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We study the dissipative dynamics of neutral atoms in anisotropic harmonic potentials, immersed in a reservoir
species that is not trapped by the harmonic potential. Considering initial motional excitation of the atoms along
one direction, we explore the resulting spontaneous emission of reservoir excitations, across a range of trap
parameters from strong to weak radial confinement. In different limits these processes are useful as a basis for
analogies to laser cooling, or as a means to introduce controlled dissipation to many-body dynamics. For realistic
experimental parameters, we analyze the distribution of the atoms during the decay and determine the effects of

heating arising from a finite temperature reservoir.
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I. INTRODUCTION

Developments in experiments with ultracold atoms over
the past two decades have allowed not only the exploration of
coherent many-body dynamics, but also dissipative dynam-
ics, in limits that are well understood based on microscopic
considerations [1,2]. This has enabled both additional con-
trol over unwanted dissipation in these systems [3-8], and
opportunities to explore the effects of dissipation on many-
body systems, including robustness to decoherence [9-12]
and dissipative driving as a means to prepare desired many-
body states [13—-16].

In this context, the study of dissipation induced by im-
mersing the system in a reservoir of a different species is
particularly intriguing, offering a means to cool atoms to
a motional ground state without destroying internal states
under appropriate conditions [17]. For large reservoirs, this
process takes the form of spontaneous emission of a reservoir
excitation, with the decay of the atom being mathematically
analogous in many ways to the decay of an excited atom via
spontaneous emission of photons. This has a variety of poten-
tial applications, including implementation of dark-state laser
cooling schemes for reducing the temperature of atoms in an
optical lattice within a band [18,19]. Initial experiments have
demonstrated cooling from higher bands [20,21], but were
often limited by collisions between atoms in higher bands.
The development of dual-species experiments with alkaline-
earth-metal atoms and alkali-metal atoms [22-24] now pro-
vide new opportunities in this direction. Especially in the
case of spin-polarized fermions, where collisions within the
lattice are suppressed, the dynamics should be dominated by
the coherent dynamics of the system and dissipation induced
by coupling of atoms between bands. In this context, other
opportunities to study both coherent and incoherent dynamics
are offered by the study of impurities in a lattice immersed in
a BEC, where the coupling with intraband phonons leads to
formation of polarons [25]. Impurities dressed by Bogoliubov
excitations of the reservoir (phonons) have been studied in the
weakly interacting limit, using Frohlich’s polaron Hamilto-
nian [26,27], and beyond the mean-field regime [28,29] where
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the existence of exotic polarons dressed by roton excitations
has been observed [29].

Inspired by these ongoing opportunities, in this article we
quantitatively analyze these dissipative processes for atoms
in anisotropic traps. Previous theoretical studies [17,19] have
generally relied on one-dimensional (1D) models for the
trapped atoms, assuming strong confinement in the radial
directions. Here we consider a range of trapping conditions
in the radial direction with respect to the direction along
which an atom is initially excited. This allows us also to treat
parameters where the radial trapping is weak. This regime
is both a natural starting point for experiments (with lattices
created in 1D or 2D), and provides the intriguing possibility
of cooling distributions of fermions on a single lattice site.
It is also a natural starting point for considering dissipative
transport dynamics, which have recently been considered
between harmonic traps, in which the radial states served as a
continuum of final states for an effective dissipative process in
atomtronics [30,31]. The parameter regimes considered here
would provide a new way to further control such dissipative
transport dynamics.

We first study the spontaneous emission of reservoir exci-
tations from a single impurity atom initially excited along the
axial direction, deriving the corresponding master equation
and evaluating the transition coefficients between axial and
radial states. We study the dependence of these rates on the
frequencies, and determine realistic decay times based on
parameters used in current experiments. We consider both the
case of strong radial trapping, where the effect of the radial
frequency is primarily quantitative, and then the case of weak
radial trapping, where the physics qualitatively changes, as
described above. We then consider both the effects of finite
temperatures and the dynamics of fermions with weak radial
trapping.

The remainder of the manuscript is organized as follows. In
Sec. IT we introduce the model and derive the master equation
of the open system under the Born-Markov approximation,
giving an overview of preliminary calculations and concepts
used in the following sections. In Sec. III we then study
the spontaneous emission of an impurity in a 3D harmonic
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trap tightly confined in one direction and isotropic in the
other two, and see how the dynamics of the atom initially
excited changes when varying the ratio between the trapping
frequencies. In Sec. IV we consider in more detail the case of
weak trapping in the radial direction and analyze the effects
of heating due to nonzero reservoir temperatures. We then
generalize the results to the case of spin-polarized fermions
in Sec. V, before discussing the conclusions and outlook in
Sec. VL.

II. MODEL

We consider an impurity atom in a harmonic trap immersed
in a 3D superfluid reservoir, where for simplicity we consider
the latter to be confined in a well potential of volume V and
we neglect the internal degrees of freedom of the impurity.
The model is described by the total Hamiltonian

H = H, + Hy + Hiy, (D
where
H, = h(w.h, + oy + o, + Yoo+ oy +0,)) ()

is the Hamiltonian for the impurity, described by a 3D quan-
tum harmonic oscillator,

m=m+ZqW%k (3)
k=0
is the Hamiltonian of the superfluid bath, obtained from
Bogoliubov theory of a weakly interacting Bose gas [32], so
that Z;l and by create and annihilate Bogoliubov excitations
with energy €(k) = ¢, and momentum /K, and where Ej is
the ground-state energy of the superfluid.
The contact interaction between the system and reservoir
is given by the Hamiltonian of the form

Hine = gap / 3p(p)d(r — xp)d’ry = gadp(r),  (4)

where r is the position operator for the motional states of the
impurity and where r;, and § p are respectively the position and
the density fluctuation operators of the superfluid. The cou-
pling strength between the impurity of mass m, and the atoms
of the BEC (with mass m;) is given by g, = 47rh2aab/2ﬁ1,
where a,, is the scattering length between the impurity and

the superfluid, and m = ™ s the reduced mass. The
Mg+m

a b
density fluctuation operator § o was obtained by using a mean-
field description for the field operator W = ,/pg + 8 (see
Appendix A). Under the assumption of a weakly interacting
Bose gas at low temperatures, the terms at the second order in

8W can be neglected, and by noting ¥ = «/LV Zk(uklske"k‘r +

vkb]';e’ik‘r), the interaction Hamiltonian reduces to

Hine = gav/pol8VT () + 8W ()]
= gun| 57 Dol + v Bue™ + B DL (5)
k

where uy and vy are the coefficients obtained from the Bogoli-
ubov transformation of the form

R2
2 k
= — 6
v = B (7)
1-R;
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FIG. 1. Schematic representation of level transition mechanisms
for an atom initially excited along one direction in a 3D harmonic
trap immersed in a superfluid. At 7 = 0 the only possible transitions
are given by the decay from the state |0, O, 1) to the state |m, n, O)
with the creation of Bogoliubov excitations and are described by the
coefficients ["go;— .m0 in the equations of motion. At finite tempera-
ture, an additional contribution due to the interaction with thermal
excitations can induce stimulated transitions and excite the atoms to
higher motional states either radially or axially. This contribution is
represented by the coefficients H,, g o' -

(sup)
. €Kk —E€, — .
having defined Ry, = = e B where p, = gmpo = mpu® is

the chemical potential of the reservoir, with g;, the boson-
boson interaction strength, pg is the density of the BEC, and

u =~ gb”p ? is the speed of sound in the superfluid. The energy
of the excitations is given by

Gk—\/ (sup)

(sub) __

(sub))z’ (8)

with " = Zn’f and ™" = Fuk the energy of the Bogoli-

ubov exmtatlons respectlvely in the supersonic regime (when
€ > [p, up to the chemical potential) and in the subsonic
regime (for €, <« up). The different dispersion relations in
the two regimes imply a change also in the structure factor
Sk) = (uk + vk)?, with S(k) ~ 1 in the supersonic limit and
S(k) >~ 5 in the subsonic limit.

After derlvmg the master equation under the Born-Markov
approximation (see Appendix A for further details) we find the
occupation probability of the impurity in the state |m,, m,, m;)
to be given by

pmx,y,z = Z

Nyyz -

> wi(n :mi) >0

-

m“ :

> wi(mi —m)) >0

+ Z H”.r,,\-_;mh‘y.z (anu‘._:

Nxy.z

an,y, 777 Myy 7 p”x.ynz

mev}'»l_)m.,n,\‘,: pmw‘-z

= Pmyy.)- €))

As illustrated in Fig. 1, the first two terms in Eq. (9) define
the decay with the emission of a Bogoliubov excitation, while
the third term describes stimulated emission and absorption of
thermal excitations that can bring the atom to higher motional
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states. These transition rates are derived according to Fermi’s
golden rule as

2 D n
P = 7 ij T P3G — ). (10)

2 5
Hiymese = 5 ;zv(k)m,m(kn%(e —a), (11

where € is the difference of energy between the initial and
final state of the impurity,

Tn,m<k>=gab\/§(uk+vk) [T tmile ™ my. (12

i=x,y,2

and N(k) = (e — 1)~! is the number of excitations with
momentum k given by the Bose distribution, to be taken into
account when considering a finite temperature reservoir.

The effect of the thermal excitations can, in principle, be
neglected if kpTp < fiw for all relevant trapping frequencies
w, but depending on the geometry of the system, this condi-
tion may not be fulfilled. In Sec. IV we study how heating
effects modify the dynamics of the system and under which
conditions they can be minimized and neglected.

In the following sections we focus on the derivation of
these transition coefficients to study the evolution of the state
of the impurity in different geometrical confinements, in the
case of impurities initially excited in the first excited state
along the tightly confined direction.

II1. SINGLE ATOM COOLING IN A 3D HARMONIC
POTENTIAL TIGHTLY CONFINED IN ONE DIRECTION

In this section we study the case of an impurity trapped in a
3D harmonic potential tightly confined in the axial direction z
and isotropic in the other directions, so that w, > @, = wy,,.
For this case of a pancake shaped potential, we will refer to
the tightly confined direction as the axial direction, and to the
others as the radial directions. In this scenario, we consider the
atom initially in the first excited state along the axial direction,
and we study the spontaneous emission with decay towards
the radial directions.

At this aim, we restrict our study to the case where the
separation between the energy levels in the different directions
is much larger than the chemical potential of the BEC, so
we can study the dynamics of the system in the supersonic
regime, where the Bogoliubov excitations, emitted during
the decay of the excited impurities, are particlelike having
energy €k = k2 /(2my) and the structure factor is S(k) =
|ux + vk|2 ~ 1.

The spontaneous decay rates can be evaluated using
Eq. (10) and Eq. (12), noticing that the term e /" is the
displacement operator D(a) = exp[a&; —o*a;], with a =
—Zk’% and rj;, = \/mel the oscillation length in the j direc-
tion. By using the identity [33]

’ n>! _laf n—n'|y |n—n’
(W D@)n) = [~=e” oL ), (13)

0.003
l001-5mno

\/ Wy Wo

FIG. 2. Transition coefficients I'gg_ 0 in units of ,/w,wy, for
w;/w, = 25. The transitions contributing the most are the ones to
low-energy radial states.

we then obtain

242 .. |nj—n'

s no!l T ijokj \"7'
(n/j|e lkj]0|nj) — ;e 7 <_ J J
n.! ﬁ

w72 K2
x L, (—’2’) (14)

. . (n;—n',)
with n. = min(n;, n;-), n. = max(n,, n’j), and L,” "’

the associated Laguerre polynomial.

After transforming the components of the momentum
along the three directions to spherical coordinates and inte-
grating over the momentum using the property of the delta
function, we obtain that the dimensionless decay rates of
Eq. (10) for the transitions |0y, O,, 1;) — |m,, n,,0;) are
given by

(x) is

l—‘OOI—>mn() o zgipr\/mumb <@
Jorwg Q)2 uminlw \ my,

g
X Ag(m, ")/ do cos® O (sin® 9 )" +1/2
0

m+n+%
[w — (m + n)])

% e—:—g[w—(m-kn)](sinza-&—%00520), (15)
where Ag(m, n) = fozﬂ d¢ cos? ¢ sin®" ¢. We wrote them
in units of ,/w,wy, with wy = pp/2h, so that they would
explicitly depend on the ratio w = w,/w,.

In Fig. 2 we observe the dependence of these decay rates
on the final radial states n and m, observing that the main con-
tributions come from transitions towards low-energy states.

We can estimate the decay time T = 1 /'t from the initial
state |0, 0, 1), after evaluating the total decay rate 'ty = I' =
Zn’m Io01—mno- In Fig. 3 we observe the variation of the total
decay rate with the ratio between the two trapping frequencies
w = w,/w, ranging through different configurations (i.e., 1D
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FIG. 3. Total decay rate from the initial state |001) and decay
time (inset) as a function of the ratio between the frequencies. In the
1D limit and 3D isotropic limit, respectively for w = w,/w, < 1 and
w = 1, the only transition available is the one given by the decay
rate ['go1—000, for which analytical solutions in the two cases are
given by Egs. (16) and (17). The corresponding decay times are
illustrated in the inset respectively with a dotted and a dashed line.
In the 1D limit, for increasing w, the decay rate increases due to
the fact that at higher frequencies the particle will oscillate more
in the same time interval, and as a consequence the interaction with
the reservoir is enhanced. In the 3D limit, for w > 1, the number of
transitions contributing to the total decay rate is w(w + 1)/2, giving
an increasing total decay rate also in this limit. The value of @, used
here is always larger than the reference frequency wy = w,/(2h),
so that we are always in the supersonic regime even in the low-
frequency 1D limit.

for w < 1, 3D isotropic at w = 1, and 3D anisotropic when
w > 1). We see that increasing the ratio w in the 1D limit,
the total decay rate (given by the single transition I'j_)
increases, as a consequence of the fact that increasing the
trapping frequency along z (keeping w, fixed) increases the
number of collisions with the reservoir in a time unit. In this
limit the decay rate can be written in the simplified form [17]

| N g, Vmymg
— = “”po e / e glds. (16)
Wy my/mg

In the 3D isotropic case (w = 1), the analytical expression
obtained from Eq. (15) (for m = n = 0) can be written as

i — a 2
001000 _ eI gibmbpo (17)
JWrwo 3rul’m,

In the 3D limit, going towards higher values of w > 1, al-
though the single values of the allowed transitions 'oo1— mno
decrease for increasing w, the total decay rate increases, since
the number of available final states contributing to that is given
by w(w + 1)/2. From the inset in Fig. 3 we see how the decay
time T = 1/T varies in the different limits: the 1D asymptotic
behavior obtained from Eq. (16) is represented with the dotted
line and the value obtained with the 3D isotropic analytical
case of Eq. (17) is shown for w = 1 by the dashed horizontal
line. From the inset in Fig. 3 we see that I'y, for the 3D case,

as in the 1D case, still behaves as 'yt / /0,00 X /0, /@,

Experimental parameters

Let us use the above results to give an idea of the real
time scales of the dynamics by using some realistic numerical
parameters usually used in some dual species experiments.
In particular, we consider the case of '"'Yb impurities im-
mersed in a 8’Rb superfluid with a density py ~ 10'% cm~.
Considering a scattering length ap, = 1004y, with ag being
the Bohr radius, we obtain that the chemical potential is
Uy = gppP0 = ”fnzb“”” 0o, corresponding to a frequency value
of wy = % ~ 2w x 4 kHz, that we use as reference fre-
quency. This value of the chemical potential sets the speed

of sound in the superfluid to be u = “" ~ 0.5 cm/s. By
considering trapping frequencies w, = 27 % 60 kHz ~ 15wq
and w, = 27 x 200 Hz ~ 0.05w, from the results of the
previous section, we obtain that the decay time is T ~ 2 ms.

IV. SINGLE ATOM COOLING IN A 2D HARMONIC TRAP
TIGHTLY CONFINED IN ONE DIRECTION

In this section we use the concepts introduced above to
study a different geometry for the trapping potential, where
wy > w; > w,. Thinking about a cigar shaped configuration,
we now call the direction along z the radial one and we refer
to the one along x as the axial direction.

For the purposes of this study, we neglect the direction
along y, as the states at those energies will not be involved,
so effectively we study a 2D harmonic trapping with tight
confinement in the direction z, where again we consider only
the two accessible states |0), and [1),. Differently from the
previous case, this time we consider the scenario where the
atom can be initially excited also along the axial direction, so
that we consider transitions of the kind |n,, 1,) — |my, 0,).

In the following we estimate the transition coefficients for
the aforementioned configuration and introduce some further
useful approximations. We additionally include in this section
a finite temperature reservoir gas, making quantitative consid-
erations on the effects this has in the dynamics of the impurity.

A. Estimation of the transition coefficients

Since the states involved in the z direction are restricted to
|0), and |1),, we have two contributions to the decay of the
atoms: the first given by the decay from the radially excited
state, described by the decay rates I'; 1.0, and the second
given by the transitions from and to axial states in the same
radial one, given by I', 4— ., With « either O or 1, which
are effectively in 1D. Since we still operate in the regime
hw, > u;, for the transitions from the excited radial state we
can still consider the system in the supersonic regime. For the
transitions between axial states, however, we have to drop this
assumption, as the energy spacing /w, in this direction can
now be of the same order of the chemical potential 1.

In Appendix B we derive the decay rates I', 1_,,,,0 With an
approach analogous to the one used in the previous section.
However, for numerical reasons, in order to avoid divergences
coming from highly oscillating terms at large m and n in
the numerical evaluation, for the results in this section we
used a semiclassical approximation [34], which we derive and
compare to the fully quantum form in Appendix B.
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FIG. 4. Decay transition coefficients in 2D in units of ,/w,wy, for
w;/w, = 100. The transition coefficients have a maximum for equal
initial and final axial states (i.e., n = m), but due to the constraint on
the momentum coming from the energy conservation involving the
ratio between the frequencies, they are not exactly symmetric about
this diagonal.

The decay rates between different axial and radial states
(plotted in Fig. 4), obtained by using the semiclassical approx-
imation in the supersonic regime, are given by the expression

Zgszodmamb\/mb
Fn —m == - — —(w+n—m Wy W,
Jd—m,0 (22 ma( )N/ @xw0
T
x / d0 sin6 By(n, m, 0)J>_,, («/5“*‘"5(0)),
0 X0
(13)
where J,,_,,(z) are the first-order Bessel functions. Here,
N2n+ 14+ /2m+1
Xmax = x0< 3 (19)

is the average between the initial and final maximum position
of the impurity and where we have defined

2k2 29
£2(0) = )% = anb(w Fn—m)cos’h.  (20)

2k>sin? 6 my,

¢2(0) = (w+n—m)sin®6, (21)

2 myw

and

2w
By(n,m,0) = / dp e <@ ?:2(9) cos? ¢
0

2 2
o i (52) (<)

(22)

with Iy and /; modified Bessel functions of the first kind.

The other contribution to the dynamics comes from the
decay between radial states I'; om0 = I'n— . As mentioned
previously, however, going to high values of m makes the
numerical estimation of the decay rates from and towards high
states difficult, so again, as in the case of the transitions in 2D,
we use the semiclassical approximation, discussed in more
detail in Appendix B. The general form, without assumptions
on the energy of the excitations compared to the chemical
potential of the BEC, is given by the expression

LS [m ek2S (k)
(+u

D) (& +up— )

T
x f J? (k cos O xpmax) Sin 6 d6, (23)
0

n—m

with € = hw,(n — m) and where from the integration over k

of the delta function we obtained k = —Vém”\/ v e,f + ui — Up.

In Fig. 5 we show the results obtained with the most
general form, Eq. (23) (valid for both the supersonic and
subsonic limits), evaluated in the semiclassical approximation
for different values of w,. In Appendix B we compare these
results with the ones obtained in the fully quantum limit
and show how this approximation works reasonably well
even beyond the condition |[n — m| <« n. More precisely, the
relative difference between the values obtained with the two
methods is smaller than 18% for |n — m|/n < 0.9, and it is
in the range 0%—38% for transitions to and from low-energy
states in the limit |n — m| =~ n, as discussed in more detail in
Appendix B.

In the following part we focus on this dynamics along one
direction to study finite temperature effects that can change
the dynamics and steady state of the impurity, comparing the
above decay rates with the stimulated transition rates.

B. Finite temperature reservoir

In this section we study the effects of a finite temperature
reservoir, where the thermal excitations coming from the bath
can, depending on the values of the temperature and chemical
potential of the superfluid and the frequencies of the trap,
excite the atoms either radially or axially, hence inducing re-
heating and changing the dynamics. We consider the thermal
energy to be always smaller than the energy scale in the radial
direction (kgT, < hw,), so that the radial reheating, where the
atoms would be reexcited to the first excited state along z, can
be neglected, and we focus our analysis on two possible sce-
narios in the regime fiw, < kg, < wp <K hw,: kT, = hoy <
Wy K hw, and hw, < wp = kT, <K hw,. In order to explore
these regimes, we change the axial frequency w, and the
temperature of the reservoir, keeping w,/w, and the chemical
potential u; fixed, as we use the frequency wy = w,/(2h) as
a reference, and we compare the decay rates obtained in the
previous section from Eq. (23) with the transition coefficients
associated to the absorption, as in Eq. (31). As k3T, K w;,
we can neglect any absorption processes along the radial di-
rection; therefore, in the following we compare the transition
rates I',,_.,, and H,,, and see in what regimes the reheating
effects become relevant and how they would influence the
final distribution at the steady state. For the estimation of the
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FIG. 5. Transition coefficients I',_,,, in units of ,/w.w,, with
w, = 0.1wy (a) and w, = wy (b), evaluated from the expression
Eq. (23) in the semiclassical approximation. The dotted black lines
define the zones where €x = 1, i.€., in the limit between the super-
sonic and subsonic regimes, corresponding respectively to the areas
far above and below the line.

transition coefficients we follow the same approach used for
the axial decay in Eq. (23), where we use the full form of the
structure factor and the semiclassical approximation, so that

N ab)OO nt,
Hom 2RtV 2 \/

/ _u(k cOSO Xxmax)sinf do,  (24)
0

ek2S(k)

62 + Mb )

e 1

where &€ = hwy|n — m| and where by integrating the delta
function we obtained k = @(«/ &+ s — )2

In order to determine how the absorption of thermal excita-
tions affects the dynamics of the system, we need to compare
the decay rates obtained in the previous section, shown in
Fig. 5, to the rates for the stimulated processes, represented
for different values of temperature and chemical potential in

Fig. 6 (as everything is in units of wy, we equivalently vary
both the temperature and the axial frequency compared to this
instead, to exploit different limits).

For the case hiw, = kpT), < up K hw, [Fig. 6(a)], we see
that, despite the thermal energy being of the same order of
magnitude as the spacing between the axial energy levels, the
transition coefficients are at least two orders of magnitude
smaller than the decay rates of Fig. 5(a), so reheating effects in
this regime can be neglected. We observe how the stimulated
transition coefficients change by increasing the temperature
[Fig. 6(b)] or decreasing the chemical potential [Fig. 6(c)],
moving to the limit fiw, < up = kT K ho,.

When increasing the temperature, as shown in Fig. 6(b),
not only do the stimulated transition rates increase in value,
but they are also more spread towards states that are separated
by a larger number of levels. These two features are important
when we compare the absorption rates with both the stimu-
lated and spontaneous decay rates. On the one hand, if we
compare these transition elements with the spontaneous decay
rates in Fig. 5(a), we now notice that they are of the same order
of magnitude. In particular, absorption from lower-energy
states (n < 30) cannot be neglected compared to the sponta-
neous decay rate. On the other hand, the broadening of the
stimulated transition coefficients about the diagonal n = m, as
shown in Fig. 6(b), results in absorption rates dominating over
the stimulated emission rates, when considering transitions
from a given initial state |n). This can be better visualized
in Figs. 7(a) and 7(b) by comparing some specific transitions
Iy, and H, ,, involving both low- (n = 10) and higher- (n =
50) energy levels, for different values of the temperature of the
reservoir. Comparing the stimulated and spontaneous decay
rates (for m < n) with the absorption decay rates (m > n), it
is clear, especially for the case n = 10 in Fig. 7(b), that the
Boltzmann distribution in the terms H, ,,, in this regime, gives
absorption rates that dominate over the decay rates for both
spontaneous and stimulated processes.

Conversely, if we decrease the chemical potential as in
Fig. 6(c) (this is equivalent to increasing both the temper-
ature and frequency w, as we expressed them in units of
wo = Wp/2h), the values of the stimulated rates increase with
respect to the case in Fig. 6(a), but they are more narrow
around the diagonal n = m, as the transitions involve now
less states. A comparison between these absorption rates and
the spontaneous emission coefficients in Fig. 5(b) shows that
the spontaneous emission overall prevails on the absorption
for transitions for states n 2> 5. This is due to the fact that,
having lowered the chemical potential, in this case the decay
will mainly be in the supersonic regime, and hence favored
by a higher value of dynamic structure factor. At the same
time, as a result of the fact that the absorption processes here
involve less states and the transition coefficients H, ,, are more
symmetric around n even at low-energy states [see Fig. 7(c)],
the stimulated transition coefficients already compensate the
absorption rates until lower-energies states at n &~ 5 for the
given values. The combination of these effects for the emis-
sion processes, in this regime, makes the reheating effects
much smaller compared to the case of Fig. 6 (a).

From the results reported in Figs. 6 and 7, as discussed,
we can confirm that, along with the temperature, the choice
of the chemical potential of the reservoir also plays a relevant
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FIG. 6. Transition coefficients H, ,, in units of ,/w,wy, for differ-
ent values of the bath temperature 7, and trapping frequency w, in the
different limits hw, = kgT), < wp K how, (a), ho, < w, = kT, K
hw, (b), and hw, = kgT), >~ 1, K hw, (c). The parameters’ values
are T, = 0.17iwy /kp, o, = 0.1wg (a), T, = hawo/kp, ox = 0.1w (b),
and T, = hwo/kp, w, = wy (c). The white dashed lines set the limit
between the supersonic regime (far above it) and the subsonic one

(below it).
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FIG. 7. Comparison between decay rates along the axial direc-
tion I',,,, (dashed lines) and axial stimulated transition rates H,
(solid lines) between the states having quantum numbers n and m,
with n as shown in legends, for different values of the axial frequency
w, and of the temperature kzT},/(fiwy) = 0.5, 1, 2. The values of the
frequency used here are w,/wy = 0.1 (a), (b) and w,/wy =1 (¢).

role in determining whether the absorption processes can be
neglected or not. As we have seen from Fig. 6(b), in some
limits the radial reheating terms become relevant, especially
for transitions from and towards lower states and can therefore
affect the final configuration. We therefore studied the steady-
state distribution including the finite temperature effects to see
how it differs when considering these contributions. This is
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determined by using the detailed balance condition, which can
be evaluated as

ﬁ Hn+],il p
n+1 = - - Pn
Fn+l~>n + Hn+1,n
HI,O Hn—l,n—2 -
= — X -+ X Po,
Fio+ Hip Fiiona2+Hy 102

(25)

with pg = 1 — e P Even though the stimulated process
terms H), , contain the Boltzmann distribution term coming
from the number of thermal excitations in the reservoir, the
distribution of probability in different states differs from the
Boltzmann distribution, due to the fact that both the decay and
reheating terms are affected by the structure factor.

V. INDUCED DYNAMICS OF FERMIONS IN A 2D
ANISOTROPIC TRAP

In this section we now study the dynamics of many
spin-polarized noninteracting fermions in an anisotropic har-
monic trap, again in the cigar-shaped configuration w, >
®; > wy. This is motivated by experiments with fermionic
atoms in an optical lattice along one direction. We start
with a Fermi distribution of particles in the ground state
of the harmonic oscillator along the tightly confined radial
direction z (i.e., single particles in the states |n,,0,)); we
then appropriately excite them to the first excited state along
z (to the states |nm,, 1;)) and study the decay back to the
ground state of z and towards other states along x (|my, 0,)).
Since only the dynamics in two directions is involved in
these processes, we treat the system in an effective 2D
harmonic trap.

We determine the initial distribution of N atoms at tem-
perature 7, in the radial directions given by the Fermi
distribution [35]

1
exp[lga(en - Ma)] + 1 ’

where B, = (kgT,)™', €, = liw,n, is the energy of the nth
excited state of the quantum harmonic oscillator (having set
the zero of the energy at /iw,/2) along the radial direction and
in the axial ground state, and

In[efecr — 1]

= 27
jz 5, 27)

is the chemical potential, derived by imposing the identity

(26)

ﬁ(en) =

N = /EF gle)de = /ooﬁ(e)g(e)de, (28)
0 0

where €r = Niw, is the Fermi energy and g(¢) = (hw,) ™' is
the density of states. Considering some typical experimen-
tal values, such as N = 10%, w, = 27 x 200 Hz, and T, ~
10~° K, used for optical lattices in one dimension, we obtain
Tr = Nhw,/kg ~ 2 x 107° K > T,. This means that we can
still limit our analysis to the case where, for N particles, all
the lower N states are initially occupied, so where u — €p
and, under the assumption that we can excite the particles
only along the axial direction resonantly with the energy /iw;,
the distribution of the particles in the radial states will be left

invariant. The occupation probabilities derived in Eq. (9) can
again be used in this case, after readapting them for the 2D
scenario, so that

Pmem, = E I‘nx,nz—>m,\.,m;1711,,(.nz

ne >a
n; z m;

- z meamz‘)miamépmx’m:

, ,
m, <a
ml, < m;

+ Z Hm,nz;mx,m; (an,nz - me,mz)s (29)

Ny, Nz

with « =m, — Z)Ti(”z —m;) and o =m,+ Z%i(mz —m).
Since we are dealing with noninteracting fermions, we used
a stochastic description given by the quantum Boltzmann
master equation (QBME) [36], derived by neglecting the
coherences in the density matrix, which leads to the following
forms of the transition rates:

2 2
Fn,t,nz—nnx,m;_ = 7 ; |Tnxvnz;mxamz (k)‘ S(Gf — € — €)
xii(e)[1 — fi(ep)], (30)
2 2
anynz;qumz = 7 ;N(k)‘Tnx,nz;mx.inz(k)|

x 8(le;i — €f| —en(e)[l —nlep)],  (31)

where the statistics of the particles (fermions in our case)
is explicitly accounted for in the terms [1 — fi(ef)], with
ii(¢;) and 7i(es) being the occupation numbers respectively
for the initial and final single particle energies, given by the
Fermi distribution Eq. (26). We simulated the dynamics of the
particles using Monte Carlo methods with jump operators [2]
to reconstruct the final distribution, where the advantage given
by the QBME is to automatically forbid the transitions from
single particle nonoccupied states and towards already occu-
pied ones.

Given an initial distribution with a defined number of
particles initially in the first excited state along z, we looked at
the average number of jumps to the ground radial state in time
over different repetitions, and observed that the time for all the
particles to decay from the excited axial state increases when
going to lower ratios w,/wy, as a consequence of the fact that
the total decay rate in 2D decreases with the ratio between the
axial and radial frequencies (see Fig. 8).

The decay rate for the transitions from the particles excited
along z were obtained by summing over all the initially
occupied and possible final states as

I =3 "I\ 1-mo. (32)

n,m

while the one for radial transitions is given by

rap — Z | (33)
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FIG. 8. Total decay rates from the excited radial state I'® (solid
lines) for different values of the ratio between the two frequencies
and total decay rate between axial states from the ground radial
direction T'?™ (dashed line) and for N = 8 atoms. The emergence
of a fast and a slow decay in the two different dimensions can be
seen clearly.

Even though the total decay rate is given by the sum of these
two contributions, we observed them separately to see the
contribution given by the radial decay in the dynamics. As
shown in Fig. 8, the decay rate I'®) given by the spontaneous
emission of particles initially in the excited states |n, 1) is
maximum at ¢+ = 0 when all the particles are excited (while
') = () and decreases in time whilst the particles decay
to |m, 0). During this time, on the other side, because states
|m, 0) start being occupied, I'!P) starts increasing and then
decreasing again as soon as the particles decay radially to
lower states.

We observe that while the axial dynamics is fast, with '?P)
going to zero in the scale of 7. /wwy 2~ 80 for w,/w, = 100
and N = 8 particles, the radial dynamics is much slower, so
the steady state is approached in a much longer time. This
is due to the fact that while the axial decay happens in the
supersonic regime where the structure factor has its maximum
value [S(k) = 1], the decay rates for the radial transitions are
lower even as an effect of the lower structure factor that tends
to suppress them. While the decay rate in 2D, I'®P) [Eq. (32)],
in these units does not depend on the choice of w, but only on
the ratio w, the whole dynamics does depend on the choice of
the axial frequency because this will be determined at longer
times by the transitions to other axial states in 1D. For the
values of the parameters used here, the 1D dynamics in the
axial direction becomes dominant from 7 ,/w.wo >~ 20, where
the transition coefficients of the decays in the two different
dimensions become comparable.

As a consequence of this, for the same parameters used
in Fig. 8, in Fig. 9 we show the effect that the two kinds of
dynamics have on the distribution of the atoms along the axial
states |m, 0). In particular, it is possible to see that, for earlier
times (e.g., 7,/w,wo, when the slow dynamics along the axial
direction is not dominant yet, as compared to Fig. 8), there is
no significant effect of Pauli blocking given by the statistics of
the impurities, as this starts appearing only at later times when
the slower axial dynamics brings the system to the lowest-
energy state.

Nm/Ntria[s

0.8 o r,/wxwo =10
OG—{ : r,/wxw0=100

0.4

T

0.2

T
+O4
o

€. 2 . © o o o g:¢

10 20 30 40

oo m
50

FIG. 9. Occupation number of the axial modes m, averaged over
Nuias = 1000 trajectories of eight atoms, at different times as shown
in the legend, having set w = 100 and w, = wy. No Pauli blockade
is observed initially (blue dots) while the dynamics in 1D is still
not dominant (see Fig. 8), but it starts appearing when the decay
between axial modes becomes more significant (orange squares). The
stationary state is reached for longer times than the one shown in the
plot, as the decay rate in 1D approaches the zero more slowly.

VI. SUMMARY AND OUTLOOK

We evaluated the decay rates of of the motional state of
spin-polarized fermions immersed in a BEC and harmonically
trapped in different configurations (cigar-shaped and pancake-
shaped). For typical experimental parameters we estimate
decay times of the order of ms, comparable to other dynamical
timescales in optical lattice systems and much shorter than
typical coherence timescales in experiments. We observed
how the geometry of the trapping potential and the chemical
potential strongly influence the decay rates and, considering
a finite temperature reservoir, we showed how a convenient
choice of the chemical potential can minimize the absorption
of the thermal excitations for a finite temperature reservoir.
Considering multiple particles towards experiments in a one-
dimensional lattice of pancakes, we studied, using QBME and
Monte Carlo methods, the decay of noninteracting impurities
in a cigar-shaped potential and observed that the dynamics is
determined by a combination of fast and a slow decay in the
radial and axial directions, respectively.

This study offers some useful tools for the analytical and
numerical solution of spontaneous emission of a trapped
impurity in a BEC, but also for the implementation of sympa-
thetic cooling of impurity atoms in the context of dual species
experiments. We showed throughout that a semiclassical ap-
proximation is very helpful for the estimation of transition
coefficients, in regimes where rapid oscillations make direct
numerical evaluation difficult.

This system opens possibilities as a tool for dissipative
state engineering [13—16], but is also a promising environment
in which to study non-Markovian open quantum systems.
Indeed, the high control of the parameters of the reservoir
would make it possible to explore regimes where the Markov
approximation that we used in this paper does not hold
anymore, either by reducing the size of the BEC reservoir or
changing its trapping potential in order to have edge effects
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leading to backflow of information. We could also change
the interaction strength via Feshbach resonances (where avail-
able), in order to go towards strong interactions. As there is
not a unique approach to the study of non-Markovian systems,
the possibility to explore different physical limits that are
experimentally realizable makes this system a good candidate
for studies of impurities in non-Markovian reservoirs.

The data for this manuscript is available in open access at
[37].
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APPENDIX A: DERIVATION OF THE MASTER EQUATION

Here we use an open quantum system description, considering the impurity atom as the system interacting with the BEC
reservoir, and derive the master equation that we used to obtain the occupation probabilities of Eq. (9) for the motional states of
the atoms immersed in the reservoir. In order to study the dynamics of the trapped atom(s) interacting with the BEC, we move
to the interaction picture and use the Born-Markov approximation. In addition to weak coupling, we assume that the reservoir is
large enough so that we can neglect finite-size effects. We therefore use the Redfield equation

. 1 ! / Y Y ’ A A
ps = —%/ dt Trp[Hin (1), [Hinc (1), ps(1) ® Pl (AD)
0

where the density matrix of the system is p; = ,6(") ® ,?)(V) ® ,?)(Z) and where we assume that the coherences can be neglected, so
that we can project the density operator in each direction on the diagonal and consider p{) = Zn; D, |n-) (ni], with i = x, y, z.

In the interaction picture the operators by and # in Eq. (5) are now b (t) = ekt by and #(t) = \/ [a;() + &k(t )], with

2m w;

a;(t) = e~ &;, and i being the index for the different spatial directions, which can be factorized. The master equation then takes
the form

M 2g§lp0 IK; T IK;T; iw;T(m;—n,
ps === Z(uk+vk)/dr [T D2 (mi) tmile™ " my) (nile™ " me) il p, ™)

I=X,y,Z nj,m;
TT D (lmi) tmile™mi) (mile™ mi) (il pu €™ =0) | (74 (bl + €47/ (bibi)y ), (A2)
i=x,y,z ni,m;

where we can use the Markov approximation to extend the integration limit # — oo. Hence we obtain

/0 dr ™12 eiti=m)=ea/ll — 7 pg hZa)j(nj —m;)— e |, (A3)
J

where, as before, j runs on the components in the different directions. We find that the occupation probability py,, m,m. of the
impurity in the state |my, my, m;) is given by

Py = zng‘zﬁ’p" Z(uk+vk) Z(]_h (mile™ " |n; |>

f’l,\)

x { [6 (Z wi(n; — m;) — ek> P,,. — 8 (Z wi(m; — n;) — ek) pm] (bby),
+ [5 (Z wi(m; —n;) — ek> P, =8 (Z wi(n; — m;) — ek) pm} (bibi) } : (A4)

The terms in the trace over the bath give <13,ﬁ13k) p = N(k) and (Ekﬁi) 5 = N(K) + 1, describing respectively the processes of
absorption of Bogoliubov thermal excitations from the reservoir and stimulated and spontaneous emission, where the distribution
of excitations with momentum k is given by the Bose distribution N (k) = ﬁ
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We then rewrite the evolution of the occupation probabilities as

pmx,_v.z = Z F”x._v.z_’mx,y,zpnx.y.z - Z Fm»ﬁ_v.z_>m),c,v.zpm«\',_v.z + Z I-I”.\'.y.;;mx._v.z (p”x,_\uz - pmx.v,z)’ (AS)
Nyyz - mY v Nyyz
> wi(n . m;) >0 > wi(m; —m}) >0
where the transition rates are given by the Fermi golden rule. In particular, defining the matrix elements as
[ Po _ik-
Tn,m(k) = 8ab v(uk + Uk) <mxv my, mz|e lkr'”X? ny, I’lz) s (A6)
the decay rates are given by
2 20,

Poyemese = ?Tm(k)\ 3(& — ex), (A7)

where &€ = 8(h ), w;(n;

— m;)) is the difference of energy between the initial and final state of the impurity. The transition rates

of absorption and stimulated emission, used in Eq. (24) to account for finite temperature effects, are given by

an,}'.z;mn\'.l =

APPENDIX B: EVALUATION OF THE DECAY RATES AND
SEMICLASSICAL APPROXIMATION

With an analogous procedure used to estimate the tran-
sition coefficients in the 3D case [Eq. (15)], we estimated
the decay rates I',,j_,,0 for the 2D configuration both in
the fully quantum case and using a semiclassical approx-
imation [Eq. (18)], for which we provide more details in
this Appendix. Based on our previous considerations, for the
particular case discussed in Sec. IV, as the radial trap energy
spacing is much larger than the chemical potential, we can still
consider the system to be in the supersonic regime, where the
structure factor is S(k) = (ux + vx)> = 1. Even in this case,
for the estimation of the matrix elements, we used the relation
in Eq. (13). After writing the components of the momentum in
the two directions as k, = k cos6 and k, = k sinf cos ¢, and
integrating over k using the properties of the delta function
involving the energies, we obtain the decay rates

2g,2;bp0\/mamb m.!
1—‘ln,1~>m,0 (27[ )2h3 m)\/ Wy
X / d6 By(n, m, 0)e 5 @g2=(g)
0
(BI)
w, .
where w = —, m_ = min(n, m), m. = max(n, m),

X

212 cos2 O
wzﬂ(w—i-n—m)cos 0, (B2)

209) =
£°(0) = 2 e

and

2
By(n, m,9)=/ dp e O 029y cos? ¢
0

2 20 (%
oo i () (2]

(B3)

2
7” ;zv(k)m,m(kﬂ%@ — ). (A8)

(

Here I and I; are the modified Bessel functions of the first
kind and

2k2sin? 0 my,

£*0) = (w+n—m)sin?6.  (B4)

2 - myw
From Eq. (B1) we notice that, in contrast with the previous
3D case of Eq. (15), the transition coefficients now contain
Laguerre polynomials Ll;‘:’”'(x) that do not depend only
on the difference between initial and final radial quantum
numbers, but also on the particular value of m_. This will
make them oscillate rapidly for high values of m_, giving
rise to some difficulty in their numerical evaluation. In or-
der to circumvent this problem and also optimize the time
needed for their numerical evaluation, we make use of the
semiclassical approximation [17,34], describing the motion
of the impurity in the trap with a classical trajectory, so that
kx = kyxmax cos(wyt) and the matrix elements of the axial
transitions are

[(mle~®|n)[?

2
— '% fT/ e—ik,,(xmax cos(wyt) cos (27[(’1 B m)t)dt
7 J, T

2

) 27 Jwy 2
— X efikxxmx cos(th)efia)x(nfm)tdt
2

= Jr_,,(keXman), (B5)

where J,,_,,(z) are the first-order Bessel functions,

<J2n+1+¢2m+1)
Xmax = X0 )

(B6)

is the average between the initial and final maximum position
of the impurity, and T = 27 /w, is the period of the oscilla-
tions [34]. Substituting this solution for the matrix elements
in the decay rates [Eq. (A7)], we obtain the decay rates of
Eq. (18).

This approximation was also used for the estimation of the
transition coefficients in 1D (for the slower dynamics along
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FIG. 10. Comparison (a) and relative difference (b) between
decay rates estimated with the fully quantum expression and the
semiclassical approximation, for transitions from the state n = 60
and for a value of the trapping frequency w, = wy.

the axial direction), with an expression for the decay rates
given by
gz »P0

o0
O, = 28 / dk S(K*8(hiw,(n — m) — €)
27Th 0

T
x / do sin0J2_, (k cos O Xmax)d6

_ abp() mb 6k2S(k)
- 2nR2\ 2
\/ 62+u — i)
x/ nfm(k €08 0 Xpax) Sin 0 d6, B7)
0

where in the last two lines

./Zm;,
k= - Ve + 12— . (B8)

In order to estimate the goodness of the semiclassical ap-
proximation, we compared the decay rates obtained from this
semiclassical expression and from the fully quantum one,
in the 1D limit discussed here, where we can numerically
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FIG. 11. Comparison (a) and relative difference (b) between
decay rates estimated with the fully quantum expression and the
semiclassical approximation, for transitions from the state n = 10
and for a value of the trapping frequency w, = wy.

evaluate them both. The quantum expression for the decay
rates, in its most general form, reads

r _ bﬂom my
T 2ahnt V2
62 + wy — Mb)

x / do e—(xokzcos 6)/2 ka cos 9
o 2

—m ()c(z,k2 cos® 6 > :
o

with k defined as in Eq. (BS).

In Figs. 10 and 11 we compare the values of the decay
rates obtained with both the semiclassical and fully quantum
approaches, for two specific transitions from a high and from a
low excited state, respectively '¢p_, and "o ,,. As expected
from the theory, the semiclassical approximation works ex-
tremely well in the case |[n — m| < n, while it is less accurate
in the case |n — m| & n. More precisely, from Figs. 10 and 11,
we can see that the relative difference between quantum and
semiclassical results are smaller than 15% for |n — m|/n <
0.9. In particular, Fig. 10(b) shows an increase of the relative

ek2S(k)

, (B9)
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difference above 40% for m < 4. However, in this case, the
decay rates obtained for such transitions under the semiclas-
sical approximation and with the full quantum approach are
respectively of the orders of 107! and 10~® and can be
approximated to zero as they are much smaller than the other
transition coefficients at higher m, as it can be seen from
Fig. 10(b).

In general, we observe that, for transitions n — m satisfy-
ing the condition |n — m|/n < 0.9, the relative difference is
below 18%, and that transitions to states m with |n — m|/n >
0.9 start becoming non-negligible for n < 12. We therefore
present in Fig. 11 the decay rates obtained with the two
methods and the relative difference, for transitions from the
initial motional state n = 10.

We see that, while the decay rates towards small m are
not negligible, we have a relative difference below 10% for
m > 0 (corresponding to |n — m|/m = 0.9), and it increases
to 37% only when |n — m| = n. Going to even lower initial
states n, we observed that the maximum relative difference (at
m = 0) keeps decreasing and lies within the range 0%—38%,
while for m > 0 we still have relative discrepancy below
10%. Following these considerations, we can therefore say
that the semiclassical approximation has a high accuracy until
[n —m|/n = 0.9, going beyond the condition [n —m| K n
predicted by the WKB approximation for the results to be
accurate, and the values obtained for other non-negligible
transitions with |[n — m| = n have a relative difference varying
in the range 0%—-38%, getting smaller as the contributions
from these transitions increase (at lower n).

APPENDIX C: EVALUATION OF THE 1D DECAY RATES
IN SUPERSONIC AND SUBSONIC LIMITS

We can find some simplified expressions for the decay
rates in 1D when considering the two limits €¢; > u; and

€ < pp, for the supersonic and subsonic regimes. Under these
conditions, they are respectively given by [17]

) _ gﬁb,oomb,/mamb m!

= /@0
. ity YT
x dE eS| ED|]T (CD
-/ wL(n—m)
and
gypolo m! [2m, 5
pGub) _ 5abl0%0 77 o2 — MRS
L A
Xoox(1=m)
2u _ _ _ )
X R dée gzéz(n m)’L:ln m(%-Z) , (C2)
T

where [y = /ﬁ. For transitions |1) — |0), Eq. (C1) re-
duces to Eq. (16).

In the semiclassical approximation, under the considera-
tions highlighted in the previous section, they respectively
reduce to the two forms

[(se—sup) _ gihp()mh«/ mgmyp, M
o T l(V2n+ 1+ 2m+ )Y
%(nfm)xmx
x daJ;_, (@), (C3)
_\/%xmax

&pPolow?(n — m)?

F(Scfsub) — % D)
e R+ 1+ 2mt D\ my Y

@y (M—M)Ximax /U
x / daJ? (). (C4)

n—m
— 0y (1) 1t
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