≡ ũi − ūi, which for a turbulent
flow leads to the following two cases: (i) if ai = 0 then ũ = ū
so ρ ′ = 0, or (ii) sign(ai) = sign(ũi− ūi). The first condi-
tion clearly proves that ai (and hence M) is non-zero only
in the case of compressible or variable density turbulence.
The second condition alludes to the origin and nature of the
turbulent mass-flux velocity; it forms when there is a differ-
ence between the mass-averaged and ensemble mean veloc-
ities, which only occurs when both the density and velocity
fluctuations exist and are also not uncorrelated.

In turn, we can interpret the mass-flux budget term (M) as
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the correlation between the turbulent mass-flux velocity (ai)
and the mean-flow acceleration caused by the resulting net
gradient of the pressure and viscous stresses. Vanishing M
may imply any of the following three conditions:

• ai is zero;

• the mean-flow acceleration is zero (viscous stress and
pressure surface gradients balance);

• ai and pressure or viscous stresses gradients are uncor-
related, i.e. are random and thus converges to zero with
increasing sample size.

Retrospectively, a positive correlation (M > 0) implies that
the net force gradient drives and amplifies the correspond-
ing mass-flux velocity (similarly to the mean-flow velocity)
thus increasing TKE (k̃), while a negative correlation (anti-
correlation) the opposite.

In the undisturbed TBL (Fig. 15(g)), M is found to be
positive and peak at y+ ≈ 8 in the buffer region. In the
viscous sublayer the wall-normal component of the shear-
stresses gradient largely dictate the mass-flux budget term;
typically ∂τi2/∂y << 0 while the gradients of mean pressure
(∂ p̄/∂x j) and those in the in x-direction of the viscous stress
(∂τi1/∂x) are considered negligible. M is negative in the vis-
cous sub-layer most likely due to the anti-correlation of the
density and velocity fluctuations, i.e. u′′i ≡−ρ ′u′i > 0.

The proximity to the viscous sublayer (intense viscous
stresses), peak TKE production (large velocity fluctuations)
and weak pressure gradient across a TBL (|∂ p/∂xi| ≈ 0),
should imply the magnitude of M is large. Even so, the con-
tribution of the turbulent mass-flux budget term (M) remains
relatively low, as its peak value is an order of magnitude be-
low several other TKE budget terms, e.g. P, Td , Dv and ε .
Though M is negative in the viscous sublayer (y+ < 1.2), it
is ∼ 15 times smaller than in the buffer region. Therefore,
the contribution of the turbulent mass-fluxes is relatively low,
even in the case of a supersonic TBL.

The unusual “S”-like distribution of the mass-flux term (M)
at the SBLI foot is a consequence of its two constituent terms.
The viscous stresses are the primary contributor in the near-
wall region at the leading edge of the separation bubble. In
contrast, the pressure gradient (∇p) becomes the dominant
mechanism away from the wall at the λ -shock foot. In both
cases, large values are indicative of strong compressibility ef-
fects (density fluctuations) in the vicinity of the SBLI. The
contribution of M to the TKE (k̃) is approximately an order of
magnitude less than that of the production term P.

In the relaxation region, M remains positive-valued in the
mixing layer as well as subsequent re-attached TBL, though
its magnitude remains an order of magnitude below other
terms. Nonetheless, the turbulent mass-flux (M) is the only
TKE budget term to take a (negative) value between the free-
shear layer and oblique shock wave, where the mean pres-
sure isobar level p̄/p∞ = 3 is present. Density fluctuations
attributed to the secondary compression waves (shocklets) are
likely the cause, as evident by the density-gradient contour
plot shown in Fig. 8(c).

Figure 15(h) plots the pressure-dilatation term (Πp), com-
monly assumed to be negligible in many turbulence models.
Indeed, Πp is weak across most of the undisturbed super-
sonic TBL height, apart from the vicinity of the isothermal
wall, where it strengthens considerably due to the strong anti-
correlation between the pressure fluctuation and velocity fluc-
tuation gradient. The influence on Πp of the imposed heat-
transfer condition at the wall is uncertain.

Moreover, Πp abruptly strengthens at the λ -shock foot, as
well as at the re-attachment of the free-shear layer. Both
locations also closely correspond to abrupt increases in P.
However, it is unclear whether the two are correlated. Sim-
ilarly, though, both terms gradually weaken shortly after each
peak. In the analysis of the full Reynolds-stress tensor bud-
get terms for an impinging shockwave/boundary-layer inter-
action, Vyas, Yoder, and Gaitonde 86 showed that the pres-
sure diffusion term (Πp) is small but non-zero in the normal
stress budgets. However, it played a crucial role in the pri-
mary shear stress budget. The construction of the governing
equation for TKE (Eq. (40)) takes into account the trace of the
Reynolds-stress tensor, i.e. the normal Reynolds-stress com-
ponents only. Nonetheless, the above results generally suggest
that in certain regions, Πp becomes significant enough to be
considered.

Πp becomes negative when the sign of the pressure fluc-
tuation and the density-weighted (Favre) velocity fluctuation
gradient are opposite, e.g. compression due to a velocity fluc-
tuation (∂u′′i /∂xi < 0) is accompanied by a pressure compres-
sion (p′ > 0). We can interpret this term as a correlation be-
tween the divergence of the velocity fluctuation and the pres-
sure change (fluctuation). If the two terms are anti-correlated,
as here, then ∇u′′ does work by causing a change in pressure,
thus dampening velocity fluctuations; TKE is absorbed due to
work done by the velocity fluctuations to compress or expand
the fluid. If on the other hand, the two terms are positively cor-
related, then instead the pressure will do work to amplify the
velocity fluctuations. Thus, the predominant negative values
of Πp found at the SBLI and the free-shear layer is indicative
of the substantial velocity fluctuations present, which largely
determine and drive the pressure fluctuations.

At and after the SBLI, the results suggest that only the tur-
bulent transport (Td) and advection (C) terms play a signif-
icant role in balancing turbulent production and dissipation.
Post-SBLI in the recovery region, all of the TKE budget terms
begin to slowly evolve towards the former equilibrium state in
the undisturbed TBL.

Before concluding the analysis, it is worth cautioning that
the adiabatic recovery at the wall according to Eq. (29) is ap-
proximately 317K, which is 10 degrees Kelvin higher than the
prescribed wall temperature in the current simulations. The
isothermal wall (labeled as cold wall) has a temperature lower
than the adiabatic recovery temperature (307 < 317K). Im-
posing a different heat-flux boundary condition at the no-slip
wall, such as an adiabatic wall (zero heat-transfer) or hot wall
(Tw > 317K), will very likely lead to significant changes in
the profile and the magnitude of the turbulence budget terms.
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VI. CONCLUSIONS

We examined the performance of the WENO implementa-
tion. We showed that implementing a “normalization” tech-
nique of the WENO candidate stencils further reduces the nu-
merical dissipation of the scheme and thus improve the accu-
racy of the results, particularly for under-resolved grids. For
high-order numerical schemes, such as the 11th-order WENO
scheme examined in § III D, the stencil spans a large portion
of the local surrounding flowfield. The stencil extent is further
exaggerated on a coarser mesh, and consequently, the values
can differ more significantly. Normalizing the stencil values
such that there is the positive real number range, i.e. a value of
candidate stencil ∈R>0, also prevents negative value smooth-
ness indicators. Specifically, the stencil values are re-scaled
such that the most substantial value contained is always equal
to one, ensuring Galilean invariance of the scheme (though not
proven here). Lastly, in the case of only small jumps across
the stencils relative to the minimum absolute value, subtract-
ing the latter ensures the former are sufficiently amplified and
“identified” by the smoothness indicators.

For the case of a shockwave (supersonic) turbulent bound-
ary layer interaction (SBLI), the order of the scheme has a
significant effect on the accuracy of the DNS results obtained.
High-order methods can resolve smaller turbulent structures
in the flow. Consequently, the energy entering the turbulent
cascade process at the inertial scale can be distributed across a
broader turbulence kinetic energy spectrum range. The higher
energy content present at the resolved (large) scales in lower-
order schemes causes the recirculation bubble to shift further
downstream, in contrast to the experimental and numerical
(DNS) data.

Using low-Mach corrections in the subsonic region of the
TBL and recirculation bubble has a negligible effect on the
accuracy of the low-order schemes. The above result suggests
that supersonic TBL and SBLI are primarily dominated by the
processes and resolved turbulence in the supersonic regions of
the flow, at least for the conditions considered here (M∞ = 3).

We demonstrated that using high-order high-resolution
methods and reasonably fine grids, DNS provides accurate
estimations of several key flow metrics, which are in good
agreement with reference DNS data and experimental mea-
surements. In §V B we reason that the low-frequency oscil-
lation exhibited by the shockwave likely occurs due to inter-
change between the foot of the λ -shockwave and the reattach-
ment region of the detached free-shear (mixing) layer. The
incoming undisturbed TBL gradually pushes the recirculation
bubble downstream and with it the shockwave too. The above
flow development causes the detached shear layer to impinge
onto the ramp sooner, steadily rising the pressure close to the
ramp corner. The pressure rise travels upstream via the sub-
sonic region of the TBL and separation bubble and eventually
becomes sufficiently large to “push” the λ -shock foot back
upstream again. The time taken for an acoustic (pressure)
wave to travel back and forth said distance below the sonic line
corresponds closely to that of the low-frequency motion of the
shockwave. Then, as the pressure relaxes, the process is re-
peated, leading to the low-frequency oscillation of the oblique

shock observed in SBLI.
Although lower-order schemes are inaccurate even for rel-

atively fine grids, the Reynolds stress anisotropy componen-
tality is consistent across all numerical schemes (§ V C). The
componentality of the re-attached TBL does not reach an equi-
librium state post-SBLI, at least for the length of the ramp
considered here; it differs to that of the former “undisturbed”
state across the entire height of the turbulent boundary layer.

At the “undisturbed” TBL, several of the turbulence kinetic
energy budget terms examined in § V D were found to change
rapidly near the wall and below the buffer layer, with the vis-
cous diffusion (Dv) in particular peaking below a y+ value of
one, at just y+ ≈ 0.87.

Both the Reynolds stress anisotropy componentality and
turbulence kinetic energy budget terms provided little infor-
mation in unravelling the cause behind the low-frequency os-
cillation of the SBLI shockwave. However, the production (P)
and dissipation (ε) TKE budget terms, as well as the com-
pressible turbulence mass-flux (M) and pressure-strain (Πp)
terms, are found to strengthen at the separation and reattach-
ment points but weaken in-between above the recirculation
bubble. This may allude to a possible interaction mechanism
between the separation and reattachment points, though the
mass-flux (M) and pressure-strain (Πp) terms are about two
to three orders of magnitude weaker. The mass flux, however,
displayed several distinct, unusual features:

1. An “S”-like shape at the foot of the λ -shock.

2. A negative value region in the upper portion of the de-
tached free-shear layer just above the recirculation bub-
ble.

3. Another (negative value region) where the secondary
compression waves, “shocklets”, form and are pro-
duced by the re-attaching shear layer on to the ramp
wall.

The results of this study provide numerical evidence of the
accuracy of high-resolution and high-order methods in super-
sonic SBLI and acoustics. Furthermore, they shed light onto
the physics of supersonic SBLI. Further investigation of the
above, in different hypersonic flow regimes, is the subject of
future research.
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