- Supplementary Information -

Quantitative prediction of selectivity in iridium-catalysed hydrogen isotope exchange reactions

Daria S. Timofeeva, David M. Lindsay, David J. Nelson*, William J. Kerr*
WestCHEM Department of Pure and Applied Chemistry, Thomas Graham Building, 295
Cathedral Street, Glasgow, G1 1XL, UK
david.nelson@strath.ac.uk

Table of Contents

1. General Experimental Details S2
2. Synthesis and Characterisation S4
2.1. Synthesis of Iridium (I) Complexes S4
2.2. Synthesis of the Substrates S8
3. Intermolecular Competition Experiments S13
3.1. General Information S13
3.2. Effects of the Reaction Conditions on Competition Rate Constants S19
3.3. Competition Experiments with $\left[(\mathrm{COD}) \mathrm{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right] \mathrm{BArF}_{24}(\mathbf{I r} \mathbf{- 1})$ S33
3.4. Competition Experiments with (COD)Ir(IMes)Cl (Ir-2) S90
3.5. Linear Regression Analysis S147
4. Intramolecular Competition Experiments S150
4.1. General Information S150
4.2. Competition Experiments with $\left[(\mathrm{COD}) \mathrm{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right] \mathrm{BArF}_{24}(\mathbf{I r} \mathbf{- 1})$ S151
4.3. Competition Experiments with (COD) $\mathrm{Ir}(\mathrm{IMes}) \mathrm{Cl}(\mathbf{I r}-\mathbf{2}) 1$ S161
5. References S167
6. Copies of NMR Spectra S168
6.1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of synthesised substrates S168
6.2. ${ }^{1} \mathrm{H}$ NMR of non-deuterated commercial substrates S183

1. General Experimental Details

General

For the synthetic procedures, standard Schlenk techniques under an inert gas atmosphere (Ar or N_{2}) were used, unless otherwise stated. Materials obtained from commercial sources were used without further purification. All glassware was flame dried and cooled under a stream of nitrogen.

Materials

Dichloromethane, tetrahydrofuran, diethyl ether and toluene were obtained from a PureSolv SPS-400-5 Solvent Purification System. Ethyl acetate was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, then distilled under a nitrogen atmosphere and stored over $3 \AA$ molecular sieves. Dry organic solvents and distilled water used for cross-coupling reactions were additionally degassed by bubbling argon through the solvent for 30 min . For reactions/work-up procedures in air, p.a. grade solvents were used. Petroleum ether refers to alkanes with a boiling point range of $40-60^{\circ} \mathrm{C}$.
(1,3-Bis-(2,4,6-trimethylphenyl)imidazolium chloride, ${ }^{S 1}$ phenylthiazoline, ${ }^{S 2}$ and 1-methyl-2phenylimidazole ${ }^{53}$ were synthesised according to literature procedures. 2-Phenylthiazole, 2phenylpyrimidine, 2-(4-acetyl)phenylpyridine, and 2-(4-cyano)phenylpyridine were prepared by cross-coupling reactions of corresponding phenylboronic acids and heterobromides as described in section 2. 2-(4-Acetyl)phenyloxazoline and 2-(4-(pyridin-2-yl)phenyl)-4,5dihydrooxazole were obtained from the reaction between corresponding aryl nitriles and amino alcohols catalysed by $[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})] .{ }^{\text {S4 }}$ Anhydrous $\mathrm{Na}\left[\mathrm{BArF}_{24}\right] \quad\left(\mathrm{BArF}_{24}=\right.$ tetrakis[3,5bis(trifluoromethyl)phenyl]borate)) was obtained following Bergman's synthesis, ${ }^{\text {S }}$ followed by recrystallising the crude $\mathrm{Na}\left[\mathrm{BArF}_{24}\right] \cdot x$ (solvent) prior to drying. ${ }^{\text {S6 }}$ Phosphine/NHC monodentate complex $\mathbf{I r} \mathbf{- 1}$ with the BArF_{24} counterion was synthesised from neutral chlorocarbene complex $\mathbf{I r}-\mathbf{2}^{\mathbf{5 7}}$ in a procedure adapted from that published before for preparation of corresponding complexes with BF_{4} and OTf counterions. ${ }^{\text {S8 }}$
Flash column chromatography was carried out using silica gel (230-400 mesh). Thin layer chromatography (TLC) was performed using Merck silica plates coated with fluorescent indicator and visualised by UV light (254 nm)

Analysis

NMR Spectroscopy: ${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (101 MHz), ${ }^{11} \mathrm{~B}(128 \mathrm{MHz}){ }^{19} \mathrm{~F}(376 \mathrm{MHz})$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(162 \mathrm{MHz})$ NMR spectra were obtained on a Bruker AV3-400 instrument with a liquid nitrogen Prodigy cryoprobe. The chemical shifts (δ) are reported in ppm relative to the residual protonated solvent for ${ }^{1} \mathrm{H}$ NMR or solvent signal for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} 7.26 \mathrm{ppm}\right.$ and $\delta_{\mathrm{C}} 77.16 \mathrm{ppm}$; DMSO- $d_{6}: \delta_{\mathrm{H}} 2.50 \mathrm{ppm}$ and $\delta_{\mathrm{C}} 39.51 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{H}} 7.16 \mathrm{ppm}$; acetone- $d_{6}: \delta_{\mathrm{H}}$ $2.05 \mathrm{ppm}) .{ }^{\text {S9 }}$ Coupling constants (J) are reported in Hz and refer to ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ couplings, unless otherwise stated. Multiplicities are expressed with s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad signal). If no multiplicity is given for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ data, the signal is a singlet. NMR assignments were made using additional 2D NMR experiments where necessary. Infrared Spectroscopy: Infrared (IR) spectra were collected on a Shimadzu IRAffinity-1 Spectrophotometer with only major peaks being reported.
Elemental analysis was performed using a Perkin-Elmer CH2400 instrument.
a) For intermolecular competition experiments

b) For intramolecular competition experiments

Figure S1. Scope of the substrates used in the study

2. Synthesis and Characterisation

2.1. Synthesis of Iridium (I) Complexes
 Synthesis of 1,3-Bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes•HCl) ${ }^{\text {S1 }}$
 N, N-dimesitylethanediimine

2,4,6-Trimethylaniline ($84.2 \mathrm{~mL}, 0.60 \mathrm{~mol}, 2.0$ equiv.) was dissolved in methanol (200 mL) and cooled to $0{ }^{\circ} \mathrm{C}$, and a solution of 40% glyoxal in water ($34.4 \mathrm{~mL}, 0.30 \mathrm{~mol}, 1.0$ equiv.) with one or two drops of formic acid was added. The solution was warmed to room temperature and stirred for two days. The yellow suspension was filtrated and washed with a minimum volume of methanol and diethyl ether to afford N, N^{\prime}-dimesitylethanediimine ($78.5 \mathrm{~g}, 0.27 \mathrm{~mol}$, 90%) as a yellow powder, which was used immediately in the next step.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.11(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 6.92(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 2.30\left(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{CH}_{3}\right)$, 2.17 ($\mathrm{s}, 12 \mathrm{H}, o-\mathrm{CH}_{3}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=163.6,147.6,134.4,129.1,126.7,20.9,18.3$.
NMR data are consistent with the literature. ${ }^{\text {S10 }}$
1,3-Bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes $\cdot \mathrm{HCl})^{\text {S1 }}$

Paraformaldehyde ($8.05 \mathrm{~g}, 0.27 \mathrm{~mol}, 1.0$ equiv.) was suspended in a solution of 4 M hydrochloric acid in dioxane ($94 \mathrm{~mL}, 0.38 \mathrm{~mol}, 1.4$ equiv.) and stirred until complete dissolution of the white solid. THF (300 mL) was added, followed by the slow addition of $N, N '$ dimesitylethanediimine ($78.5 \mathrm{~g}, 0.27 \mathrm{~mol}, 1.0$ equiv.). The resulting solution was stirred at 40 ${ }^{\circ} \mathrm{C}$ for 2 days. The suspension was cooled to room temperature and the white precipitate was collected by filtration, and washed with THF (100 mL) and diethyl ether $(100 \mathrm{~mL})$ to afford the crude product, which was recrystallized from a $\mathrm{DCM}^{2} / \mathrm{Et}_{2} \mathrm{O}$ mixture to afford 1,3-bis-(2,4,6trimethylphenyl)imidazolium chloride ($36.6 \mathrm{~g}, 0.11 \mathrm{~mol}, 40 \%$) as a white powder.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}=\mathrm{N}), 7.61(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 4 \mathrm{H}$, Ar), 2.33 ($\mathrm{s}, 6 \mathrm{H}, p-\mathrm{CH}_{3}$), $2.17\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{CH}_{3}\right.$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=141.4,139.2,134.2,130.7,130.0,124.8,21.2,17.7$.
NMR data are consistent with the literature. ${ }^{\text {S1 }}$

Synthesis of Chloro(η^{4}-cycloocta-1,5-diene)(1,3-dimesitylimidazoline-2-ylidene) iridium $(\mathbf{I})[\operatorname{Ir}(\mathbf{C O D})(\mathbf{I M e s}) \mathbf{C l}]^{\mathrm{ST}}$

Bis(1,5-cyclooctadiene)diiridium(I) dichloride ($500 \mathrm{mg}, 0.75 \mathrm{mmol}, 1$ equiv.) and potassium tert-butoxide ($167 \mathrm{mg}, 1.50 \mathrm{mmol}, 2$ equiv.) were added to a flame-dried Schlenk tube under argon and stirred under vacuum for 5 min . THF (12.5 mL) was added and the mixture was stirred under argon for 10 min . $\mathrm{IMes} \cdot \mathrm{HCl}(508 \mathrm{mg}, 1.50 \mathrm{mmol}, 2$ equiv.) was then added and the resulting reaction mixture was stirred for 4 h . The solvent was removed in vacuo, and column chromatography (50% ethyl acetate in petroleum ether) afforded the title compound ($730 \mathrm{mg}, 1.14 \mathrm{mmol}, 76 \%$) as yellow solid. The isolated catalyst was dried in a vacuum oven $\left(40^{\circ} \mathrm{C}, 1 \mathrm{mbar}\right)$ for 24 h before use. This process was repeated batch-wise to obtain a of the quantity of $\mathbf{I r} \mathbf{- 2}$ necessary for all competition studies and synthesis of $\mathbf{I r} \mathbf{- 1}$ catalyst.
m.p. > $190{ }^{\circ} \mathrm{C}$ (decomposition)
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.04-6.96(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}=\mathrm{CHN}), 4.19-$ $4.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COD} \mathrm{CH}), 3.01-2.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CODCH}), 2.36\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{CH}_{3} \mathrm{Ar}\right), 2.16(\mathrm{~s}, 6 \mathrm{H}$, p-CH3 3 Ar), 1.78 - 1.59 (m, 4H, COD CH2 $), 1.39-1.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COD} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=180.9,138.8,137.5,136.2,134.5,129.7,128.3,123.4$, 82.7, 51.6, 33.6, 29.1, 21.3, 19.8, 18.4 .

NMR data are consistent with the literature. ${ }^{\mathrm{S} 7}$

A 2.0 M solution of $i-\mathrm{PrMgCl}$ in THF ($100 \mathrm{~mL}, 0.20 \mathrm{~mol}, 6.6$ equiv.) was added dropwise over 45 min to a stirred solution of 1-bromo-3,5-bistrifluoromethylbenzene ($30 \mathrm{~mL}, 0.17 \mathrm{~mol}, 5.8$ equiv.) in THF (150 mL) chilled to $-20^{\circ} \mathrm{C}$. After the reaction was allowed to warm from -20 ${ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ over $1 \mathrm{~h}, \mathrm{NaBF}_{4}(3.3 \mathrm{~g}, 0.03 \mathrm{~mol}, 1.0$ equiv.) was quickly added as a solid under a stream of N_{2}. The mixture then stirred for 48 h at $23^{\circ} \mathrm{C}\left(\right.$ under $\left.\mathrm{N}_{2}\right)$. All work-up and purification procedures were then carried out under air. The contents of the flask were poured into a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(44 \mathrm{~g})$ and $\mathrm{NaHCO}_{3}(22 \mathrm{~g})$ in water (600 mL). This mixture was stirred vigorously for 1 h and then extracted with diethyl ether $(4 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration of the mixture and rotary evaporation of the filtrate, the crude $\mathrm{Na}\left[\mathrm{BArF}_{24}\right] \cdot x \mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$ was dried at $100{ }^{\circ} \mathrm{C} / 10^{-2} \mathrm{mbar}$ for 10 h to yield a tacky brown/yellow solid. Dissolving the resulting oily crude material in a 1:1 mixture of dichloromethane and tetrahydrofuran (30 mL) and cooling the mixture at -23 ${ }^{\circ} \mathrm{C}$ for 48 h yielded an off-white crystalline solid, which was then recrystallised again under the same conditions. Anhydrous $\mathrm{Na}\left[\mathrm{BArF}_{24}\right] \cdot \mathrm{THF}(12.7 \mathrm{~g}, 0.014 \mathrm{mmol}, 48 \%)$ was obtained as white solid by drying the resulting crystalline solid under vacuum ($<10^{-2} \mathrm{mbar}$) for 10 h . Anhydrous $\mathrm{Na}\left[\mathrm{BArF}_{24}\right]$ was stored under an atmosphere of argon.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta=7.79$ (br, 8 H , ortho-Ar-H), 7.67 (br, 4H, para-Ar-H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta=161.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=49.9 \mathrm{~Hz}\right.$, ipso-C), 134.0 (br, orthoC), $128.5\left(\mathrm{qq},{ }^{3} J_{\mathrm{C}-\mathrm{B}}=2.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.2 \mathrm{~Hz}\right.$, meta-C), $124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 117.5$ (br, para-C).
${ }^{11} \mathbf{B}$ NMR $\left(128 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right) \delta=-6.65$.
${ }^{19} \mathbf{F}$ NMR (376 MHz , acetone $-d_{6}$) $\delta=-63.3$.
NMR data are consistent with the literature. ${ }^{\text {S5 }}$

Synthesis of η^{4}-cycloocta-1,5-diene(1,3-dimesitylimidazoline-2-ylidene)(triphenylphosphine)iridium(I)tetrakis [(3,5-rifluoromethylphenyl)]borate, [(COD)Ir(PPh3)(IMes)]BArF ${ }_{24}{ }^{\text {S8 }}$

$[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}(\mathrm{IMes})]$, $\mathbf{I r}-2,\left(200 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0\right.$ equiv.) and $\mathrm{NaBArF}_{24}(275 \mathrm{mg}, 0.31 \mathrm{mmol}$, 1.0 equiv.) were added to a flame-dried Schlenk tube under an argon atmosphere. The solids were then dissolved in anhydrous DCM $(10 \mathrm{~mL})$ and stirred for 30 min . The triphenylphosphine ligand ($82 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0$ equiv.) was then added slowly, initiating an orange to red colour change. After a further 30 min stirring, the reaction mixture was filtered through celite and concentrated in vacuo, resulting in a red oil. This residue was purified by column chromatography ($50 \% \mathrm{DCM}$ in petroleum ether) to afford the title compound as a red crystalline solid ($365 \mathrm{mg}, 0.21 \mathrm{mmol}, 68 \%$). The isolated catalyst was dried in a vacuum oven ($40{ }^{\circ} \mathrm{C}, 1 \mathrm{mbar}$) for 24 h before use. This process was repeated batch wise to obtain the quantities of $\mathbf{I r} \mathbf{- 1}$ necessary for all competition studies.
m.p.: $>150^{\circ} \mathrm{C}$ (decomposition)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.73-7.69\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{BArF}_{24}\right), 7.51\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{BArF}_{24}\right)$, $7.45-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.24(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $\mathrm{NCH}=\mathrm{CHN}), 7.15-7.07(\mathrm{~m}, 6 \mathrm{H}$, Ar-H), 7.02 (s, 2H, Ar-H), 6.66 (s, 2H, Ar-H), $4.39-4.32$ (m, 2H, COD-CH), $3.38-3.31$ (m, $2 \mathrm{H}, \mathrm{COD}-\mathrm{CH}), 2.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{3}\right), 1.75$ (s, 6H, Ar-CH3$), 1.68-1.45$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right), 1.31-1.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COD}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=178.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{P}}=8.4 \mathrm{~Hz}\right), 161.9\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=49.9 \mathrm{~Hz}\right)$,
$140.2,135.6,135.2,134.9,134.8,132.3,132.2,131.4,131.3,130.9,130.6,129.9,129.5$, $129.2,128.9,128.7,128.6,126.2,124.7\left(q,{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}\right), 117.6,80.6,80.5,78.7,31.9,30.3$, 30.2, 21.2, 20.9, 19.0.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-6.64$.
${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-62.4$.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.4$.
NMR data are consistent with the literature. ${ }^{\text {S8 }}$

2.2. Synthesis of Substrates

2-Phenylthiazoline ${ }^{\text {S2 }}$

In air, a 10 mL round-bottom flask was charged with benzonitrile $(0.50 \mathrm{~g}, 4.85 \mathrm{mmol})$, cysteamine hydrochloride ($0.83 \mathrm{~g}, 7.28 \mathrm{mmol}$) and $\mathrm{NaOH}(40 \mathrm{mg}, 0.97 \mathrm{mmol})$. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 2 hours under solvent-free conditions. The crude product was dissolved in ethyl acetate (2 mL) and water (10 mL) was added. The layers were separated and the aqueous layer was then extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and dried under vacuum to give the title compound (0.76 g , $4.66 \mathrm{mmol}, 96 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.88-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.46$ $\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.41\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.0,133.2,131.4,128.6,128.5,65.1,33.7$.
NMR data are consistent with the literature. ${ }^{\mathrm{S} 2}$

2-Phenylthiazole

Phenylboronic acid ($762 \mathrm{mg}, 6.25 \mathrm{mmol}, 1.25$ equiv.), $\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](262 \mathrm{mg}, 0.40 \mathrm{mmol}, 8$ $\mathrm{mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(1.59 \mathrm{~g}, 7.50 \mathrm{mmol}, 1.5$ equiv.) were added to a flame-dried two-necked roundbottom flask equipped with a stirrer bar and condenser. The system was evacuated for 5 minutes and filled with N_{2}, then dry toluene (10 mL) and 2-bromothiazole ($820 \mathrm{mg}, 5.0 \mathrm{mmol}, 1$ equiv.) were added. The reaction mixture was heated at reflux overnight (16 h) and was then cooled to room temperature before water $(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added. The aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and the solvent was removed under vacuum. The residue was purified by column chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to afford the title compound as a yellow oil (163 mg , $1.01 \mathrm{mmol}, 20 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.01-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.87(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.48-7.41$ (m, 3H, Ar-H), 7.33 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.6,143.7,133.6,130.1,129.1,126.7,118.9$.
NMR data are consistent with the literature. ${ }^{\text {S11 }}$

1-Methyl-2-phenylimidazole ${ }^{\text {S3 }}$

Methyl iodide ($0.48 \mathrm{~mL}, 7.6 \mathrm{mmol}$) was added to the biphasic mixture obtained from 2phenylimidazole ($1.0 \mathrm{~g}, 6.9 \mathrm{mmol}$), tetra- n-butylammonium iodide ($0.19 \mathrm{~g}, 0.51 \mathrm{mmol}$), 50% aqueous $\mathrm{NaOH}(30 \mathrm{~mL})$ and toluene (30 mL). After stirring for 15 min at room temperature, the mixture was diluted with toluene $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The organic phase was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give pale yellow oil $(1.03 \mathrm{~g}, 6.51$ mmol, 97%).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.12$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $6.97(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=147.9,130.5,128.8,128.8,128.7,128.3,122.5,34.6$. NMR data are consistent with the literature. ${ }^{\text {S12 }}$

2-Phenylpyrimidine

A flame dried 50 mL round-bottom flask was charged with $\left[\mathrm{PdCl}_{2}(\mathrm{dppf})\right](40 \mathrm{mg}, 0.05 \mathrm{mmol})$, phenylboronic acid ($611 \mathrm{mg}, 5.0 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.23 \mathrm{~g}, 12.0 \mathrm{mmol})$ and suspended in premixed 1:1 solution of THF/ $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$. Subsequently, 2-bromopyrimidine ($646 \mathrm{mg}, 4.0 \mathrm{mmol}$) was added and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ overnight (16 h), and then cooled to room temperature. $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added to the reaction mixture. The aqueous layer was extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and the solvent was removed under vacuum. The residue was purified by column chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to afford the title compound as a yellow oil (331 mg , $2.12 \mathrm{mmol}, 53 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.81(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.49-8.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.52 - 7.47 (m, 3H, Ar-H), 7.18 (t, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=164.9,157.4,137.7,130.9,128.7,128.3,119.2$.
NMR data are consistent with the literature. ${ }^{\text {S11 }}$

2-(4-Acetyl)phenylpyridine

A flame dried 50 mL round-bottom flask was charged with $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](21 \mathrm{mg}, 0.018 \mathrm{mmol}), 4-$ acetylphenylboronic acid ($738 \mathrm{mg}, 4.50 \mathrm{mmol}$), potassium carbonate ($1.21 \mathrm{~g}, 9.0 \mathrm{mmol}$). The solids were suspended in premixed toluene/ethanol (3:2) (30 mL). Subsequently, 2-bromopyridine (0.28 $\mathrm{mL}, 3.0 \mathrm{mmol}$) was added and the reaction mixture was stirred for 24 h at $120^{\circ} \mathrm{C}$ before being allowed to cool to room temperature. Water (100 mL) was added, the layers were separated, and the aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and then the solvent was removed under vacuum yielding the crude yellow solid. The crude product was dissolved in DCM (5 mL) and passed through a short pad of silica which was then washed with further DCM. The solvent was evaporated, and the residue was crystallised from a DCM/pentane mixture to afford the product as a white solid ($517 \mathrm{mg}, 2.62 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.77-8.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.13-8.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.09$ - 8.04 (m, 2H, Ar-H), 7.82 - 7.78 (m, 2H, Ar-H), 7.33 - 7.27 (m, 1H, Ar-H), 2.65 (s, 3H, CH3). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=198.0,150.1,137.1,129.0,127.2,123.1,121.2,26.9$. NMR data are consistent with the literature. ${ }^{\text {S13 }}$
2-(4-Acetyl)phenyloxazoline ${ }^{\text {S5 }}$

A flame dried vial was charged with $[\mathrm{Cu}(\mathrm{IPr})(\mathrm{Cl})](10 \mathrm{mg}, 0.02 \mathrm{mmol}), 4$-acetylbenzonitrile ($145 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{NaOAc}(16 \mathrm{mg}, 0.2 \mathrm{mmol})$, and evacuated and backfilled with N_{2}. Ethanolamine ($0.24 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added and the reaction was stirred at $100^{\circ} \mathrm{C}$ for 16 h under solvent-free conditions. The reaction mixture was cooled to room temperature, dissolved in DCM and passed through a short pad of silica with DCM as the eluent. The solvent was removed under vacuum yielding a pale yellow solid ($60 \mathrm{mg}, 0.32 \mathrm{mmol}, 32 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.06-7.97(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.47\left(\mathrm{t}, J=9.6,2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10(\mathrm{t}$, $\left.J=9.6,2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=197.7,139.1,132.0,128.5,128.4,68.0,55.3,26.9$.
NMR data are consistent with the literature. ${ }^{\text {S14 }}$

2-(4-Cyano)phenylpyridine

A flame dried 50 mL round-bottom flask was charged with $\left[\mathrm{PdCl}_{2}(\mathrm{dppf})\right]$ ($31 \mathrm{mg}, 0.03 \mathrm{mmol}$), 4cyanophenylboronic acid ($856 \mathrm{mg}, 5.83 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.30 \mathrm{~g}, 12.0 \mathrm{mmol})$. The solids were suspended in premixed $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1) (40 mL). Subsequently, 2-bromopyridine ($0.38 \mathrm{~mL}, 4.0$ mmol) was added, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h and then cooled to room temperature. $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added to the reaction mixture, the layers were separated, and the aqueous layer was extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic solution was dried over MgSO_{4}. The solvent was removed under reduced pressure, and the residue was purified by recrystallisation from a $\mathrm{DCM} /$ pentane mixture to afford the title compound as yellow solid (554 mg , $3.07 \mathrm{mmol}, 77 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.75-8.67(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.72(\mathrm{~m}$, $4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.2,150.1,143.5,137.2,132.6,127.5,123.4,121.1$, 118.9, 112.5.

NMR data are consistent with the literature. ${ }^{\text {S15 }}$

2-(4-(Pyridin-2-yl)phenyl)-4,5-dihydrooxazole ${ }^{\mathrm{S} 4}$

A flame dried vial was charged with $[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})](135 \mathrm{mg}, 0.27 \mathrm{mmol}), 2-(4-$ cyano)phenylpyridine ($500 \mathrm{mg}, 2.77 \mathrm{mmol}$) and $\mathrm{NaOAc}(114 \mathrm{mg}, 1.39 \mathrm{mmol}$), and evacuated and backfilled with N_{2}. Ethanolamine ($0.34 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added and the reaction was stirred at $100{ }^{\circ} \mathrm{C}$ for 16 h under solvent-free conditions. The reaction mixture was cooled to room temperature, dissolved in DCM and transferred to a separating funnel containing brine $(200 \mathrm{~mL})$. The product was extracted with $\mathrm{DCM}(2 \times 50 \mathrm{~mL})$ and dried over MgSO_{4}, filtered, and the solvent was removed under vacuum. The residue was purified by column chromatography (70% EtOAc in hexane) to afford the title compound as pale pink solid (248 $\mathrm{mg}, 1.10 \mathrm{mmol}, 40 \%)$.
m.p.: $120-125^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.76-8.68(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.01(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.81-7.74$ $(\mathrm{m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.46\left(\mathrm{t}, J=9.5,2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09\left(\mathrm{t}, J=9.5,2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=164.5,156.5,149.9,142.0,136.9,128.7,128.2,126.9$, 122.7, 120.9, 67.7, 55.1.

Anal. Calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$: C, 74.98 ; H, 5.39; N, 12.49. Found: C, 74.28; H, 5.35; N, 12.34.

FTIR (neat): 3286, 3047, 2970, 2931, 2990, 2877, 1642, 1572, 1465, 1256, 1071, 1016, 940, $862,785,731,699,615 \mathrm{~cm}^{-1}$.

3. Intermolecular Competition Experiments

3.1. General Information

Reaction conditions

The relative rates of hydrogen-deuterium exchange reactions have been determined by competition experiments, where equimolar quantities of each of the two substrates bearing different DGs and catalytic amounts of iridium complexes were treated with a limiting amount of D_{2} in DCM at $25^{\circ} \mathrm{C}$. As a limiting amount of D_{2} gas should be used to avoid full conversion of the substrates, its volume was controlled by adding the required amount of solvent.

The volume of 0.10 mmol of the D_{2} gas can be calculated according to the ideal gas law (eq. S-1).

$$
\begin{equation*}
P V=n R T \tag{S-1}
\end{equation*}
$$

$n_{(\max)}=0.10 \mathrm{mmol}$
$T=298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
$P=1 \mathrm{~atm}$
$V_{(\max)}=n R T / P=0.10 \times 0.0821 \times 298 / 1=2.45 \mathrm{~mL}$
As the volume of J. Young Schlenk flasks (Figure S2) used for the competition experiments is approximately 8 mL , the use of 6.0 mL of the solvent will lead to less than 1 equivalent of deuterium gas. None of the substrates in the study undergo complete deuteration under these conditions, which are quite different for those used in most HIE experiments where complete deuteration at one site is desired.

Figure S2. The J. Young Schlenk flasks used for competition experiments.

General Procedure (GP1)

The two substrates of interest (0.10 mmol each) were added to one J. Young Schlenk flask, along with the catalyst of choice (0.005 mmol , unless otherwise noted) in air. DCM (6 mL) was added in such a way to rinse the inner walls of the flask. The flask was then sealed (with the gas inlet left open) under air before being cooled in a dry ice-acetone bath. The flask was evacuated and flushed with deuterium three times via a balloon. The gas inlet was then closed with fast thread tap, creating a sealed atmosphere of deuterium. After sealing the flask, it was placed in the thermostated water bath, and the reaction timer was started. The reaction mixture was stirred at $25^{\circ} \mathrm{C}(1 \mathrm{~h}$ for catalyst $\mathbf{I r} \mathbf{- 1}$ and 16 h for catalyst $\mathbf{I r} \mathbf{- 2}$) before the removal of the excess deuterium and the opening of the flask to air. The reaction mixture was quenched with few drops of MeCN and transferred to a single necked flask together with washings (DCM) before removing the solvent under reduced pressure. For NH-containing substrates (benzamide, benzenesulfonamide, acetanilide, phenylimidazol(in)e) the residue was directly analysed by ${ }^{1} \mathrm{H}$ NMR. For other substrates, the residue was dissolved in a small portion of 1:1 mixture of petroleum ether and diethyl ether (or EtOAc) and passed through a short plug of silica, eluting with a $1: 1$ mixture of petroleum ether and diethyl ether (or EtOAc) $(3 \times 2 \mathrm{~mL})$. The solvent was evaporated again under reduced pressure and the residue was analysed by ${ }^{1} \mathrm{H}$ NMR.

NMR spectrometer parameters are as follows: the relaxation delay was set to 20 s and the number of scans to four or higher when needed. After careful phasing and baseline correction, the integration of the signals was carried out manually.

Determination of Competition Rate Constants

The level of deuterium incorporation in the substrates was determined from the obtained ${ }^{1} \mathrm{H}$ NMR spectra (eq. S-2). The integrals were calibrated against a peak corresponding to a position which does not undergo labelling. In addition, the calibration signal was chosen to have as little overlap as possible with other peaks.

$$
\begin{equation*}
\% \mathrm{D}=100-\left(\frac{\text { residual integral }}{\text { number of labelling sites }} \times 100 \%\right) \tag{S-2}
\end{equation*}
$$

Based on the ratio between the initial and remaining concentrations of non-deuterated substrates \mathbf{R}, the competition constants κ were determined (eq. S-3).

$$
\begin{equation*}
\kappa=\frac{k_{1}}{k_{2}}=\frac{\log \left([\mathbf{R} 1]_{0} /[\mathbf{R} 1]_{\mathrm{t}}\right)}{\log \left([\mathbf{R} 2]_{0} /[\mathbf{R} 2]_{\mathrm{t}}\right)} \tag{S-3}
\end{equation*}
$$

Initial concentrations of the substrates are defined by mass balance (eq. S-4).

$$
\begin{equation*}
[\mathbf{R}]_{0}=[\mathbf{R}]_{\mathrm{t}}+[\mathbf{P}]_{\mathrm{t}} \tag{S-4}
\end{equation*}
$$

The relative concentrations $[\mathbf{R}]_{0}$ and $[\mathbf{R}]_{\mathrm{t}}$ were derived using equation (S-5) from the residual integral $\mathrm{I}_{\mathrm{R}(\mathrm{t})}$ of the peak corresponding to H / D positions, and the integral $\mathrm{I}_{\mathrm{R}(0)}$ of the peak used for calibration, which corresponds to both remaining starting material and deuterated product.

$$
\begin{equation*}
\frac{\left[R_{0}\right.}{\left[R_{t}\right.}=\frac{I_{R(0)} / N}{I_{R(t)} / N} \tag{S-5}
\end{equation*}
$$

where N is the number of protons contributing to the corresponding peak.
Each combination was analysed three times, and the competition constants are the average of all runs. The tables given below for each competition experiment (Table S1 to Table S41) summarize the amounts of the reagents used, integrals from the NMR spectra (Figures S3S175) used to calculate the relative concentrations of substrates and the values of the competition constants κ.

Acetophenone

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.99-7.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.60-7.53(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1$), $7.51-7.42$ (m, 2H, H-2), 2.61 (s, 3H, H-4). Incorporation expected at $\delta 7.99-7.93 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 2.61 \mathrm{ppm}(\mathrm{H}-4)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=7.98-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 7.67-7.61$ (m, 1H, H-3), $7.55-7.50$ (m, 2H, H-2), 2.58 (s, 3H, H-4).
Incorporation expected at $\delta 7.98-7.96 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 2.58 \mathrm{ppm}(\mathrm{H}-4)$

Benzophenone

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.84-7.78(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3), 7.63-7.53(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-1$), $7.52-7.45$ (m, 4H, H-2).
Incorporation expected at $\delta 7.84-7.78 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.63-7.53 \mathrm{ppm}(\mathrm{H}-1)$

Benzamide

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86-7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.57-7.48(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1$), 7.48 - 7.39 (m, 2H, H-2), 6.24 (bs, 2H, H-4)
Incorporation expected at $\delta 7.86-7.77 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.48-7.39 \mathrm{ppm}(\mathrm{H}-2)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=7.96$ (bs, 1H, H-4), $7.90-7.85(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3$), $7.54-7.48$ (m, 1H, H-1), $7.48-7.41$ (m, 2H, H-2), 7.35 (s, 1H, H-4) Incorporation expected at $\delta 7.90-7.85 \mathrm{ppm}(\mathrm{H}-3)$ Determined against integral at $\delta 7.48-7.41 \mathrm{ppm}(\mathrm{H}-2)$

N, N-Dimethylbenzamide

Ethylbenzoate

Nitrobenzene

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.17-2.88(\mathrm{~m}$, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$).
Incorporation expected at $\delta 7.43-7.36 \mathrm{ppm}$
Determined against integral at $\delta 3.17-2.88 \mathrm{ppm}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.08-8.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.58-7.52(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.38\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
Incorporation expected at $\delta 8.07-8.03 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 4.38 \mathrm{ppm}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.26-8.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.73-7.66(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1$), $7.58-7.51$ (m, 2H, H-2).
Incorporation expected at $\delta 8.26-8.20 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.73-7.66 \mathrm{ppm}(\mathrm{H}-1)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=8.30-8.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.90-7.79$
(m, 1H, H-1), 7.73 - 7.61 (m, 2H, H-2).
Incorporation expected at $\delta 8.30-8.16 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.73-7.61 \mathrm{ppm}(\mathrm{H}-2)$

Benzenesulfonamide

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=7.87-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.64-7.54$ (m, 3H, H-1 and H-2), 7.36 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$)
Incorporation expected at $\delta 7.87-7.80 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.64-7.54 \mathrm{ppm}(\mathrm{H}-1+\mathrm{H}-2)$

(Methylsulfonyl)benzene

Acetanilide

2-phenylpyridine

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=7.95-7.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.76-7.72$
(m, 1H, H-1), $7.68-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 3.21$ (s, 3H, H-4).
Incorporation expected at $\delta 7.95-7.92 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.68-7.64 \mathrm{ppm}(\mathrm{H}-2)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=9.90(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3), 7.30-7.24$ (m, 2H, H-2), $7.04-6.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.04$ (s, 3H, H-4). Incorporation expected at $\delta 7.60-7.55 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 2.04 \mathrm{ppm}(\mathrm{H}-4)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.73-8.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 8.02-7.98(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-3), 7.78-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and H-7), $7.51-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 7.45$ $-7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$.
Incorporation expected at $\delta 8.02-7.98 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 8.73-8.67 \mathrm{ppm}(\mathrm{H}-4)$ or at $\delta 7.78-7.70$
(H-6+H-7) depending on the competition partner.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=8.69-8.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 8.11-8.06$ (m, 2H, H-3), $7.97-7.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 7.52-$ 7.46 (m, 2H, H-2), $7.46-7.41$ (m, 1H, H-1), $7.38-7.32$ (m, 1H, H-5).

Incorporation expected at $\delta 8.11-8.06 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.90-7.84 \mathrm{ppm}$ (H-6)

2-Phenylpyrimidine

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.81(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 8.48-8.43$ (m, 2H, H-3), $7.52-7.48(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2), 7.18(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5)

Incorporation expected at $\delta 8.48-8.43 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.18 \mathrm{ppm}(\mathrm{H}-5)$

1-phenylpyrazole

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.92(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.75-7.68$ (m, 3H, H-3 and H-4), $7.48-7.43$ (m, 2H, H-2), $7.32-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$, $6.49-6.45$ (m, 1H, H-5).
Incorporation expected at $\delta 7.75-7.68 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.92 \mathrm{ppm}(\mathrm{H}-6)$
2-phenyloxozoline

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.97-7.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.50-7.44(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 4.43(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 4.06(\mathrm{t}, J$ $=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5)$.
Incorporation expected at $\delta 7.97-7.93 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 4.43 \mathrm{ppm}(\mathrm{H}-4)$

2-phenylthiazoline

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86-7.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.48-7.37(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2), 4.46(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 3.41(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 5).

Incorporation expected at $\delta 7.86-7.81 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 4.46 \mathrm{ppm}(\mathrm{H}-4)$

2-phenylthiazole

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.00-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.87(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-4), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-1), 7.33(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 5).

Incorporation expected at $\delta 8.00-7.94 \mathrm{ppm}(\mathrm{H}-3)$
Determined against integral at $\delta 7.87$ or $7.33 \mathrm{ppm}(\mathrm{H}-4$ or H-5)

2-phenylbenzothiazole

 $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.53-7.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-5), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}$, H-6).
Incorporation expected at $\delta 8.14-8.06 \mathrm{ppm}(\mathrm{H}-3)$
Incorporation determined against $\delta 7.91 \mathrm{ppm}(\mathrm{H}-7)$

1-methyl-2-phenylimidazole

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.47-7.34(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2), 7.12(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.97(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 3.19 (s, 3H, H-6).

Incorporation expected at $\delta 7.65-7.60 \mathrm{ppm}(\mathrm{H}-3)$
Incorporation determined against $\delta 7.12 \mathrm{ppm}(\mathrm{H}-5)$

2-phenylimidazole

2-phenylimidazole

${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=12.49(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3), 7.48-7.39(2 \mathrm{H}, \mathrm{H}-2), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 7.13$ (s, 2H, H-4 and H-5).
Incorporation expected at $\delta 7.98-7.92 \mathrm{ppm}(\mathrm{H}-3)$
Incorporation determined against $\delta 7.13 \mathrm{ppm}(\mathrm{H}-4+\mathrm{H}-5)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=7.86-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 7.49-7.36$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2$), 3.60 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-5$).
Incorporation expected at $\delta 7.86-7.80 \mathrm{ppm}(\mathrm{H}-3)$
Incorporation determined against $\delta 3.60 \mathrm{ppm}(\mathrm{H}-4+\mathrm{H}-5)$

3.2. Effects of the Reaction Conditions on Competition Rate Constants

The competition labelling of 2-phenylpyridine and 1-phenylpyrazole was chosen as a model reaction to test the influence of catalyst loading, reaction times and solvent on the competition rate constants κ.

Mass of reagents: 1-Phenylpyrazole ($14.4 \mathrm{mg}, 0.1 \mathrm{mmol}$); 2-Phenylpyridine ($15.5 \mathrm{mg}, 0.1$ $\mathrm{mmol})$; for catalyst $\mathbf{I r}-\mathbf{2}(2.1 \mathrm{mg}$ for $2.5 \mathrm{~mol} \%, 4.3 \mathrm{mg}, 5 \mathrm{~mol} . \%, 6.4 \mathrm{mg}$ for $7.5 \mathrm{~mol} \%, 8.6$ mg for $10 \mathrm{~mol} \%$); for catalyst $\mathbf{I r} \mathbf{- 1}(8.7 \mathrm{mg}, 5 \mathrm{~mol} \%)$; Volume (solvent) $=6.0 \mathrm{~mL}$ Deuteration expected at $\delta(\mathbf{R 1})=7.78-7.67 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.04-7.97 \mathrm{ppm}$ Determined against integral at $\delta 6.50-6.42$ for $\mathbf{R 1}$ and at $\delta 8.72-8.68$ for $\mathbf{R 2}$ Spectral details of the reaction mixture:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.72-8.68(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.04-7.97(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.92(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$), $7.78-7.67$ (m, 2H, R2, 1H, R1, 2H/D R1), $7.52-7.38$ ($3 \mathrm{H}, \mathbf{R 2}$ and 2 H , R1), $7.31-7.26$ (m, 1H, R1), $7.24-7.20$ (m, 1H, R2), $6.50-6.42$ (m, 1H, R1)

Catalyst loading

Competition experiments between 2-phenylpyridine and 1-phenylpyrazole with different loadings of the catalyst Ir-2 (2.5 to $10 \mathrm{~mol} \%$) were performed in DCM (6.0 mL) following General Procedure GP1 for intermolecular competition experiments (time $(t)=16 \mathrm{~h})$.

Table S1. Competition labelling of 1-phenylpyrazole and 2-phenylpyridine using different loadings of catalyst Ir-2.

Entry	catalyst loading $(\mathrm{mol} \%)$	$\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ $\mathrm{N}=2 \mathrm{H}$	$\mathrm{I}_{\mathrm{R} 1(0)}$ $\mathrm{N}=1 \mathrm{H}$	$\% \mathrm{D}_{\mathrm{R} 1}$	$\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ $\mathrm{N}=2 \mathrm{H}$	$\mathrm{I}_{\mathrm{R} 2(0)}$ $\mathrm{N}=1 \mathrm{H}$	$\% \mathrm{D}_{\mathrm{R} 2}$	κ
1	2.5	1.40^{a}	1.00	30	1.32	0.86	23	1.35
2	5.0	1.29^{b}	1.00	36	1.22	0.85	28	1.32
3	7.5	1.48^{c}	1.00	26	1.43	0.94	24	1.10
4	10	1.17^{d}	1.00	42	1.09	0.91	40	1.05

[^0]```
D320014
Person kpb19112
DT-19-4
@proton CDCI3 \{C:\NMRdata\} DJN 50

Figure S3. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 1, Table S1)

Figure S4. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 2, Table S1)

D320041
Person kpb19112
DT-19-6
@proton CDCI3 \{C:\NMRdata\} DJN 61
 fig

Figure S5. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 3, Table S1)
Person kpb19112
\(\stackrel{+1}{\infty}\)

@proton CDCl3 \{C:\NMRdata\} DJN 62

Figure S6. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 4, Table S1)

\section*{Time-dependence}

Competition experiments between 1-phenylpyrazole and 2-phenylpyridine with the catalyst Ir\(2(5 \mathrm{~mol} \%)\) were performed in DCM (6.0 mL) over different time periods following the General Procedure GP1 for intermolecular competition experiments.

Table S2. Competition labelling of 1-phenylpyrazole and 2-phenylpyridine using catalyst Ir-2 over different time periods.
\begin{tabular}{ccccccccc}
\hline \multirow{2}{*}{ Entry } & \begin{tabular}{c}
reaction \\
time
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(t)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(t)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\%^{2} \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline 1 & 1 h & \(1.92^{\mathrm{a}}\) & 1.00 & 4 & 1.55 & 0.80 & 3 & 1.29 \\
2 & 2 h & \(1.89^{\mathrm{b}}\) & 1.00 & 6 & 1.75 & 0.91 & 4 & 1.44 \\
3 & 16 h & \(1.65^{\mathrm{c}}\) & 1.00 & 18 & 1.75 & 1.00 & 13 & 1.44 \\
\hline
\end{tabular}
\({ }^{a} \mathrm{I}_{\mathrm{R} 1(t)}=4.52-1.00-(0.80 \times 2) ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(t)}=4.71-1.00-(0.91 \times 2) ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(t)}=4.65-1.00-(1.00 \times 2) ;\)

D318980
Person kpb19112
DT-19-1
@proton CDCI3 \{C:\NMRdata\} DJN 56

Figure S7. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 1, Table S2)

D319150
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 14

Figure S8. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 2, Table S2)

Figure S9. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 3, Table S2)

\section*{Solvent effects}

Competition experiments between 1-phenylpyrazole and 2-phenylpyridine with the catalyst Ir\(1(5 \mathrm{~mol} \%)\) were performed in various solvents \((6.0 \mathrm{~mL})\) following the General Procedure GP1 for intermolecular competition experiments (time \((\mathrm{t})=1 \mathrm{~h}\)).

Table S3. Competition labelling of 1-phenylpyrazole and 2-phenylpyridine using catalyst
Ir-1 in different solvents.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Solvent & Entry & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 1(t)} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 1(0)} \\
\mathrm{N}=1 \mathrm{H} \\
\hline
\end{gathered}
\] & \% \(\mathrm{D}_{\text {R1 }}\) & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 2(\mathrm{t})} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 2(0)} \\
\mathrm{N}=1 \mathrm{H}
\end{gathered}
\] & \(\% \mathrm{D}_{\text {R2 }}\) & \(\kappa\) \\
\hline \multirow[t]{4}{*}{DCM} & 1 & \(1.26{ }^{\text {a }}\) & 1.00 & 37 & 1.74 & 1.18 & 26 & 1.49 \\
\hline & 2 & \(0.90^{\text {b }}\) & 1.00 & 55 & 1.38 & 1.07 & 36 & 1.78 \\
\hline & 3 & \(0.92{ }^{\text {c }}\) & 1.00 & 54 & 1.40 & 1.08 & 35 & 1.84 \\
\hline & & & & & & & \multicolumn{2}{|l|}{Average \(\mathrm{k}=1.71\)} \\
\hline \multicolumn{9}{|c|}{\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(t)}=4.62-1.00-(1.18 \times 2) ;{ }^{\text {b }} \mathrm{I}_{\mathrm{R1}(t)}=4.04-1.00-(1.07 \times 2) ;{ }^{\text {c }} \mathrm{I}_{\mathrm{RL}(\mathrm{t})}=4.08-1.00-(1.08 \times 2) ;\)} \\
\hline \multirow[t]{4}{*}{THF} & 1 & \(1.15{ }^{\text {a }}\) & 1.00 & 43 & 1.32 & 1.01 & 35 & 1.30 \\
\hline & 2 & \(1.22^{\text {b }}\) & 1.00 & 39 & 1.36 & 1.00 & 32 & 1.28 \\
\hline & 3 & \(0.95{ }^{\text {c }}\) & 1.00 & 53 & 1.13 & 0.96 & 41 & 1.40 \\
\hline & & & & & & & \multicolumn{2}{|l|}{Average \(\mathrm{k}=1.33\)} \\
\hline \multicolumn{9}{|r|}{\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(t)}=4.17-1.00-(1.01 \times 2) ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{Rl}(\mathrm{t})}=4.22-1.00-(1.00 \times 2) ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(t)}=3.87-1.00-(0.96 \times 2) ;\)} \\
\hline \multirow[t]{4}{*}{\(\mathrm{Et}_{2} \mathrm{O}\)} & 1 & \(1.17{ }^{\text {a }}\) & 1.00 & 42 & 1.39 & 1.05 & 34 & 1.30 \\
\hline & 2 & \(0.73{ }^{\text {b }}\) & 1.00 & 64 & 0.91 & 0.97 & 53 & 1.33 \\
\hline & 3 & \(0.78{ }^{\text {c }}\) & 1.00 & 61 & 1.03 & 0.96 & 46 & 1.51 \\
\hline & & & & & & & \multicolumn{2}{|l|}{\[
\text { Average } \mathrm{\kappa}=1.38
\]} \\
\hline \multicolumn{9}{|r|}{\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(t)}=4.27-1.00-(1.05 \times 2) ;{ }^{\text {b }} \mathrm{I}_{\mathrm{R} 1(t)}=3.67-1.00-(0.97 \times 2) ;{ }^{\text {c }} \mathrm{I}_{\mathrm{R} 1(t)}=3.66-1.00-(0.96 \times 2) ;\)} \\
\hline \multirow[t]{4}{*}{Toluene} & 1 & \(0.98{ }^{\text {a }}\) & 1.00 & 51 & 1.45 & 1.09 & 33 & 1.75 \\
\hline & 2 & \(0.98{ }^{\text {b }}\) & 1.00 & 51 & 1.42 & 1.06 & 33 & 1.78 \\
\hline & 3 & \(1.11^{\text {c }}\) & 1.00 & 45 & 1.39 & 0.98 & 29 & 1.71 \\
\hline & & & & & & & \multicolumn{2}{|l|}{Average \(\mathrm{k}=1.75\)} \\
\hline \multicolumn{9}{|r|}{\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(t)}=4.16-1.00-(1.09 \times 2) ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(t)}=4.10-1.00-(1.06 \times 2) ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(t)}=4.07-1.00-(0.98 \times 2) ;\)} \\
\hline \multirow[t]{4}{*}{EtOAc} & 1 & \(1.38{ }^{\text {a }}\) & 1.00 & 31 & 1.28 & 0.98 & 35 & 0.87 \\
\hline & 2 & \(0.90{ }^{\text {b }}\) & 1.00 & 55 & 0.84 & 1.00 & 58 & 0.92 \\
\hline & 3 & \(0.88{ }^{\text {c }}\) & 1.00 & 56 & 0.82 & 1.00 & 59 & 0.92 \\
\hline & & & & & & & \multicolumn{2}{|l|}{Average \(\mathrm{k}=0.90\)} \\
\hline
\end{tabular}

D318481
Person kpb19112
DT-11-1
@proton CDCI3 \{C:\NMRdata\} DJN 22

\begin{tabular}{|c|}
\hline & & & & & & \multicolumn{2}{|c|}{\[
\begin{aligned}
& \stackrel{\infty}{\infty} \\
& \cdots \\
&
\end{aligned}
\]} & & & \[
\underset{\sim}{\underset{\sim}{2}}
\] & & & - & \[
\begin{aligned}
& T_{1}^{\prime}{ }^{\circ} \\
& 0 \\
& -1
\end{aligned}
\] & & & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { 'I } \\
& \hline- \\
& -
\end{aligned}
\]} \\
\hline 10.0 & 9.8 & 9.6 & 9.4 & 9.2 & 9.0 & 8.8 & 8.6 & 8.4 & \[
8.2
\] & 8.0 & 7.8 & 7.6 & 7.4 & 7.2 & 7.0 & 6.8 & 6.6 & 6.4 & 6. \\
\hline & & & & & & & & & f1 (ppm) & & & & & & & & & & \\
\hline
\end{tabular}

Figure S10. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (DCM-entry 1, Table S3)

D318482
Person kpb19112
DT-11-2
@proton CDCl3 \{C:\NMRdata\} DJN 23

\(\underbrace{\text { Fog }}\)

宸

Figure S12. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (DCM-entry 3, Table S3)

Person kpb19112
DT-91-2-THF
@proton CDCI3 \{C:\NMRdata\} DJN 56

Figure S13. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (THF-entry 1, Table S3)

Figure S14. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (THF-entry 2, Table S3)

D329237
D329237
Person kpb
Person kpb19112
@proton CDCl3 \{C:\NMRdata\} DJN 96
\[
\begin{aligned}
& \text { ㄱㅇ } \\
& \infty \\
& \vdots \\
& \vdots
\end{aligned}
\]

Figure S15. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (THF-entry 3, Table S3)

Figure S16. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (\(\mathrm{Et}_{2} \mathrm{O}\)-entry 1, Table S 3)

D329289 Person kpb19112
DT-91-Et2O-2
@proton CDCl3 \{C:\NMRdata\} DJN 98
fif oi 0
\[
1
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & \[
\stackrel{T}{\hat{N}}
\] & \[
\begin{aligned}
& \text { దু } \\
& \underset{\sim}{\circ}
\end{aligned}
\] & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { } \\
& \hline- \\
& \hline
\end{aligned}
\]} \\
\hline 10 & 9,5 & 9, & 85 & & 7.0 & & \\
\hline 10.0 & 9.5 & 9.0 & 8.5 & 7.5 & 7.0 & 6.5 & 6.1 \\
\hline
\end{tabular}

Figure S17. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (\(\mathrm{Et}_{2} \mathrm{O}\)-entry 2, Table S 3)

D329290
Person kpb19112
DT-91-Et2O-3
@proton CDCl3 \{C:\NMRdata\} DJN 99

Figure S18. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (\(\mathrm{Et}_{2} \mathrm{O}\)-entry 3, Table S3)

D328670
Person kpb19112
DT-91-1-EtOAc
@proton CDCl3 \{C:\NMRdata\} DJN 55

Figure S19. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (EtOAc-entry 1, Table S3)

Figure S20. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (EtOAc-entry 2, Table S3)
Person kpb19112
PT-91-EtOAc-3
@proton CDCI3 \{C:\NMRdata\} DJN 94
\(\underset{\infty}{\underset{\infty}{\sim}} \underset{\infty}{N}\)

Figure S21. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (EtOAc-entry 3, Table S3)

D328641
Person kpb19112
DT-91-4-Tol
@proton CDCI3 \{C:\NMRdata\} DJN 30

\(9 \quad \begin{array}{llllllll}8 & 7 & 6 & \begin{array}{c}5 \\ f_{1}(\mathrm{ppm})\end{array} & 3 & 2 & 1 & 0\end{array}\)

\begin{tabular}{|c|}
\hline & & & & & & & & or & & & & & \[
\begin{aligned}
& \underset{\sim}{\square} \\
& \underset{\sim}{2}
\end{aligned}
\] & & - & & & & \(\bigcirc\) & \\
\hline & 13 \\
\hline 10.3 & 10.1 & 9.9 & 9.7 & 9.5 & 9.3 & 9.1 & 8.9 & 8.7 & 8.5 & \[
\begin{gathered}
8.3 \\
\mathrm{f1}(\mathrm{ppm})
\end{gathered}
\] & 8.1 & 7.9 & 7.7 & 7.5 & 7.3 & 7.1 & 6.9 & 6.7 & 6.5 & 6.3 \\
\hline
\end{tabular}

Figure S22. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (Toluene-entry 1, Table S3)

D329291
Person kpb19112
DT-91-Tol-2
@proton CDCI3 \{C:\NMRdata\} DJN 15

fif

Figure S23. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (Toluene-entry 2, Table S3)

Figure S24. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (Toluene-entry 3, Table S3)

\subsection*{3.3. Competition Experiments with [(COD)Ir(IMes)PPh3]BArF 24 (Ir-1)}

Table S4. Determination of the competition rate constant \(\kappa\) from the labelling experiment between acetophenone and benzophenone
\begin{tabular}{|c|c|c|c|}
\hline & Substrate R1 & Substrate R2 & Catalyst \\
\hline & & & \[
\begin{gathered}
\mathbf{I r - 1} \\
{\left[(\mathrm{COD}) \mathrm{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]}
\end{gathered}
\] \\
\hline Mass & 12.0 mg & 18.2 mg & 8.7 mg \\
\hline
\end{tabular}

Deuteration expected at \(\delta(\mathbf{R 1})=7.99-7.93 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.84-7.77 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R} \mathbf{1})=2.61 \mathrm{ppm}\) and at \(\delta(\mathbf{R} \mathbf{2})=7.63-7.53 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.99-7.93(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 1}), 7.84-7.77\) (m, 4H/D R2), \(7.63-7.53\)
(m, 1H R1 and 2H R2), \(5.52-5.42\) (\(\mathrm{m}, 2 \mathrm{H}\) R1 and 4H R2), 2.60 (s, 3H, R1)
\begin{tabular}{cccccccc}
\hline Entry & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(t)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=3 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(t)}\) \\
\(\mathrm{N}=4 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 1.39 & 3.00 & 31 & 3.07 & \(2.22^{\mathrm{a}}\) & 31 & 0.99 \\
\(\mathbf{2}\) & 1.08 & 3.00 & 46 & 2.65 & \(2.44^{\mathrm{b}}\) & 46 & 1.01 \\
\(\mathbf{3}\) & 1.01 & 3.00 & 50 & 2.18 & \(2.12^{\mathrm{c}}\) & 49 & 1.04 \\
\hline \multicolumn{7}{c}{ Average \(\mathbf{\kappa}=\mathbf{1 . 0 1}\)} & \\
\hline
\end{tabular}
\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 2(0)}=3.22-(3.00 / 3) ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 2(0)}=3.44-(3.00 / 3) ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 2(0)}=3.12-(3.00 / 3) ;\)
non-deuterated acetophenone
non-deuterated benzophenone

Figure S25. Stacked \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of non-deuterated substrates and reaction mixture.

D318492
Person kpb19112
DT－10－1
＠proton CDCI3 \｛C：\NMRdata\} DJN 33

Figure S26．\({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between acetophenone and benzophenone（entry 1，Table S4）．
D318493
Person kpb19112
DT－10－2
＠proton CDCI3 \｛C：\NMRdata\} DJN 34

ベベベベヘベベベヘ
\begin{tabular}{l}
M \\
\hline 0 \\
\hline 0
\end{tabular}

Figure S27．\({ }^{1} \mathrm{H}\) NMR（ \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）of the competition experiment between acetophenone and benzophenone（entry 2，Table S4）．

D318494
Person kpb19112
DT-10-3
@proton CDCl3 \{C:\NMRdata\} DJN 35

Figure S28. \({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between acetophenone and benzophenone (entry 3, Table S4).

Table S5. Determination of the competition rate constant \(\kappa\) from the labelling experiment between benzamide and acetophenone
\begin{tabular}{|c|c|c|c|}
\hline & Substrate R1 & Substrate R2 & Catalyst \\
\hline & & & \[
\begin{gathered}
\mathbf{I r} \mathbf{- 1} \\
{\left[(\mathrm{COD}) \mathrm{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]}
\end{gathered}
\] \\
\hline Mass & 12.1 mg & 12.0 mg & 8.7 mg \\
\hline
\end{tabular}

Deuteration expected at \(\delta(\mathbf{R 1})=7.86-7.77 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.99-7.93 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R 1})=7.59-7.39 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=2.60 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.99-7.93(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}\) R2), \(7.86-7.77(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}\) R1), \(7.59-7.39\)
(m, 3H, R1 and 3H, R2), 6.19 (br, 2H, R1), 2.60 (s, 3H, R2).
\begin{tabular}{cccccccc}
\hline Entry & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(t)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=3 \mathrm{H}\)
\end{tabular} & \(\%_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(t)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=3 \mathrm{H}\)
\end{tabular} & \(\%^{2} \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 2.09 & \(3.78^{\mathrm{a}}\) & 17 & 1.94 & 3.00 & 3 & 6.14 \\
\(\mathbf{2}\) & 1.57 & \(3.84^{\mathrm{b}}\) & 39 & 1.85 & 3.00 & 8 & 6.27 \\
\(\mathbf{3}\) & 1.65 & \(3.93^{\mathrm{c}}\) & 37 & 1.86 & 3.00 & 7 & 6.37 \\
\hline \multicolumn{7}{c}{ Average \(\mathbf{\kappa}=\mathbf{6 . 2 6}\)} & \\
\end{tabular}
\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(0)}=6.78-3.00 ;{ }^{\mathrm{b}} \mathrm{IR} 1(0)=6.84-3.00 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(0)}=6.93-3.00\);
non-deuterated benzamide

Figure S29. Stacked \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of non-deuterated substrates and reaction mixture.

D318834
Person kpb19112
DT-14-1
@proton CDCl3 \{C:\NMRdata\} DJN 23

Figure S30. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between acetophenone and benzamide (entry 1, Table S5)
D323104
Person kpb19112
DT-14-2
@proton CDCI3 \{C:\NMRdata\} DJN 10

Figure S31. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between acetophenone and benzamide (entry 2, Table S5)

D323105
Person kpb19112
DT-14-3
@proton CDCl3 \{C:\NMRdata\} DJN 11
\begin{tabular}{|c|}
\hline \\
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
\(\begin{array}{r}\text { M } \\ 0 \\ 0 \\ 0 \\ \hline\end{array}\)

Figure S32. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between acetophenone and benzamide (entry 3, Table S5)

Table S6. Determination of the competition rate constant \(\kappa\) from the labelling experiment between acetophenone and \(N, N\)-dimethylbenzamide.
\begin{tabular}{l}
Substrate R1 \\
Mass \\
\\
\hline
\end{tabular}

Deuteration expected at \(\delta(\mathbf{R 1})=7.99-7.93 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.42-7.36 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R} \mathbf{1})=7.57-7.54 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=3.17-2.88 \mathrm{ppm}\) Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.99-7.93(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 1}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}), 7.47-7.43\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Entry & \[
\begin{gathered}
\mathrm{I}_{\mathrm{Rl}(\mathrm{t})} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{I}_{\mathrm{R} 1(0)} \\
\mathrm{N}=3 \mathrm{H}
\end{gathered}
\] & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 2(\mathrm{t})} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 2(0)} \\
\mathrm{N}=6 \mathrm{H}
\end{gathered}
\] & \% \(\mathrm{D}_{\text {R2 }}\) & \(\kappa\) \\
\hline 1 & 1.50 & 3.00 & 25 & \(1.62^{\text {a }}\) & 5.32 & 9 & 3.18 \\
\hline 2 & 1.54 & 3.00 & 23 & \(1.96{ }^{\text {b }}\) & 6.29 & 7 & 3.74 \\
\hline 3 & 1.45 & 3.00 & 28 & \(2.06{ }^{\text {c }}\) & 6.59 & 6 & 4.82 \\
\hline
\end{tabular}

\section*{Average \(\mathrm{k}=3.91\)}
\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 2(t)}=4.28-(5.32) / 6 \times 3 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 2(t)}=5.10-(6.29) / 6 \times 3 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=5.35-(6.59) / 6 \times 3\)

Figure S33. Stacked \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of non-deuterated substrates and reaction mixture.

Figure S34. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between acetophenone and \(N, N\)-dimethylbenzamide (entry 1, Table S6).
D323115
Person kpb19112
DT-16-3
@proton CDCI3 \{C:\NMRdata\} DJN 20

Figure S35. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between acetophenone and \(N, N\)-dimethylbenzamide (entry 2, Table S6).

D324151
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 41

Figure S36. \({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between acetophenone and \(\mathrm{N}, \mathrm{N}\)-dimethylbenzamide (entry 3, Table S6).

Table S7. Determination of the competition rate constant \(\kappa\) from the labelling experiment between acetophenone and nitrobenzene.
Substrate R1 \(\quad\) Substrate R2 \(\quad\) Catalyst

Ir-1
\(\left[(\mathrm{COD}) \mathrm{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]\)
\begin{tabular}{lll}
Mass & 12.0 mg & 12.3 mg \\
\hline Den
\end{tabular}

Deuteration expected at \(\delta(\mathbf{R 1})=7.99-7.93 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=8.26-8.20 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R 1})=2.61 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.49-7.43 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta=8.26-8.20\) (m, 2H/D R2), \(7.99-7.93\) (m, 2H/D R1), \(7.73-7.66(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 7.59-7.51(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}\) and 2H, R2), \(7.49-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1})\), \(2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)\).
\begin{tabular}{cccccccc}
\hline \multirow{2}{*}{ Entry } & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(t)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=3 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(t)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 0.66 & 3.22 & 69 & 1.43 & 1.00 & 29 & 3.52 \\
\(\mathbf{2}\) & 0.59 & 2.58 & 66 & 1.43 & 1.00 & 29 & 3.19 \\
\(\mathbf{3}\) & 0.81 & 2.81 & 57 & 1.57 & 1.00 & 22 & 3.46 \\
\hline
\end{tabular}

Average \(\boldsymbol{\kappa}=3.39\)

Figure S37. Stacked \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of non-deuterated substrates and reaction mixture.

D326180
Person kpb19112
DT－12－3A
＠proton CDCl3 \｛C：\NMRdata\} DJN 23
 がヘベヘNヘNへ

Figure S38．\({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between acetophenone and nitrobenzene（entry 1，Table S7）．

Figure S39．\({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between acetophenone and nitrobenzene（entry 2，Table S7）．

D321015
Person kpb19112
DT-12-5
@proton CDCl3 \{C:\NMRdata\} DJN 26

Figure S40. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between acetophenone and nitrobenzene (entry 3, Table S7).

Table S8. Determination of the competition rate constant \(\kappa\) from the labelling experiment between nitrobenzene and ethyl benzoate.
\begin{tabular}{|c|c|c|c|}
\hline & Substrate R1 & Substrate R2 & Catalyst \\
\hline & & & \[
\begin{gathered}
\mathbf{I r - 1} \\
{\left[(\mathrm{COD}) \mathrm{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]}
\end{gathered}
\] \\
\hline Mass & 12.3 mg & 15.0 mg & 8.7 mg \\
\hline
\end{tabular}

Deuteration expected at \(\delta(\mathbf{R 1})=8.26-8.20 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=8.08-8.02 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R 1})=7.70 \mathrm{ppm}\) and at \(\delta(\mathbf{R} \mathbf{2})=4.38 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.26-8.20(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}), 8.08-8.02(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}), 7.70\) (t, \(J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}\) and \(1 \mathrm{H}, \mathbf{R 2}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 2})\), \(4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 2}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{R 2})\).
\begin{tabular}{cccccccc}
\hline \multirow{2}{*}{ Entry } & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 0.88 & 1.00 & 56 & 1.83 & 2.12 & 14 & 5.58 \\
\(\mathbf{2}\) & 1.04 & 1.00 & 48 & 1.87 & 2.06 & 9 & 6.76 \\
\(\mathbf{3}\) & 0.76 & 1.00 & 62 & 1.74 & 2.01 & 13 & 6.71 \\
\hline
\end{tabular}
\[
\text { Average } \kappa=6.35
\]

Figure S41. Stacked \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of non-deuterated substrates and reaction mixture.

B58490
Person kpb19112
DT-52-2
@proton16 CDCl3 \{C:\NMRdata\} DJN 8

\(\underset{\sim}{\dot{\sigma}} \underset{\sim}{m} \underset{\sim}{m} \underset{\sim}{n}\)
ت~~~~~

Figure S42. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between nitrobenzene and ethyl benzoate (entry 1, Table S8).
B58540
Person kpb19112
DT-52-3
@proton16 CDCI3 \{C:\NMRdata\} DJN 21
\[
\begin{aligned}
& \underset{\infty}{\text { N N }} \underset{\infty}{\infty} \text { O. }
\end{aligned}
\]

국윤

Figure S43. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between nitrobenzene and ethyl benzoate (entry 2 , Table S8).

B58541
Person kpb19112
DT－52－4
＠proton16 CDCl3 \｛C：\NMRdata\} DJN 22

Figure S44．\({ }^{1} \mathrm{H}\) NMR（ \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）of the competition experiment between nitrobenzene and ethyl benzoate（entry 3，Table S8）．

Table S9. Determination of the competition rate constant \(\kappa\) from the labelling experiment between acetophenone and ethyl benzoate.

Substrate R1

Substrate R2

15.0 mg

Catalyst
Ir-1
\(\left[(\mathrm{COD}) \mathrm{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]\)
8.7 mg
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mass & \multicolumn{2}{|l|}{12.0 mg} & \multicolumn{2}{|l|}{15.0 mg} & \multicolumn{3}{|c|}{8.7 mg} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Deuteration expected at \(\delta(\mathbf{R} \mathbf{1})=7.99-7.93 \mathrm{ppm}\) and at \(\delta(\mathbf{R} 2)=8.08-8.02 \mathrm{ppm}\) Determined against integral at \(\delta(\mathbf{R} \mathbf{1})=2.61 \mathrm{ppm}\) and at \(\delta(\mathbf{R} \mathbf{2})=4.38 \mathrm{ppm}\) Spectral details of the deuterated reaction mixture: \\
\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta=8.08-8.02(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}\)), \(7.99-7.93(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 1}), 7.59\) \(-7.52(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}\) and \(1 \mathrm{H}, \mathbf{R 2}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}\) and \(2 \mathrm{H}, \mathbf{R 2}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}\), \(2 \mathrm{H}, \mathbf{R 2}\)), 2.61 (\(\mathrm{s}, 3 \mathrm{H}, \mathbf{R 1}\)), 1.39 (\(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{R 2}\)).
\end{tabular}} \\
\hline Entry & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 1(\mathrm{t})} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 1(0)} \\
\mathrm{N}=3 \mathrm{H}
\end{gathered}
\] & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 2(\mathrm{t})} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 2(0)} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline 1 & 0.74 & 3.00 & 63 & 1.93 & 2.14 & 10 & 9.63 \\
\hline 2 & 0.59 & 3.00 & 71 & 2.37 & 2.66 & 11 & 10.58 \\
\hline 3 & 0.54 & 3.00 & 73 & 1.89 & 2.13 & 11 & 10.95 \\
\hline
\end{tabular}

Average \(\boldsymbol{\kappa}=10.38\)
non-deuterated acetophenone

Figure S45. Stacked \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of non-deuterated substrates and reaction mixture.

D326188
Person kpb19112
DT-51-3
@proton CDCl3 \{C:\NMRdata\} DJN 31
\(\stackrel{\stackrel{\rightharpoonup}{i}}{i}\)
\(\underset{\sim}{7} \stackrel{\circ}{\circ}\)

Figure S46. \({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between acetophenone and ethyl benzoate (entry 1, Table S9).
B58533
Person kpb19112
DT-51-4
@proton16 CDCl3 \{C:\NMRdata\} DJN 5

\[
\stackrel{\stackrel{\rightharpoonup}{i}}{\underset{i}{\mid}}
\]

Figure S47. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between acetophenone and ethyl benzoate (entry 2, Table S9).
```

Person kpb19112
PT-51-6

```
＠proton CDCI3 \｛C：\NMRdata\} DJN 33

 ますが学学
 \(\stackrel{\rightharpoonup}{i}\)
 \(+{ }^{7}+\)

Figure S48．\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between acetophenone and ethyl benzoate（entry 3，Table S9）．

Table S10. Determination of the competition rate constant \(\kappa\) from the labelling experiment between acetanilide and benzamide.

Substrate R1

12.1 mg
13.5 mg
\(4.3 \mathrm{mg}(2.5 \mathrm{~mol} \%)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mass & 12.1 m & & 13.5 mg & \multicolumn{4}{|c|}{4.3 mg (\(2.5 \mathrm{~mol} \%)\)} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Deuteration expected at \(\delta(\mathbf{R 1})=7.91-7.84 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.60-7.55 \mathrm{ppm}\) \\
Determined against integral at \(\delta(\mathbf{R 1})=7.47-7.41 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.30-7.24 \mathrm{ppm}\) \\
Spectral details of the deuterated reaction mixture: \\
\({ }^{1} \mathrm{H}\) NMR (400 MHz , DMSO- \(d_{6}\)) \(\delta=9.90\) (br, 1H, R2), 7.96 (br, 1H, R1), \(7.91-7.84\) (m, 2H/D, \\
R1), \(7.60-7.55(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}\)), \(7.54-7.41\) (m, 1H, R1), \(7.47-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}), 7.35(\mathrm{br}, 1 \mathrm{H}\), \\
R1), \(7.30-7.24\) (m, 2H, R2), \(7.04-6.99\) (m, 1H, R2), 2.04 (\(\mathrm{s}, 3 \mathrm{H}, \mathbf{R 2}\)).
\end{tabular}} \\
\hline Entry & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R}(\mathrm{t})} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 1(0)} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 2(t)} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}_{\mathrm{R} 2(0)} \\
\mathrm{N}=2 \mathrm{H}
\end{gathered}
\] & \% \(\mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline 1 & 1.75 & 1.93 & 9 & 1.86 & 2.00 & 7 & 1.35 \\
\hline 2 & 1.76 & 1.98 & 11 & 1.86 & 2.00 & 7 & 1.62 \\
\hline 3 & 1.72 & 1.96 & 12 & 1.85 & 2.00 & 8 & 1.68 \\
\hline
\end{tabular}

Average \(\boldsymbol{\kappa}=1.55\)

Figure S49. Stacked \({ }^{1} \mathrm{H}\) NMR (400 MHz, DMSO- \(d_{6}\)) of non-deuterated substrates and reaction mixture.

D331243
Person kpb19112
DT－104－1
＠proton DMSO \｛C：\NMRdata\} DJN 25

Figure S50．\({ }^{1} \mathrm{H}\) NMR（ \(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\) ）of the competition experiment between acetanilide and benzamide（entry 1，Table S10）．
D331244
Person kpb19112
DT－104－2
＠proton DMSO \｛C：\NMRdata\} DJN 26
\begin{tabular}{|c|c|c|c|c|}
\hline & & N
N̦ & 임 & \(\sum_{0}^{0}\) \\
\hline \％ & & \(\stackrel{ \pm}{*}\) & \(\stackrel{m}{m}\) & \(\stackrel{\circ}{\mathrm{i}}\) \\
\hline a & へへへへへへへへへへへへへへへ。 & & \(\stackrel{m}{1}\) & \(\stackrel{\sim}{*}\) \\
\hline
\end{tabular}

Figure S51．\({ }^{1} \mathrm{H}\) NMR（ \(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\) ）of the competition experiment between acetanilide and benzamide（entry 2，Table S10）．

Figure S52. \({ }^{1} \mathrm{H}\) NMR (400 MHz, DMSO- \(d_{6}\)) of the competition experiment between acetanilide and benzamide (entry 3, Table S10).

Table S11. Determination of the competition rate constant \(\kappa\) from the labelling experiment between acetanilide and nitrobenzene.

Substrate R1

Substrate R2

12.3 mg
\(4.3 \mathrm{mg}(2.5 \mathrm{~mol} \%)\)
Mass \(\quad 13.5 \mathrm{mg} \quad 12.3 \mathrm{mg} \quad 4.3 \mathrm{mg}(2.5 \mathrm{~mol} \%)\)

Deuteration expected at \(\delta(\mathbf{R 1})=7.60-7.55 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=8.26-8.20 \mathrm{ppm}\) Determined against integral at \(\delta(\mathbf{R 1})=7.30-7.24 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.87-7.81 \mathrm{ppm}\) Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR (400 MHz, DMSO- \(d_{6}\)) \(\delta=9.90\) (br, 1H, R1), \(8.26-8.20\) (m, 2H/D, R2), \(7.87-\) 7.81 (m, 1H, R2), \(7.70-7.65\) (m, 2H, R2), \(7.60-7.55\) (m, 2H/D, R1), \(7.30-7.24\) (m, 2H, R1), 7.04-6.99 (m, 1H, R1), 2.04 (s, 3H, R1).
\begin{tabular}{cccccccc}
Entry & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 1.11 & 2.00 & 45 & 1.75 & 0.91 & 4 & 15.01 \\
\(\mathbf{2}\) & 0.81 & 2.00 & 60 & 1.68 & 0.89 & 6 & 15.63 \\
\(\mathbf{3}\) & 0.94 & 2.00 & 53 & 1.73 & 0.91 & 5 & 14.89 \\
\hline
\end{tabular}

Average \(\boldsymbol{\kappa}=15.18\)
non-deuterated acetanilide

\begin{tabular}{|c|}
\hline & \\
\hline 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & \[
\begin{gathered}
5.5 \\
\mathrm{f} 1(\mathrm{ppm})
\end{gathered}
\] & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 \\
\hline
\end{tabular}

Figure S53. Stacked \({ }^{1} \mathrm{H}\) NMR (400 MHz , DMSO- \(d_{6}\)) of non-deuterated substrates and reaction mixture.

D331157
Person kpb19112
DT-102-1

Figure S54. \({ }^{1} \mathrm{H}\) NMR (400 MHz, DMSO- \(d_{6}\)) of the competition experiment between acetanilide and nitrobenzene (entry 1, Table S11).
D331158
Person kpb19112
@proton DMSO \{C:\NMRdata\} DJN 46

Figure S55. \({ }^{1} \mathrm{H}\) NMR (400 MHz , DMSO- \(d_{6}\)) of the competition experiment between acetanilide and nitrobenzene (entry 2, Table S11).

D331582.1.fid
@proton DMSO \{C:\NMRdata\} DJN 3

Figure S56. \({ }^{1} \mathrm{H}\) NMR (400 MHz , DMSO- \(d_{6}\)) of the competition experiment between acetanilide and nitrobenzene (entry 3, Table S11).

Table S12. Determination of the competition rate constant \(\kappa\) from the labelling experiment between 2phenylpyrimidine and benzamide.
Substrate R1 \(\quad\) Substrate R2 \(\quad\) Catalyst

Ir-1
[(COD)Ir(IMes) \(\left.\mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]\)
Mass \(\quad 15.6 \mathrm{mg} \quad 12.1 \mathrm{mg} \quad 8.7 \mathrm{mg}\)

Deuteration expected at \(\delta(\mathbf{R 1})=8.48-8.43 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.85-7.77 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R 1})=8.81 \mathrm{ppm}\) and at \(\delta 7.55-7.39 \mathrm{ppm}\) for \(\mathbf{R 2}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.81(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 1}), 8.48-8.43(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1})\), \(7.85-7.77(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}), 7.55-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}\) and \(3 \mathrm{H}, \mathbf{R 2}), 7.18(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}\), R1), 6.20 (br, 2H, R2)
\begin{tabular}{cccccccc}
\hline \multirow{2}{*}{ Entry } & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=3 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 0.48 & 2.00 & 76 & 2.05 & \(3.61^{\mathrm{a}}\) & 15 & 8.90 \\
\(\mathbf{2}\) & 1.10 & 2.00 & 45 & 2.01 & \(3.40^{\mathrm{b}}\) & 11 & 4.97 \\
\(\mathbf{3}\) & 0.77 & 2.00 & 62 & 1.96 & \(3.34^{\mathrm{c}}\) & 12 & 7.48 \\
\hline \multicolumn{7}{c}{ Average \(\boldsymbol{\kappa}=7.12\)} \\
\hline
\end{tabular}
\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 2(0)}=6.61-(2.00 / 2 \times 3) ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 2(0)}=6.40-(2.00 / 2 \times 3) ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 2(0)}=6.34-(2.00 / 2 \times 3) ;\)
non-deuterated 2-phenylpyrimidine

Figure S57. Stacked \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of non-deuterated substrates and reaction mixture.

D331128
Person kpb19112
DT-68-4
@proton CDCI3 \{C:INMRdata\} DJN 17 (

Figure S58. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 2-phenylpyrimidine and benzamide (entry 1, Table S12).
D331185
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 14

Figure S59. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 2-phenylpyrimidine and benzamide (entry 2 , Table S12).

D331186
Person kpb19112
DT-103-4
@proton CDCl3 \{C:\NMRdata\} DJN 15

Figure S60. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 2-phenylpyrimidine and benzamide (entry 3, Table S12).

Table S13. Determination of the competition rate constant \(\kappa\) from the labelling experiment between 2phenylpyridine and acetophenone.
\begin{tabular}{lccc}
\hline & Substrate R1 & Catalyst \\
Mass & 15.5 mg & Ir-1 & [(COD) \(\left.\mathrm{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]\)
\end{tabular}

Deuteration expected at \(\delta(\mathbf{R} \mathbf{1})=8.02-7.98 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.98-7.94 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R} \mathbf{1})=7.78-7.70 \mathrm{ppm}\) and at \(\delta(\mathbf{R} \mathbf{2})=2.60 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.74-8.66(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}), 8.02-7.98(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}), 7.98\) -7.94 (m, 2H/D, R2), \(7.78-7.70\) (m, 2H, R1), \(7.59-7.53\) (m, 1H, R2), \(7.51-7.38(\mathrm{~m}\), 2H, R2 and 3H, R1), 2.60 (\(\mathrm{s}, 3 \mathrm{H}, \mathbf{R 2}\)).
\begin{tabular}{cccccccc}
\hline Entry & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=3 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 1.75 & 2.26 & 23 & 1.97 & 3.00 & 2 & 16.92 \\
\(\mathbf{2}\) & 1.62 & 2.26 & 28 & 1.96 & 3.00 & 2 & 16.48 \\
\(\mathbf{3}\) & 1.60 & 2.25 & 29 & 1.96 & 3.00 & 2 & 16.88 \\
\hline
\end{tabular}

Average \(\boldsymbol{\kappa}=16.76\)
non-deuterated 2-phenylpyridine

Figure S61. Stacked \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of non-deuterated substrates and reaction mixture.

D318631
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 30
 \(\stackrel{\circ}{\circ}\)

Figure S62. \({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between of 2-phenylpyridine and acetophenone (entry 1, Table S13).

\section*{D318630 \\ Person kpb19112 \\ DT-6-3}
@proton CDCI3 \{C:\NMRdata\} DJN 29
\(\stackrel{\text { N }}{0}\)

\[
\begin{aligned}
& \circ \\
& \stackrel{O}{\sim} \\
& 1
\end{aligned}
\]

Figure S63. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between of 2-phenylpyridine and acetophenone (entry 2, Table S13).

D318632
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 3

Figure S64. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between of 2-phenylpyridine and acetophenone (entry 3, Table S13).

Table S14. Determination of the competition rate constant \(\kappa\) from the labelling experiment between 2phenyloxazoline and 2-phenylpyridine.

14.7 mg

Substrate R2

15.5 mg

Catalyst

Ir-1
\(\left[(\mathrm{COD}) \operatorname{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]\)
8.7 mg
Deuteration expected at \(\delta(\mathbf{R 1})=7.97-7.93 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=8.02-7.98 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R} \mathbf{1})=4.44 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.78-7.70 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.74-8.65(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.02-7.98(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 1}), 7.97\) - 7.93 (\(\mathrm{m}, 2 \mathrm{H} / \mathrm{D}\) R2), \(7.78-7.70(\mathrm{~m}, 2\) R2), \(7.51-7.37\) (m, 3H, R1 and \(3 \mathrm{H}, \mathbf{R 2}\)), \(7.25-\) 7.20 (m, 1H, R2), \(4.44(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 1}), 4.07(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 1})\).
\begin{tabular}{cccccccc}
\hline \multirow{2}{*}{ Entry } & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 0.61 & 1.36 & 55 & 1.40 & 2.00 & 30 & 2.25 \\
\(\mathbf{2}\) & 0.72 & 1.36 & 47 & 1.59 & 2.00 & 21 & 2.77 \\
\(\mathbf{3}\) & 0.44 & 1.59 & 72 & 1.41 & 2.00 & 30 & 3.68 \\
\hline
\end{tabular}
Average \(\boldsymbol{\kappa}=\mathbf{2 . 9 0}\)

Figure S65. Stacked \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of non-deuterated substrates and reaction mixture.

D318112
Person kpb19112
DT-8-1
@proton CDCI3 \{C:\NMRdata\} DJN 33

\(\underbrace{\text { n }}\)

Figure S66. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 1, Table S14).
D318145
Person k
Person kpb19112
DT-8-2
DT-8-2
@proton CDCI3 \{C:\NMRdata\} DJN 62

Figure S67. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 2, Table S14).

D323955
Person kpb19112
DT-8-5
@proton CDCl3 \{C:\NMRdata\} DJN 15

Figure S68. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 2-phenyloxazoline and 2 -phenylpyridine (entry 3, Table S14).

Table S15. Determination of the competition rate constant \(\kappa\) from the labelling experiment between 2phenylthiazole and 1-phenylpyrazole.
Substrate R1
Mass \(\quad 16.1 \mathrm{mg} \quad 14.4 \mathrm{mg} \quad 8.7 \mathrm{mg}\)

Deuteration expected at \(\delta(\mathbf{R 1})=8.00-7.95 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.76-7.66 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R 1})=7.87 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.92 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.00-7.95(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 1}), 7.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2})\), \(7.87(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}\) and \(1 \mathrm{H}, \mathbf{R 2}), 7.49-7.38(\mathrm{~m}, 2 \mathrm{H}\), \(\mathbf{R 2}\) and \(3 \mathrm{H}, \mathbf{R 1}\)), \(7.33(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2}), 6.47-6.46\) (m, 1H, R2).
\begin{tabular}{cccccccc}
\hline Entry & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 0.74 & 1.00 & 63 & \(0.75^{\mathrm{a}}\) & 1.00 & 63 & 1.01 \\
\(\mathbf{2}\) & 0.87 & 1.00 & 57 & \(0.90^{\mathrm{b}}\) & 1.00 & 55 & 1.04 \\
\(\mathbf{3}\) & 1.31 & 1.00 & 35 & \(1.38^{\mathrm{c}}\) & 1.00 & 31 & 1.14 \\
\hline
\end{tabular}

Average \(\kappa=1.07\)
\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=1.75-1.00 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=1.90-1.00 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=2.38-1.00 ;\)
non-deuterated 2-phenylthiazole

Figure S69. Stacked \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of non-deuterated substrates and reaction mixture.

D323641
Person kpb19112
DT-15-4
@proton CDCI3 \{C:\NMRdata\} DJN 11

Figure S70. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 2-phenylthiazole and 1-phenylpyrazole (entry 1, Table S15).
fig

Figure S71. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 2-phenylthiazole and 1-phenylpyrazole (entry 2, Table S15).

D323643
Person kpb19112
DT-15-6
@proton CDCI3 \{C:\NMRdata\} DJN 13

Figure S72. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 2-phenylthiazole and 1-phenylpyrazole (entry 3, Table S15).

Table S16. Determination of the competition rate constant \(\kappa\) from the labelling experiment between 2phenyloxazoline and 2-phenylthiazoline.
Mass

Deuteration expected at \(\delta(\mathbf{R 1})=7.98-7.93 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.86-7.81 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R} \mathbf{1})=4.06 \mathrm{ppm}\) and at \(\delta(\mathbf{R} \mathbf{2})=3.41 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.98-7.93(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 1}), 7.86-7.81(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}), 7.51-\) \(7.36(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}\) and \(3 \mathrm{H}, \mathbf{R 2}), 4.49-4.38(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}\) and \(2 \mathrm{H}, \mathbf{R 2}), 4.06(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}\), R1), 3.41 (t, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 2}\)).
\begin{tabular}{cccccccc}
\hline Entry & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 1.05 & 2.00 & 48 & 1.18 & 2.24 & 47 & 1.01 \\
\(\mathbf{2}\) & 0.87 & 2.00 & 57 & 0.96 & 2.19 & 56 & 1.01 \\
\(\mathbf{3}\) & 0.73 & 2.00 & 64 & 0.85 & 2.32 & 63 & 1.00 \\
\hline
\end{tabular}

Average \(\boldsymbol{\kappa}=1.01\)
non-deuterated 2-phenyloxazoline
non-deuterated 2-phenylthiazoline

Figure S73. Stacked \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of non-deuterated substrates and reaction mixture.

D324461
Person kpb19112
DT-67-1
@proton CDCI3 \{C:\NMRdata\} DJN 21

Figure S74. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 2-phenyloxazoline and 2-phenylthiazoline (entry 1, Table S16).
D324462
Person kpb19112
@proton CDCl3 \{C:\NMRdata\} DJN 22

Figure S75. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 2-phenyloxazoline and 2-phenylthiazoline (entry 2, Table S16).

D324555

Figure S76．\({ }^{1} \mathrm{H}\) NMR（ \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）of the competition experiment between 2－phenyloxazoline and 2－phenylthiazoline（entry 3，Table S16）．

Table S17. Determination of the competition rate constant \(\kappa\) from the labelling experiment between 2phenylthiazoline and 2-phenylthiazole.
Mass

Deuteration expected at \(\delta(\mathbf{R 1})=7.89-7.21 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=8.00-7.94 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R} \mathbf{1})=4.46 \mathrm{ppm}\) and at \(\delta(\mathbf{R} \mathbf{2})=7.33 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.00-7.94(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.89-7.21(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}\) and 1 H , R2), \(7.49-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}\) and \(3 \mathrm{H}, \mathbf{R 2}\)), \(7.33(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2}), 4.46(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\), R1), \(3.41(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 1})\).
\begin{tabular}{cccccccc}
\hline Entry & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & \(0.71^{\mathrm{a}}\) & 1.96 & 64 & 0.75 & 1.00 & 63 & 1.04 \\
\(\mathbf{2}\) & \(0.68^{\mathrm{b}}\) & 1.95 & 65 & 0.71 & 1.00 & 65 & 1.02 \\
\(\mathbf{3}\) & \(0.75^{\mathrm{c}}\) & 1.93 & 61 & 0.80 & 1.00 & 60 & 1.03 \\
\hline
\end{tabular}

Average \(\boldsymbol{\kappa}=1.03\)
\[
{ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=1.71-1.00 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=1.68-1.00 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=1.75-1.00 ;
\]
non-deuterated 2-phenylthiazoline
non-deuterated 2-phenylthiazole

Figure S77. Stacked \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of non-deuterated substrates and reaction mixture.

D322161
Person kpb19112
DT-43-1
@proton CDCl3 \{C:\NMRdata\} DJN 15

\section*{}

Figure S78. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 2-phenylthiazoline and 2-phenylthiazole (entry 1, Table S17).
D322241
Person kpb19112
DT-43-2
@proton CDCI3 \{C:\NMRdata\} DJN 6
M
U
U
0

Figure S79. \({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of the competition experiment between 2-phenylthiazoline and 2-phenylthiazole (entry 2, Table S17).

D322242

Figure S80. \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of the competition experiment between 2-phenylthiazoline and 2-phenylthiazole (entry 3, Table S17).

Table S18. Determination of the competition rate constant \(\kappa\) from the labelling experiment between 2phenylthiazole and 2-phenylbenzothiazole.

Substrate R1

16.1 mg

Substrate R2

21.1 mg

Catalyst

Ir-1
\(\left[(\mathrm{COD}) \operatorname{Ir}(\mathrm{IMes}) \mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]\)
8.7 mg

Deuteration expected at \(\delta(\mathbf{R 1})=8.00-7.94 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=8.14-8.06 \mathrm{ppm}\)
Determined against integral at \(\delta(\mathbf{R 1})=7.33 \mathrm{ppm}\) and at \(\delta(\mathbf{R 2})=7.93-7.85 \mathrm{ppm}\)
Spectral details of the deuterated reaction mixture:
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.14-8.06(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}\) and \(1 \mathrm{H}, \mathbf{R 2}), 8.00-7.94(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}\)
R1), \(7.93-7.85(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}\) and \(1 \mathrm{H}, \mathbf{R 2}), 7.54-7.35(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}\) and \(4 \mathrm{H}, \mathbf{R 2}), 7.33(\mathrm{~d}, J=3.3\)
Hz, 1H, R1).
\begin{tabular}{cccccccc}
\hline Entry & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 1(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 1}\) & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}\) \\
\(\mathrm{N}=2 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{R} 2(0)}\) \\
\(\mathrm{N}=1 \mathrm{H}\)
\end{tabular} & \(\% \mathrm{D}_{\mathrm{R} 2}\) & \(\kappa\) \\
\hline \(\mathbf{1}\) & 0.60 & 1.00 & 70 & \(1.83^{\mathrm{a}}\) & \(1.08^{\mathrm{d}}\) & 15 & 7.26 \\
\(\mathbf{2}\) & 0.80 & 1.00 & 60 & \(2.06^{\mathrm{b}}\) & \(1.16^{\mathrm{e}}\) & 11 & 7.71 \\
\(\mathbf{3}\) & 0.57 & 1.00 & 72 & \(1.86^{\mathrm{c}}\) & \(1.10^{\mathrm{f}}\) & 15 & 7.48 \\
\hline
\end{tabular}

Average \(\boldsymbol{\kappa}=7.48\)
\({ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=2.91-1.00 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=3.22-1.00 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=2.96-1.00\);
\({ }^{\mathrm{d}} \mathrm{I}_{\mathrm{R} 2(0)}=2.08-1.00 ;{ }^{\mathrm{e}} \mathrm{I}_{\mathrm{R} 2(0)}=2.16-1.00 ;{ }^{\mathrm{f}} \mathrm{I}_{\mathrm{R} 2(0)}=2.10-1.00 ;\)
non-deuterated 2-phenylthiazole
non-deuterated 2-phenylbenzothiazole

deuterated reaction mixture

Figure S81. Stacked \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of non-deuterated substrates and reaction mixture.

D322296
Person kpb19112
DT－44－2
＠proton CDCl3 \｛C：\NMRdata\} DJN 1
```

~ NO, O


Figure S82．${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 2－phenylthiazole and 2－phenylbenzothiazole（entry 1，Table S18） D32297
Person kpb19112
DT－44－3
＠proton CDCI3 \｛C：\NMRdata\} DJN 2


Figure S83．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of the competition experiment between 2－phenylthiazole and 2－phenylbenzothiazole（entry 2，Table S18）．



Figure S84．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of the competition experiment between 2－phenylthiazole and 2－phenylbenzothiazole（entry 3，Table S18）．

Table S19. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenylpyridine and 2-phenylbenzothiazole.
Mass Substrate R1

Deuteration expected at $\delta(\mathbf{R 1})=8.02-7.98 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.14-8.06 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=8.74-8.65 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.93-7.85 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.74-8.65(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}), 8.14-8.06(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}$ and 1 H , R2), $8.02-7.98$ (m, 2H/D R1), $7.93-7.85$ ( $\mathrm{m}, 1 \mathrm{H}, \mathbf{R 2}$ ), $7.77-7.71$ ( $\mathrm{m}, 2 \mathrm{H}, \mathbf{R 1}$ ), $7.53-7.35$ (m, 3H, R1 and 4H, R2), $7.25-7.20$ (m, 1H, R1).

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.58 | 1.00 | 21 | $1.98^{\mathrm{a}}$ | 1.06 | 7 | 3.45 |
| $\mathbf{2}$ | 1.60 | 1.00 | 20 | $2.12^{\mathrm{b}}$ | 1.12 | 5 | 4.05 |
| $\mathbf{3}$ | 1.53 | 1.00 | 24 | $2.02^{\mathrm{c}}$ | 1.09 | 7 | 3.51 |

Average $\boldsymbol{\kappa}=3.67$
${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=3.04-1.06 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=3.24-1.12 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 2(\mathrm{t})}=3.11-1.09 ;$
non-deuterated 2-phenylpyridine

non-deuterated 2-phenylbenzothiazole



Figure S85. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D324638
Person kpb19112
DT-70-1
@proton CDCI3 \{C:\NMRdata\} DJN 18



Figure S86. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyridine and 2-phenylbenzothiazole (entry 1, Table S19).

## D324639 <br> Person kpb19112 <br> DT-70-2

@proton CDCI3 \{C:\NMRdata\} DJN 19

$\underset{\infty}{N} \underset{\infty}{\underset{\infty}{ㅅ}} \stackrel{\circ}{\infty}$



Figure S87. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyridine and 2-phenylbenzothiazole (entry 2, Table S19).



Figure S88. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyridine and 2-phenylbenzothiazole (entry 3, Table S19).

Table S20. Determination of the competition rate constant $\kappa$ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazoline.
Mass

Deuteration expected at $\delta(\mathbf{R 1})=7.65-7.60 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.85-7.80 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=7.12 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=4.45 \mathrm{ppm}$ Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.85-7.80(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}), 7.48-7.36$ $(\mathrm{m}, 3 \mathrm{H}, \mathbf{R 1}$ and $3 \mathrm{H}, \mathbf{R 2}$ ), $7.12(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 6.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 4.45(\mathrm{t}, J=8.3 \mathrm{~Hz}$, 2H, R2), 3.73 (s, 3H, R1), 3.40 (t, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 2 ) ~}$

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.62 | 1.00 | 69 | 1.72 | 2.24 | 23 | 4.43 |
| $\mathbf{2}$ | 0.60 | 1.00 | 70 | 2.06 | 2.52 | 18 | 5.97 |
| $\mathbf{3}$ | 1.02 | 1.00 | 49 | 1.91 | 2.36 | 19 | 3.18 |

Average $\boldsymbol{\kappa}=4.53$
non-deuterated 1-methyl-2-phenylimidazole


Figure S89. Stacked ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of non-deuterated substrates and reaction mixture.

D326556
Person kpb19112
DT-77-1
@proton CDCI3 \{C:\NMRdata\} DJN 11

> M 0 0





Figure S90. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazoline (entry 1, Table S20).
D326557
Person kpb19112
DT-77-2
@proton CDCI3 \{C:\NMRdata\} DJN 12

旁




Figure S91. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazoline (entry 2, Table S20).

D326712
Person kpb19112
DT-77-3
@proton CDCI3 \{C:\NMRdata\} DJN 18


Figure S92. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazoline (entry 3, Table S20).

Table S21. Determination of the competition rate constant $\kappa$ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylpyridine.

|  | Substrate R1 | Cubstrate R2 |
| :--- | :--- | :--- |
| Mass |  | Catast |
| [(COD)Ir(IMes) $\left.\mathrm{PPh}_{3}\right]\left[\mathrm{BArF}_{24}\right]$ |  |  |

Deuteration expected at $\delta(\mathbf{R 1})=7.65-7.60 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.02-7.96 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=7.14 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.73-8.66 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.73-8.66(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.02-7.96(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.77-7.69(\mathrm{~m}$, 2H R2), $7.65-7.60$ (m, 2H/D, R1), $7.50-7.36$ (m, 3H, R1 and 3H, R2), $7.24-7.18$ (m, 1H, R2), 7.12 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 6.95 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 3.73 (s, 3H, R1).

| Entry | $\mathrm{I}_{\mathrm{R} 1(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.59 | 1.00 | 70 | 2.15 | 1.20 | 10 | 10.95 |
| $\mathbf{2}$ | 0.51 | 1.00 | 75 | 1.88 | 1.10 | 15 | 8.69 |
| $\mathbf{3}$ | 0.67 | 1.00 | 67 | 2.04 | 1.13 | 10 | 10.68 |
| Average $\boldsymbol{\kappa}=\mathbf{1 0 . 1 1}$ |  |  |  |  |  |  |  |



Figure S93. Stacked ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of non-deuterated substrates and reaction mixture.

D324079
Person kpb19112
DT-63-1
 $\underset{\sim}{N}$


Figure S94. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylpyridine (entry 1, Table S21).
D324080
Person kpb19112
Person kpb
DT-63-2
@proton CDCl3 \{C:\NMRdata\} DJN 7


Figure S95. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylpyridine (entry 2, Table S21).

D324449
Person kpb19112
DT-63-5
@proton CDCl3 \{C:\NMRdata\} DJN 10

$\stackrel{N}{N}$


Figure S96. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylpyridine (entry 3, Table S21).

Table S22. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenylpyridine and 2-phenylpyrimidine.

| Substrate R1 | Substrate R2 | Catalyst |
| :--- | :--- | :--- |



Mass $\quad 15.5 \mathrm{mg} \quad 15.6 \mathrm{mg} \quad 8.7 \mathrm{mg}$

Deuteration expected at $\delta(\mathbf{R 1})=8.02-7.97 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.49-8.42 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=7.77-7.70 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.80 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 2}), 8.73-7.67(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1})$, 8.49 - 8.42 (m, 2H/D, R2), 8.02 - 7.97 (m, 2H/D R1), $7.77-7.70$ (m, 2H, R1), 7.52 $7.39(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}$ and $3 \mathrm{H}, \mathbf{R 2}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}), 7.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2})$.

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.39 | 1.94 | 28 | 1.54 | 2.00 | 23 | 1.28 |
| $\mathbf{2}$ | 1.58 | 1.88 | 16 | 1.71 | 2.00 | 15 | 1.11 |
| $\mathbf{3}$ | 1.59 | 1.85 | 14 | 1.76 | 2.00 | 12 | 1.18 |

Average $\boldsymbol{\kappa}=1.19$
non-deuterated 2-phenylpyridine

non-deuterated 2-phenylpyrimidine


Figure S97. Stacked ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of non-deuterated substrates and reaction mixture.

D328082
Person kpb19112
DT-83-1
@proton CDCI3 \{C:\NMRdata\} DJN 33


씅

## 

 $\underbrace{\infty}_{\substack{\infty}}$


|  |  |  |  |  |  |  |  |  | $\underset{\sim}{\underset{\sim}{n}}$ |  | $\underset{\sim}{\underset{\sim}{2}}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.2 | 10.0 | 9.8 | 9.6 | 9.4 | 9.2 | 9.0 | 8.8 | 8.6 | $\begin{aligned} & 8.4 \\ & (\mathrm{ppm}) \end{aligned}$ | 8.2 | 8.0 | 7.8 | 7.6 | 7.4 | 7.2 | 7.0 | 6.8 | 6.6 |

Figure S98. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyridine and 2-phenylpyrimidine (entry 1, Table S22).

D328589
Person kpb19112
DT-83-2
@proton CDCI3 \{C:\NMRdata\} DJN 7





Figure S99. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyridine and 2-phenylpyrimidine (entry 2, Table S22).

Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 8

\infty
\infty
H
H


|  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { Oு } \\ & \text { i } \end{aligned}$ | $\stackrel{\rightharpoonup}{\sigma}$ |  | $\stackrel{\downarrow}{\stackrel{\rightharpoonup}{\circ}}$ |  |  |  | $\stackrel{\square}{\underset{\sim}{n}}$ |  |  |  |  |  |  |  | No |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.0 | 9.9 | 9.8 | 9.7 | 9.6 | 9.5 | 9.4 | 9.3 | 9.2 | 9.1 | 9.0 | 8.9 | 8.8 | 8.7 | 8.6 | $8.58 .4$ | 8.3 | 8.2 | 8.1 | 8.0 | 7.9 | 7.8 | 7.7 | 7.6 | 7.5 | 7.4 | 7.3 | 7.2 | 7.1 | 7.0 |

Figure S100. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyridine and 2-phenylpyrimidine (entry 3, Table S22).

### 3.4. Competition Experiments with (COD)Ir(IMes)Cl (Ir-2)

Table S23. Determination of the competition rate constant $\kappa$ from the labelling experiment between acetophenone and benzamide.

|  | Substrate R1 | Catalyst |
| :--- | :---: | :---: | :---: |
| Mass | 12.0 mg | [(COD)Ir(IMes)Cl] |

Deuteration expected at $\delta(\mathbf{R 1})=7.95 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.82 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=2.60 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.63-7.36 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, \mathrm{H} / \mathrm{D} \mathbf{R 1}), 7.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{H} / \mathrm{D}$ R2), $7.63-$ 7.36 (m, 3H R1 and 3H R2), $6.25-6.13$ (bs, 2H, R2), 2.60 (s, 3H, R1)

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=3 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=3 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.76 | 3.00 | 12 | 1.95 | $3.20^{\mathrm{a}}$ | 9 | 1.42 |
| $\mathbf{2}$ | 1.71 | 3.00 | 15 | 1.76 | $2.93^{\mathrm{b}}$ | 10 | 1.50 |
| $\mathbf{3}$ | 1.41 | 3.00 | 30 | 2.22 | $4.11^{\mathrm{c}}$ | 19 | 1.66 |
| Average к $=\mathbf{1 . 5 3}$ |  |  |  |  |  |  |  |
| ${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 2(0)}=6.20-3.00 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 2(0)}=5.93-3.00 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 2(0)}=7.11-3.00 ;$ |  |  |  |  |  |  |  |


$\begin{array}{llllllllllllllllllllllllllllllllllllllllll}8.6 & 8.4 & 8.2 & 8.0 & 7.8 & 7.6 & 7.4 & 7.2 & 7.0 & 6.8 & 6.6 & 6.4 & 6.2 & 6.0 & 5.8 & 5.6 & 5.4 & 5.2 & 5.0 & 4.8 & 4.6 & 4.4 & 4.2 & 4.0 & 3.8 & 3.6 & 3.4 & 3.2 & 3.0 & 2.8 & 2.6 & 2.4\end{array}$
Figure S101. Stacked ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of non-deuterated substrates and reaction mixture

D322039
Person kpb19112
DT－26－3
＠proton CDCl3 \｛C：\NMRdata\} DJN 32


Figure S102．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of the competition experiment between acetophenone and benzamide（entry 1，Table S23）．
D322040
Person kpb19112
DT－26－4
＠proton CDCl3 \｛C：\NMRdata\} DJN 33


Figure S103．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of the competition experiment between acetophenone and benzamide（entry 2，Table S23）．

```
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 34
@proton CDCI3 \{C:INMRdata\} DJN 34 篤
```



Figure S104. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between acetophenone and benzamide (entry 3, Table S23).

Table S24. Determination of the competition rate constant $\kappa$ from the labelling experiment between benzenesulfonamide and acetophenone.

|  | Substrate R1 | Catalyst |  |
| :--- | :---: | :---: | :---: |
| Mass | 15.7 mg | Ir-2 |  |
| [(COD)Ir(IMes)Cl] |  |  |  |
|  |  |  |  |

Deuteration expected at $\delta(\mathbf{R 1})=7.87-7.80 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.99-7.93 \mathrm{ppm}$
Determined against integral at(R1) $=7.66-7.51 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=2.58 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta=7.99-7.93$ (m, 2H/D R2), $7.87-7.80$ ( $\mathrm{m}, 2 \mathrm{H} / \mathrm{D}$ R1), $7.67-$ 7.49 ( $\mathrm{m}, 3 \mathrm{H} \mathbf{R 1}$ and 3H R2), 7.35 (br, 2H, R1), 2.58 ( $\mathrm{s}, 3 \mathrm{H}, \mathbf{R 2}$ )

| Entry | $\mathrm{I}_{\mathrm{R} 1(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=3 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=3 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2.01 | $4.26^{\mathrm{a}}$ | 29 | 1.45 | 3.00 | 28 | 1.07 |
| $\mathbf{2}$ | 1.50 | $3.80^{\mathrm{b}}$ | 41 | 1.37 | 3.00 | 32 | 1.39 |
| $\mathbf{3}$ | 1.66 | $5.39^{\mathrm{c}}$ | 54 | 1.09 | 3.00 | 46 | 1.27 |

Average $\boldsymbol{\kappa}=1.24$
${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(t)}=7.26-3.00 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(t)}=6.80-3.00 ; \mathrm{I}_{\mathrm{R} 1(t)}=8.39-3.00$;
non-deuterated benzenesulfonamide


Figure S105. Stacked ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) of non-deuterated substrates and reaction mixture.

D320142
Person kpb19112
DT－23－2
＠proton DMSO \｛C：\NMRdata\} DJN 33


Figure S106．${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，DMSO－$d_{6}$ ）of the competition experiment between benzenesulfonamide and acetophenone（entry 1，Table S24）．

D320308
D320308
Person kpb19112
DT－23－3
＠proton DMSO \｛C：\NMRdata\} DJN 26


N


Figure S107．${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，DMSO－$d_{6}$ ）of the competition experiment between benzenesulfonamide and acetophenone（entry 2，Table S24）．

D323616
Person kpb19112
DT-23-4
@proton DMSO \{C:\NMRdata\} DJN 20


Figure S108. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of the competition experiment between benzenesulfonamide and acetophenone (entry 3, Table S24).

Table S25. Determination of the competition rate constant $\kappa$ from the labelling experiment between benzenesulfonamide and benzamide.

|  | Substrate R1 | Catalyst |
| :--- | :---: | :---: | :---: |
| Mass | 15.7 mg | Ir-2 |
| [(COD)Ir(IMes)Cl] |  |  |
|  |  |  |

Deuteration expected at $\delta(\mathbf{R 1})=7.86-7.81 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.90-7.86 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=7.63-7.54 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.48-7.41 \mathrm{ppm}$ Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta=7.96$ (bs, 1H, R2), $7.90-7.86$ (m, 2H/D R2), $7.86-7.81$ (m, 2H/D R1), 7.63 - 7.54 (m, 3H, R1), 7.54 - 7.49 (m, 1H, R2), 7.48 - 7.41 (m, 2H, R2), 7.35 (bs, 1H, $\mathbf{R 2}$ and $2 \mathrm{H}, \mathbf{R 1}$ )

| Entry | $\mathrm{I}_{\mathrm{R} 1(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=3 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.30 | 3.07 | 36 | 1.84 | 2.00 | 8 | 5.44 |
| $\mathbf{2}$ | 1.44 | 3.19 | 32 | 1.88 | 2.00 | 6 | 6.30 |
| $\mathbf{3}$ | 1.55 | 2.98 | 22 | 1.90 | 2.00 | 5 | 4.84 |

Average $\boldsymbol{\kappa}=5.53$
non-deuterated benzenesulfonamide

deuterated reaction mixture


Figure S109. Stacked ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) of non-deuterated substrates and reaction mixture.

D323618
Person kpb19112
＠proton DMSO \｛C：\NMRdata\} DJN 22


Figure S110．${ }^{1} \mathrm{H}$ NMR（ 400 MHz, DMSO－$d_{6}$ ）of the competition experiment between benzenesulfonamide and benzamide（entry 1 ，Table S25）． B58397 Person kpb19112 dt－27－3
＠proton16 DMSO \｛C：\NMRdata\} DJN 23


へへへへへへへへへへへへ


Figure S111．${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，DMSO－$d_{6}$ ）of the competition experiment between benzenesulfonamide and benzamide（entry 2，Table S25）．

B58398
Person kpb19112
dt－27－4
＠proton16 DMSO \｛C：\NMRdata\} DJN 24

##  かへべべべべべべへ



Figure S112．${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，DMSO－$d_{6}$ ）of the competition experiment between benzenesulfonamide and benzamide（entry 3，Table S25）．

Table S26. Determination of the competition rate constant $\kappa$ from the labelling experiment between acetophenone and $N, N$-dimethylbenzamide.

|  | Substrate R1 | Catalyst |
| :--- | :---: | :---: | :---: |
| Mass | 12.0 mg | Ir-2 |
| [(COD)Ir(IMes)Cl] |  |  |
|  |  |  |



Average $\boldsymbol{\kappa}=\mathbf{9 . 7 3}$
${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 2(t)}=7.88-(9.79) / 6 \times 3 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 2(t)}=4.94-(6.12) / 6 \times 3 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 2(t)}=5.50-(6.77) / 6 \times 3$


Figure S113. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D320863
Person kpb19112
＠proton CDCI3 \｛C：\NMRdata\} DJN 56

へへへべべべへべへべへ



|  |  | $\begin{aligned} & \text { W } \\ & \text { © } \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  | $\stackrel{\alpha}{\circ}$ | ' |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | $\begin{gathered} 4.5 \\ \text { f1 }(\mathrm{ppm}) \end{gathered}$ | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 |  |

Figure S114．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of the competition experiment between acetophenone and $\mathrm{N}, \mathrm{N}$－dimethylbenzamide（entry 1，Table S26）．
D321082
Person kpb19112
DT－31－2
＠proton CDCI3 \｛C：\NMRdata\} DJN 9


$\stackrel{\stackrel{\circ}{\circ}}{\substack{i \\ 1}}$


Figure S114．${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between acetophenone and $\mathrm{N}, \mathrm{N}$－dimethylbenzamide（entry 2 ，Table S26）．


Figure S115. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between acetophenone and $N, N$-dimethylbenzamide (entry 3, Table S26).

Table S27. Determination of the competition rate constant $\kappa$ from the labelling experiment between benzenesulfonamide and methylphenylsulfone.

|  | Substrate R1 | Substrate R2 | Catalyst |
| :--- | :---: | :---: | :---: |
| Mass | 15.7 mg |  | Ir-2 |
|  |  |  |  |
|  |  |  |  |

Deuteration expected at $\delta(\mathbf{R 1})=7.85-7.83 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.95-7.93 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=7.60-7.55 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.64-7.62 \mathrm{ppm}$ Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta=7.95-7.93$ (m, 2H/D R2), $7.85-7.83$ (m, 2H/D R1), 7.76-7.72

| $(\mathrm{m}, 1 \mathrm{H}, \mathbf{R 2}), 7.64-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 2}), 7.60-7.55(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}), 7.35(\mathrm{bs}, 2 \mathrm{H}, \mathbf{R 1})$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
|  | $\mathrm{~N}=2 \mathrm{H}$ | $\mathrm{N}=3 \mathrm{H}$ |  | $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{N}=2 \mathrm{H}$ |  |  |
| $\mathbf{1}$ | 1.42 | 2.94 | 28 | 1.98 | 2.00 | 1 | 32.07 |
| $\mathbf{2}$ | 0.64 | 2.68 | 64 | 1.95 | 2.00 | 3 | 40.55 |
| $\mathbf{3}$ | 1.42 | 3.30 | 35 | 1.98 | 2.00 | 1 | 43.56 |

Average $\boldsymbol{\kappa}=\mathbf{3 8 . 7 3}$


Figure S116. Stacked ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of non-deuterated substrates and reaction mixture.

D320158
Person kpb19112
DT-24-1
@proton DMSO \{C:\NMRdata\} DJN 42




Figure S117. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of the competition experiment between benzenesulfonamide and methylphenylsulfone (entry 1, Table S27).
D320159
Person kpb19112
DT-24-2
@proton DMSO \{C:\NMRdata\} DJN 43


Figure S118. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of the competition experiment between benzenesulfonamide and methylphenylsulfone (entry 2, Table S27).

D320598
Person kpb19112
DT-24-4
@proton DMSO \{C:\NMRdata\} DJN 30



Figure S119. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of the competition experiment between benzenesulfonamide and methylphenylsulfone (entry 3, Table S27).

Table S28. Determination of the competition rate constant $\kappa$ from the labelling experiment between 1phenylpyrazole and acetophenone.

| Substrate R1 | Catalyst |  |  |
| :--- | :---: | :---: | :---: |
| Mass | 14.4 mg | Ir-2 | Substrate R2 |

Deuteration expected at $\delta(\mathbf{R 1})=7.73-7.69 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.98-7.94 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=6.48-6.42 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=2.60 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.98-7.94(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 7.75-7.67$ ( $\mathrm{m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 1}$ and $1 \mathrm{H}, \mathbf{R 1}$ ), $7.60-7.53(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}$ ), $7.49-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}$ and $2 \mathrm{H}, \mathbf{R 2}$ ), $7.31-7.26$ ( $\mathrm{m}, 1 \mathrm{H}, \mathbf{R 1}$ ), $6.48-6.45(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}), 2.60(\mathrm{~s}, 3 \mathrm{H}, \mathbf{R 2})$.

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=3 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0.99^{\mathrm{a}}$ | 1.03 | 52 | 1.95 | 3.00 | 3 | 28.94 |
| $\mathbf{2}$ | $0.91^{\mathrm{b}}$ | 1.43 | 68 | 1.92 | 3.00 | 4 | 28.05 |
| $\mathbf{3}$ | $0.93^{\mathrm{c}}$ | 1.05 | 56 | 1.95 | 3.00 | 3 | 32.17 |

Average $\boldsymbol{\kappa}=\mathbf{2 9 . 7 2}$
${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(t)}=2.02-1.03 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R}(\mathrm{t})}=2.34-1.43 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(t)}=1.98-1.05 ;$


Figure S120. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D320824
Person kpb19112
DT-25-3
@proton CDCI3 \{C:\NMRdata\} DJN 35



Figure S121. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-phenylpyrazole and acetophenone (entry 1, Table S28).
D320824
Person kpb19112
Person kp
@proton CDCl3 \{C:\NMRdata\} DJN 35


Figure S122. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-phenylpyrazole and acetophenone (entry 2, Table S28).

D321067
Person kpb19112
DT-25-4
@proton CDCI3 \{C:\NMRdata\} DJN 50




Figure S123. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-phenylpyrazole and acetophenone (entry 3, Table S28).

Table S29. Determination of the competition rate constant $\kappa$ from the labelling experiment between 1phenylpyrazole and 2-phenylpyridine.

| Substrate R1 | Catalyst |  |
| :---: | :---: | :---: |
| Mass | 14.4 mg | [(COD) $\mathbf{I r}(\mathrm{IMes}) \mathrm{Cl}]$ |

Deuteration expected at $\delta(\mathbf{R 1})=7.78-7.67 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.04-7.97 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=6.50-6.42 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.72-8.68 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.72-8.68(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.04-7.97(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.92(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), $7.78-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 2}, 1 \mathrm{H}, \mathbf{R 1}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 1}), 7.52-7.38(3 \mathrm{H}, \mathbf{R 2}$ and $2 \mathrm{H}, \mathbf{R 1}), 7.31-$ 7.26 ( $\mathrm{m}, 1 \mathrm{H}, \mathbf{R 1}$ ), $7.24-7.20(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 6.50-6.42(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1})$

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1.65^{\mathrm{a}}$ | 1.00 | 18 | 1.75 | 1.00 | 13 | 1.44 |
| $\mathbf{2}$ | $1.29^{\mathrm{b}}$ | 1.00 | 36 | 1.22 | 0.85 | 28 | 1.32 |
| $\mathbf{3}$ | $1.23^{\mathrm{c}}$ | 1.00 | 39 | 1.32 | 0.94 | 30 | 1.37 |

Average $\boldsymbol{\kappa}=1.38$
${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=4.65-1.00-(1.00 \times 2) ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=3.99-1.00-(0.85 \times 2) ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=4.11-1.00-(0.94 \times 2)$
non-deuterated 1-phenylpyrazole

non-deuterated 2-phenylpyridine

deuterated reaction mixture


Figure S124. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D319184
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 44


Figure S125. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 1, Table S29).
D320015
Person kpb
DT-19-5

DT-19-5
@proton
@proton CDCI3 \{C:\NMRdata\} DJN 51



Figure S126. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 2, Table S29).

D321273
Person kpb19112
DT-19-8
@proton
@proton CDCl3 \{C:\NMRdata\} DJN 45



Figure S127. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 3, Table S29).

Table S30. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenyloxazoline and 2-phenylpyridine.

| Mass | 14.7 mg | Substrate R1 |
| :--- | :--- | :--- |

Deuteration expected at $\delta(\mathbf{R 1})=7.97-7.92 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.02-7.97 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=4.44 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.73-8.66 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.73-8.66(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.02-7.97(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.97-7.92$ (m, 2H/D R1), $7.77-7.69(\mathrm{~m}, 2 \mathrm{H}$ R2), $7.52-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}$ and $3 \mathrm{H}, \mathbf{R 2}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}$, R2), $4.44(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 1}), 4.07(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 1})$.

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.76 | 2.00 | 12 | 2.95 | 1.61 | 8 | 1.46 |
| $\mathbf{2}$ | 1.52 | 2.00 | 24 | 1.66 | 1.02 | 19 | 1.33 |
| $\mathbf{3}$ | 1.28 | 2.00 | 36 | 2.02 | 1.38 | 27 | 1.43 |

Average $\boldsymbol{\kappa}=1.41$


Figure S128. Stacked ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D319185
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 45


Figure S129. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 1, Table S30).
D321283
Person kpb19112
DT-21-4
@proton CDCI3 \{C:\NMRdata\} DJN 55

응





Figure S130. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 2, Table S30).

D321284
Person kpb19112
DT-21-5
@proton CDCI3 \{C:\NMRdata\} DJN 56



Figure S131. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 3, Table S30).

Table S31. Determination of the competition rate constant $\kappa$ from the labelling experiment between 1phenylpyrazole and 2-phenylthiazole.

|  | Substrate R1 | Substrate R2 | Catalyst |
| :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathbf{I r - 2} \\ {[(\mathrm{COD}) \mathrm{Ir}(\mathrm{IMes}) \mathrm{Cl}]} \end{gathered}$ |
| Mass | 14.4 mg | 16.1 mg | 3.2 mg |

Deuteration expected at $\delta(\mathbf{R 1})=7.78-7.67 \mathrm{ppm}$ ppm and at $\delta(\mathbf{R 2})=8.02-7.96 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=6.49-6.43 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.88 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.02-7.96(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}), 7.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 7.88$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}$ and $1 \mathrm{H}, \mathbf{R 1}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}$ and 3 H , R2), $7.33(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 6.49-6.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{R} 1)$.

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $0.82^{\mathrm{a}}$ | 1.00 | 59 | 1.25 | 1.10 | 43 | 1.58 |
| $\mathbf{2}$ | $1.12^{\mathrm{b}}$ | 1.00 | 44 | 1.52 | 1.05 | 28 | 1.79 |
| $\mathbf{3}$ | $1.19^{\mathrm{c}}$ | 1.00 | 41 | 1.41 | 1.00 | 30 | 1.49 |

Average $\kappa=1.62$
${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=1.82-1.00 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=2.12-1.00 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=2.19-1.00 ;$
non-deuterated 1-phenylpyrazole

non-deuterated 2-phenylthiazole

deuterated reaction mixture


Figure S132. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D321928
Person kpb19112
DT-30-2
@proton CDCl3 \{C:\NMRdata\} DJN 22





|  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\underset{\sim}{\infty}$ |  |  |  | ${ }^{2}$ |  |  |  |  |  |  |  | $\begin{aligned} & \square \\ & \hline-1 \\ & -1 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 |  | 7 |  |  | 1 |  | 7 |  |  |  | 7. |  |  | 17 |  |  |  |  |
| 9.1 | 9.0 | 8.9 | 8.8 | 8.7 | 8.6 | 8.5 | 8.4 | 8.3 | 8.2 | 8.1 | 8.0 | 7.9 | 7.8 | $7.7$ | 7.6 | 7.5 | 7.4 | 7.3 | 7.2 | 7.1 | 7.0 | 6.9 | 6.8 | 6.7 | 6.6 | 6.5 | 6.4 | 6.3 |

Figure S133. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-phenylpyrazole and 2-phenylthiazole (entry 1, Table S31).
D321929
Person kpb19112
DT-30-3
@proton CDCI3 \{C:\NMRdata\} DJN 23

fí


Figure S134. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-phenylpyrazole and 2-phenylthiazole (entry 1, Table S31).

D321930




Figure S135. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-phenylpyrazole and 2-phenylthiazole (entry 1, Table S31).

Table S32. Determination of the competition rate constant $\kappa$ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazole.
Substrate R1

Deuteration expected at $\delta(\mathbf{R 1})=7.67-7.61 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.02-7.96 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=7.12 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.88 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.02-7.96(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}), 7.88(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2}$ ) , $7.67-7.61$ ( $\mathrm{m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}$ ), $7.50-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}$ and $3 \mathrm{H}, \mathbf{R 2}$ ), $7.33(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2}), 7.12(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 6.95 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 3.74 (s, 3H, R1)

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.10 | 1.00 | 45 | 1.91 | 1.00 | 5 | 12.98 |
| $\mathbf{2}$ | 0.63 | 1.00 | 69 | 1.90 | 1.03 | 8 | 14.29 |
| $\mathbf{3}$ | 0.71 | 1.00 | 65 | 1.95 | 1.06 | 8 | 12.39 |

## Average $\boldsymbol{\kappa}=13.22$



Figure S136. Stacked ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D324290
Person kpb19112
DT-66-1
@proton CDCI3 \{C:\NMRdata\} DJN 16


$\stackrel{N}{N}$


Figure S137. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazole (entry 1, Table S32).
D324293
Person kpb19112
DT-66-2
@proton CDCI3 \{C:\NMRdata\} DJN 19
응

$\underset{\sim}{\sim}$


Figure S138. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazole (entry 2, Table S32).

D324294
Person kpb19112
DT-66-3
@proton CDCI3 \{C:\NMRdata\} DJN 20


Figure S139. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazole (entry 3, Table S32).

Table S33 Determination of the competition rate constant $\kappa$ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylpyridine.

| Substrate R1 | Substrate R2 | Catalyst |
| :---: | :---: | :---: |
| [(COD)Ir(IMes)Cl] |  |  |

Mass
15.8 mg
15.5 mg
3.2 mg

Note: Volume of DCM was increased to 4 mL to obtain higher conversion of both substrates.
Deuteration expected at $\delta(\mathbf{R 1})=7.67-7.61 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.02-7.96 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=7.12 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.77-7.69 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.73-8.66(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.02-7.96(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.77-7.69$ ( $\mathrm{m}, 2 \mathrm{H}$ R2), $7.67-7.61(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}), 7.50-7.36(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}$ and $3 \mathrm{H}, \mathbf{R 2}), 7.24-7.18(\mathrm{~m}$, 1H, R2), 7.12 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 6.95 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 3.73 (s, 3H, R1).

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.58 | 1.00 | 21 | 2.09 | 2.32 | 10 | 2.26 |
| $\mathbf{2}$ | 1.60 | 1.00 | 20 | 2.02 | 2.28 | 11 | 1.84 |
| $\mathbf{3}$ | 1.36 | 0.87 | 22 | 1.76 | 2.00 | 12 | 1.93 |

$$
\text { Average } \kappa=2.01
$$



Figure S140. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D327153
Person kpb19112
DT-61-4
@proton CDCI3 \{C:\NMRdata\} DJN 45



Figure S141. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylpyridine (entry 1, Table S33).

## D330925 Person kpb19112 <br> Person kp

@T-98-1 CDCl 3 \{C:\NMRdata\} DJN 29



Figure S142. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylpyridine (entry 2 , Table S33).

D330934
Person kpb19112
DT-98-2
@proton CDCI3 \{C:\NMRdata\} DJN 38




Figure S143. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylpyridine (entry 3, Table S33).

Table S34. Determination of the competition rate constant $\kappa$ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenyloxazoline.

| Substrate R1 |
| :--- |
| Mass |
| [(COD)Ir(IMes)Cl] |
| 15.8 mg |

Deuteration expected at $\delta(\mathbf{R 1})=7.67-7.61 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.98-7.90 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=7.12 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=4.44 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.98-7.90(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}$ R2), $7.67-7.61(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}), 7.50-7.36$ (m, 3H, R1 and $3 \mathrm{H}, \mathbf{R 2}$ ), 7.12 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 6.96 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 4.43 (t, $J=9.5$
$\mathrm{Hz}, 2 \mathrm{H}, \mathbf{R 2}$ ), 4.06 (t, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 2}$ ), 3.74 ( $\mathrm{s}, 3 \mathrm{H}, \mathbf{R 1}$ ).

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.03 | 0.73 | 29 | 1.92 | 2.00 | 4 | 8.55 |
| $\mathbf{2}$ | 1.31 | 0.93 | 30 | 1.91 | 2.00 | 5 | 7.61 |
| $\mathbf{3}$ | 1.76 | 1.05 | 16 | 1.96 | 2.00 | 2 | 8.74 |

Average $\boldsymbol{\kappa}=\mathbf{8 . 3 0}$
non-deuterated 1-methyl-2-phenylimidazole


Figure S144. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D324233
Person kpb19112
DT-65-1
@proton CDCI3 \{C:\NMRdata\} DJN 17


Figure S145. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenyloxazoline (entry 1, Table S34).
D324234
Person kpb19112
DT-65-2
@proton CDCI3 \{C:\NMRdata\} DJN 18


Figure S146. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenyloxazoline (entry 2, Table S34).

D324231
Person kpb19112
DT-65-3(1)





Figure S147. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenyloxazoline (entry 3, Table S34).

Table S35. Determination of the competition rate constant $\kappa$ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazoline.
Substrate R1

Deuteration expected at $\delta(\mathbf{R 1})=7.65-7.60 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.85-7.83 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=7.12 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=4.45 \mathrm{ppm}$ Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.85-7.83(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}), 7.48-7.36$ (m, 3H, R1 and $3 \mathrm{H}, \mathbf{R 2}$ ), 7.12 ( $\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), 6.95 ( $\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}$ ), $4.45(\mathrm{t}, J=8.3$
$\mathrm{Hz}, 2 \mathrm{H}, \mathbf{R 2}$ ), 3.73 ( $\mathrm{s}, 3 \mathrm{H}, \mathbf{R 1}$ ), $3.40(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 2}$ )

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.87 | 1.00 | 57 | 1.72 | 2.32 | 26 | 2.78 |
| $\mathbf{2}$ | 0.90 | 1.00 | 55 | 1.51 | 2.34 | 35 | 1.82 |
| $\mathbf{3}$ | 0.99 | 1.00 | 51 | 1.66 | 2.26 | 27 | 2.28 |

Average $\boldsymbol{\kappa}=\mathbf{2 . 2 9}$
non-deuterated 1-methyl-2-phenylimidazole


Figure S148. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

```
D327414
DT-79-1
```

@proton CDCI3 \{C:\NMRdata\} DJN 31


Figure S149. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazoline (entry 1, Table S35).
D328045
Person kpb19112
DT-79-2
@proton CDCI3 \{C:\NMRdata\} DJN 75


Figure S150. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazoline (entry 2, Table S35).


Figure S151. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazoline (entry 3, Table S35).

Table S36. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenylthiazoline and 2-phenyloxazoline.
Mass

Deuteration expected at $\delta(\mathbf{R 1})=7.86-7.81 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.98-7.93 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=3.41 \mathrm{ppm}$ and at $\delta(\mathbf{R} \mathbf{2})=4.06 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.98-7.93(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D} \mathbf{R 2}), 7.86-7.81(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}), 7.51-7.36$ (m, 3H, R1 and $3 \mathrm{H}, \mathbf{R 2}$ ), $4.49-4.40(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}$ and $2 \mathrm{H}, \mathbf{R 2}), 4.06(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 2}), 3.41(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 1})$.

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.47 | 2.45 | 40 | 1.50 | 2.00 | 25 | 1.78 |
| $\mathbf{2}$ | 1.88 | 2.76 | 32 | 1.62 | 2.00 | 19 | 1.82 |
| $\mathbf{3}$ | 1.47 | 2.49 | 41 | 1.50 | 2.00 | 25 | 1.83 |

Average $\boldsymbol{\kappa}=1.81$


Figure S152. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D327415
Person kpb19112
DT-80-1
@proton CDCl3 \{C:\NMRdata\} DJN 32

```
\forall\mp@code{~}
```



Figure S153. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylthiazoline and 2-phenyloxazoline (entry 1, Table S36).
D328047
Person kpb19112
Person kpb
DT-80-2
DT-80-2
@proton CDCl 3 \{C:\NMRdata\} DJN 77

$\stackrel{\text { No }}{\text { No }}$

```
*)
```



Figure S154. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylthiazoline and 2-phenyloxazoline (entry 2, Table S36).

D328048
Person kpb19112
DT-80-3
@proton CDCl3 \{C:\NMRdata\} DJN 78
$\qquad$





Figure S155. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylthiazoline and 2-phenyloxazoline (entry 3, Table S36).

Table S37. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenylpyrimidine and 2-phenylpyridine.

| Substrate R1 | Catalyst |  |
| :--- | :---: | :---: |
| Mass | 15.6 mg | Ir-2 |
| [(COD)Ir(IMes)Cl] |  |  |

Deuteration expected at $\delta(\mathbf{R 1})=8.49-8.42 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.02-7.97 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=8.80 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.77-7.70 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{R 1}), 8.73-7.67(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.49-8.42$ (m, 2H/D, R1), $8.02-7.97$ (m, 2H/D R2), $7.77-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 2}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathbf{R 1}$ and 3 H , R2), $7.25-7.20(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 7.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1})$.

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.70 | 2.00 | 15 | 1.75 | 2.01 | 13 | 1.17 |
| $\mathbf{2}$ | 1.52 | 2.00 | 24 | 1.58 | 1.96 | 19 | 1.27 |
| $\mathbf{3}$ | 1.56 | 2.00 | 22 | 1.66 | 2.00 | 17 | 1.33 |

Average $\boldsymbol{\kappa}=1.26$


Figure S156. Stacked ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of non-deuterated substrates and reaction mixture.

D328079


Figure S157. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyrimidine and 2-phenylpyridine (entry 1, Table S37).

D328080
Person kpb19112
DT-86-2
DT-86-2
@proton CDCI3 \{C: NMMRdata\} DJN 31


$\infty^{\infty} \infty^{\infty} \infty^{\infty} \infty^{\infty} \infty^{\infty} \infty^{\infty} \infty^{\infty}$


```
~
```





Figure S158. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyrimidine and 2-phenylpyridine (entry 2, Table S37).

D332033
Person kpb19112
DT-86-4
@proton CDCI3 \{C:\NMRdata\} DJN 42



Figure S159. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of the competition experiment between 2-phenylpyrimidine and 2-phenylpyridine (entry 3, Table S37).

Table S38. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenylimidazole and 1-phenylpyrazole.

| Mass | 14.4 mg | Substrate R1 |
| :--- | :--- | :--- |
| [(COD)Ir(IMes)Cl] |  |  |

Deuteration expected at $\delta(\mathbf{R 1})=7.98-7.90 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.87-7.82 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=7.52-7.41 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.49 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta=12.51$ (br, $1 \mathrm{H}, \mathbf{R 1}$ ), 8.49 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 2}$ ), $7.98-7.90$ (m, 2H/D, R1), $7.87-7.82(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}), 7.74(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{R 1}), 7.52-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}$ and $2 \mathrm{H}, \mathbf{R 2}$ ), $7.36-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}$ and $1 \mathrm{H}, \mathbf{R 2}), 7.14(\mathrm{br}, 2 \mathrm{H}, \mathbf{R 1}), 6.55-6.52(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2})$.

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.08 | 2.23 | 52 | 1.87 | 1.00 | 6 | 10.79 |
| $\mathbf{2}$ | 1.04 | 2.11 | 51 | 1.87 | 1.00 | 6 | 10.53 |
| $\mathbf{3}$ | 1.06 | 2.15 | 51 | 1.88 | 1.00 | 6 | 11.43 |

Average $\boldsymbol{\kappa}=\mathbf{1 0 . 9 1}$
${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=4.23-1.00 \times 2 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=4.11-1.00 \times 2 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=4.15-1.00 \times 2 ;$


Figure S160. Stacked ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of non-deuterated substrates and reaction mixture.


Figure S161. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) of the competition experiment between 2 phenylimidazole and 1-phenylpyrazole (entry 1, Table S38).
D332513
Person kpb19112
DT-47-2
@proton DMSO \{C:\NMRdata\} DJN 10



Figure S162. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) of the competition experiment between 2 phenylimidazole and 1-phenylpyrazole (entry 2, Table S38).

D332977
Person kpb19112
DT-47-3A
@proton DMSO \{C:\NMRdata\} DJN 23

N
N
T
in
in
in



Figure S163. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) of the competition experiment between 2 phenylimidazole and 1-phenylpyrazole (entry 3, Table S38).

Table S39. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenylimidazole and 2-phenylpyridine.
Mass
[(COD)Ir(IMes)Cl]

Deuteration expected at $\delta(\mathbf{R 1})=7.98-7.92 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.11-8.06 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R} \mathbf{1})=7.53-7.40 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.90-7.84 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=12.51(\mathrm{br}, 1 \mathrm{H}, \mathbf{R 1}), 8.70-8.65(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.11-8.06(\mathrm{~m}, \mathrm{H} / \mathrm{D}$, R2), $7.98-7.92(\mathrm{~m}, \mathrm{H} / \mathrm{D}, \mathbf{R 1}$ and $1 \mathrm{H}, \mathbf{R 2}$ ), $7.90-7.84(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 7.53-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathbf{R 1}$ and 3 H ,
R2), $7.37-7.30(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 1}$ and $1 \mathrm{H}, \mathbf{R 2}$ ), 7.14 (br, 2H, R1).

| Entry | $\mathrm{I}_{\mathrm{R} 1(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(\mathrm{t})}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0.74^{\mathrm{a}}$ | $2.06^{\mathrm{d}}$ | 64 | 1.73 | 1.00 | 14 | 7.06 |
| $\mathbf{2}$ | $0.80^{\mathrm{b}}$ | $2.06^{\mathrm{e}}$ | 61 | 1.78 | 1.00 | 11 | 8.12 |
| $\mathbf{3}$ | $0.72^{\mathrm{c}}$ | $1.94^{\mathrm{f}}$ | 64 | 1.74 | 1.00 | 13 | 7.30 |

## Average $\boldsymbol{\kappa}=7.49$

${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=1.74-1.00 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=1.80-1.00 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=1.72-1.00 ;$
${ }^{\mathrm{d}} \mathrm{I}_{\mathrm{R} 1(0)}=5.06-1.00 \times 3 ;{ }^{\mathrm{e}} \mathrm{I}_{\mathrm{R} 1(0)}=5.06-1.00 \times 3 ;{ }^{\mathrm{f}} \mathrm{I}_{\mathrm{R} 1(0)}=4.99-1.00 \times 3 ;$


Figure S164. Stacked ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of non-deuterated substrates and reaction mixture.

D332366
Person kpb19112
DT-41
@proton DMSO \{C:\NMRdata\} DJN 25


Figure S165. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) of the competition experiment between 2 phenylimidazole and 1-phenylpyridine (entry 1, Table S39).
${ }^{D} 332511$
Person kpb19112
DT-41-2
@proton DMSO \{C:\NMRdata\} DJN 8
$\stackrel{\stackrel{i}{i}}{\underset{\sim}{N}}$
$\stackrel{\sim}{1}$




Figure S166. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) of the competition experiment between 2phenylimidazole and 1-phenylpyridine (entry 2, Table S39).

D332723
Person kpb19112
DT-41-4
@proton DMSO \{C:\NMRdata\} DJN 8
$\stackrel{\underset{~ H}{i}}{\stackrel{1}{+}}$




Figure S167. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) of the competition experiment between 2 phenylimidazole and 1-phenylpyridine (entry 3, Table S39).

Table S40. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenylimidazoline and 2-phenylpyridine.
Mass

Deuteration expected at $\delta(\mathbf{R 1})=7.90-7.81 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=8.11-8.06 \mathrm{ppm}$
Determined against integral at $\delta(\mathbf{R 1})=3.61 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.97-7.93 \mathrm{ppm}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=8.70-8.64(\mathrm{~m}, 1 \mathrm{H}, \mathbf{R 2}), 8.11-8.06(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}), 7.97-7.93$ (m, 1H, R2), $7.90-7.81(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}$ and 1H, R2), $7.53-7.39$ (m, 3H, R1 and 3H, R2), $7.36-$ 7.29 (m, 1H, R2), 3.61 (m, 4H, R1).

| Entry | $\mathrm{I}_{\mathrm{R} 1(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=4 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $0.86^{\mathrm{a}}$ | 3.48 | 51 | 1.72 | 1.00 | 14 | 4.67 |
| $\mathbf{2}$ | $1.17^{\mathrm{b}}$ | 3.37 | 31 | 1.81 | 1.00 | 10 | 3.65 |
| $\mathbf{3}$ | $1.14^{\mathrm{c}}$ | 3.41 | 33 | 1.84 | 1.00 | 8 | 4.83 |

Average $\boldsymbol{\kappa}=4.38$
${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(0)}=1.86-1.00 ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R}(0)}=2.17-1.00 ;{ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(0)}=2.14-1.00 ;$


Figure S168. Stacked ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of non-deuterated substrates and reaction mixture.

## D332368

Person kpb19112
@proton DMSO \{C:\NMRdata\} DJN 27


Figure S169. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) of the competition experiment between 2 phenylimidazoline and 2-phenylpyridine (entry 1, Table S40).
D332516
Person kpb19112
Person
DT-49-3
@proton DMSO \{C:\NMRdata\} DJN $13 \quad \operatorname{coc}_{\infty}^{\infty}$ io



Figure S170. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) of the competition experiment between 2 phenylimidazoline and 2-phenylpyridine (entry 2, Table S40).


Figure S171. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) of the competition experiment between 2 phenylimidazoline and 2-phenylpyridine (entry 3, Table S40).

Table S41. Determination of the competition rate constant $\kappa$ from the labelling experiment between 2phenylimidazoline and 2-phenylimidazole.
Mass

Deuteration expected at $\delta(\mathbf{R 1})=7.86-7.80 \mathrm{ppm}$ and at $\delta(\mathbf{R 2})=7.98-7.90 \mathrm{ppm}$
Determined against integral at $\delta=3.61 \mathrm{ppm}$ for $\mathbf{R 1}$ and at $\delta=7.36-7.29 \mathrm{ppm}$ for $\mathbf{R 2}$
Spectral details of the deuterated reaction mixture:
${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta=7.98-7.90(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 2}$ ), $7.86-7.80(\mathrm{~m}, 2 \mathrm{H} / \mathrm{D}, \mathbf{R 1}), 7.50-$ 7.38 (m, 3H, R1 and 3H, R2), $7.36-7.29$ (m, 1H, R2), 7.13 (br, 2H, R2), 3.61 ( $\mathrm{s}, 4 \mathrm{H}, \mathbf{R 1}$ ).

| Entry | $\mathrm{I}_{\mathrm{R} 1(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 1(0)}$ <br> $\mathrm{N}=4 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{I}_{\mathrm{R} 2(t)}$ <br> $\mathrm{N}=2 \mathrm{H}$ | $\mathrm{I}_{\mathrm{R} 2(0)}$ <br> $\mathrm{N}=1 \mathrm{H}$ | $\% \mathrm{D}_{\mathrm{R} 2}$ | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.09 | 3.41 | 36 | 1.39 | 1.00 | 31 | 1.23 |
| $\mathbf{2}$ | 1.09 | 3.47 | 37 | 1.26 | 1.00 | 37 | 1.01 |
| $\mathbf{3}$ | 1.17 | 3.58 | 35 | 1.33 | 1.00 | 34 | 1.04 |

Average $\boldsymbol{\kappa}=1.09$
non-deuterated 2-phenylimidazoline


Figure S172. Stacked ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of non-deuterated substrates and reaction mixture.


Figure S173. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of the competition experiment between 2 phenylimidazoline and 2-phenylimidazole (entry 1, Table S41).

## D331149 Person kpb19112 <br> Person kpb DT-81-3

DT-81-3
@proton DMSO \{C:\NMRdata\} DJN 37

## 

$\stackrel{\sim}{0}$


Figure S174. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) of the competition experiment between 2 phenylimidazoline and 2-phenylimidazole (entry 2, Table S41).


Figure S175. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) of the competition experiment between 2phenylimidazoline and 2-phenylimidazole (entry 3, Table S41).

### 3.5. Linear Regression Analysis.

Table S42. Linear regression analysis for $k_{\text {rel }}$ determination for catalyst $\mathbf{I r} \mathbf{- 1}$.


| Substrates | $\boldsymbol{k}_{\text {rel }}$ |
| :--- | :---: |
| 1-methyl-2-phenylimidazole | 10.13 |
| 2-phenyloxazoline | 2.80 |
| 2-phenylpyrimidine | 2.66 |
| 2-phenylthiazoline | 2.26 |
| 2-phenylthiazole | 2.04 |
| 1-phenylpyrazole | 1.77 |
| 2-phenylpyridine | 1.00 |
| acetanilide | 0.48 |
| benzamide | 0.38 |
| 2-phenylbenzothiazole | 0.27 |
| acetophenone | 0.06 |
| benzophenone | 0.06 |
| nitrobenzene | 0.03 |
| N,N-dimethylbenzamide | 0.02 |
| ethylbenzoate | 0.01 |

All $k_{\text {rel }}$ Constrained $>=0.001$
$\log K=\log K_{1}-\log K_{2}$


Table S43. Linear regression analysis for $k_{\text {rel }}$ determination for catalyst Ir-2.



Figure S176. Plot of experimental versus calculated (from linear regression) competition constants $\kappa$ for catalyst $\mathbf{I r} \mathbf{- 1}$.


Figure S177. Plot of experimental versus calculated (from linear regression) competition constants $\kappa$ for catalyst Ir-2.

## 4. Intramolecular Competition Experiments

### 4.1. General Information



## General Procedure (GP2)

The substrate $(0.10 \mathrm{mmol})$ and the catalyst $(0.005 \mathrm{mmol})$ of choice were added to one J . Young Schlenk flask under air. The solvent, DCM ( 6 mL ), was added in such a way to rinse the inner walls of the flask. The flask was then sealed (with gas inlet left open) under air before being cooled in a dry ice-acetone bath. The flask was evacuated and flushed with deuterium three times via a balloon. The gas inlet was then closed with fast thread tap, creating a sealed atmosphere of deuterium. After sealing the flask was placed in the thermostated water bath at $25^{\circ} \mathrm{C}$ and the reaction timer was started. The reaction mixture was stirred for 1 h (for catalyst $\mathbf{I r} \mathbf{- 1}$ ) or 16 h (for catalyst $\mathbf{I r} \mathbf{- 2}$ ) before removing excess deuterium and replacing it with air. The reaction mixture was quenched with few drops of MeCN and transferred to a single necked flask together with washings (DCM) before removing the solvent under reduced pressure. The residue was dissolved in a small portion of 1:1 mixture of petroleum ether with diethyl ether (or ethyl acetate) and passed through a short plug of silica, eluting with a $1: 1$ mixture of petroleum ether and diethyl ether ( $3 \times 2 \mathrm{~mL}$ ), or a $1: 1$ mixture of petroleum ether with ethyl acetate where necessary, depending on the substrates used. The solvent was evaporated under reduced pressure and the residue was analysed directly by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

## Determination of Competition Rate Constants

The level of deuterium incorporation (\%D) in the substrates was determined by ${ }^{1} \mathrm{H}$ NMR. The integrals were calibrated against a peak corresponding to a position not expected to be labelled. Equations S-6 and S-7 were used to calculate the extent of labelling and competition rate constant $\kappa^{\prime}$ :

$$
\begin{gather*}
\% \mathrm{D}=100-\left(\frac{\text { residual integral }}{\text { number of labelling sites }} \times 100 \%\right)  \tag{S-6}\\
\kappa^{\prime}=\frac{\% D_{A}}{\% D_{B}}=\frac{2-\text { residual integral } H_{A}}{2-\text { residual integral } H_{B}} \tag{S-7}
\end{gather*}
$$

### 4.1. Competition Experiments with [(COD)Ir(IMes)PPh $\left.{ }_{3}\right] \mathbf{B A r F}_{24}$ (Ir-1) <br> Labelling of $p$-nitroacetophenone



According to GP2: 16.5 mg of substrate and 8.7 mg of catalyst Spectral details of the reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.33-8.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} / \mathrm{D}_{\mathrm{B}}\right), 8.13-8.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} / \mathrm{D}_{\mathrm{A}}\right), 2.68(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ )
Deuteration expected at $\delta\left(\mathrm{H}_{\mathrm{A}}\right)=8.13-8.09 \mathrm{ppm}$ and $\delta\left(\mathrm{H}_{\mathrm{B}}\right)=8.33-8.30 \mathrm{ppm}$.
Determined against integral at $\delta=2.68 \mathrm{ppm}$.
Table S44. Determination of the competition rate constant $\kappa^{\prime}$ from the labelling of $p$-nitroacetophenone.

|  | residual integral |  |  |  |  | | |
|---|---|---|---|---|---|---|---|
| Entry | $\left(\mathrm{H} / \mathrm{D}_{\mathrm{A}}\right)$ |  |  |  |  |$\%_{\mathrm{D}}$| residual integral |
| :---: |
| $\left(\mathrm{H} / \mathrm{D}_{\mathrm{B}}\right)$ |$\% \mathrm{D}_{\mathrm{B}}$| $\kappa^{\prime}$ |
| :---: |
| 1 |

D326360
Person kpb19112
DT-75-1
@proton CDCl3 \{C:\NMRdata\} DJN 61

## $\underbrace{\sim}$




Figure S178. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled $p$-nitroacetophenone (entry 1, Table S44)
@proton CDCl 3 \{C:\NMRdata\} DJN 62


Figure S179. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled p-nitroacetophenone (entry 2, Table S44) D326711 Person kpb19112
DT-75-3
@proton CDCI3 \{C:\NMRdata\} DJN 17


$\stackrel{\otimes}{\underset{\sim}{\sim}}$


Figure S180. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled p-nitroacetophenone (entry 3, Table SX)

## Labelling of ethyl 4-nitrobenzoate



According to GP2:19.5 mg of substrate and 8.7 mg of catalyst
Spectral details of the reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30-8.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} / \mathrm{D}_{\mathrm{A}}\right), 8.23-8.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} / \mathrm{D}_{\mathrm{B}}\right), 4.43(\mathrm{q}, J=7.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
Deuteration expected at $\delta\left(\mathrm{H}_{\mathrm{A}}\right)=8.30-8.26 \mathrm{ppm}$ and $\delta\left(\mathrm{H}_{\mathrm{B}}\right)=8.23-8.18 \mathrm{ppm}$.
Determined against integral at $\delta=4.43 \mathrm{ppm}$.

Table S45. Determination of the competition rate constant $\kappa^{\prime}$ from the labelling of ethyl 4nitrobenzoate.

|  | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{A}}\right)$ | $\% \mathrm{D}_{\mathrm{A}}$ | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{B}}\right)$ | $\% \mathrm{D}_{\mathrm{B}}$ | $\kappa^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | 0.85 | 58 | 1.09 | 46 | 1.26 |
| 1 | 0.81 | 60 | 1.11 | 45 | 1.34 |
| 2 | 1.23 | 39 | 1.34 | 33 | 1.17 |
| 3 |  | $\mathbf{5 2}$ |  | $\mathbf{4 1}$ | $\mathbf{1 . 2 6}$ |

D324289
Person kpb19112
DT-64-1
@proton CDCI3 \{C:\NMRdata\} DJN 15


Figure S181. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled ethyl 4-nitrobenzoate (entry 1, Table S45)

D324295
Person kpb19112
DT-64-2
@proton CDCI3 \{C:\NMRdata\} DJN 21

Figure S182. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled ethyl 4-nitrobenzoate (entry 2, Table S45)

DT-64-3
@proton CDCl3 \{C:\NMRdata\} DJN 22


Figure S183. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled ethyl 4-nitrobenzoate (entry 3, Table S45)

## Labelling of 4-acetyl-1-(pyridin-2-yl)benzene





According to GP2: 19.7 mg of substrate and 8.7 mg of catalyst Spectral details of the reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.76-8.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 8.12-8.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 8.07-8.03(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{\mathrm{B}}$ ), $7.80-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
Deuteration expected at $\delta\left(\mathrm{H}_{\mathrm{A}}\right)=8.12-8.08 \mathrm{ppm}$ and $\delta\left(\mathrm{H}_{\mathrm{B}}\right)=8.07-8.03 \mathrm{ppm}$.
Determined against integral at $\delta=2.65 \mathrm{ppm}$.
Note: Small signals, corresponding to the $\mathbf{I r} \mathbf{- 1}$ catalyst, were present in the ${ }^{1} \mathrm{H}$ NMR spectra, however there is no overlap with the substrate signals.

Table S46. Determination of the competition rate constant $\kappa^{\prime}$ from the labelling of 4-acetyl-1-(pyridin-2-yl)benzene.

| Entry | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{A}}\right)$ | $\% \mathrm{D}_{\mathrm{A}}$ | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{B}}\right)$ | $\% \mathrm{D}_{\mathrm{B}}$ | $\kappa^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.51 | 25 | 1.97 | 1.5 | 16.33 |
| 2 | 1.66 | 17 | 1.98 | 1.0 | 17.00 |
| 3 | 1.55 | 23 | 1.97 | 1.5 | 15.00 |
| Average |  | $\mathbf{2 1}$ |  | $\mathbf{1 . 3}$ | $\mathbf{1 6 . 1 1}$ |

## D324682

Person kpb19112
DT-68-1
@proton CDCI3 \{C:\NMRdata\} DJN 14


Figure S184. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 1, Table S46)

D324385
Person kpb19112
DT-69-2
@proton CDCl3 \{C:\NMRdata\} DJN 19


Figure S185. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 2, Table S46)
D331130
Person kpb19112
@proton CDCI3 \{C:|NMRdata\} DJN 19

N
N
T
N
N
in
1



Figure S186. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 3, Table S46)

Labelling of 2-(4-acetyl)phenyloxazoline


According to GP2: 18.9 mg of substrate and 8.7 mg of catalyst
Spectral details of the reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.06-8.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 8.01-7.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right), 4.47(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
Deuteration expected at $\delta\left(\mathrm{H}_{\mathrm{A}}\right)=8.06-8.01 \mathrm{ppm}$ and $\delta\left(\mathrm{H}_{\mathrm{B}}\right)=8.01-7.96 \mathrm{ppm}$.
Determined against integral at $\delta=4.47 \mathrm{ppm}$.
Note: Small signals, corresponding to the Ir-1 catalyst, were present in the ${ }^{1} \mathrm{H}$ NMR spectra, however they do not overlap with the substrate signals.

Table S47. Determination of the competition rate constant $\kappa^{\prime}$ from the labelling of 2-(4acetyl)phenyloxazoline.

$$
\text { residual integral } \quad \text { residual integral }
$$

| Entry | $\left(\mathrm{H} / \mathrm{D}_{\mathrm{A}}\right)$ | $\% \mathrm{D}_{\mathrm{A}}$ | $\left(\mathrm{H} / \mathrm{D}_{\mathrm{B}}\right)$ | $\% \mathrm{D}_{\mathrm{B}}$ | $\kappa^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.41 | 80 | 1.96 | 2.0 | 39.75 |
| 2 | 0.44 | 78 | 1.96 | 2.0 | 39.00 |
| 3 | 0.76 | 62 | 1.97 | 1.5 | 41.33 |
| Average |  | $\mathbf{7 3}$ |  | $\mathbf{1 . 8}$ | $\mathbf{4 0 . 0 3}$ |

D324683
Person kpb19112
DT-69-1
DT-69-1
@proton CDCI3 \{C:\NMRdata\} DJN


|  |
| :---: |
|  |  |
|  |  |




Figure S187. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 2-(4-acetyl)phenyloxazoline (entry 1, Table S47)

D324384
Person kpb19112
DT-68-2
@proton CDCI3 \{C:\NMRdata\} DJN 18





|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { To } \\ & \text { O } \end{aligned}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  | 5.5 |  |  |  |  |  |  | 1 |  |  |  |  |
| 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | $\begin{gathered} 4.5 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |

Figure S188. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 2-(4-acetyl)phenyloxazoline (entry 2, Table S47) D328159
DT-69-3
@proton CDCI3 \{C:\NMRdata\} DJN 9
$\stackrel{\text { ĩ }}{i}$



Figure S189. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 2-(4-acetyl)phenyloxazoline (entry 3, Table S47)

Labelling of 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole


According to GP2: 22.4 mg of substrate and 8.7 mg of catalyst
Spectral details of the reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.56-8.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.36-8.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 8.17-8.11(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ ), $7.25-7.21$ (m, 1H, Ar-H), 7.11 - 7.04 (m, 1H, Ar-H), $6.66-6.61$ (m, 1H, Ar-H), $3.77-$ $3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.67-3.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
Deuteration expected at $\delta\left(\mathrm{H}_{\mathrm{A}}\right)=8.36-8.32 \mathrm{ppm}$ and $\delta\left(\mathrm{H}_{\mathrm{B}}\right)=8.17-8.11 \mathrm{ppm}$.
Determined against integral at $\delta=6.66-6.61 \mathrm{ppm}$.
Note: Small signals, corresponding to the $\mathbf{I r}-\mathbf{1}$ catalyst, were present in the ${ }^{1} \mathrm{H}$ NMR spectra, however they do not overlap with the substrate signals.
Table S48. Determination of the competition rate constant $\kappa^{\prime}$ from the labelling of 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole.

|  | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{A}}\right)$ | $\% \mathrm{D}_{\mathrm{A}}$ | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{B}}\right)$ | $\% \mathrm{D}_{\mathrm{B}}$ | $\kappa^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | 0.80 | 60 | 1.45 | 28 | 2.18 |
| 1 | 0.42 | 79 | 1.57 | 22 | 3.67 |
| 2 | 0.48 | 76 | 1.62 | 19 | 4.00 |
| 3 |  | $\mathbf{7 2}$ |  | $\mathbf{2 3}$ | $\mathbf{3 . 2 9}$ |

D328680
Person kpb19112
DT-88-1
@proton C6D6 \{C:\NMRdata\} DJN ${ }^{4}$ ๑0
$\underbrace{\sim}$


Figure S190. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 1, Table S48)

D328681
Person kpb19112
DT-88-2
@proton C6D6 \{C:\NMRdata\} DJN 5



Figure S191. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 2, Table S48)
D328682
Person kpb19112
DT-88-3
@proton C6D6 \{C:\NMRdata\} DJN 6
$\circ$
0
0

으산응
$\underbrace{\text { mim mim }}$


Figure S192. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 3, Table S48)

### 4.2. Competition Experiments with (COD)Ir(IMes)Cl (Ir-2)

## Labelling of 4-acetyl-1-(pyridin-2-yl)benzene



According to GP2: 19.7 mg of substrate and 3.2 mg of catalyst Spectral details of the reaction mixture:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.76-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 8.09-8.04(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{B}}\right), 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
Deuteration expected at $\delta\left(\mathrm{H}_{\mathrm{A}}\right)=8.13-8.09 \mathrm{ppm}$ and $\delta\left(\mathrm{H}_{\mathrm{B}}\right)=8.09-8.04 \mathrm{ppm}$.
Determined against integral at $\delta=2.65 \mathrm{ppm}$.
Table S49. Determination of the competition rate constant $\kappa^{\prime}$ from the labelling of 4-acetyl-1-(pyridin-2-yl)benzene.

| Entry | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{A}}\right)$ | $\% \mathrm{D}_{\mathrm{A}}$ | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{B}}\right)$ | $\% \mathrm{D}_{\mathrm{B}}$ | $\kappa^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.32 | 34 | 1.96 | 2 | 17.00 |
| 2 | 1.52 | 24 | 1.97 | 2 | 16.00 |
| 3 | 1.21 | 40 | 1.95 | 3 | 15.80 |
| Average |  | $\mathbf{3 3}$ |  | $\mathbf{2}$ | $\mathbf{1 6 . 2 7}$ |

D324684
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 16


Figure S193. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 1, Table S49).

D324698
Person kpb19112
DT-71-2
@proton CDCl3 \{C:\NMRdata\} DJN 30


Figure S194. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 2, Table S49).
D330953
Person kpb19112
DT-100-2
@proton CDCI3 \{C:\NMRdata\} DJN 57
$\stackrel{+}{\dot{\top}}$


Figure S195. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 3, Table S49).

## Labelling of 2-(4-acetyl)phenyloxazoline



According to GP2: 18.9 mg of substrate and 3.2 mg of catalyst
Spectral details of the reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.06-8.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 8.01-7.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right), 4.47(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
Deuteration expected at $\delta\left(\mathrm{H}_{\mathrm{A}}\right)=8.06-8.01 \mathrm{ppm}$ and $\delta\left(\mathrm{H}_{\mathrm{B}}\right)=8.01-7.96 \mathrm{ppm}$.
Determined against integral at $\delta=4.47 \mathrm{ppm}$.

Table S50. Determination of the competition rate constant $\kappa^{\prime}$ from the labelling of 2-(4acetyl)phenyloxazoline.

| Entry | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{A}}\right)$ | $\% \mathrm{D}_{\mathrm{A}}$ | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{B}}\right)$ | $\% \mathrm{D}_{\mathrm{B}}$ | $\kappa^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.41 | 30 | 1.93 | 4 | 8.43 |
| 2 | 1.27 | 37 | 1.93 | 4 | 10.43 |
| 3 | 0.48 | 76 | 1.88 | 6 | 12.67 |
| Average |  | $\mathbf{4 7}$ |  | $\mathbf{4}$ | $\mathbf{1 0 . 5 1}$ |

D324699
Person kpb19112
DT-72-1
@proton CDCI3 \{C:\NMRdata\} DJN 31
苞



Figure S196. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 2-(4-acetyl)phenyloxazoline (entry 1, Table S50)

D324700
Person kpb19112
DT-72-2
@proton CDCl3 \{C:\NMRdata\} DJN 32


Figure S197. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 2-(4-acetyl)phenyloxazoline (entry 2, Table S50) D330759
DT-72-3
@proton CDCI3 \{C:\NMRdata\} DJN 15


Figure S198. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of labelled 2-(4-acetyl)phenyloxazoline (entry 3, Table S50)

Labelling of 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole


According to GP2: 22.4 mg of substrate and 3.2 mg of catalyst
Spectral details of the reaction mixture:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.56-8.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.36-8.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 8.17-8.11(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{\mathrm{B}}$ ), $7.25-7.21$ (m, 1H, Ar-H), 7.11-7.04 (m, 1H, Ar-H), $6.66-6.61$ (m, 1H, Ar-H), 3.77-3.58 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ ).
Deuteration expected at $\delta\left(\mathrm{H}_{\mathrm{A}}\right)=8.36-8.32 \mathrm{ppm}$ and $\delta\left(\mathrm{H}_{\mathrm{B}}\right)=8.17-8.11 \mathrm{ppm}$.
Determined against integral at $\delta=6.66-6.61 \mathrm{ppm}$.
Table S51. Determination of the competition rate constant $\kappa^{\prime}$ from the labelling of 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole.

| Entry | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{A}}\right)$ | $\% \mathrm{D}_{\mathrm{A}}$ | residual integral <br> $\left(\mathrm{H} / \mathrm{D}_{\mathrm{B}}\right)$ | $\% \mathrm{D}_{\mathrm{B}}$ | $\kappa^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.53 | 24 | 1.74 | 13 | 1.81 |
| 2 | 1.59 | 21 | 1.79 | 11 | 1.95 |
| 3 | 1.53 | 24 | 1.79 | 11 | 2.24 |
| Average |  | $\mathbf{2 3}$ |  | $\mathbf{1 1}$ | $\mathbf{2 . 0 0}$ |

D328065
Person kpb19112
@proton C6D6 \{C:\NMRdata\} DJN 17


Figure S199. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 1, Table S51)

D328066
Person kpb19112
DT-87-2
@proton C6D6 \{C:\NMRdata\} DJN 18


Figure S200. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 2, Table S51)
D330760
Person kpb19112
DT-87-3
@proton C6D6 \{C:\NMRdata\} DJN 16


Figure S201. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 3, Table S51)

## 5. References.

[S1] A. Beillard, X. Bantreil, T.-X. Métro, J. Martinez and F. Lamaty, Dalton Trans., 2016, 45, 17859-17866.
[S2] M. Trose, F. Lazreg, M. Lesieur and C. S. J. Cazin Green Chem., 2015, 17, 3090-3092.
[S3] M. Debdab, F. Mongin and J. P. Bazureau, Synthesis, 2006, 23, 4046-4052.
[S4] M. Trose, F. Lazreg, M. Lesieur and C. S. J. Cazin, J. Org. Chem. 2015, 80 (20), 99109914.
[S5] N. A. Yakelis and R. G. Bergman, Organometallics, 2005, 24, 3579-3581.
[S6] A. J. Martínez-Martínez and A. S. Weller, Dalton Trans., 2019, 48, 3551-3554.
[S7] A. R. Cochrane, S. Irvine, W. J. Kerr, M. Reid, S. Andersson and G. N. Nilsson, J. Label. Compd. Radiopharm., 2013, 56, 451-454.
[S8] A. R. Kennedy, W. J. Kerr, R. Moir and M. Reid, Org. Biomol. Chem., 2014, 12, 79277931.
[S9] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 2010, 29, 2176-2179.
[S10] J. H. Kim, R. T. Mertens, A. Agarwal, S. Parkin, G. Berger and S. G. Awuah, Dalton Trans., 2019, 48, 6273-6282.
[S11] M. R. Kumar, K. Park and S. Lee, Adv. Synth. Catal, 2010, 352, 3255-3266.
[S12] A. S. B. Prasad, T. M. Stevenson, J. R. Citineni, V. Nyzam and P. Knochel, Tetrahedron 1997, 53, 7237-7254.
[S13] C. M. Zinser, K. G. Warren, R. E. Meadows, F. Nahra, A. M. Al-Majid, A. Barakat, M. S. Islam, S. P. Nolan and C. S. J. Cazin, Green Chem., 2018, 20, 3246-3252
[S14] J. B. Badiang and J. Aubé, J. Org. Chem., 1996, 61 (7), 2484-2487.
[S15] W.-C. Chen, Y.-C. Hsu, W.-C. Shih, C.-Y. Lee, W.-H. Chuang, Y.-F. Tsai, P. P.-Y. Chen and T.-G. Ong, Chem. Commun., 2012, 48, 6702-6704.

## 6. Copies of NMR Spectra

6.1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of synthesised substrates
$N, N N^{\prime}$-dimesitylethanediimine
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
D317246.1.fid
Person kpb19112
DT-1
@proton CDCI3 \{C:\NMRdata\} DJN 49



1,3-Bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes $\cdot \mathrm{HCl}$ )
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
D317489
Person kpb19112
DT-2-2-IMesHCl
@proton CDCl 3 \{C:\NMRdata\} DJN 14
$\square$
0
0
1
1


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

IMes-Cl

n
0
0
0
符令


Chloro( $\eta^{4}$-cycloocta-1,5-diene)(1,3-dimesitylimidazoline-2-ylidene)iridium(I) Ir-2
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
D318954
Person kpb19112
DT-3
@proton CDCI3 \{C:\NMRdata\} DJN 32



## ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

18953
Person yxb10128
13C_@ CDCl3 \{C:\NMRdata\} jam 31
0
0
$\stackrel{0}{\infty}$
$\stackrel{1}{1}$





Soldium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate $\left(\mathrm{Na}\left[\mathrm{BArF}_{24}\right]\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$
D321566
Person kpb19112
DT-33-NaBArF
@proton Acetone \{C:\NMRdata\} DJN 40

13
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( 101 MHz , DMSO- $d_{6}$ )

## D330145

Person kpb19112
NaBArf
13C_@ DMSO \{C:\NMRdata\} DJN 92

${ }^{19} \mathbf{F}$ NMR ( 376 MHz , acetone- $d_{6}$ ) D321566
Person kpb19112
DT-33-NaBArF
@19F Acetone \{C:\NMRdata\} DJN 40

${ }^{11} \mathbf{B}$ NMR ( 128 MHz , acetone- $d_{6}$ )
D321566
Person kpb19112
Person kpb191
DT-33-NaBArF
@B11 Acetone \{C:\NMRdata\} DJN 40


## $\left[(C O D) I r(I M e s)\left(P h_{3}\right)\right] B A r F_{24} \mathbf{I r}-\mathbf{1}$

${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
D323541
Person kpb19112
Person kpb19112
@proton CDCI3 \{C:\NMRdata\} DJN 10

끙



 $\underbrace{\text { mim }}$

오


${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
D330147
Person kpb19112
DT-89
13C_@ CDCl3 \{C:\NMRdata\} DJN 94
No

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
D323541
Person kpb19112
DT-40-2a
@19F CDCI3 \{C:\NMRdata\} DJN 10

${ }^{11} \mathbf{B}$ NMR ( $128 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
D323541
Person kpb19112
Person kpb19
@B11 CDCI3 \{C:\NMRdata\} DJN 10

$\sigma$
$\stackrel{\rightharpoonup}{0}$
$\stackrel{1}{1}$


## 2-Phenylthiazoline

${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
D319916
Person kpb19112
Person kpb19112
@proton CDCl3 \{C:\NMRdata\} DJN 5


~~~

\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
D329993
Person kpb19112
Ph-thiazoline
13C_@ CDCl3 \{C:\NMRdata\} DJN 27
```
0
0
\(\stackrel{0}{0}\)
1
No.
```



\section*{2－Phenylthiazole}
\({ }^{1} \mathbf{H}\) NMR（ \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）
D318663
Person kpb19112
Person kpb191
＠proton CDCl3 \｛C：\NMRdata\} DJN 21

ヘペべペペへ



2-Phenylpyrimidine
\({ }^{\mathbf{1}} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
D330148
Person kpb19112
pyrimidine -Ph


\(\sim_{\infty}^{\infty} \underbrace{\infty}_{\infty} \infty^{\infty} \infty^{\infty}\)

\({ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
D329995
Person kpb19112
Person kpb19112
Ph-pyrimidine
Ph-pyrimidine
13C_@ CDCl3 \{C:\NMRdata\} DJN 29
\(-77.2 \mathrm{CDCl} 3\)


\section*{2-(4-acetyl)phenylpyridine}
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
D324484
Person kpb19112
PT-68nondeut.
@proton CDCl 3 \{C:\NMRdata\} DJN 99 答

\(\left.{ }^{13} \mathbf{C \{}{ }^{1} \mathbf{H}\right\}\) NMR \(\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
D324484
Person kpb19112
13C_@ CDCI3 \{C:\NMRdata\} DJN 99
13C_@ CDC13 \{C:\NMRdata\} DJN 99 O.

2-(4-acetyl)phenyloxazoline
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
D324487
Person kpb19112
Person kpb191
@proton CDCI3 \{C:\NMRdata\} DJN \(100 \frac{\mathrm{~m}}{\text { U }}\)



\section*{\({ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}

D324487
Person kpb19112
13C_@ CDCI3 \{C:\NMRdata\} DJN 100
\(\stackrel{\wedge}{\stackrel{\rightharpoonup}{\lambda}}\)



```
No
```

\section*{2-(4-cyano)phenylpyridine}
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
D260096
Person 23-3
Person 23-3
100816-1
@proton CDCl3 \{C:\NMRdata\} DJN 1





\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}

2260096
100816-1
13C_@ CDCI3 \{C:\NMRdata\} DJN

\(-77.2 \mathrm{CDCl} 3\)


2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole

\section*{\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}

D324488
Person kpb19112
Person kpb1911
DT-7Onondeut
DT-70nondeut
@proton CDCI3 \{C:\NMRdata\} DJN 101
```
N~~
```


\section*{\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )}

D259149
Pyridine-oxazolin
13C_@ CDCI3 \{C:\NMRdata\} DJN 1


\section*{6．2．\({ }^{1} \mathrm{H}\) NMR of non－deuterated commercial substrates}

Acetophenone
\({ }^{1} \mathbf{H}\) NMR（ \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）


Acetophenone
\({ }^{1}\) H NMR（ 400 MHz ，DMSO－\(d_{6}\) ）
D330538
Person kpb19112
Person kpb19112
Ph－COCH3
＠proton DMSO \｛C：\NMRdata\} DJN 38

ヘベヘベベベベヘベベ


\section*{Benzophenone}
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


Benzamide
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\section*{Benzamide}
\({ }^{1} \mathbf{H}\) NMR ( 400 MHz, DMSO- \(d_{6}\) )

\section*{
}



\section*{Nitrobenzene}
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


Nitrobenzene
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}\right.\), DMSO- \(d_{6}\)

\section*{ \\ }


Benzenesulfonamide
\({ }^{1} \mathbf{H}\) NMR ( 400 MHz, DMSO- \(d_{6}\) )


(Methylsulfonyl)benzene
\({ }^{1} \mathbf{H}\) NMR ( 400 MHz , DMSO- \(d_{6}\) )


Acetanilide
\({ }^{\mathbf{1}} \mathbf{H}\) NMR ( 400 MHz, DMSO- \(d_{6}\) )


\section*{2-Phenylpyridine}
\({ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
\[
\frac{\mathrm{m}}{\mathrm{U}}
\]





2-Phenylpyridine
\({ }^{\mathbf{1}} \mathbf{H}\) NMR ( 400 MHz , DMSO- \(d_{6}\) )
D332376
Person kpb19112
Ph-Py
@proton DMSO \{C:\NMRdata\} DJN 35
@proton DMSO \{C:\NMRdata\} DJN 35




\section*{1-Phenylpyrazole}
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




2-Phenyloxozoline
\({ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\section*{2-Phenylbenzothiazole}
\({ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\section*{2-Phenylimidazole}
\({ }^{\mathbf{1}} \mathbf{H}\) NMR ( 400 MHz, DMSO- \(d_{6}\) )
D331485.1.fid
Person kpb19112
@proton DMSO \{C:\NMRdata\} DJN 111

-3.34 HDO
-2.50 DMSO


2-Phenylimidazoline
\({ }^{1} \mathbf{H}\) NMR (400 MHz, DMSO- \(d_{6}\)
~~~


[^0]:    ${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=4.12-1.00-(0.86 \times 2) ;{ }^{\mathrm{b}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=3.99-1.00-(0.85 \times 2)$;
    ${ }^{\mathrm{c}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=4.36-1.00-(0.94 \times 2) ;{ }^{\mathrm{d}} \mathrm{I}_{\mathrm{R} 1(\mathrm{t})}=3.99-1.00-(0.91 \times 2)$

