- Supplementary Information -

Quantitative prediction of selectivity in iridium-catalysed

hydrogen isotope exchange reactions

Daria S. Timofeeva, David M. Lindsay, David J. Nelson*, William J. Kerr*

WestCHEM Department of Pure and Applied Chemistry, Thomas Graham Building, 295

Cathedral Street, Glasgow, G1 1XL, UK

david.nelson@strath.ac.uk

Table of Contents

1.	Gene	ral Experimental Details	S 2			
2.	Synthesis and Characterisation					
	2.1.	Synthesis of Iridium (I) Complexes	S 4			
	2.2.	Synthesis of the Substrates	S 8			
3.	Intermolecular Competition Experiments					
	3.1.	3.1. General Information				
	3.2.	Effects of the Reaction Conditions on Competition Rate Constants	S19			
	3.3.	S 33				
	3.4.	3.4. Competition Experiments with (COD)Ir(IMes)Cl (Ir-2)				
	3.5.	Linear Regression Analysis	S147			
4.	Intramolecular Competition Experiments					
	4.1.	General Information	S150			
	4.2.	Competition Experiments with [(COD)Ir(IMes)PPh ₃]BArF ₂₄ (Ir-1)	S151			
	4.3.	Competition Experiments with (COD)Ir(IMes)Cl (Ir-2)l	S161			
5.	Refe	rences	S167			
6.	Copies of NMR Spectra					
	6.1.	¹ H and ¹³ C NMR of synthesised substrates	S168			
	6.2.	¹ H NMR of non-deuterated commercial substrates	S183			

1. General Experimental Details

General

For the synthetic procedures, standard Schlenk techniques under an inert gas atmosphere (Ar or N_2) were used, unless otherwise stated. Materials obtained from commercial sources were used without further purification. All glassware was flame dried and cooled under a stream of nitrogen.

Materials

Dichloromethane, tetrahydrofuran, diethyl ether and toluene were obtained from a PureSolv SPS-400-5 Solvent Purification System. Ethyl acetate was dried over K_2CO_3 , then distilled under a nitrogen atmosphere and stored over 3 Å molecular sieves. Dry organic solvents and distilled water used for cross-coupling reactions were additionally degassed by bubbling argon through the solvent for 30 min. For reactions/work-up procedures in air, p.a. grade solvents were used. Petroleum ether refers to alkanes with a boiling point range of 40-60°C.

(1,3-Bis-(2,4,6-trimethylphenyl)imidazolium chloride,^{S1} phenylthiazoline,^{S2} and 1-methyl-2phenylimidazole^{S3} were synthesised according to literature procedures. 2-Phenylthiazole, 2phenylpyrimidine, 2-(4-acetyl)phenylpyridine, and 2-(4-cyano)phenylpyridine were prepared by cross-coupling reactions of corresponding phenylboronic acids and heterobromides as described in section 2. 2-(4-Acetyl)phenyloxazoline and 2-(4-(pyridin-2-yl)phenyl)-4,5dihydrooxazole were obtained from the reaction between corresponding aryl nitriles and amino alcohols catalysed by [Cu(Cl)(IPr)].^{S4} Anhydrous Na[BArF₂₄] (BArF₂₄ = tetrakis[3,5bis(trifluoromethyl)phenyl]borate)) was obtained following Bergman's synthesis,^{S5} followed by recrystallising the crude Na[BArF₂₄]·*x*(solvent) prior to drying.^{S6} Phosphine/NHC monodentate complex **Ir-1** with the BArF₂₄ counterion was synthesised from neutral chlorocarbene complex **Ir-2**^{S7} in a procedure adapted from that published before for preparation of corresponding complexes with BF₄ and OTf counterions.^{S8}

Flash column chromatography was carried out using silica gel (230-400 mesh). Thin layer chromatography (TLC) was performed using Merck silica plates coated with fluorescent indicator and visualised by UV light (254 nm)

Analysis

NMR Spectroscopy: ¹H (400 MHz), ¹³C{¹H} (101 MHz), ¹¹B (128 MHz) ¹⁹F (376 MHz) and ³¹P{¹H} (162 MHz) NMR spectra were obtained on a Bruker AV3-400 instrument with a liquid nitrogen Prodigy cryoprobe. The chemical shifts (δ) are reported in ppm relative to the residual protonated solvent for ¹H NMR or solvent signal for ¹³C{¹H} NMR (CDCl₃: δ_H 7.26 ppm and δ_C 77.16 ppm; DMSO-*d*₆: δ_H 2.50 ppm and δ_C 39.51 ppm; C₆D₆: δ_H 7.16 ppm; acetone-*d*₆: δ_H 2.05 ppm).^{S9} Coupling constants (*J*) are reported in Hz and refer to ³*J*_{H-H} couplings, unless otherwise stated. Multiplicities are expressed with s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad signal). If no multiplicity is given for ¹³C{¹H} data, the signal is a singlet. NMR assignments were made using additional 2D NMR experiments where necessary. *Infrared Spectroscopy*: Infrared (IR) spectra were collected on a Shimadzu IRAffinity-1 Spectrophotometer with only major peaks being reported.

Elemental analysis was performed using a Perkin-Elmer CH2400 instrument.

a) For intermolecular competition experiments

b) For intramolecular competition experiments

Figure S1. Scope of the substrates used in the study

2. Synthesis and Characterisation

2.1. Synthesis of Iridium (I) Complexes

Synthesis of 1,3-Bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes·HCl)^{S1}

N,*N*'-dimesitylethanediimine

2,4,6-Trimethylaniline (84.2 mL, 0.60 mol, 2.0 equiv.) was dissolved in methanol (200 mL) and cooled to 0 °C, and a solution of 40% glyoxal in water (34.4 mL, 0.30 mol, 1.0 equiv.) with one or two drops of formic acid was added. The solution was warmed to room temperature and stirred for two days. The yellow suspension was filtrated and washed with a minimum volume of methanol and diethyl ether to afford N,N-dimesitylethanediimine (78.5 g, 0.27 mol, 90%) as a yellow powder, which was used immediately in the next step.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.11 (s, 2H, CH=N), 6.92 (s, 4H, ArH), 2.30 (s, 6H, *p*-CH₃), 2.17 (s, 12H, *o*-CH₃).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 163.6, 147.6, 134.4, 129.1, 126.7, 20.9, 18.3.

NMR data are consistent with the literature.^{S10}

1,3-Bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes·HCl)^{S1}

Paraformaldehyde (8.05g, 0.27 mol, 1.0 equiv.) was suspended in a solution of 4M hydrochloric acid in dioxane (94 mL, 0.38 mol, 1.4 equiv.) and stirred until complete dissolution of the white solid. THF (300 mL) was added, followed by the slow addition of N,N^{-} dimesitylethanediimine (78.5 g, 0.27 mol, 1.0 equiv.). The resulting solution was stirred at 40 °C for 2 days. The suspension was cooled to room temperature and the white precipitate was collected by filtration, and washed with THF (100 mL) and diethyl ether (100 mL) to afford the crude product, which was recrystallized from a DCM/Et₂O mixture to afford 1,3-bis-(2,4,6-trimethylphenyl)imidazolium chloride (36.6 g, 0.11 mol, 40%) as a white powder.

¹**H NMR** (400 MHz, CDCl₃) δ = 10.64 (s, 1H, N-CH=N), 7.61 (d, *J* = 0.9 Hz, 2H), 7.02 (s, 4H, Ar), 2.33 (s, 6H, *p*-CH₃), 2.17 (s, 12H, *o*-CH₃).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 141.4, 139.2, 134.2, 130.7, 130.0, 124.8, 21.2, 17.7. NMR data are consistent with the literature.^{S1}

Bis(1,5-cyclooctadiene)diiridium(I) dichloride (500 mg, 0.75 mmol, 1 equiv.) and potassium *tert*-butoxide (167 mg, 1.50mmol, 2 equiv.) were added to a flame-dried Schlenk tube under argon and stirred under vacuum for 5 min. THF (12.5 mL) was added and the mixture was stirred under argon for 10 min. IMes·HCl (508 mg, 1.50 mmol, 2 equiv.) was then added and the resulting reaction mixture was stirred for 4 h. The solvent was removed *in vacuo*, and column chromatography (50% ethyl acetate in petroleum ether) afforded the title compound (730 mg, 1.14 mmol, 76 %) as yellow solid. The isolated catalyst was dried in a vacuum oven (40 °C, 1 mbar) for 24 h before use. This process was repeated batch-wise to obtain a of the quantity of **Ir-2** necessary for all competition studies and synthesis of **Ir-1** catalyst.

m.p. > 190 °C (decomposition)

¹**H NMR** (400 MHz, CDCl₃) δ = 7.04 – 6.96 (m, 4H, Ar-H), 6.95 (s, 2H, NCH=CHN), 4.19 – 4.12 (m, 2H, COD CH), 3.01 – 2.94 (m, 2H, COD CH), 2.36 (s, 12H, *o*-CH₃Ar), 2.16 (s, 6H, *p*-CH₃Ar), 1.78 – 1.59 (m, 4H, COD CH₂), 1.39 – 1.20 (m, 4H, COD CH₂).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 180.9, 138.8, 137.5, 136.2, 134.5, 129.7, 128.3, 123.4, 82.7, 51.6, 33.6, 29.1, 21.3, 19.8, 18.4.

NMR data are consistent with the literature.^{S7}

Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate [Na(BArF₂₄)]^{S5,S6}

A 2.0 M solution of *i*-PrMgCl in THF (100 mL, 0.20 mol, 6.6 equiv.) was added dropwise over 45 min to a stirred solution of 1-bromo-3,5-bistrifluoromethylbenzene (30 mL, 0.17 mol, 5.8 equiv.) in THF (150 mL) chilled to -20 °C. After the reaction was allowed to warm from -20 °C to 0 °C over 1 h, NaBF₄ (3.3 g, 0.03 mol, 1.0 equiv.) was quickly added as a solid under a stream of N₂. The mixture then stirred for 48 h at 23 °C (under N₂). All work-up and purification procedures were then carried out under air. The contents of the flask were poured into a solution of Na₂CO₃ (44 g) and NaHCO₃ (22 g) in water (600 mL). This mixture was stirred vigorously for 1 h and then extracted with diethyl ether (4×200 mL). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. After filtration of the mixture and rotary evaporation of the filtrate, the crude Na[BArF₂₄]·*x*THF/Et₂O was dried at 100 °C/10⁻² mbar for 10 h to yield a tacky brown/yellow solid. Dissolving the resulting oily crude material in a 1:1 mixture of dichloromethane and tetrahydrofuran (30 mL) and cooling the mixture at -23 °C for 48 h yielded an off-white crystalline solid, which was then recrystallised again under the same conditions. Anhydrous Na[BArF₂₄]·THF (12.7 g, 0.014 mmol, 48%) was obtained as white solid by drying the resulting crystalline solid under vacuum (< 10^{-2} mbar) for 10 h. Anhydrous Na[BArF₂₄] was stored under an atmosphere of argon.

¹**H** NMR (400 MHz, acetone- d_6) δ = 7.79 (br, 8H, ortho-Ar-H), 7.67 (br, 4H, para-Ar-H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ = 161.0 (q, ¹*J*_{C-B} = 49.9 Hz, *ipso*-C), 134.0 (br, *ortho*-C), 128.5 (qq, ³*J*_{C-B} = 2.8 Hz, ²*J*_{C-F} = 32.2 Hz, *meta*-C), 124.0 (q, ¹*J*_{C-F} = 272 Hz, CF₃), 117.5 (br, *para*-C).

¹¹**B** NMR (128 MHz, acetone- d_6) $\delta = -6.65$.

¹⁹**F** NMR (376 MHz, acetone- d_6) $\delta = -63.3$.

NMR data are consistent with the literature.^{S5}

Synthesis of η⁴-cycloocta-1,5-diene(1,3-dimesitylimidazoline-2-ylidene)(triphenylphosphine)iridium(I)tetrakis [(3,5-rifluoromethylphenyl)]borate, [(COD)Ir(PPh₃)(IMes)]BArF₂₄ ^{S8}

[Ir(COD)Cl(IMes)], **Ir-2**, (200 mg, 0.31 mmol, 1.0 equiv.) and NaBArF₂₄ (275 mg, 0.31 mmol, 1.0 equiv.) were added to a flame-dried Schlenk tube under an argon atmosphere. The solids were then dissolved in anhydrous DCM (10 mL) and stirred for 30 min. The triphenylphosphine ligand (82 mg, 0.31 mmol, 1.0 equiv.) was then added slowly, initiating an orange to red colour change. After a further 30 min stirring, the reaction mixture was filtered through celite and concentrated *in vacuo*, resulting in a red oil. This residue was purified by column chromatography (50% DCM in petroleum ether) to afford the title compound as a red crystalline solid (365 mg, 0.21 mmol, 68 %). The isolated catalyst was dried in a vacuum oven (40 °C, 1 mbar) for 24 h before use. This process was repeated batch wise to obtain the quantities of **Ir-1** necessary for all competition studies.

m.p.: >150 °C (decomposition)

¹**H** NMR (400 MHz, CDCl₃) $\delta = 7.73 - 7.69$ (m, 8H, Ar- BArF₂₄), 7.51 (br, 4H, Ar-BArF₂₄), 7.45 - 7.39 (m, 3H, Ar-H), 7.31 - 7.24 (m, 8H, Ar-H and NCH=CHN), 7.15 - 7.07 (m, 6H, Ar-H), 7.02 (s, 2H, Ar-H), 6.66 (s, 2H, Ar-H), 4.39 - 4.32 (m, 2H, COD-CH), 3.38 - 3.31 (m, 2H, COD-CH), 2.34 (s, 6H, Ar-CH₃), 2.08 (s, 6H, Ar-CH₃), 1.75 (s, 6H, Ar-CH₃), 1.68 - 1.45 (m, 6H, COD-CH₂), 1.31 - 1.24 (m, 2H, COD-CH₂).

¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 178.1$ (d, ${}^{2}J_{C-P} = 8.4$ Hz), 161.9 (q, ${}^{1}J_{C-B} = 49.9$ Hz), 140.2, 135.6, 135.2, 134.9, 134.8, 132.3, 132.2, 131.4, 131.3, 130.9, 130.6, 129.9, 129.5, 129.2, 128.9, 128.7, 128.6, 126.2, 124.7 (q, ${}^{1}J_{C-F} = 272$ Hz), 117.6, 80.6, 80.5, 78.7, 31.9, 30.3, 30.2, 21.2, 20.9, 19.0.

¹¹**B** NMR (128 MHz, CDCl₃) δ = - 6.64.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = - 62.4.

³¹**P**{¹**H**} **NMR** (162 MHz, CDCl₃) δ = 16.4.

NMR data are consistent with the literature.^{S8}

2.2. Synthesis of Substrates

2-Phenylthiazoline^{S2}

In air, a 10 mL round-bottom flask was charged with benzonitrile (0.50 g, 4.85 mmol), cysteamine hydrochloride (0.83 g, 7.28 mmol) and NaOH (40 mg, 0.97 mmol). The reaction was stirred at 80 °C for 2 hours under solvent-free conditions. The crude product was dissolved in ethyl acetate (2 mL) and water (10 mL) was added. The layers were separated and the aqueous layer was then extracted with ethyl acetate (3×10 mL). The combined organic layers were dried over MgSO₄, filtered and dried under vacuum to give the title compound (0.76 g, 4.66 mmol, 96%).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.88 – 7.80 (m, 2H, Ar-H), 7.48 – 7.37 (m, 3H, Ar-H), 4.46 (t, *J* = 8.3 Hz, 2H, CH₂), 3.41 (t, *J* = 8.3 Hz, 2H, CH₂).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 169.0, 133.2, 131.4, 128.6, 128.5, 65.1, 33.7.

NMR data are consistent with the literature.^{S2}

2-Phenylthiazole

Phenylboronic acid (762 mg, 6.25 mmol, 1.25 equiv.), $[NiCl_2(PPh_3)_2]$ (262 mg, 0.40 mmol, 8 mol%), K₃PO₄ (1.59 g, 7.50 mmol, 1.5 equiv.) were added to a flame-dried two-necked roundbottom flask equipped with a stirrer bar and condenser. The system was evacuated for 5 minutes and filled with N₂, then dry toluene (10 mL) and 2-bromothiazole (820 mg, 5.0 mmol, 1 equiv.) were added. The reaction mixture was heated at reflux overnight (16 h) and was then cooled to room temperature before water (50 mL) and Et₂O (50 mL) were added. The aqueous layer was extracted with diethyl ether (3 × 50 mL). The combined organic layers were dried over MgSO₄, filtered, and the solvent was removed under vacuum. The residue was purified by column chromatography (10 % Et₂O in hexane) to afford the title compound as a yellow oil (163 mg, 1.01 mmol, 20 %).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.01 - 7.94$ (m, 2H, Ar-H), 7.87 (d, J = 3.3 Hz, 1H, Ar-H), 7.48 - 7.41 (m, 3H, Ar-H), 7.33 (d, J = 3.3 Hz, 1H, CH).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 168.6, 143.7, 133.6, 130.1, 129.1, 126.7, 118.9.

NMR data are consistent with the literature.^{S11}

Methyl iodide (0.48 mL, 7.6 mmol) was added to the biphasic mixture obtained from 2phenylimidazole (1.0 g, 6.9 mmol), tetra-*n*-butylammonium iodide (0.19 g, 0.51 mmol), 50% aqueous NaOH (30 mL) and toluene (30 mL). After stirring for 15 min at room temperature, the mixture was diluted with toluene (30 mL) and H₂O (30 mL). The organic phase was separated, dried (MgSO₄), and concentrated under reduced pressure to give pale yellow oil (1.03 g, 6.51 mmol, 97 %).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.65 – 7.60 (m, 2H, Ar-H), 7.48 – 7.37 (m, 3H, Ar-H), 7.12 (d, *J* = 1.2 Hz, 1H, CH), 6.97 (d, *J* = 1.2 Hz, 1H, CH), 3.19 (s, 3H, CH₃).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 147.9, 130.5, 128.8, 128.8, 128.7, 128.3, 122.5, 34.6. NMR data are consistent with the literature. ^{S12}

2-Phenylpyrimidine

A flame dried 50 mL round-bottom flask was charged with [PdCl₂(dppf)] (40 mg, 0.05 mmol), phenylboronic acid (611 mg, 5.0 mmol), Na₂CO₃ (1.23 g, 12.0 mmol) and suspended in premixed 1:1 solution of THF/H₂O (60 mL). Subsequently, 2-bromopyrimidine (646 mg, 4.0 mmol) was added and the reaction mixture was stirred at 80 °C overnight (16 h), and then cooled to room temperature. H₂O (30 mL) was added to the reaction mixture. The aqueous layer was extracted with diethyl ether (3×50 mL). The combined organic layers were dried over MgSO₄, filtered, and the solvent was removed under vacuum. The residue was purified by column chromatography (20 % Et₂O in hexane) to afford the title compound as a yellow oil (331 mg, 2.12 mmol, 53 %).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.81 (d, *J* = 4.9 Hz, 2H, Ar-H), 8.49 – 8.42 (m, 2H, Ar-H), 7.52 – 7.47 (m, 3H, Ar-H), 7.18 (t, *J* = 4.8 Hz, 1H, Ar-H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 164.9, 157.4, 137.7, 130.9, 128.7, 128.3, 119.2.

NMR data are consistent with the literature.^{S11}

2-(4-Acetyl)phenylpyridine

A flame dried 50mL round-bottom flask was charged with [Pd(PPh₃)₄] (21 mg, 0.018 mmol), 4acetylphenylboronic acid (738 mg, 4.50 mmol), potassium carbonate (1.21 g, 9.0 mmol). The solids were suspended in premixed toluene/ethanol (3:2) (30 mL). Subsequently, 2-bromopyridine (0.28 mL, 3.0 mmol) was added and the reaction mixture was stirred for 24 h at 120 °C before being allowed to cool to room temperature. Water (100 mL) was added, the layers were separated, and the aqueous layer was extracted with diethyl ether (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered, and then the solvent was removed under vacuum yielding the crude yellow solid. The crude product was dissolved in DCM (5 mL) and passed through a short pad of silica which was then washed with further DCM. The solvent was evaporated, and the residue was crystallised from a DCM/pentane mixture to afford the product as a white solid (517 mg, 2.62 mmol, 87%).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.77 - 8.71$ (m, 1H, Ar-H), 8.13 - 8.09 (m, 2H, Ar-H), 8.09 - 8.04 (m, 2H, Ar-H), 7.82 - 7.78 (m, 2H, Ar-H), 7.33 - 7.27 (m, 1H, Ar-H), 2.65 (s, 3H, CH₃). ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 198.0$, 150.1, 137.1, 129.0, 127.2, 123.1, 121.2, 26.9. NMR data are consistent with the literature.^{S13}

2-(4-Acetyl)phenyloxazoline^{S5}

A flame dried vial was charged with [Cu(IPr)(Cl)] (10 mg, 0.02 mmol), 4-acetylbenzonitrile (145 mg,1.0 mmol) and NaOAc (16 mg, 0.2 mmol), and evacuated and backfilled with N₂. Ethanolamine (0.24 mL, 4.0 mmol) was added and the reaction was stirred at 100 °C for 16 h under solvent-free conditions. The reaction mixture was cooled to room temperature, dissolved in DCM and passed through a short pad of silica with DCM as the eluent. The solvent was removed under vacuum yielding a pale yellow solid (60 mg, 0.32 mmol, 32 %).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.06 - 7.97$ (m, 4H, Ar-H), 4.47 (t, $J = 9.6, 2H, CH_2$), 4.10 (t, $J = 9.6, 2H, CH_2$), 2.63 (s, 3H, CH₃).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 197.7, 139.1, 132.0, 128.5, 128.4, 68.0, 55.3, 26.9. NMR data are consistent with the literature.^{S14} 2-(4-Cyano)phenylpyridine

A flame dried 50 mL round-bottom flask was charged with $[PdCl_2(dppf)]$ (31 mg, 0.03 mmol), 4cyanophenylboronic acid (856 mg, 5.83 mmol), Na₂CO₃ (1.30 g, 12.0 mmol). The solids were suspended in premixed THF/H₂O (1:1) (40 mL). Subsequently, 2-bromopyridine (0.38 mL, 4.0 mmol) was added, the reaction mixture was stirred at 80 °C for 16 h and then cooled to room temperature. H₂O (30 mL) was added to the reaction mixture, the layers were separated, and the aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic solution was dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was purified by recrystallisation from a DCM/pentane mixture to afford the title compound as yellow solid (554 mg, 3.07 mmol, 77%).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.75 - 8.67$ (m, 1H), 8.12 - 8.07 (m, 2H), 7.82 - 7.72 (m, 4H), 7.33 - 7.27 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 155.2, 150.1, 143.5, 137.2, 132.6, 127.5, 123.4, 121.1, 118.9, 112.5.

NMR data are consistent with the literature.^{S15}

2-(4-(Pyridin-2-yl)phenyl)-4,5-dihydrooxazole^{S4}

A flame dried vial was charged with [Cu(Cl)(IPr)] (135 mg, 0.27 mmol), 2-(4cyano)phenylpyridine (500 mg, 2.77 mmol) and NaOAc (114 mg, 1.39 mmol), and evacuated and backfilled with N₂. Ethanolamine (0.34 mL, 4.0 mmol) was added and the reaction was stirred at 100 °C for 16 h under solvent-free conditions. The reaction mixture was cooled to room temperature, dissolved in DCM and transferred to a separating funnel containing brine (200 mL). The product was extracted with DCM (2×50 mL) and dried over MgSO₄, filtered, and the solvent was removed under vacuum. The residue was purified by column chromatography (70 % EtOAc in hexane) to afford the title compound as pale pink solid (248 mg, 1.10 mmol, 40 %). **m.p.**: 120-125 °C

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.76 - 8.68$ (m, 1H), 8.11 - 8.01 (m, 4H, Ar-H), 7.81 - 7.74 (m, 2H), 7.30 - 7.23 (m, 1H), 4.46 (t, J = 9.5, 2H, CH₂), 4.09 (t, J = 9.5, 2H, CH₂).

¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 164.5, 156.5, 149.9, 142.0, 136.9, 128.7, 128.2, 126.9, 122.7, 120.9, 67.7, 55.1.

Anal. Calculated for C₁₄H₁₂N₂O: C, 74.98; H, 5.39; N, 12.49. Found: C, 74.28; H, 5.35; N, 12.34.

FTIR (neat): 3286, 3047, 2970, 2931, 2990, 2877, 1642, 1572, 1465, 1256, 1071, 1016, 940, 862, 785,731, 699, 615 cm⁻¹.

3. Intermolecular Competition Experiments 3.1. General Information

Reaction conditions

The relative rates of hydrogen-deuterium exchange reactions have been determined by competition experiments, where equimolar quantities of each of the two substrates bearing different DGs and catalytic amounts of iridium complexes were treated with a limiting amount of D_2 in DCM at 25°C. As a limiting amount of D_2 gas should be used to avoid full conversion of the substrates, its volume was controlled by adding the required amount of solvent.

The volume of 0.10 mmol of the D_2 gas can be calculated according to the ideal gas law (eq. S-1).

$$PV = nRT \tag{S-1}$$

 $n_{(max)} = 0.10 \text{ mmol}$ T = 298 K (25 °C) $R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ P = 1 atm $V_{(max)} = nRT/P = 0.10 \times 0.0821 \times 298 / 1 = 2.45 \text{ mL}$

As the volume of J. Young Schlenk flasks (Figure S2) used for the competition experiments is approximately 8 mL, the use of 6.0 mL of the solvent will lead to less than 1 equivalent of deuterium gas. None of the substrates in the study undergo complete deuteration under these conditions, which are quite different for those used in most HIE experiments where complete deuteration at one site is desired.

Figure S2. The J. Young Schlenk flasks used for competition experiments.

General Procedure (GP1)

The two substrates of interest (0.10 mmol each) were added to one J. Young Schlenk flask, along with the catalyst of choice (0.005 mmol, unless otherwise noted) in air. DCM (6 mL) was added in such a way to rinse the inner walls of the flask. The flask was then sealed (with the gas inlet left open) under air before being cooled in a dry ice-acetone bath. The flask was evacuated and flushed with deuterium three times via a balloon. The gas inlet was then closed with fast thread tap, creating a sealed atmosphere of deuterium. After sealing the flask, it was placed in the thermostated water bath, and the reaction timer was started. The reaction mixture was stirred at 25 °C (1 h for catalyst Ir-1 and 16 h for catalyst Ir-2) before the removal of the excess deuterium and the opening of the flask to air. The reaction mixture was quenched with few drops of MeCN and transferred to a single necked flask together with washings (DCM) before removing the solvent under reduced pressure. For NH-containing substrates (benzamide, benzenesulfonamide, acetanilide, phenylimidazol(in)e) the residue was directly analysed by ¹H NMR. For other substrates, the residue was dissolved in a small portion of 1:1 mixture of petroleum ether and diethyl ether (or EtOAc) and passed through a short plug of silica, eluting with a 1:1 mixture of petroleum ether and diethyl ether (or EtOAc) $(3 \times 2 \text{ mL})$. The solvent was evaporated again under reduced pressure and the residue was analysed by ¹H NMR.

NMR spectrometer parameters are as follows: the relaxation delay was set to 20 s and the number of scans to four or higher when needed. After careful phasing and baseline correction, the integration of the signals was carried out manually.

Determination of Competition Rate Constants

The level of deuterium incorporation in the substrates was determined from the obtained ¹H NMR spectra (eq. S-2). The integrals were calibrated against a peak corresponding to a position which does not undergo labelling. In addition, the calibration signal was chosen to have as little overlap as possible with other peaks.

%D = 100 -
$$\left(\frac{\text{residual integral}}{\text{number of labelling sites}} \times 100 \%\right)$$
 (S-2)

Based on the ratio between the initial and remaining concentrations of non-deuterated substrates **R**, the competition constants κ were determined (eq. S-3).

$$\kappa = \frac{k_1}{k_2} = \frac{\log ([\mathbf{R1}]_0 / [\mathbf{R1}]_1)}{\log ([\mathbf{R2}]_0 / [\mathbf{R2}]_1)}$$
(S-3)

Initial concentrations of the substrates are defined by mass balance (eq. S-4).

$$[\mathbf{R}]_0 = [\mathbf{R}]_t + [\mathbf{P}]_t \tag{S-4}$$

The relative concentrations $[\mathbf{R}]_0$ and $[\mathbf{R}]_t$ were derived using equation (S-5) from the residual integral $I_{R(t)}$ of the peak corresponding to H/D positions, and the integral $I_{R(0)}$ of the peak used for calibration, which corresponds to both remaining starting material and deuterated product.

$$\frac{[\mathbf{R}]_{0}}{[\mathbf{R}]_{t}} = \frac{\mathbf{I}_{R(0)} / \mathbf{N}}{\mathbf{I}_{R(t)} / \mathbf{N}}$$
(S-5)

where N is the number of protons contributing to the corresponding peak.

Each combination was analysed three times, and the competition constants are the average of all runs. The tables given below for each competition experiment (Table S1 to Table S41) summarize the amounts of the reagents used, integrals from the NMR spectra (Figures S3-S175) used to calculate the relative concentrations of substrates and the values of the competition constants κ .

Spectral details for unlabelled substrates used in intermolecular competition studies

Acetophenone

¹**H** NMR (400 MHz, CDCl₃) δ = 7.99 – 7.93 (m, 2H, H-3), 7.60 – 7.53 (m, 1H, H-1), 7.51 – 7.42 (m, 2H, H-2), 2.61 (s, 3H, H-4). Incorporation expected at δ 7.99 – 7.93 ppm (H-3) Determined against integral at δ 2.61 ppm (H-4) ¹**H** NMR (400 MHz, DMSO-*d*₆) δ = 7.98 – 7.94 (m, 2H, H-1), 7.67 – 7.61 (m, 1H, H-3), 7.55 – 7.50 (m, 2H, H-2), 2.58 (s, 3H, H-4). Incorporation expected at δ 7.98 – 7.96 ppm (H-3) Determined against integral at δ 2.58 ppm (H-4)

Benzophenone

Benzamide

¹**H NMR** (400 MHz, CDCl₃) δ = 7.84 – 7.78 (m, 4H, H-3), 7.63 – 7.53 (m, 2H, H-1), 7.52 – 7.45 (m, 4H, H-2). Incorporation expected at δ 7.84 – 7.78 ppm (H-3) Determined against integral at δ 7.63 – 7.53 ppm (H-1)

¹**H** NMR (400 MHz, CDCl₃) δ = 7.86 – 7.77 (m, 2H, H-3), 7.57 – 7.48 (m, 1H, H-1), 7.48 – 7.39 (m, 2H, H-2), 6.24 (bs, 2H, H-4) Incorporation expected at δ 7.86 – 7.77 ppm (H-3) Determined against integral at δ 7.48 – 7.39 ppm (H-2) ¹**H** NMR (400 MHz, DMSO- *d*₆) δ = 7.96 (bs, 1H, H-4), 7.90 – 7.85 (m, 2H, H-3), 7.54 – 7.48 (m, 1H, H-1), 7.48 – 7.41 (m, 2H, H-2), 7.35 (s, 1H, H-4) Incorporation expected at δ 7.90 – 7.85 ppm (H-3) Determined against integral at δ 7.48 – 7.41 ppm (H-2)

N,N-Dimethylbenzamide

¹**H NMR** (400 MHz, CDCl₃) δ = 7.42 – 7.36 (m, 5H, Ar-H), 3.17 – 2.88 (m, 6H, 2 × CH₃). Incorporation expected at δ 7.43 – 7.36 ppm

Determined against integral at δ 3.17 – 2.88 ppm

Ethylbenzoate

Nitrobenzene

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.08 - 8.02$ (m, 2H, H-3), 7.58 - 7.52 (m, 1H, H-1), 7.47 - 7.40 (m, 2H, H-2), 4.38 (q, *J* = 7.1 Hz, 2H, CH₂), 1.40 (t, *J* = 7.1 Hz, 3H, CH₃). Incorporation expected at $\delta 8.07 - 8.03$ ppm (H-3) Determined against integral at $\delta 4.38$ ppm (OCH₂CH₃)

¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.26 - 8.20$ (m, 2H, H-3), 7.73 - 7.66 (m, 1H, H-1), 7.58 - 7.51 (m, 2H, H-2). Incorporation expected at δ 8.26 - 8.20 ppm (H-3) Determined against integral at δ 7.73 - 7.66 ppm (H-1) ¹**H NMR** (400 MHz, DMSO- *d*₆) $\delta = 8.30 - 8.16$ (m, 2H, H-3), 7.90 - 7.79 (m, 1H, H-1), 7.73 - 7.61 (m, 2H, H-2). Incorporation expected at δ 8.30 - 8.16 ppm (H-3) Determined against integral at δ 7.73 - 7.61 ppm (H-2)

Benzenesulfonamide

¹**H NMR** (400 MHz, DMSO- d_6) $\delta = 7.87 - 7.80$ (m, 2H, H-3), 7.64 - 7.54 (m, 3H, H-1 and H-2), 7.36 (bs, 2H, NH₂) Incorporation expected at δ 7.87 - 7.80 ppm (H-3) Determined against integral at δ 7.64 - 7.54 ppm (H-1+H-2)

(Methylsulfonyl)benzene

¹**H NMR** (400 MHz, DMSO- d_6) $\delta = 7.95 - 7.92$ (m, 2H, H-3), 7.76 -7.72 (m, 1H, H-1), 7.68 - 7.64 (m, 2H, H-2), 3.21 (s, 3H, H-4). Incorporation expected at δ 7.95 - 7.92 ppm (H-3) Determined against integral at δ 7.68 - 7.64 ppm (H-2)

Acetanilide

¹**H NMR** (400 MHz, DMSO- d_6) $\delta = 9.90$ (bs, 1H, NH), 7.60 – 7.55 (m, 2H, H-3), 7.30 – 7.24 (m, 2H, H-2), 7.04 – 6.99 (m, 1H, H-1), 2.04 (s, 3H, H-4). Incorporation expected at δ 7.60 – 7.55 ppm (H-3) Determined against integral at δ 2.04 ppm (H-4)

2-phenylpyridine

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.73 - 8.67$ (m, 1H, H-4), 8.02 - 7.98 (m, 2H, H-3), 7.78 - 7.70 (m, 2H, H-6 and H-7), 7.51 - 7.45 (m, 2H, H-2), 7.45 - 7.39 (m, 1H, H-1), 7.25 - 7.21 (m, 1H, H-5).

Incorporation expected at $\delta 8.02 - 7.98$ ppm (H-3)

Determined against integral at $\delta 8.73 - 8.67$ ppm (H-4) or at $\delta 7.78 - 7.70$ (H-6+H-7) depending on the competition partner.

¹**H NMR** (400 MHz, DMSO- d_6) $\delta = 8.69 - 8.65$ (m, 1H, H-4), 8.11 - 8.06 (m, 2H, H-3), 7.97 - 7.93 (m, 1H, H-7), 7.90 - 7.84 (m, 1H, H-6), 7.52 - 7.46 (m, 2H, H-2), 7.46 - 7.41 (m, 1H, H-1), 7.38 - 7.32 (m, 1H, H-5). Incorporation expected at $\delta 8.11 - 8.06$ ppm (H-3) Determined against integral at $\delta 7.90 - 7.84$ ppm (H-6)

2-Phenylpyrimidine

¹**H NMR** (400 MHz, CDCl₃) δ = 8.81 (d, *J* = 4.9 Hz, 2H, H-4), 8.48 – 8.43 (m, 2H, H-3), 7.52 – 7.48 (m, 3H, H-1 and H-2), 7.18 (t, *J* = 4.9 Hz, 1H, H-5)

Incorporation expected at δ 8.48 – 8.43 ppm (H-3) Determined against integral at δ 7.18 ppm (H-5)

1-phenylpyrazole

2-phenyloxozoline

¹**H** NMR (400 MHz, CDCl₃) δ = 7.92 (d, *J* = 2.2 Hz, 1H, H-6), 7.75 – 7.68 (m, 3H, H-3 and H-4), 7.48 – 7.43 (m, 2H, H-2), 7.32 – 7.26 (m, 1H, H-1), 6.49 – 6.45 (m, 1H, H-5).

Incorporation expected at δ 7.75 – 7.68 ppm (H-3) Determined against integral at δ 7.92 ppm (H-6)

¹**H NMR** (400 MHz, CDCl₃) δ = 7.97 – 7.93 (m, 2H, H-3), 7.50 – 7.44 (m, 1H, H-1), 7.43 – 7.37 (m, 2H, H-2), 4.43 (t, *J* = 9.5 Hz, 2H, H-4), 4.06 (t, *J* = 9.5 Hz, 2H, H-5).

Incorporation expected at δ 7.97 – 7.93 ppm (H-3) Determined against integral at δ 4.43 ppm (H-4)

2-phenylthiazoline

2-phenylthiazole

¹**H** NMR (400 MHz, CDCl₃) δ = 7.86 – 7.81 (m, 2H, H-3), 7.48 – 7.37 (m, 3H, H-1 and H-2), 4.46 (t, *J* = 8.3 Hz, 2H, H-4), 3.41 (t, *J* = 8.3 Hz, 2H, H-5).

Incorporation expected at δ 7.86 – 7.81 ppm (H-3) Determined against integral at δ 4.46 ppm (H-4)

¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.00 - 7.94$ (m, 2H, H-3), 7.87 (d, J = 3.3 Hz, 2H, H-4), 7.48 - 7.42 (m, 3H, H-2 and H-1), 7.33 (d, J = 3.3 Hz, 2H, H-5).

Incorporation expected at δ 8.00 – 7.94 ppm (H-3) Determined against integral at δ 7.87 or 7.33 ppm (H-4 or H-5)

2-phenylbenzothiazole

¹**H NMR** (300 MHz, CDCl₃) $\delta = 8.14 - 8.06$ (m, 3H, H-3 and H-4), 7.91 (d, J = 8.0 Hz, 1H, H-7), 7.53 - 7.48 (m, 4H, H-2 and H-5), 7.41-7.37 (m, 1H, H-6).

Incorporation expected at $\delta 8.14 - 8.06$ ppm (H-3) Incorporation determined against $\delta 7.91$ ppm (H-7)

1-methyl-2-phenylimidazole

¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.65 - 7.60$ (m, 2H, H-3), 7.47 - 7.34 (m, 3H, H-1 and H-2), 7.12 (d, J = 1.2 Hz, 1H, H-5), 6.97 (d, J = 1.2 Hz, 1H, H-4), 3.19 (s, 3H, H-6). Incorporation expected at δ 7.65 - 7.60 ppm (H-3)

¹**H NMR** (400 MHz, DMSO- d_6) δ = 12.49 (bs, 1H, NH), 7.98 – 7.92 (m, 2H, H-3), 7.48 – 7.39 (2H, H-2), 7.36 – 7.29 (m, 1H, H-1), 7.13 (s, 2H, H-4 and

Incorporation determined against δ 7.12 ppm (H-5)

Incorporation expected at δ 7.98 – 7.92 ppm (H-3) Incorporation determined against δ 7.13 ppm (H-4+H-5)

2-phenylimidazole

H-5).

2-phenylimidazole

¹**H NMR** (400 MHz, DMSO- d_6) $\delta = 7.86 - 7.80$ (m, 2H, H-3), 7.49 - 7.36 (m, 3H, H-1 and H-2), 3.60 (s, 4H, H-4 and H-5). Incorporation expected at δ 7.86 - 7.80 ppm (H-3)

Incorporation determined against δ 3.60 ppm (H-4+H-5)

3.2. Effects of the Reaction Conditions on Competition Rate Constants

The competition labelling of 2-phenylpyridine and 1-phenylpyrazole was chosen as a model reaction to test the influence of catalyst loading, reaction times and solvent on the competition rate constants κ .

Mass of reagents: 1-Phenylpyrazole (14.4 mg, 0.1 mmol); 2-Phenylpyridine (15.5 mg, 0.1 mmol); for catalyst **Ir-2** (2.1 mg for 2.5 mol %, 4.3 mg, 5 mol. %, 6.4 mg for 7.5 mol %, 8.6 mg for 10 mol %); for catalyst **Ir-1** (8.7 mg, 5 mol %); Volume (solvent) = 6.0 mL Deuteration expected at δ (**R1**) = 7.78 – 7.67 ppm and at δ (**R2**) = 8.04 – 7.97 ppm Determined against integral at δ 6.50 – 6.42 for **R1** and at δ 8.72 – 8.68 for **R2** *Spectral details of the reaction mixture:*

¹H NMR (400 MHz, CDCl₃) $\delta = 8.72 - 8.68$ (m, 1H, **R2**), 8.04 - 7.97 (m, 2H/D **R2**), 7.92 (d, J = 2.4 Hz, 1H, **R1**), 7.78 - 7.67 (m, 2H, **R2**, 1H, **R1**, 2H/D **R1**), 7.52 - 7.38 (3H, **R2** and 2H, **R1**), 7.31 - 7.26 (m, 1H, **R1**), 7.24 - 7.20 (m, 1H, **R2**), 6.50 - 6.42 (m, 1H, **R1**)

Catalyst loading

4

10

Competition experiments between 2-phenylpyridine and 1-phenylpyrazole with different loadings of the catalyst **Ir-2** (2.5 to 10 mol %) were performed in DCM (6.0 mL) following General Procedure GP1 for intermolecular competition experiments (time (t) = 16 h).

,									
Entry	catalyst loading (mol %)	$I_{R1(t)}$ $N = 2H$	$\begin{split} I_{R1(0)} \\ N = 1 H \end{split}$	%D _{R1}	$I_{R2(t)}$ $N = 2H$	$\begin{split} I_{R2(0)} \\ N = 1 H \end{split}$	%D _{R2}	κ	
1	2.5	1.40 ^a	1.00	30	1.32	0.86	23	1.35	
2	5.0	1.29 ^b	1.00	36	1.22	0.85	28	1.32	
3	7.5	1.48 °	1.00	26	1.43	0.94	24	1.10	

42

1.09

0.91

40

1.05

Table S1. Competition labelling of 1-phenylpyrazole and 2-phenylpyridine using different loadings ofcatalyst Ir-2.

^a $I_{R1(t)} = 4.12 - 1.00 - (0.86 \times 2);$ ^b $I_{R1(t)} = 3.99 - 1.00 - (0.85 \times 2);$

1.17^d

1.00

^c $I_{R1(t)} = 4.36 - 1.00 - (0.94 \times 2);$ ^d $I_{R1(t)} = 3.99 - 1.00 - (0.91 \times 2)$

Figure S4. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 2, Table S1)

Figure S6. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 4, Table S1)

Time-dependence

Competition experiments between 1-phenylpyrazole and 2-phenylpyridine with the catalyst **Ir-2** (5 mol %) were performed in DCM (6.0 mL) over different time periods following the General Procedure GP1 for intermolecular competition experiments.

Table S2. Competition labelling of 1-phenylpyrazole and 2-phenylpyridine using catalyst **Ir-2** over different time periods.

Entry	reaction time	$\begin{split} I_{R1(t)} \\ N = 2H \end{split}$	$\begin{split} I_{R1(0)} \\ N &= 1 H \end{split}$	$\%D_{R1}$	$\begin{split} I_{R2(t)} \\ N = 2H \end{split}$	$\begin{split} I_{R2(0)} \\ N = 1 H \end{split}$	$%D_{R2}$	к	
1	1h	1.92ª	1.00	4	1.55	0.80	3	1.29	
2	2h	1.89 ^b	1.00	6	1.75	0.91	4	1.44	
3	16h	1.65 ^c	1.00	18	1.75	1.00	13	1.44	
^a $I_{R1(t)} = 4.52 - 1.00 - (0.80 \times 2);$ ^b $I_{R1(t)} = 4.71 - 1.00 - (0.91 \times 2);$ ^c $I_{R1(t)} = 4.65 - 1.00 - (1.00 \times 2);$									

Figure S7. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 1, Table S2)

Figure S8. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 2, Table S2)

Figure S9. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 3, Table S2)

Solvent effects

Competition experiments between 1-phenylpyrazole and 2-phenylpyridine with the catalyst **Ir-1** (5 mol %) were performed in various solvents (6.0 mL) following the General Procedure GP1 for intermolecular competition experiments (time (t) = 1 h).

		_	_		_	_				
Solvent	Entry	$I_{R1(t)} \\ N = 2H$	$I_{R1(0)}$ $N = 1H$	$\%D_{R1}$	$I_{R2(t)}$ $N = 2H$	$I_{R2(0)}$ $N = 1H$	$%D_{R2}$	κ		
DCM	1	1.26 ^a	1.00	37	1.74	1.18	26	1.49		
	2	0.90 ^b	1.00	55	1.38	1.07	36	1.78		
	3	0.92 ^c	1.00	54	1.40	1.08	35	1.84		
							Avera	ge к = 1.71		
^a I _{R1(t}	= 4.62 - 1	.00-(1.18×2)); ${}^{b}I_{R1(t)} = 4.0$	4-1.00-(1.07×2); ° 1	$I_{R1(t)} = 4.08 -$	-1.00-(1.08	8×2);		
THF	1	1.15 ^a	1.00	43	1.32	1.01	35	1.30		
	2	1.22 ^b	1.00	39	1.36	1.00	32	1.28		
	3	0.95°	1.00	53	1.13	0.96	41	1.40		
							Avera	ge к = 1.33		
^a I _{R1(t}	$_{0} = 4.17 - 1$.00-(1.01×2)); ${}^{b}I_{R1(t)}=4.2$	2-1.00-(1.00×2); ° l	$I_{R1(t)} = 3.87 -$	-1.00-(0.9	5×2);		
Et ₂ O	1	1.17^{a}	1.00	42	1.39	1.05	34	1.30		
	2	0.73 ^b	1.00	64	0.91	0.97	53	1.33		
	3	0.78 ^c	1.00	61	1.03	0.96	46	1.51		
							Avera	ge к = 1.38		
$a \mathbf{I}_{\mathbf{R}1(t)}$	= 4.27 - 1	.00-(1.05×2)	; ${}^{b}I_{R1(t)} = 3.6$	57-1.00-(0.97×2); °	$I_{R1(t)} = 3.66$	-1.00-(0.9	6×2);		
Toluene	1	0.98 ^a	1.00	51	1.45	1.09	33	1.75		
	2	0.98 ^b	1.00	51	1.42	1.06	33	1.78		
	3	1.11 ^c	1.00	45	1.39	0.98	29	1.71		
							Avera	ge к = 1.75		
$a I_{R1(t)}$	= 4.16 - 1	.00-(1.09×2)	; ^b $I_{R1(t)} = 4.1$	0-1.00-((1.06×2); °	$I_{R1(t)} = 4.07$ -	-1.00-(0.9	8×2);		
EtOAc	1	1.38^{a}	1.00	31	1.28	0.98	35	0.87		
	2	0.90 ^b	1.00	55	0.84	1.00	58	0.92		
	3	0.88°	1.00	56	0.82	1.00	59	0.92		
	Average к = 0.90									
$a \mathbf{I}_{R1(t)}$	^a $I_{R1(t)} = 4.34 - 1.00 - (0.98 \times 2);$ ^b $I_{R1(t)} = 3.90 - 1.00 - (1.00 \times 2);$ ^c $I_{R1(t)} = 3.88 - 1.00 - (1.00 \times 2);$									

Table S3. Competition labelling of 1-phenylpyrazole and 2-phenylpyridine using catalyst**Ir-1** indifferent solvents.

Figure S11. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (DCM-entry 2, Table S3)

Figure S13. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (THF-entry 1, Table S3)

Figure S15. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (THF-entry 3, Table S3)

Figure S17. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (Et₂O-entry 2, Table S3)

Figure S19. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (EtOAc-entry 1, Table S3)

Figure S21. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (EtOAc-entry 3, Table S3)

Figure S22. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (Toluene-entry 1, Table S3)

Figure S23. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (Toluene-entry 2, Table S3)

Figure S24. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (Toluene-entry 3, Table S3)

3.3. Competition Experiments with [(COD)Ir(IMes)PPh3]BArF24 (Ir-1)

Table S4. Determination of the competition rate constant κ from the labelling experiment between acetophenone and benzophenone

	Substrate R1		Substra	te R2	Catalyst				
	CH3				Ir-1 [(COD)Ir(IMes)PPh ₃][BArF ₂₄]				
Mass	12.0 n	ng	18.2 mg		8.7 mg				
Deuteration expected at δ (R1) = 7.99 – 7.93 ppm and at δ (R2) = 7.84 – 7.77 ppm Determined against integral at δ (R1) = 2.61 ppm and at δ (R2) = 7.63 – 7.53 ppm									
Spectral de	etails of the de	$C(1_{a}) \delta = 7.99$	-7.93 (m. 2)	?: 1) ד ר ד ר פון די	$R_{\rm M} = 7.77$ (m	/H/D P?) 7	63 - 7 53		
(m. 1H R1	and 2H R2).	(13) 0 = 7.99 (5.52 - 5.42)	– 7.93 (III, 2 n. 2H R1 an	d 4H R2), 7.8	60 (s. 3H. R1	411/ D K 2), 7.	.03 - 7.55		
Entry	$\frac{I_{R1(t)}}{I_{R1(t)}}$ $N = 2H$	$\frac{I_{R1(0)}}{N = 3H}$	%D _{R1}	$\frac{I_{R2(t)}}{I_{R2(t)}}$ $N = 4H$	$\frac{I_{R2(0)}}{N = 2H}$	%D _{R2}	к		
1	1.39	3.00	31	3.07	2.22ª	31	0.99		
2	1.08	3.00	46	2.65	2.44 ^b	46	1.01		
3	1.01	3.00	50	2.18	2.12 ^c	49	1.04		
			Average	к = 1.01					
$^{a}I_{R2(0)} = 3.2$	(2-(3.00/3); ^t	$^{\circ}I_{R2(0)} = 3.44$	- (3.00/3); °	$I_{R2(0)} = 3.12$ –	- (3.00/3);				
non-deutera	ted acetophenone						- 3		
non-deutera	ted benzophenone						-2		
deuterated r	eaction mixture						- 1		
9.0 8.5	8.0 7.5 7.	0 6.5 6.0	5.5 5.0	4.5 4.0	3.5 3.0	2.5 2.0	1.5		

Figure S25. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S26. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and benzophenone (entry 1, Table S4).

D318493 Person kpb19112 DT-10-2 @proton CDCI3 {C:\NMRdata} DJN 34

Figure S27. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and benzophenone (entry 2, Table S4).

Figure S28. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and benzophenone (entry 3, Table S4).

	Substrate R1		Substra	ite R2		Catalyst		
		NH ₂		СН ₃	[(COD)I	Ir-1 [(COD)Ir(IMes)PPh ₃][BAr		
Mass	12.1 mg	5	12.0	mg		8.7 mg		
Deuteration	n expected at	$\delta (\mathbf{R1}) = 7.86$	5 – 7.77 ppm	and at δ (R2)	= 7.99 - 7.9	3ppm		
Determined	d against integ	gral at $\delta(\mathbf{RI})$	= 7.59 - 7.3	9 ppm and at	δ (R 2) = 2.60) ppm		
Spectral de	tails of the density of the density of the density of the the test of te	c(1) S = 7.00	7 02 (m)	?: ער הי ע דע	6 777 (m	011/D D1) 7	50 7 20	
$m 3H \mathbf{P1}$	100 MHZ, CD	$CI_3 = 7.99$ 6 10 (br 2H	-7.95 (III, 2 (P1) 2.60 (л/D к 2), 7.8 (с. 3Н Р?)	0 - 1.11 (III,	2Π/ D KI), /.	39 - 7.39	
(III, 5 П , КІ	t aliu 511, K 2)	, 0.19 (01, 2П	, KI), 2.00 (<u>s, эп, к2).</u> т	т			
Entry	$I_{R1(t)}$ $N = 2H$	$I_{R1(0)}$ $N = 3H$	%D _{R1}	$I_{R2(t)}$ N = 2H	$I_{R2(0)}$ $N = 3H$	$%D_{R2}$	К	
1	2.09	3.78 ^a	17	1.94	3.00	3	6.14	
2	1.57	3.84 ^b	39	1.85	3.00	8	6.27	
3	1.65	3.93°	37	1.86	3.00	7	6.37	
			Average	$\kappa = 6.26$				
${}^{a}I_{R1(0)} = 6.7$	$^{8}-3.00; {}^{b}I_{R1}$	$_{(0)} = 6.84 - 3.$	00; ^c $I_{R1(0)} =$	6.93 – 3.00;				
non-deute	erated benzamide	e					- 3	
deuterate	ed reaction mixture						- 2	
				<u>_</u>			·	
								
8.5 8.0	7.5 7.0 6.5	6.0 5.5	5.0 4.5 4.0 f1 (ppm)	3.5 3.0	2.5 2.0 1.5	1.0 0.5	0.0	

Table S5. Determination of the competition rate constant κ from the labelling experiment between benzamide and acetophenone

Figure S29. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S31. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and benzamide (entry 2, Table S5)

Figure S32. 1 H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and benzamide (entry 3, Table S5)

	Substrat	e R1	Su	bstrate R2		Catalys	t
	C C	CH₃		NMe ₂	[(CO	Ir-1 D)Ir(IMes)PF	Ph3][BArF24
Mass	12.0 r	ng		/ 14.9 mg		8.7 mg	r 2
Deuteration Determined Spectral de ¹ H NMR (4 (m, 2H, R1	n expected at d against inte etails of the a 400 MHz, CI 1), 7.42 – 7.3	t δ (R1) = 7.9 egral at δ (R1) leuterated re DCl ₃) δ = 7.9 6 (m, 2H/D 1	99 - 7.93 pp 1) = 7.57 - 7 <i>action mixtu</i> 19 - 7.93 (m $\mathbf{R2}$ and $3H$,	m and at δ (I '.54 ppm and <i>ure:</i> , 2H/D R1), ' R2), 3.17 – 2	R2) = $7.42 - 7$ at δ (R2) = 3 7.57 - 7.54 (n 2.88 (m, 6H, H	7.36 ppm .17 – 2.88 ppi n, 1H, R1), 7.4 82), 2.60 (s, 3)	n 47 – 7.43 H , R1).
Entry	$I_{R1(t)}$ $N = 2H$	$I_{R1(0)}$ $N = 3H$	%D _{R1}	$I_{R2(t)}$ $N = 2H$	$I_{R2(0)}$ $N = 6H$	%D _{R2}	κ
1	1.50	3.00	25	1.62 ^a	5.32	9	3.18
2	1.54	3.00	23	1.96 ^b	6.29	7	3.74
3	1.45	3.00	28	2.06 ^c	6.59	6	4.82
			Avera	ge ĸ = 3.91			
$^{a}I_{R2(t)} = 4.23$	8 – (5.32)/6×	$<3; {}^{b}I_{R2(t)} = 5.$.10 - (6.29)/	$^{c}6\times3; ^{c}I_{R2(t)} =$	5.35 - (6.59)	/6×3	
$^{\rm a}I_{\rm R2(t)}=4.2t$ non-deuterate	8 – (5.32)/6×	$<3; {}^{b}I_{R2(t)} = 5.$	10 - (6.29)/	6×3; ° I _{R2(t)} =	5.35 - (6.59)	/6×3	-3
$^{a}I_{R2(t)} = 4.2t$ non-deuterate	8 – (5.32)/6× ed acetophenone	<3; ${}^{b}I_{R2(t)} = 5$	10 - (6.29)/	6×3; ° I _{R2(t)} =	5.35 - (6.59)	/6×3	-3
non-deuterated	8 – (5.32)/6× ed acetophenone	<3; ^b I _{R2(t)} = 5.	10 - (6.29)/	6×3; ° I _{R2(t)} =	5.35 – (6.59)	/6×3	-3
^a I _{R2(t)} = 4.24 non-deuterate	8 – (5.32)/6× ed acetophenone	<3; ^b I _{R2(t)} = 5.	10 - (6.29)/	6×3; ° I _{R2(t)} =	5.35 – (6.59)	/6×3	-3

Table S6. Determination of the competition rate constant κ from the labelling experiment between acetophenone and *N*,*N*-dimethylbenzamide.

Figure S33. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S34. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and *N*,*N*-dimethylbenzamide (entry 1, Table S6). D323115 Person kpb19112 DT-16-3 @proton CDCl3 {C:\NMRdata} DJN 20

Figure S35. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and N,N-dimethylbenzamide (entry 2, Table S6).

Figure S36. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and *N*,*N*-dimethylbenzamide (entry 3, Table S6).

Table S7. Determination of the competition rate constant κ from the labelling experiment between acetophenone and nitrobenzene.

Figure S37. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S38. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and nitrobenzene (entry 1, Table S7).

Figure S39. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and nitrobenzene (entry 2, Table S7).

Figure S40. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and nitrobenzene (entry 3, Table S7).

Table S8.	Determination	of the	competition	rate	constant	κ from	the	labelling	experiment	between
nitrobenze	ene and ethyl be	nzoate.								

Mass12.3 mg15.0 mgIr-1 [(COD)Ir(IMes)PPh_3][BAr]Mass12.3 mg15.0 mg8.7 mgDeuteration expected at δ (R1) = 8.26 - 8.20 ppm and at δ (R2) = 8.08 - 8.02 ppmDetermined against integral at δ (R1) = 7.70 ppm and at δ (R2) = 4.38 ppmSpectral details of the deuterated reaction mixture: ¹ H NMR (400 MHz, CDCl3) δ = 8.26 - 8.20 (m, 2H/D, R1), 8.08 - 8.02 (m, 2H/D, R2),(t, J = 7.4 Hz, 1H, R1), 7.59 - 7.51 (m, 2H, R1 and 1H, R2), 7.43 (t, J = 7.6 Hz, 2H,4.38 (q, J = 7.1 Hz, 2H, R2), 1.39 (t, J = 7.1 Hz, 3H, R2).EntryIR1(t)N = 2HN = 1HN = 2HN = 2HN = 2HN = 2H10.881.00481.872.0621.041.00621.742.011362		Substrate R1		Substra	ate R2		Catalyst	
Mass12.3 mg15.0 mg8.7 mgDeuteration expected at δ (R1) = 8.26 - 8.20 ppm and at δ (R2) = 8.08 - 8.02 ppmDetermined against integral at δ (R1) = 7.70 ppm and at δ (R2) = 4.38 ppmSpectral details of the deuterated reaction mixture: ¹ H NMR (400 MHz, CDCl ₃) δ = 8.26 - 8.20 (m, 2H/D, R1), 8.08 - 8.02 (m, 2H/D, R2),(t, J = 7.4 Hz, 1H, R1), 7.59 - 7.51 (m, 2H, R1 and 1H, R2), 7.43 (t, J = 7.6 Hz, 2H,4.38 (q, J = 7.1 Hz, 2H, R2), 1.39 (t, J = 7.1 Hz, 3H, R2).Entry $I_{R1(t)}$ $I_{R1(0)}$ $0 D_{R1}$ $I_{R2(t)}$ $I_{R2(0)}$ $9 D_{R2}$ 10.881.00561.832.12145521.041.00481.872.0696630.761.00621.742.011366		NO ₂		NO ₂ OEt			Ir-1 Mes)PPh ₃][]	BArF ₂₄]
$\begin{array}{c c} \mbox{Deuteration expected at } \delta\ ({\bf R1}) = 8.26 - 8.20\ \mbox{ppm} \mbox{ and at } \delta\ ({\bf R2}) = 8.08 - 8.02\ \mbox{ppm} \\ \mbox{Determined against integral at } \delta\ ({\bf R1}) = 7.70\ \mbox{ppm} \mbox{ and at } \delta\ ({\bf R2}) = 4.38\ \mbox{ppm} \\ \mbox{Spectral details of the deuterated reaction mixture:} \\ \mbox{1H NMR (400 MHz, CDCl_3) } \delta = 8.26 - 8.20\ (m, 2H/D, {\bf R1}), 8.08 - 8.02\ (m, 2H/D, {\bf R2}), \\ \mbox{$(t, J = 7.4 Hz, 1H, R1), 7.59 - 7.51\ (m, 2H, R1\ and 1H, R2), 7.43\ (t, J = 7.6 Hz, 2H, \\ \mbox{$4.38\ (q, J = 7.1 Hz, 2H, R2), 1.39\ (t, J = 7.1 Hz, 3H, R2).} \\ \hline \mbox{$\frac{I_{R1(t)}}{N = 2H} \ \ N = 1H} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Mass	12.3	3 mg	15.0	mg		8.7 mg	
Determined against integral at δ (R1) = 7.70 ppm and at δ (R2) = 4.38 ppm <i>Spectral details of the deuterated reaction mixture:</i> ¹ H NMR (400 MHz, CDCl ₃) δ = 8.26 - 8.20 (m, 2H/D, R1), 8.08 - 8.02 (m, 2H/D, R2), (t, J = 7.4 Hz, 1H, R1), 7.59 - 7.51 (m, 2H, R1 and 1H, R2), 7.43 (t, J = 7.6 Hz, 2H, 4.38 (q, J = 7.1 Hz, 2H, R2), 1.39 (t, J = 7.1 Hz, 3H, R2). Entry $\frac{I_{R1(t)}}{N = 2H} \frac{I_{R1(0)}}{N = 1H} \frac{\sqrt{D_{R1}}}{N = 2H} \frac{I_{R2(t)}}{N = 2H} \frac{I_{R2(0)}}{N = 2H} \frac{\sqrt{D_{R2}}}{N = 2H}$ 1 0.88 1.00 56 1.83 2.12 14 5 2 1.04 1.00 48 1.87 2.06 9 6 3 0.76 1.00 62 1.74 2.01 13 6	Deuteration	expected	at δ (R1) = 8	8.26 - 8.20	ppm and at δ	(R2) = 8.08	- 8.02 ppm	
Spectral details of the deuterated reaction mixture: ¹ H NMR (400 MHz, CDCl ₃) $\delta = 8.26 - 8.20$ (m, 2H/D, R1), 8.08 - 8.02 (m, 2H/D, R2), (t, $J = 7.4$ Hz, 1H, R1), 7.59 - 7.51 (m, 2H, R1 and 1H, R2), 7.43 (t, $J = 7.6$ Hz, 2H, 4.38 (q, $J = 7.1$ Hz, 2H, R2), 1.39 (t, $J = 7.1$ Hz, 3H, R2). Image: Mark and Mark	Determined	against ir	ntegral at δ (I	(R1) = 7.70 p	opm and at δ	$(\mathbf{R2}) = 4.38$	ppm	
$\frac{I}{IH} \text{ NMR } (400 \text{ MHz, CDCl}_3) \ \delta = 8.26 - 8.20 \text{ (m, 2H/D, R1)}, 8.08 - 8.02 \text{ (m, 2H/D, R2)}, \\ (t, J = 7.4 \text{ Hz, 1H, R1)}, 7.59 - 7.51 \text{ (m, 2H, R1 and 1H, R2)}, 7.43 \text{ (t, } J = 7.6 \text{ Hz, 2H}, \\ 4.38 \text{ (q, } J = 7.1 \text{ Hz, 2H, R2)}, 1.39 \text{ (t, } J = 7.1 \text{ Hz, 3H, R2)}. \\ \hline \frac{I_{R1(t)}}{N = 2H} \frac{I_{R1(0)}}{N = 2H} \frac{\sqrt{D_{R1}}}{N = 1H} \frac{I_{R2(t)}}{N = 2H} \frac{I_{R2(0)}}{N = 2H} \frac{\sqrt{D_{R2}}}{N = 2H} \\ \hline \frac{1}{N = 2H} \frac{0.88 \text{ 1.00}}{1.00} \frac{56}{48} \frac{1.83}{1.87} \frac{2.06}{2.06} \frac{9}{66} \frac{6}{63} \\ 0.76 \text{ 1.00} 62 \frac{1.74}{2.01} \frac{2.01}{13} \frac{13}{66} \\ \hline \end{array}$	Spectral det	tails of the	e deuterated i	reaction mix	<i>xture:</i>			
$ \begin{array}{c} ({\rm t}, J=7.4~{\rm Hz},1{\rm H},{\bf R1}),7.59-7.51~({\rm m},2{\rm H},{\bf R1}~{\rm and}~1{\rm H},{\bf R2}),7.43~({\rm t},J=7.6~{\rm Hz},2{\rm H},\\ \hline 4.38~({\rm q},J=7.1~{\rm Hz},2{\rm H},{\bf R2}),1.39~({\rm t},J=7.1~{\rm Hz},3{\rm H},{\bf R2}).\\ \hline \hline {\rm Entry} & \frac{{\rm I}_{\rm R1(t)}}{{\rm N}=2{\rm H}} & {\rm N}=1{\rm H} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	¹ H NMR (4)	00 MHz, ($CDCl_3) \delta = 8$.26 - 8.20 (1	m, 2H/D, R1), $8.08 - 8.02$	2 (m, 2H/D,	R2), 7.70
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	(t, J = 7.4 H)	Iz, 1H, R	1), 7.59 – 7.5	51 (m, 2H,	R1 and 1H, 1	R2), 7.43 (t,	J = 7.6 Hz,	2H, R2),
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.38 (q, J =	7.1 Hz, 2	H, R2), 1.39	(t, J = 7.1 H)	Hz, 3H, R2).	,		. ,.
1 0.88 1.00 56 1.83 2.12 14 55 2 1.04 1.00 48 1.87 2.06 9 66 3 0.76 1.00 62 1.74 2.01 13 66	Entry	$I_{R1(t)}$ $N = 2H$	$\begin{split} I_{R1(0)} \\ N = 1 H \end{split}$	%D _{R1}	$\begin{split} I_{R2(t)} \\ N = 2H \end{split}$	$\begin{split} I_{R2(0)} \\ N &= 2H \end{split}$	$\%D_{R2}$	κ
2 1.04 1.00 48 1.87 2.06 9 6 3 0.76 1.00 62 1.74 2.01 13 6	1	0.88	1.00	56	1.83	2.12	14	5.58
3 0.76 1.00 62 1.74 2.01 13 6	2	1.04	1.00	48	1.87	2.06	9	6.76
	3	0.76	1.00	1.00 62 1.74		2.01	13	6.71
Average $\kappa = 6.35$				Average	$\kappa = 6.35$			

Figure S41. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

CDCl3 {C:\NMRdata} DJN 21		
8		
2 4 5 5 6 8 7 2 3 2 4 5 5 6 8 7 2 3 2 4 5 5 5 6 8 7 2 3 2 4 5 5 5 6 8 7 2 3 5 5 6 8 7 2 4 5 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	35 33 341	38 40 1
××××××××××××××××××××××××××××××××××××××	4 4 4 4	
		\searrow

Figure S43. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between nitrobenzene and ethyl benzoate (entry 2, Table S8).

Figure S44. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between nitrobenzene and ethyl benzoate (entry 3, Table S8).

Table S9. Determination of the competition rate constant κ from the labelling experiment between acetophenone and ethyl benzoate.

	Substrate R1		Substrate R2		Catalyst			
		`CH₃		OEt	[(COD)Ir(I	Ir-1 Mes)PPh ₃][]	BArF ₂₄]	
Mass	12.0 m	ng	~ 15.0 n	ng		8.7 mg		
Deuteratio	on expected a	at δ (R1) = 7	.99 – 7.93 j	ppm and at δ	δ (R2) = 8.08	8 – 8.02 ppm	1	
Determine	ed against int	tegral at δ (F	(1) = 2.61 p	opm and at δ	$(\mathbf{R2}) = 4.38$	ppm		
Spectral d	letails of the	deuterated r	eaction mix	xture:	\mathbf{a}		D1) 76	
¹ H NMR (400 MHZ, C	$DCI_3) \delta = \delta$.08 – 8.02 (7.40 – 7.40	m, 2H/D, R	2), 7.99 - 7.9	$\frac{1}{23}$ (m, 2H/D)	(-71)	
-7.52 (III, 2H R2) (2	, 111, KI and 261 (s. 3H I	1111, K2), R1) 139(t	/.49 – /.40 I – 7 1 Hz	(III, 2 H , KI 3 H R2)	anu 2 H , K 2), 4.38 (q , J	= /.1 п	
211, N2), 2	IP1(0)	IP100	J = 7.1112,	JII, K2).				
Entry	N = 2H	N = 3H	$%D_{R1}$	N = 2H	N = 2H	$%D_{R2}$	κ	
1	0.74	3.00	63	1.93	2.14	10	9.63	
2	0.59	3.00	71	2.37	2.66	11	10.58	
3	0.54	3.00	73	1.89	2.13	11	10.95	
			i i i i i i i i i i i i i i i i i i i					
ion-deuterated	acetophenone							
non-deuterated	acetophenone							
non-deuterated	acetophenone							
non-deuterated	acetophenone							
non-deuterated	acetophenone							
non-deuterated	acetophenone							
non-deuterated	acetophenone		k					
non-deuterated	acetophenone		k					

Figure S45. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S48. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and ethyl benzoate (entry 3, Table S9).

Table S10. Determination of the competition rate constant κ from the labelling experiment between acetanilide and benzamide.

	Substrate	R1	Substrate	R2		Catalyst	
	0	NH ₂	HN O	∠CH₃	[(COD)Ir(II	Ir-1 Mes)PPh ₃][B	ArF ₂₄]
Mass	12.1 mg	5	13.5 mg	5	4.3 m	g (2.5 mol %)
Deuteratio Determine Spectral de ¹ H NMR (n expected at d against inte etails of the d 400 MHz, DM	$\delta (\mathbf{R1}) = 7.$ gral at $\delta (\mathbf{R})$ euterated reaction $MSO-d_6) \delta =$	91 – 7.84 pr 1) = 7.47 – 7 eaction mixta = 9.90 (br, 1)	om and at δ (7.41 ppm and <i>ure:</i> H, R2), 7.96	$(\mathbf{R2}) = 7.60 - 100$ d at δ ($\mathbf{R2}$) = (br, 1H, $\mathbf{R1}$)	- 7.55 ppm 7.30 – 7.24), 7.91 – 7.84	ppm · (m, 2H/D,
R1), 7.60 - R1) 730 -	– 7.55 (m, 2H – 7 24 (m. 2H	/D, R2), 7.5 [R2] 7.04	54 – 7.41 (m –6 99 (m. 11	, 1H, R1), 7. H R2) 2.04	47 – 7.41 (m (s 3H R2)	, 2H, R1), 7.	35 (br, 1H
Entry	$\frac{I_{R1(t)}}{N = 2H}$	$I_{R1(0)}$ N = 2H	%D _{R1}	$\frac{I_{R2(t)}}{I_{R2(t)}}$ $N = 2H$	$\frac{I_{R2(0)}}{I_{R2(0)}}$ $N = 2H$	%D _{R2}	κ
1	1.75	1.93	9	1.86	2.00	7	1.35
2	1.76	1.98	11	1.86	2.00	7	1.62
3	1.72	1.96	12	1.85	2.00	8	1.68
		h			_lı		-3
non-deuterat	ed acetanilide	. .			1		- 2
deuterated re	eaction mixture						-1
_1		W.	ı			ļ	
0.0 9.5 9.0) 8.5 8.0 7.	5 7.0 6.5	6.0 5.5 5.0 f1 (ppm)	4.5 4.0 3	.5 3.0 2.5	2.0 1.5 1.0	0.5 0.0

Figure S49. Stacked ¹H NMR (400 MHz, DMSO-*d*₆) of non-deuterated substrates and reaction mixture.

Figure S51. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between acetanilide and benzamide (entry 2, Table S10).

Figure S52. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between acetanilide and benzamide (entry 3, Table S10).

Table S11. Determination of the competition rate constant κ from the labelling experiment between acetanilide and nitrobenzene.

		Subst	ate R1	Subs	trate R2		Catalyst	
			H N CH ₃		NO ₂		Ir-1	
) O			[(COD)Ir(I	[Mes)PPh ₃]	[BArF ₂₄]
Ma	ass	13.5	5 mg	12	.3 mg	4.3 m	ng (2.5 mol	%)
Deu	uteratio	n expecte	ed at δ (R1) =	=7.60 - 7.	55 ppm and	at δ (R2) = 8.2	26 – 8.20 pp	om
Det	ermine	d against	integral at δ	(R1) = 7.	30 – 7.24 pp	om and at δ (R)	(2) = 7.87 -	7.81 ppm
Spe	ectral d	etails of t	he deuterate	d reaction $S = 0.00$	mixture:	076 070 (7) 7 97
п 78	1 (m 1	(400 MHz)	$7, DMSO-a_6)$	$m 2H R^2$	(01, 111, K1) 2) 7 60 – 7	55 (m 2H/D)	п, 2п/D, к R1) 7 30 -	2), 7.87 – - 7.24 (m
2H,	, R1), 7	7.04 –6.99	. (m, 1H, R1), 2.04 (s,	3H, R1).	, <u>21</u> , <u>2</u> ,	III), 7.50	, . <u>2</u> . (,
En	try	$I_{R1(t)}$ $N = 2H$	$\begin{split} I_{R1(0)} \\ N = 2H \end{split}$	$%D_{R1}$	$I_{R2(t)} \\ N = 2H$	$I_{R2(0)}$ $N = 1H$	% D _{R2}	к
1	L	1.11	2.00	45	1.75	0.91	4	15.01
2	2	0.81	2.00	60	1.68	0.89	6	15.63
	3	0.94	2.00	53	1.73	0.91	5	14.89
				Avera	ge k = 15.10	•		
non-deu	terated ac	etanilide				HQ		-3
non-deut nitrobenz	erated zene							
								-2
		1						
deutera	ated reaction	on mixture						
						I		- 1
		l						

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Figure S53. Stacked ¹H NMR (400 MHz, DMSO-*d*₆) of non-deuterated substrates and reaction mixture.

Figure S55. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between acetanilide and nitrobenzene (entry 2, Table S11).

Figure S56. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between acetanilide and nitrobenzene (entry 3, Table S11).

Table S12. Determination of the competition rate constant κ from the labelling experiment between 2-phenylpyrimidine and benzamide.

	Subsu		Subs	strate R2		Catalyst	
	N Ph	N		NH ₂	[(COD)Ir(Ir-1 IMes)PPh ₃]	BArF
Mass	15.6	mg	12	2.1 mg		8.7 mg	
Deutera Determi <i>Spectral</i> ¹ H NMI 7.85 – 7	tion expected ined against : <i>l details of th</i> R (400 MHz, 7.77 (m, 2H/I	d at δ (R1) = integral at δ <i>ne deuterate</i> , CDCl ₃) δ = D, R2), 7.55	= 8.48 - 8 = 8.48 - 8 = 8.48 + 8 = 8.41 + 8 = 8.81 + 10 = 8.81 + 100 = 8.8	.43 ppm and 81 ppm and a <i>mixture:</i> <i>I</i> = 4.9 Hz, 21 n, 3H, R1 an	at δ (R2) = 7. at δ 7.55 – 7.3 H, R1), 8.48 - d 3H, R2), 7.	.85 – 7.77 pj 39 ppm for I - 8.43 (m, 2) 18 (t, <i>J</i> = 4.	pm R2 H/D, F 8 Hz,
R1), 6.2 Entry	$\frac{20 \text{ (br, 2H, } \mathbf{R})}{I_{R1(t)}}$ $N = 2H$	$\frac{2)}{I_{R1(0)}} = 2H$	%D _{R1}	$I_{R2(t)}$ $N = 2H$	$I_{R2(0)}$ $N = 3H$	%D _{R2}	к
1	0.48	2.00	76	2.05	3.61 ^a	15	8.9
2	1.10	2.00	45	2.01	3.40 ^b	11	4.9
3	0.77	2.00	62	1.96	3.34 °	12	7.4
$a I_{R2(0)} =$	6.61 — (2.00,	/2×3); ^b I _{R2(0}	₀₎ = 6.40 –	(2.00/2×3); °	$I_{R2(0)} = 6.34$ -	- (2.00/2×3)	•
a I _{R2(0)} =	6.61 — (2.00,	/2×3); ^b I _{R2(C}	_{D)} = 6.40 -	(2.00/2×3); °	I _{R2(0)} = 6.34 -	- (2.00/2×3)	,
non-deuterate	6.61 — (2.00, ad 2-phenylpyrimid	/2×3); ^b I _{R2(0})) = 6.40 -	(2.00/2×3); °	I _{R2(0)} = 6.34 -	- (2.00/2×3)	;
a I _{R2(0)} =	6.61 — (2.00,	/2×3); ^b I _{R2(0})) = 6.40	(2.00/2×3); °	I _{R2(0)} = 6.34 -	- (2.00/2×3)	;
a I _{R2(0)} =	6.61 – (2.00,	/2×3); ^b I _{R2(0})) = 6.40	(2.00/2×3); °	I _{R2(0)} = 6.34 -	- (2.00/2×3)	;
a I _{R2(0)} =	6.61 – (2.00,	/2×3); ^b I _{R2(0})) = 6.40	(2.00/2×3); °	I _{R2(0)} = 6.34 -	- (2.00/2×3)	;

Figure S57. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S58. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyrimidine and benzamide (entry 1, Table S12). D331185 Person kpb19112 DT-103-3 @proton CDCI3 {C:\NMRdata} DJN 14

Figure S59. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyrimidine and benzamide (entry 2, Table S12).

Figure S60. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyrimidine and benzamide (entry 3, Table S12).

Table S13. Determination of the competition rate constant κ from the labelling experiment between 2-phenylpyridine and acetophenone.

	20050		Subs	trate R 2		Catalyst	
	Ph	N		O CH ₃	[(COD)Ir	Ir-1 (IMes)PPh	ı3][BArl
Mass	15.:	5 mg	12.	.0 mg		8.7 mg	
Deuterati Determin <i>Spectral a</i> ¹ H NMR - 7.94 (m 2H R2 a)	on expected a ed against in <i>details of the</i> (400 MHz, C a, 2H/D, R2).	at δ (R1) = 8 tegral at δ (R deuterated re CDCl ₃) δ = 8. , 7.78 – 7.70 2 60 (s. 3H B	0.02 - 7.98 [1) = 7.78 - eaction mix 74 - 8.66 ((m, 2H, R 22)	ppm and at 8 - 7.70 ppm a x <i>ture:</i> (m, 1H, R1), (1), 7.59 – 7	δ (R2) = 7.9 and at δ (R2 δ 8.02 - 7.98 .53 (m, 1H,	(8 - 7.94 p) (8 - 7.94 p) (10 - 2.60 p)	pm om (, R1), 7 – 7.38
Entry	$\frac{IRI(t)}{I_{R1(t)}}$ $N = 2H$	$\frac{I_{R1(0)}}{I_{R1(0)}}$ N = 2H	%D _{R1}	$I_{R2(t)} \\ N = 2H$	$\begin{split} I_{R2(0)} \\ N &= 3H \end{split}$	%D _{R2}	κ
1	1.75	2.26	23	1.97	3.00	2	16.9
2	1.62	2.26	28	1.96	3.00	2	16.4
3	1.60	2.25	29	1.96	3.00	2	16.8
non-deuterated	l 2-phenylpyridine						
non-deuterated	12-phenylpyridine						
non-deuterated	d acetophenone						
non-deuterated	d acetophenone						
non-deuterated	d acetophenone						

· - (P.K...)

Figure S61. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S62. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between of 2-phenylpyridine

Figure S63. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between of 2-phenylpyridine and acetophenone (entry 2, Table S13).

Figure S64. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between of 2-phenylpyridine and acetophenone (entry 3, Table S13).

Table S14. Determination of the competition rate constant κ from the labelling experiment between 2-phenyloxazoline and 2-phenylpyridine.

Figure S65. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S66. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 1, Table S14). D318145 Person kpb19112 DT-8-2 @proton CDCI3 {C:\NMRdata} DJN 62

CDCI3

Figure S67. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 2, Table S14).

Figure S68. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 3, Table S14).

Table S15. Determination of the competition rate constant κ from the labelling experiment between 2-phenylthiazole and 1-phenylpyrazole.

Figure S69. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

D323641 Person kpb19112 DT-15-4 @proton CDCl3 {C:\NMRdata} DJN 11

Figure S70. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylthiazole and

Figure S71. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylthiazole and 1-phenylpyrazole (entry 2, Table S15).

D323643 Person kpb19112 DT-15-6 @proton CDCI3 {C:\NMRdata} DJN 13

		CDCI3	
7.99 7.97 7.93 7.92 7.88 7.87	7.73 7.71 7.69	7.45 7.45 7.45 7.45 7.33 7.33 7.33 7.33 7.32 7.28 7.28 7.27 7.27	6.47 6.46 6.46
\sim	517		\checkmark

Figure S72. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylthiazole and 1-phenylpyrazole (entry 3, Table S15).

Table S16. Determination of the competition rate constant κ from the labelling experiment between 2-phenyloxazoline and 2-phenylthiazoline.

Figure S73. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S74. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenyloxazoline and 2-phenylthiazoline (entry 1, Table S16). D324462 Person kpb19112 DT-67-2 @proton CDCI3 {C:\NMRdata} DJN 22

0.87~F 0.96-I

6.37-

4.5 f1 (ppm) 7.5 4.0 3.5 9.0 8.5 8.0 7.0 6.5 5.5 0.0 6.0 5.0 3.0 2.5 2.0 1.5 1.0 0.5 Figure S75. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenyloxazoline and 2-phenylthiazoline (entry 2, Table S16).

4.21-

2.00-J

2.194

Figure S76. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenyloxazoline and 2-phenylthiazoline (entry 3, Table S16).

Table S17. Determination of the competition rate constant κ from the labelling experiment between 2-phenylthiazoline and 2-phenylthiazole.

Figure S77. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

and 2-phenylunazole (entry 1, 1 able 517).		
D322241		
Person kpb19112		
DT-43-2 <u>m</u>		
@proton CDCl3 {C:\NMRdata} DJN 6		
Ū		
80	86 66 45	5 1 5 4 3 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
	4 4 4	
	\leq	\leq

Figure S79. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylthiazoline and 2-phenylthiazole (entry 2, Table S17).

Figure S80. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylthiazoline and 2-phenylthiazole (entry 3, Table S17).

Table S18. Determination of the competition rate constant κ from the labelling experiment between 2phenylthiazole and 2-phenylbenzothiazole.

Entry	$I_{R1(t)}$ $N = 2H$	$\begin{split} I_{R1(0)} \\ N = 1 H \end{split}$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N &= 2 H \end{split}$	$\begin{split} I_{R2(0)} \\ N = 1 H \end{split}$	$%D_{R2}$	ĸ
1	0.60	1.00	70	1.83 ^a	1.08 ^d	15	7.26
2	0.80	1.00	60	2.06 ^b	1.16 ^e	11	7.71
3	0.57	1.00	72	1.86 ^c	1.10^{f}	15	7.48
			Avera	lige $\kappa = 7.48$			

^a $I_{R2(t)} = 2.91 - 1.00$; ^b $I_{R2(t)} = 3.22 - 1.00$; ^c $I_{R2(t)} = 2.96 - 1.00$;

$${}^{d}I_{R2(0)} = 2.08 - 1.00; {}^{e}I_{R2(0)} = 2.16 - 1.00; {}^{f}I_{R2(0)} = 2.10 - 1.00;$$

non-deuterated 2-phenylthiazole

Figure S81. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

D322296 Person kpb19112 DT-44-2 @proton CDCl3 {C:\NMRdata} DJN 1

7.32 7.32 7.26 CDCl3 ン7.52 フ.50 フ.44 フ.44 フ.39 ン7.33

8.12 8.10 8.08 7.99 7.97 7.92 7.90 7.88 7.88

								ĕ	
52	50	4	4	39	37	ŝ	32	26	
~	7	7	7	7	7	7	7	7	
1	7	5	, \		7	ŀ	/	I	

1.00-3.22-0.80-2.16-8.91-8.1 8.0 f1 (ppm) 9.1 7.9 7.7 7.4 7.3 7.2 7.0 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 7.8 7.6 7.5 7.1

Figure S83. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylthiazole and 2-phenylbenzothiazole (entry 2, Table S18).

Figure S84. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylthiazole and 2-phenylbenzothiazole (entry 3, Table S18).

Table S19. Determination of the competition rate constant κ from the labelling experiment between 2-phenylpyridine and 2-phenylbenzothiazole.

Figure S85. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S86. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyridine and 2-phenylbenzothiazole (entry 1, Table S19).

Figure S87. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyridine and 2-phenylbenzothiazole (entry 2, Table S19).

Figure S88. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyridine and 2-phenylbenzothiazole (entry 3, Table S19).

Table S20. Determination of the competition rate constant κ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazoline.

	Substrat	e R1	Sub	strate R2		Catalyst		
	Me			N S		Ir-1 [(COD)Ir(IMes)PPh ₃][BArF ₂₄]		
Mass	15.8 r	ng	1	6.3 mg		8.7 mg		
Deuteration Determined Spectral de ¹ H NMR (4 (m, 3H, R 1 2H, R2), 3	n expected at d against inte <i>etails of the d</i> 400 MHz, CI I and 3H, R2 .73 (s, 3H, R	δ (R1) = 7.6 egral at δ (R1 <i>leuterated red</i> DCl ₃) δ = 7.8), 7.12 (d, <i>J</i> = 1), 3.40 (t, <i>J</i>)	5 – 7.60 ppr) = 7.12 ppn action mixtu 5 – 7.80 (m 1.2 Hz, 1H, = 8.3 Hz, 2H	n and at δ (R2 n and at δ (R2 re: , 2H/D R2), 7 R1), 6.95 (d, . H, R2)	2) = 7.85 – 7.8) = 4.45 ppm .65 – 7.60 (m, <i>I</i> =1.2 Hz, 1H,	0 ppm 2H/D, R1), R1), 4.45 (t	7.48 – 7.36 , <i>J</i> = 8.3 Hz,	
Entry	$I_{R1(t)}$ $N = 2H$	$I_{R1(0)}$ $N = 1H$	$%D_{R1}$	$I_{R2(t)}$ $N = 2H$	$I_{R2(0)}$ $N = 2H$	$\%D_{R2}$	κ	
1	0.62	1.00	69	1.72	2.24	23	4.43	
2	0.60	1.00	70	2.06	2.52	18	5.97	
3	1.02	1.00	49	1.91	2.36	19	3.18	
			Averag	$ge \kappa = 4.53$				
non-deut	erated 1-methyl-2-	ohenylimidazole					-3	
non-deute	erated 2-phenylthia	zoline						
					I		-2	
deuteral	ted reaction mixture	9					- 1	
9.0 8.5	0.0 7.5 7.0	0.0 0.0	5.5 5.0 4.5 f1 (ppr	4.0 3.5 3 n)	5.0 2.5 2.U	1.5 1.0 0	.5 0.0	

Figure S89. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S90. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylthiazoline (entry 1, Table S20). Person kpb19112 DT-77-2 @proton CDCl3 {C:\WMRdata} DJN 12

4.47 4.45 4.43 $- 3.73 \\ \hline 3.42 \\ \hline 3.38 \\ 3.38 \\ \hline 3.38 \\ \hline$

Figure S91. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazoline (entry 2, Table S20).

Figure S92. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazoline (entry 3, Table S20).

Table S21. Determination of the competition rate constant κ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylpyridine.

	Substrat	e R1	Sub	strate R2		Catalys	-		
	Me			~					
						Ir-1			
		N	Pł	N	[(COD	[(COD)Ir(IMes)PPh ₃][BArF ₂₄]			
Mass	15.8 r	ng	1	5.5 mg		8.7 mg			
Deuteratio	n expected at	δ (R1) = 7.6	55 – 7.60 ppi	m and at δ (R 2	(2) = 8.02 - 7.96	6 ppm			
Spectral d	etails of the d	gral at o (KI) = /.14 ppr	n and at o (R 2 ra:	(3) = 8.73 - 8.00	5 ppm			
1 H NMR (400 MHz. CI	$OC_{3} \delta = 8.7$	асноп тахи 3 – 8.66 (m.	1H. R2). 8.02	2 – 7.96 (m. 2F	I/D R2). 7.7	7 – 7.69 (m.		
2H R2), 7	.65 – 7.60 (m	, 2H/D, R1),	7.50 - 7.36	(m, 3H, R1 a	and $3H$, R2), 7	v.24 – 7.18 (m, 1H, R2),		
7.12 (d, <i>J</i> =	=1.2 Hz, 1H, I	R1), 6.95 (d,	<i>J</i> =1.2 Hz, 1	H, R1), 3.73 (s, 3H, R1).				
Entry	$I_{R1(t)}$ $I_{R1(0)}$		$%D_{R1}$	I _{R2(t)}	I _{R2(0)}	%D _{P2}	к		
	N = 2H	N = 1H	/02 KI	N = 2H	N = 1H	/ 0 D K2			
1	0.59	1.00	70	2.15	1.20	10	10.95		
23	0.51	1.00	75	1.88	1.10	15 10	8.69		
	0.07	1.00	Averag	$\frac{2.04}{e \kappa = 10.11}$	1.15	10	10.08		
non-deutera	ted 1-methyl-2-phe	nylimidazole							
							-3		
							5		
	1 k . I I								
			l						
non-deutera	ted 2-phenylpyridine	e							
							- 2		
	<u>III Mun</u>								
deuterate	ed reaction mixture								
							- 1		
	Lukull				· · · · · · · · · · · · · · · · · · ·				
							I		
9.0 8.5	8.0 7.5 7.0	6.5 6.0	5.5 5.0 4.5 f1 (ppr	4.0 3.5 3 n)	3.0 2.5 2.0	1.5 1.0 0	.5 0.0		

Figure S93. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S95. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylpyridine (entry 2, Table S21).

Figure S96. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylpyridine (entry 3, Table S21).

Table S22. Determination of the competition rate constant κ from the labelling experiment between 2-phenylpyridine and 2-phenylpyrimidine.

	Substr	rate R1 Substrate R2 Cataly				Catalyst	
	Ph	N	Pł	N	[(COD)Ir(Ir-1 [IMes)PPh ₃]	[BArF
Mass	15.5	5 mg	1	5.6 mg		8.7 mg	
Deutera	tion expecte	ad at δ (R1)	= 8.02 - 7	.97 ppm and	at δ (R2) = 8.	49 – 8.42 pj	pm
Spectral	l details of the	integral at o	$\mathbf{RI} = 7.$	T = 7.70 pp n mixture:	m and at δ (R)	(2) = 8.80 pp	m
¹ H NMI 8.49 – 8 7 39 (m	3.42 (m, 2H/ 3.43 R1 and	2, CDCl ₃) o /D, R2), 8.0 1 3H R2), 7	= 8.80 (d, 2 - 7.97 (25 - 7.20	J = 4.8 Hz, (m, 2H/D R1) (m 1H R1)	2H, K2), 8.73), 7.77 – 7.70 - 7.17 (t. <i>I</i> = 4	– 7.67 (m, (m, 2H, R 8 Hz 1H	1H, K 1), 7.5 R2)
Entry	$\frac{I_{R1(t)}}{I_{R1(t)}}$ $N = 2H$	$\frac{I_{R1(0)}}{I_{R1(0)}}$ N = 2H	%D _{R1}	$\frac{I_{R2(t)}}{I_{R2(t)}}$ $N = 2H$	$\frac{I_{R2(0)}}{N = 2H}$	%D _{R2}	к
1	1.39	1.94	28	1.54	2.00	23	1.23
2	1.58	1.88	16	1.71	2.00	15	1.1
3	1.59	1.85	14	1.76	2.00	12	1.13
_l							
non-deut	erated 2-phenylpy	vrimidine					
deuterate	ed reaction mixtur	e					
deuterate	ed reaction mixtur	e					

Figure S97. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S98. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyridine and 2-phenylpyrimidine (entry 1, Table S22).

Figure S99. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyridine and 2-phenylpyrimidine (entry 2, Table S22).

Figure S100. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyridine and 2-phenylpyrimidine (entry 3, Table S22).

3.4. Competition Experiments with (COD)Ir(IMes)Cl (Ir-2)

Table S23. Determination of the competition rate constant κ from the labelling experiment between acetophenone and benzamide.

	Substrate R1		Sul	bstrate R2		Catalyst					
	O C	`CH₃		NH ₂		es)Cl]					
Mass	12.0 n	ng	1	12.1 mg		3.2 mg					
Deuteration Determined Spectral de	n expected at d against integ etails of the de	δ (R1) = 7.9 gral at δ (R1) euterated real	5 ppm and at = 2.60 ppm action mixture	$\delta (\mathbf{R2}) = 7.8$ and at $\delta (\mathbf{R2})$	2 ppm) = 7.63 - 7.3	36 ppm					
¹ H NMR (4 7 36 (m. 31	400 MHz, CD H R1 and 3H	Cl_3) $\delta = 7.93$ R2) $6.25 - 6$	5 (d, J = 7.5 H) 5 13 (bs. 2H)	Hz, H/D R1), R2) 2.60 (s	7.82 (d, $J = 1$ 3H R1)	7.4 Hz, H/D I	&2), 7.63 –				
Entry	$\frac{I_{R1(t)}}{N = 2H}$	$I_{R1(0)}$ N = 3H	%D _{R1}	$\frac{IIII}{I_{R2(t)}}$ $N = 2H$	$\frac{I_{R2(0)}}{I_{R2(0)}}$ $N = 3H$	%D _{R2}	к				
1	1.76	3.00	12	1.95	3.20 ^a	9	1.42				
2	1.71	3.00	15	1.76	2.93 ^b	10	1.50				
3	1.41	3.00	30	2.22	4.11 ^c	19	1.66				
at ()	$Average \kappa = 1.53$										
non-deuterated	acetophenone						-3				
	JLJL						-2				
deuterated read							-1				

Figure S101. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture

Figure S102. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and benzamide (entry 1, Table S23).

Figure S103. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and benzamide (entry 2, Table S23).

Figure S104. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and benzamide (entry 3, Table S23).

Table S24. Determination of the competition rate constant κ from the labelling experiment between benzenesulfonamide and acetophenone.

	Substrat	e R1	Su	bstrate R2		Catalyst		
	S	⁹ 2 `NH₂		CH3	Ir-2 [(COD)Ir(IMes)C			
Mass	15.7 r	ng		12.0 mg		3.2 mg		
Deuteration	expected at	δ (R1) = 7.87	7 – 7.80 ppm	and at δ (R 2	(3) = 7.99 - 7.9	3 ppm		
Spectral der ¹ H NMR (4 7.49 (m, 3H	tails of the de 00 MHz, DM	graf at(\mathbf{KI}) = euterated read ISO- d_6) δ = 7 $\mathbf{R2}$), 7.35 (br	7.66 – 7.51] ction mixture 7.99 – 7.93 (1 , 2H, R1), 2.	ppm and at o e: n, 2H/D R2) 58 (s, 3H, R 2	(K2) = 2.58 p , 7.87 – 7.80 (2)	pm m, 2H/D R 1), 7.67 –	
Entry	$I_{R1(t)}$ $N = 2H$	$I_{R1(0)}$ $N = 3H$	%D _{R1}	$\frac{I_{R2(t)}}{N = 2H}$	$I_{R2(0)}$ $N = 3H$	%D _{R2}	κ	
1	2.01	4.26 ^a	29	1.45	3.00	28	1.07	
2	1.50	3.80 ^b	41	1.37	3.00	32	1.39	
3	1.66	5.39°	54	1.09	3.00	46	1.27	
non-deuterated b	penzenesulfonamid	e					- 3	
non-deuterated	acetophenone				I			
/							- 2	
deuterated react	ion mixture				I	٨	- 1	
8.5 8.0	7.5 7.0	6.5 6.0	5.5 f1 (ppm)	5.0 4.5	4.0 3.5	3.0 2.5		

Figure S105. Stacked ¹H NMR (400 MHz, DMSO-*d*₆) of non-deuterated substrates and reaction mixture.

Figure S106. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between benzenesulfonamide and acetophenone (entry 1, Table S24).

D320308 Person kpb19112 DT-23-3 @proton DMSO {C:\NMRdata} DJN 26

Figure S108. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between benzenesulfonamide and acetophenone (entry 3, Table S24).

Table S25. Determination of the competition rate constant κ from the labelling experiment between benzenesulfonamide and benzamide.

	Substrate R1	Substrate R2	Catalyst
	O ₂ S _{NH2}	NH ₂	Ir-2 [(COD)Ir(IMes)Cl]
Mass	15.7 mg	12.1 mg	3.2 mg

Deuteration expected at δ (**R1**) = 7.86 – 7.81 ppm and at δ (**R2**) = 7.90 – 7.86 ppm Determined against integral at δ (**R1**) = 7.63 – 7.54 ppm and at δ (**R2**) = 7.48 – 7.41 ppm *Spectral details of the deuterated reaction mixture:*

¹H NMR (400 MHz, DMSO- d_6) δ = 7.96 (bs, 1H, **R2**), 7.90 – 7.86 (m, 2H/D **R2**), 7.86 – 7.81 (m, 2H/D **R1**), 7.63 – 7.54 (m, 3H, **R1**), 7.54 – 7.49 (m, 1H, **R2**), 7.48 – 7.41 (m, 2H, **R2**), 7.35 (bs, 1H, **R2** and 2H, **R1**)

Entry	$\begin{split} I_{R1(t)} \\ N &= 2H \end{split}$	$I_{R1(0)}$ $N = 3H$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N &= 2 H \end{split}$	$I_{R2(0)}$ $N = 2H$	$%D_{R2}$	κ			
1	1.30	3.07	36	1.84	2.00	8	5.44			
2	1.44	3.19	32	1.88	2.00	6	6.30			
3	1.55	2.98	22	1.90	2.00	5	4.84			
	Average $\kappa = 5.53$									

Figure S109. Stacked ¹H NMR (400 MHz, DMSO-*d*₆) of non-deuterated substrates and reaction mixture.

D323618 Person kpb19112 DT-27-5 @proton DMSO {C:\NMRdata} DJN 22

- 3.34 HDO

4.5 f1 (ppm) 0.0 9.0 8.5 8.0 . 7.5 . 7.0 6.5 6.0 5.5 5.0 4.0 3.5 . 3.0 2.5 2.0 1.5 1.0 0.5 Figure S110. ¹H NMR (400 MHz, DMSO-d₆) of the competition experiment between benzenesulfonamide and benzamide (entry 1, Table S25). B58397 Person kpb19112 dt-27-3 @proton16 DMSO {C:\NMRdata} DJN 23 - 3.34 HDO

Figure S111. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between benzenesulfonamide and benzamide (entry 2, Table S25).

Figure S112. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between benzenesulfonamide and benzamide (entry 3, Table S25).

	Substrate R1		Sub	ostrate R2		Catalyst		
	CH3			NMe ₂		Ir-2 [(COD)Ir(IMes)Cl]		
Mass	12.0 n	ng	1	4.9 mg		3.2 mg	,	
Deuteration	n expected at	$\delta (\mathbf{R1}) = 7.99$	9 − 7.92 ppm	and at δ (R 2	(2) = 7.42 - 7.3	35 ppm		
Spectral de	a against integration of the de	gral at o (RI)	= 2.60 ppm	and at $o(\mathbf{K}_2)$) = 3.18 - 2.8	sø ppm		
¹ H NMR (4	400 MHz. CD	C_3 $\delta = 7.99$	– 7.92 (m. 2	z. 2H/D R1), 7.4	58 – 7.53 (m.	1H. R1), 7.4	8-7.43	
(m, 2H, R1	1, 7.42 - 7.35	(m, 2H/D R	$2 \text{ and } 3H, \mathbf{R}$	2), $3.18 - 2.8$	38 (m, 6H, R 2	2), 2.60 (s, 3 H	I , R1)	
Entry	$I_{R1(t)}$ $N = 2H$	$I_{R1(0)}$ $N = 3H$	%D _{R1}	$I_{R2(t)}$ $N = 2H$	$I_{R2(0)}$ $N = 6H$	%D _{R2}	ĸ	
1	0.83	3.00	59	2.99ª	9.79	9	9.87	
2	0.94	3.00	53	1.88 ^b	6.12	8	9.24	
3	1.04	3.00	48	2.12 ^c	6.77	6	10.09	
			Average	$\kappa = 9.73$				
$^{a}I_{R2(t)} = 7.83$	8 - (9.79) / 6	$\times 3; {}^{b}I_{R2(t)} = 4$.94 - (6.12)	$/6 \times 3$; ^c I _{R20}	$t_{t} = 5.50 - (6.1)$	77) / 6 × 3		
non-deuterate	d acetophenone						-3	
non-deuterated	<i>N,N</i> -dimethylbenza	mide						
				l			- 2	
deuterated rea	action mixture							
	n an l			l		Jai	- 1	
9.0 8.5 8	3.0 7.5 7.0	6.5 6.0 5.	5 5.0 4.5 f1 (ppm)	4.0 3.5 3	.0 2.5 2.0	1.5 1.0 0.	5 0.0	

Table S26. Determination of the competition rate constant κ from the labelling experiment between acetophenone and *N*,*N*-dimethylbenzamide.

Figure S113. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S114. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and *N*,*N*-dimethylbenzamide (entry 2, Table S26).

Figure S115. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between acetophenone and *N*,*N*-dimethylbenzamide (entry 3, Table S26).

Table S27. Determination of the competition rate constant κ from the labelling experiment between benzenesulfonamide and methylphenylsulfone.

	Substrat	e R1	Su	bstrate R2		Catalyst					
	S	⁹ 2 `NH₂		O ₂ S_Me		Ir-2 [(COD)Ir(IMes)Cl]					
Mass	15.7 r	ng		15.6 mg		3.2 mg					
Deuteration expected at δ (R1) = 7.85 – 7.83 ppm and at δ (R2) =7.95 – 7.93 ppm Determined against integral at δ (R1) = 7.60 – 7.55 ppm and at δ (R2) = 7.64 – 7.62 ppm <i>Spectral details of the deuterated reaction mixture:</i> ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ = 7.95 – 7.93 (m, 2H/D R2), 7.85 – 7.83 (m, 2H/D R1), 7.76 – 7.72 (m, 1H, R2), 7.64 – 7.62 (m, 2H, R2), 7.60 – 7.55 (m, 3H, R1), 7.35 (bs, 2H, R1)											
Entry	$I_{R1(t)}$ N = 2H	$I_{R1(0)}$ N = 3H	$%D_{R1}$	$\frac{I_{R2(t)}}{N} = 2H$	$I_{R2(0)}$ N = 2H	%D _{R2}	к				
1	1.42	2.94	28	1.98	2.00	1	32.07				
2	0.64	2.68	64	1.95	2.00	3	40.55				
3	1.42	3.30	35	1.98	2.00	1	43.56				
non-deuterate	ed benzenesulfonam	ide					- 3				
non-deuterat	ed methylphenylsult	one					- 2				
deuterated r	reaction mixture										

0.0 9.0 8.5 8.0 7.5 7.0 0.5 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0

hull

Figure S116. Stacked ¹H NMR (400 MHz, DMSO- d_6) of non-deuterated substrates and reaction mixture.

Figure S118. ¹H NMR (400 MHz, DMSO-*d*₆) of the competition experiment between benzenesulfonamide and methylphenylsulfone (entry 2, Table S27).

Figure S119. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between benzenesulfonamide and methylphenylsulfone (entry 3, Table S27).

	Substrat	e R1	Su	Substrate R2		Catalyst						
	ر Ph ^{-N_}	N		CH3	Ir-2 [(COD)Ir(IMes)Cl]							
Mass	14.4 n	ng		12.0 mg		3.2 mg						
Deuteration expected at δ (R1) = 7.73 – 7.69 ppm and at δ (R2) = 7.98 – 7.94 ppm Determined against integral at δ (R1) = 6.48 – 6.42 ppm and at δ (R2) = 2.60 ppm <i>Spectral details of the deuterated reaction mixture:</i> ¹ H NMR (400 MHz, CDCl ₃) δ = 7.98 – 7.94 (m, 2H/D R2), 7.92 (d, <i>J</i> = 2.4 Hz, 1H, R1), 7.75 – 7.67 (m, 2H/D R1 and 1H, R1), 7.60 – 7.53 (m, 1H, R2), 7.49 – 7.42 (m, 2H, R1 and 2H, R2), 7.31 – 7.26 (m, 1H, R1), 6.48 – 6.45 (m, 1H, R1), 2.60 (s, 3H, R2).												
Entry	$\begin{split} I_{R1(t)} \\ N = 2H \end{split}$	$\begin{split} I_{R1(0)} \\ N = 1 H \end{split}$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N = 2H \end{split}$	$I_{R2(0)}$ $N = 3H$	$%D_{R2}$	К					
1	0.99 ^a	1.03	52	1.95	3.00	3	28.94					
2	0.91 ^b	1.43	68	1.92	3.00	4	28.05					
3	0.93 ^c	1.05	56	1.95	3.00	3	32.17					
Average $\kappa = 29.72$												
$\label{eq:relation} {}^{a}I_{R1(t)} \!=\! 2.02 - 1.03; {}^{b}I_{R1(t)} \!=\! 2.34 - 1.43; {}^{c}I_{R1(t)} \!=\! 1.98 - 1.05;$												
non-deuterate	d 1-phenylpyrazole						- 3					
non-deuterat	ted acetophenone						-2					
deuterated	d reaction mixture						1					
MM	""M_"M 7.5 7.0	6.5 6.0	5.5 5. f1 (ppm)	0 4.5	4.0 3.5	3.0 2.5	2.0					

Table S28. Determination of the competition rate constant κ from the labelling experiment between 1-phenylpyrazole and acetophenone.

Figure S120. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S122. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and acetophenone (entry 2, Table S28).

Figure S123. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and acetophenone (entry 3, Table S28).

	Substrate	e R 1	Su	bstrate R2		Catalyst					
	ر Ph ^N	N	Р	h N		Ir-2 [(COD)Ir(IMes)Cl]					
Mass	14.4 n	ng		15.5 mg	3.2 mg						
Deuteration expected at δ (R1) = 7.78 – 7.67 ppm and at δ (R2) = 8.04 – 7.97 ppm Determined against integral at δ (R1) = 6.50 – 6.42 ppm and at δ (R2) = 8.72 – 8.68 ppm <i>Spectral details of the deuterated reaction mixture:</i> ¹ H NMR (400 MHz, CDCl ₃) δ = 8.72 – 8.68 (m, 1H, R2), 8.04 – 7.97 (m, 2H/D R2), 7.92 (d, <i>J</i> = 2.4 Hz, 1H, R1), 7.78 – 7.67 (m, 2H, R2 , 1H, R1 , 2H/D R1), 7.52 – 7.38 (3H, R2 and 2H, R1), 7.31 – 7.26 (m, 1H, R1), 7.24 – 7.20 (m, 1H, R2), 6.50 – 6.42 (m, 1H, R1)											
Entry	$\begin{split} I_{R1(t)} \\ N &= 2H \end{split}$	$\begin{split} I_{R1(0)} \\ N = 1 H \end{split}$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N &= 2H \end{split}$	$\begin{split} I_{R2(0)} \\ N &= 1 H \end{split}$	$%D_{R2}$	κ				
1	1.65 ^a	1.00	18	1.75	1.00	13	1.44				
2	1.29 ^b	1.00	36	1.22	0.85	28	1.32				
3	1.23 ^c	1.00	39	1.32	0.94	30	1.37				
Average $\kappa = 1.38$											
^a $I_{R1(t)}$ =4.65–1.00–(1.00×2); ^b $I_{R1(t)}$ =3.99–1.00–(0.85×2); ^c $I_{R1(t)}$ = 4.11–1.00–(0.94×2)											
non-deutera	ted 1-phenylpyrazol	e 									
non-deuter	rated 2-phenylpyridir	le									
deuterated	reaction mixture					~ 1	•				

Table S29. Determination of the competition rate constant κ from the labelling experiment between 1-phenylpyrazole and 2-phenylpyridine.

4.0

3.5

3.0

2.5

5.0 4.5 f1 (ppm)

9.0

8.5

7.5

7.0

6.5

6.0

5.5

8.0

0.0

1.5

1.0

0.5

2.0
D319184 Person kpb19112 DT-19-3 @proton CDCI3 {C:\NMRdata} DJN 44

5 4 f1 (ppm)

6

10 9

8

Figure S125. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole

f1 (ppm) Figure S126. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 2, Table S29).

Figure S127. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylpyridine (entry 3, Table S29).

	Substrate	e R 1	Su	bstrate R2		Catalys	st	
			Ρ	PhN		Ir-2 [(COD)Ir(IMes)Cl]		
Mass	14.7 n	ng	-	15.5 mg		3.2 mg		
Deuteration Determined Spectral de ¹ H NMR (4 (m, 2H/D I R2), 4.44 (n expected at of against integration of the defaults of the default of MHz, CD $(\mathbf{R1}), 7.77 - 7.6$ $(\mathbf{t}, J = 9.5 \text{ Hz},)$	δ (R1) = 7.97 gral at δ (R1) <i>puterated read</i> Cl ₃) δ = 8.73 59 (m, 2H R2 2H, R1), 4.07	7 - 7.92 ppm = 4.44 ppm ction mixture - 8.66 (m, 1 2), 7.52 - 7.3 7 (t, J = 9.5	a and at δ (R2 and at δ (R2 e: 1H, R2), 8.02 37 (m, 3H, R 1 Hz, 2H, R1).	(x) = 8.02 - 7.9 (x) = 8.73 - 8.6 (x) = 7.97 (m, 21) (x) = 0.000 (m, 21) (x) = 0.000 (m, 21)	97 ppm 6 ppm H/D R2), 7.9), 7.24 – 7.18	7 – 7.92 (m, 1H,	
Entry	$\begin{split} I_{R1(t)} \\ N &= 2 H \end{split}$	$\begin{split} I_{R1(0)} \\ N = 2H \end{split}$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N &= 2 H \end{split}$	$\begin{split} I_{R2(0)} \\ N &= 1 H \end{split}$	$%D_{R2}$	к	
1	1.76	2.00	12	2.95	1.61	8	1.46	
2	1.52	2.00	24	1.66	1.02	19	1.33	
3	1.28	2.00	36	2.02	1.38	27	1.43	
			Average	$e \kappa = 1.41$				
non-deutera	ited 2-phenyloxazolin	ne			. 4		-3	
non-deuter	ated 2-phenylpyridin	e					- 2	
deuterate	ed reaction mixture						-1	
9.0 8.5	8.0 7.5 7.0	6.5 6.0 5.	5 5.0 4.5 f1 (ppm)	4.0 3.5 3.	0 2.5 2.0	1.5 1.0 0.5	0.0	

Table S30. Determination of the competition rate constant κ from the labelling experiment between 2-phenyloxazoline and 2-phenylpyridine.

Figure S128. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

D319185 Person kpb19112 DT-21-2 @proton CDCI3 {C:\NMRdata} DJN 45

Figure S130. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 2, Table S30).

Figure S131. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenyloxazoline and 2-phenylpyridine (entry 3, Table S30).

Table S31. Determination of the competition rate constant κ from the labelling experiment between 1-phenylpyrazole and 2-phenylthiazole.

	Substrat	e R1	Su	bstrate R2	Catalyst		t	
	Ph ^{-N} N			S N		Ir-2 [(COD)Ir(IMes)Cl]		
Mass	14.4 r	ng		16.1 mg		3.2 mg		
Deuteratio	n expected at	$\delta (\mathbf{R1}) = 7.78$	8 – 7.67 ppm	n ppm and at	$\delta (\mathbf{R2}) = 8.02$	– 7.96 ppm		
Spectral de	d against integet and the defense of	gral at o (KI) euterated real	= 6.49 – 6.4 1. ction mixtur	+3 ppm and a e:	$t \circ (\mathbf{R}2) = 7.8$	8 ppm		
¹ H NMR (4	400 MHz, CD	$Cl_3) \delta = 8.02$	– 7.96 (m, 2	2H/D, R2), 7.	.92 (d, $J = 2.4$	Hz, 1H, R1), 7.88	
(d, $J = 3.3$	Hz, 1H, R2),	7.76 – 7.66 (1	m, 2H/D, R	1 and 1H, R1), 7.49 – 7.39	(m, 2H, R1	and 3H	
R2), 7.33 ((d, J = 3.3 Hz)	, 1H, R2), 7.2	9 (t, $J = 7.4$	Hz, 1H, R1),	, 6.49 – 6.43 (m, 1H, R1).		
Entry	$I_{R1(t)}$ N = 2H	$I_{R1(0)}$ $N = 1H$	$%D_{R1}$	$I_{R2(t)}$ N = 2H	$I_{R2(0)}$ $N = 1H$	$^{ m W}D_{R2}$	κ	
1	0.82 ^a	1.00	59	1.25	1.10	43	1.58	
2	1.12 ^b	1.00	44	1.52	1.05	28	1.79	
3	1.19 ^c	1.00	41	1.41	1.00	30	1.4	
non-deuterate	d 1-phenylpyrazole						_3	
							- 3	
non-deutera	ted 2-phenylthiazole							
							-:	
deuterated re	eaction mixture							
							- 1	
0 8.5 8.0	0 7.5 7.0	6.5 6.0 5.5	5.0 4.5 f1 (ppm)	4.0 3.5 3.0	2.5 2.0	1.5 1.0 0.5	0.0	

Figure S132. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

D321928 Person kpb19112 DT-30-2 @proton CDCI3 {C:\NMRdata} DJN 22

 $\frac{6.47}{6.46}$

Figure S133. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylthiazole (entry 1, Table S31).

Figure S134. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylthiazole (entry 1, Table S31).

Figure S135. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-phenylpyrazole and 2-phenylthiazole (entry 1, Table S31).

Table S32. Determination of the competition rate constant κ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazole.

	Substrate	e R1	Sul	ostrate R2		Cataly	st	
	Me			S N		Ir-2 [(COD)Ir(IMes)Cl]		
Mass	15.8 n	ng	1	6.1 mg		3.2 mg		
Deuteration Determined <i>Spectral de</i> ¹ H NMR (4 (m, 2H/D, 7 Hz, 1H, R1	n expected at d against integ <i>tails of the de</i> 00 MHz, CD R1), 7.50 – 7 .), 6.95 (d, J =	δ (R1) = 7.67 gral at δ (R1) <i>euterated read</i> Cl ₃) δ = 8.02 .38 (m, 3H, 1 = 1.2 Hz, 1H,	7 – 7.61 ppm = 7.12 ppm <i>ction mixture</i> – 7.96 (m, 2 R1 and 3H, R1), 3.74 (s	and at δ (R2 and at δ (R2) e: H/D, R2), 7.8 R2), 7.33 (d, , 3H, R1)	S(d, J = 3.3 Hz, 1) = 3.3 Hz, 1	6 ppm Hz, 1H, R2), 1H, R2), 7.12	7.67 – 7.61 2 (d, <i>J</i> = 1.2	
Entry	$I_{R1(t)} \\ N = 2H$	$\begin{split} I_{R1(0)} \\ N = 1 H \end{split}$	%D _{R1}	$\begin{split} I_{R2(t)} \\ N = 2H \end{split}$	$I_{R2(0)}$ $N = 1H$	%D _{R2}	κ	
1	1.10	1.00	45	1.91	1.00	5	12.98	
2	0.63	1.00	69	1.90	1.03	8	14.29	
3	0.71	1.00	65	1.95	1.06	8	12.39	
			Average	$\kappa = 13.22$				
non-deutera	ted 1-methyl-2-pher	nylimidazole	1				- 3	
non-deutera	ated 2-phenylthiazo	e						
							- 2	
deuterated	reaction mixture							
							- 1	
							I	
9.0 8.5 8.0) 7.5 7.0	6.5 6.0 5.5	5 5.0 4.5 f1 (ppm)	4.0 3.5 3	3.0 2.5 2.0	1.5 1.0	0.5 0.0	

D324290 Person kpb19112 DT-66-1 @proton CDCI3 {C:\NMRdata} DJN 16

Figure S138. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazole (entry 2, Table S32).

Figure S139. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazole (entry 3, Table S32).

Table S33 Determination of the competition rate constant κ from the labelling experiment between 1methyl-2-phenylimidazole and 2-phenylpyridine.

	Substrate R1			Substrate R2 Cataly			
	Me N	1		\wedge			
		$\approx N$			Γ.(Ir-2	
			Р	h́Ń	[((es)CI]
Mass	15.8 n	ng		15.5 mg		3.2 mg	
Note: Volu	me of DCM v	vas increased	to 4 mL to	obtain higher	conversion o	f both subst	rates.
Deuteration	n expected at	δ (R1) = 7.67	– 7.61 ppm	\mathbf{n} and at δ (R2) = 8.02 - 7.96	6 ppm	
Determined	d against integ	gral at δ (R1)	=7.12 ppm	and at δ (R2)	= 7.77 - 7.69) ppm	
Spectral de	tails of the de	c(1) = 8.72	$\frac{2}{2} \frac{1}{2} \frac{1}$	e: 11 D3) 8 02	7.06 (m. 21)		7760
1 H NMK (4 (m 2 U D 2	$100 \text{ MHZ}, \text{CD}^{\circ}$	$(m 2 \mathbf{U}/\mathbf{D} \mathbf{E})$	– 8.66 (m, 1 21) 7.50	H, KZ), 8.02	– 7.96 (M, 2H D1 and 3U D	$(D \mathbf{K2}), (.)$	/ / .09 7 18 (m
$(III, 2II \mathbf{R2})$ 1H R2) 7	12 (d I=12)	(III, 211/D, K Hz 1H R1)	6 95 (d. <i>I</i> =1	$2 \text{ Hz} 1 \text{H} \mathbf{R}$	1) 3 73 (s. 3F	(2), 7.24 - 7 (1 R1)	/.10 (III,
Entry	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I _{R1(0)}	$%D_{R1}$	I _{R2(t)}	I _{R2(0)}	%D _{R2}	κ
	N = 2H	N = 1H		N = 2H	N = 2H	112	
1	1.58	1.00	21	2.09	2.32	10	2.26
2	1.60	1.00	20	2.02	2.28	11	1.84
5	1.30	0.87	Average #	1.70 	2.00	12	1.93
	14.11						- 3
non-deuterated 2		I					
							- 2
	1 1						
	d_dk_m						
deuterated re	action mixture						
							- 1
	he Marillen						
0 8.5 8.0	7.5 7.0 6.	5 6.0 5.5	5.0 4.5 f1 (ppm)	4.0 3.5 3.0	2.5 2.0 1.	5 1.0 0.5	0.0

Figure S140. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S141. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylpyridine (entry 1, Table S33).

Figure S142. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenylpyridine (entry 2, Table S33).

Figure S143. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylpyridine (entry 3, Table S33).

Table S34. Determination of the competition rate constant κ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenyloxazoline.

	Substrat	e R1	Su	bstrate R2		Catalys	st	
	Me			N				
						Ir-2		
		N	Į			[(COD)Ir(IMes)Cl]		
			\sim					
Mass	15.8 n	ng		l4.7 mg		3.2 mg	5	
Deuteration	n expected at	$\delta (\mathbf{R1}) = 7.67$	7 – 7.61 ppm	and at δ (R 2	() = 7.98 - 7.9	0 ppm		
Determined	d against integ	gral at δ (R1)	= 7.12 ppm	and at δ (R2)) = 4.44 ppm			
Spectral de	etails of the de	euterated read	ction mixtur	e:				
¹ H NMR (4	400 MHz, CD	$(Cl_3) \delta = 7.98$	- 7.90 (m, 2	2H/D R2), 7.0	67 – 7.61 (m,	2H/D, R1), 7	7.50 – 7.36	
(m, 3H, R1	and $3H$, R2)	,7.12 (d, J=1)	.2 Hz, 1H, I	R1), 6.96 (d, .	/=1.2 Hz, 1H	, R1), 4.43 (t	J = 9.5	
HZ, 2H, K 2	$\frac{2}{J}, 4.06 (t, J = 1)$	9.5 HZ, 2H,	$\mathbf{K}\mathbf{Z}$), 3.74 (s	, 3H, KI).	т			
Entry	$I_{R1(t)}$ N = 2H	$\mathbf{N} = 1\mathbf{H}$	$%D_{R1}$	N = 2H	N = 2H	$%D_{R2}$	κ	
1	1.03	0.73	29	1.92	2.00	4	8.55	
2	1.31	0.93	30	1.91	2.00	5	7.61	
3	1.76	1.05	16	1.96	2.00	2	8.74	
			Average	$\kappa = 8.30$				
non-deuterat	ed 1-methyl-2-phen	ylimidazole					- 3	
							-2	
deuterated	d reaction mixture						- 1	
9,0 8.5 8		6,5 6.0 5	5 5.0 45	4.0 3.5	3.0 2.5 2.0	1.5 1.0		
			f1 (ppm)					

Figure S146. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2phenylimidazole and 2-phenyloxazoline (entry 2, Table S34).

Figure S147. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenyloxazoline (entry 3, Table S34).

Table S35. Determination of the competition rate constant κ from the labelling experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazoline.

	Substrat	e R1	Su	bstrate R2		Catalys	st			
	Me			N S		Ir-2 [(COD)Ir(IMes)Cl]				
Mass	15.8 r	ng		16.3 mg		3.2 mg				
Deuteration expected at δ (R1) = 7.65 – 7.60 ppm and at δ (R2) = 7.85 – 7.83 ppm Determined against integral at δ (R1) = 7.12 ppm and at δ (R2) = 4.45 ppm <i>Spectral details of the deuterated reaction mixture:</i> ¹ H NMR (400 MHz, CDCl ₃) δ = 7.85 – 7.83 (m, 2H/D R2), 7.65 – 7.60 (m, 2H/D, R1), 7.48 – 7.36 (m, 3H, R1 and 3H, R2), 7.12 (d, <i>J</i> =1.2 Hz, 1H, R1), 6.95 (d, <i>J</i> =1.2 Hz, 1H, R1), 4.45 (t, <i>J</i> = 8.3 Hz, 2H, R2), 3.73 (s, 3H, R1), 3.40 (t, <i>J</i> = 8.3 Hz, 2H, R2)										
Entry	$\begin{split} I_{R1(t)} \\ N &= 2H \end{split}$	$\begin{split} I_{R1(0)} \\ N = 1 H \end{split}$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N &= 2H \end{split}$	$\begin{split} I_{R2(0)} \\ N &= 2H \end{split}$	$%D_{R2}$	κ			
1	0.87	1.00	57	1.72	2.32	26	2.78			
2	0.90	1.00	55	1.51	2.34	35	1.82			
3	0.99	1.00	51	1.66	2.26	27	2.28			
non-deut	erated 1-methyl-2-p	henylimidazole					-3			
non-deute	erated 2-phenylthiaz	coline								
					L	.	- 2			
deuterat	ed reaction mixture						- 1			
9.0 8.5 8	3.0 7.5 7.0	6.5 6.0 5.	5 5.0 4.5 f1 (ppm)	4.0 3.5 3	.0 2.5 2.0	1.5 1.0 0.	5 0.0			

Figure S148. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

Figure S150. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazoline (entry 2, Table S35).

Figure S151. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 1-methyl-2-phenylimidazole and 2-phenylthiazoline (entry 3, Table S35).

Table S36. Determination of the competition rate constant κ from the labelling experiment between 2-phenylthiazoline and 2-phenyloxazoline.

	Substrate R1	Substrate R2	Catalyst
	N S		Ir-2 [(COD)Ir(IMes)Cl]
Mass	16.3 mg	14.7 mg	3.2 mg

Deuteration expected at δ (**R1**) = 7.86 – 7.81 ppm and at δ (**R2**) = 7.98 – 7.93 ppm Determined against integral at δ (**R1**) = 3.41 ppm and at δ (**R2**) = 4.06 ppm

Spectral details of the deuterated reaction mixture:

¹H NMR (400 MHz, CDCl₃) δ = 7.98 – 7.93 (m, 2H/D **R2**), 7.86 – 7.81 (m, 2H/D, **R1**), 7.51 – 7.36 (m, 3H, **R1** and 3H, **R2**), 4.49 – 4.40 (m, 2H, **R1** and 2H, **R2**), 4.06 (t, *J* = 9.5 Hz, 2H, **R2**), 3.41 (t, *J* = 8.4 Hz, 2H, **R1**).

Entry	$\begin{split} I_{R1(t)} \\ N = 2H \end{split}$	$\begin{split} I_{R1(0)} \\ N &= 2 H \end{split}$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N = 2H \end{split}$	$I_{R2(0)}$ $N = 2H$	$%D_{R2}$	κ			
1	1.47	2.45	40	1.50	2.00	25	1.78			
2	1.88	2.76	32	1.62	2.00	19	1.82			
3	1.47	2.49	41	1.50	2.00	25	1.83			
	Average $\kappa = 1.81$									

Figure S152. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

D327415 Person kpb19112 DT-80-1 @proton CDCl3 {C:\NMRdata} DJN 32

Figure S155. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylthiazoline and 2-phenyloxazoline (entry 3, Table S36).

Table S37. Determination of the competition rate constant κ from the labelling experiment betwee	en 2-
phenylpyrimidine and 2-phenylpyridine.	

	Substrat	e R1	Su	bstrate R2		Catalys	st			
	Ph			h N		Ir-2 [(COD)Ir(IMes)Cl]				
Mass	15.6 r	ng	15.5 mg 3.2 mg							
Deuteration	Deuteration expected at δ (R1) = 8.49 - 8.42 ppm and at δ (R2) = 8.02 - 7.97 ppm									
Determined	Determined against integral at δ (R1) = 8.80 ppm and at δ (R2) = 7.77 - 7.70 ppm									
Spectral de	Spectral details of the deuterated reaction mixture:									
¹ H NMR (4	100 MHz, CE	δCl_3 $\delta = 8.80$	(d, J = 4.8)	Hz, 2H, R1),	8.73 - 7.67	(m, 1H, R2),	8.49 - 8.42			
(m, 2H/D, 2	R1), $8.02 - 7$.97 (m, 2H/D	R2), 7.77 –	7.70 (m, 2H,	R2), 7.52 –	7.39 (m, 3H,	R1 and 3H,			
R2), 7.25 –	7.20 (m, 1H	, R2), 7.17 (t,	J = 4.8 Hz,	1H, R1).						
Entry	$\begin{split} I_{R1(t)} \\ N = 2H \end{split}$	$I_{R1(0)} \\ N = 2H$	%D _{R1}	$\begin{split} I_{R2(t)} \\ N = 2H \end{split}$	$\begin{split} I_{R2(0)} \\ N = 2H \end{split}$	$%D_{R2}$	κ			
1	1.70	2.00	15	1.75	2.01	13	1.17			
2	1.52	2.00	24	1.58	1.96	19	1.27			
3	1.56	2.00	22	1.66	2.00	17	1.33			
	$Average \kappa = 1.26$									

Figure S156. Stacked ¹H NMR (400 MHz, CDCl₃) of non-deuterated substrates and reaction mixture.

D328079 Person kpb19112 DT-86-1 @proton CDCI3 {C:\NMRdata} DJN 30

10.2 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 fl (ppm)

Figure S157. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyrimidine and 2-phenylpyridine (entry 1, Table S37).

Figure S158. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyrimidine and 2-phenylpyridine (entry 2, Table S37).

Figure S159. ¹H NMR (400 MHz, CDCl₃) of the competition experiment between 2-phenylpyrimidine and 2-phenylpyridine (entry 3, Table S37).

	_						
	Substrat	e R1	Su	bstrate R2		Cataly	st
	1					т о	
		[/] N	_	N N		Ir-2	
		н	Р	'h´ N			(les)CI
Mass	14.4 r	ng		14.4 mg		3.2 mg	
Deuteration	n expected at	$\delta (\mathbf{R1}) = 7.93$	8 – 7.90 ppm	\mathbf{a} and at δ (R)	(2) = 7.87 - 7.8	32 ppm	
Determined	d against integ	gral at δ (R1)	= 7.52 - 7.4	1 ppm and a	at δ (R2) = 8.4	9 ppm	
Spectral de	etails of the de	euterated rea	ction mixtur	e:			
¹ H NMR (4	400 MHz, DN	$(\text{ISO-}d_6) \delta = 1$	12.51 (br, 1H	I, R1), 8.49 ((d, J = 2.5 Hz,	1H, R2), 7.9	98 – 7.90
(m, 2H/D, 1	R1), 7.87 – 7	.82 (m, 2H/D	, R2), 7.74 (d, $J = 1.5$ Hz	z, 1H, R1), 7.5	52 – 7.41 (m,	2H, R1
and 2H, R 2	2), 7.36 – 7.29	9 (m, 1H, R1	and 1H, R2), 7.14 (br, 2)	H, R1), 6.55 -	- 6.52 (m, 1H	, R 2).
Entry	$I_{R1(t)}$ N – 211	$I_{R1(0)}$ N – 211	$%D_{R1}$	$I_{R2(t)}$ N – 211	$I_{R2(0)}$ N – 111	$%D_{R2}$	κ
1	$N = 2\Pi$	$N = 2\Pi$	50	$N = 2\Pi$	$N = I\Pi$	6	10.70
2	1.08	2.25	52 51	1.87	1.00	0	10.79
3	1.04	2.11	51	1.87	1.00	6	10.55
	1.00	2.15	Average	$\kappa = 10.91$	1.00	0	11.45
$^{a}I_{R1(t)} = 4.22$	3−1.00×2; ^b I _F	$a_{1(t)} = 4.11 - 1.$	00×2 ; ^c I _{R1(t)}	= 4.15–1.00>	×2;		
non-deute	erated 2-phenylimic	lazole					
							- 3
non-deute	erated 1-phenylpyr	azole					
		1					- 2
doutorato	d reaction mixture						
Gedierate							
		I.					– 1
					1		
				·······			
3.0 12.5 12.0 11.	.5 11.0 10.5 10.0	9.5 9.0 8.5 8	.0 7.5 7.0 6.5 f1 (pp	6.0 5.5 5.0 m)	4.5 4.0 3.5 3.	0 2.5 2.0 1.5	1.0 0.5 0.0

Table S38. Determination of the competition rate constant κ from the labelling experiment between 2-phenylimidazole and 1-phenylpyrazole.

Figure S160. Stacked ¹H NMR (400 MHz, DMSO-*d*₆) of non-deuterated substrates and reaction mixture.

Figure S162. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between 2-phenylimidazole and 1-phenylpyrazole (entry 2, Table S38).

phenylimidazole and 1-phenylpyrazole (entry 3, Table S38).

	Substrate R1		Su	bstrate R2		Catalyst				
	N	N H	Ph			Ir-2 [(COD)Ir(IMes)C				
Mass	14.4 n	ng		15.5 mg		3.2 m	g			
Deuteration	expected at	$\delta (\mathbf{R1}) = 7.98$	– 7.92 ppm	and at δ (R 2	k = 8.11 - 8.0	6 ppm				
Determined	against integ	gral at δ (RI)	= 1.53 - 1.4	0 ppm and at	$t \delta(\mathbf{R}2) = 7.9$	0 – 7.84 ppm	l			
¹ H NMR (4)	00 MHz DM	$(180-d_c) \delta = 1$	2.51 (br. 1H	e: [R1) 870 -	8 65 (m. 1H	R2) 8 11 – 8	8.06 (m H/D			
R2), 7.98 –	7.92 (m. H/I	D. R1 and 1H.	. R2). 7.90 -	- 7.84 (m. 1H	[. R2), 7.53 –	7.40 (m. 2H.	R1 and 3H.			
R2), 7.37 –	7.30 (m, 1H,	R1 and 1H, 1	R2), 7.14 (b	or, 2H, R1).	.,,,	,,	,			
Entry	$\begin{split} I_{R1(t)} \\ N &= 2H \end{split}$	$\begin{split} I_{R1(0)} \\ N = 2H \end{split}$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N = 2 H \end{split}$	$\begin{split} I_{R2(0)} \\ N = 1 H \end{split}$	$%D_{R2}$	К			
1	0.74 ^a	2.06 ^d	64	1.73	1.00	14	7.06			
2	0.80 ^b	2.06 ^e	61	1.78	1.00	11	8.12			
3	0.72 °	1.94 ^f	64	1.74	1.00	13	7.30			
	Average $\kappa = 7.49$									
${}^{a}I_{R1(t)} = 1.74$	$-1.00; {}^{b}I_{R1(t)}$	= 1.80-1.00; °	$I_{R1(t)} = 1.72$	-1.00;						
d I _{R1(0)} = 5.0	6-1.00×3; ^e I	$_{R1(0)} = 5.06-1.$	00×3 ; ^f I _{R1(0)}	= 4.99 - 1.00	×3;					
non-deuterat	ed 2-phenylimidazo	ble					- 3			
non-deutera	ted 2-phenylpyridin	e								
					н ₂ о		- 2			
			. Iu							
deuterated	reaction mixture									
					I		- 1			
			M		H ₂ O					

Table S39. Determination of the competition rate constant κ from the labelling experiment between 2phenylimidazole and 2-phenylpyridine.

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

Figure S164. Stacked ¹H NMR (400 MHz, DMSO-d₆) of non-deuterated substrates and reaction mixture.

Figure S165. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between 2-phenylimidazole and 1-phenylpyridine (entry 1, Table S39).

Figure S166. ¹H NMR (400 MHz, DMSO-*d*₆) of the competition experiment between 2-phenylimidazole and 1-phenylpyridine (entry 2, Table S39).

phenylimidazole and 1-phenylpyridine (entry 3, Table S39).

Table S40. Determination of the competition rate constant κ from the labelling experiment between	2-
phenylimidazoline and 2-phenylpyridine.	

	Substrat	e R1	Su	bstrate R2		Catalyst Ir-2 [(COD)Ir(IMes)Cl]		
			Ρ	h N				
Mass	14.6 r	ng		15.5 mg		3.2 mg		
Deuteration expected at δ (R1) = 7.90 - 7.81 ppm and at δ (R2) = 8.11 - 8.06 ppm								
Determined against integral at δ (R1) = 3.61 ppm and at δ (R2) = 7.97 – 7.93 ppm								
Spectral details of the deuterated reaction mixture:								
¹ H NMR (400 MHz, DMSO- d_6) $\delta = 8.70 - 8.64$ (m, 1H, R2), 8.11 - 8.06 (m, 2H/D, R2), 7.97 - 7.93								
(m, 1H, R2), 7.90 – 7.81 (m, 2H/D, R1 and 1H, R2), 7.53 – 7.39 (m, 3H, R1 and 3H, R2), 7.36 –								
7.29 (m, 11	H, R2), 3.61 (m, 4H, R1).						
Entry	$\begin{split} I_{R1(t)} \\ N = 2H \end{split}$	$\begin{split} I_{R1(0)} \\ N = 4 H \end{split}$	$%D_{R1}$	$\begin{split} I_{R2(t)} \\ N &= 2 H \end{split}$	$\begin{split} I_{R2(0)} \\ N = 1 H \end{split}$	$%D_{R2}$	κ	
1	0.86 ^a	3.48	51	1.72	1.00	14	4.67	
2	1.17 ^b	3.37	31	1.81	1.00	10	3.65	

Average $\kappa = 4.38$

1.84

8

1.00

4.83

33

 $\label{eq:IR10} {}^{a}\,I_{R1(0)} = 1.86\text{-}1.00; \ {}^{b}\,I_{R1(0)} = 2.17\text{-}1.00; \ {}^{c}\,I_{R1(0)} = 2.14\text{-}1.00;$

3.41

1.14^c

3

Figure S168. Stacked ¹H NMR (400 MHz, DMSO- d_6) of non-deuterated substrates and reaction mixture.

D332368 Person kpb19112 DT-49 @proton DMSO {C:\NMRdata} DJN 27

Figure S170. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between 2-phenylimidazoline and 2-phenylpyridine (entry 2, Table S40).

Figure S171. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between 2-phenylimidazoline and 2-phenylpyridine (entry 3, Table S40).

Table S41. Determination of the competition rate constant κ from the labelling experiment between 2-
phenylimidazoline and 2-phenylimidazole.

	Substrate R1		Sul	bstrate R2		Catalyst		
			N N N N N H			Ir-2 [(COD)Ir(IMes)Cl]		
Mass	14.6 mg		14.4 mg			3.2 mg		
Deuteration expected at δ (R1) = 7.86 – 7.80 ppm and at δ (R2) = 7.98 – 7.90 ppm Determined against integral at δ = 3.61 ppm for R1 and at δ = 7.36 – 7.29 ppm for R2 <i>Spectral details of the deuterated reaction mixture:</i> ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ = 7.98 – 7.90 (m, 2H/D, R2), 7.86 – 7.80 (m, 2H/D, R1), 7.50 – 7.38 (m, 3H, R1 and 3H, R2), 7.36 – 7.29 (m, 1H, R2), 7.13 (br, 2H, R2), 3.61 (s, 4H, P1)								
Entry	$I_{R1(t)}$ $N = 2H$	$I_{R1(0)}$ $N = 4H$	%D _{R1}	$I_{R2(t)}$ $N = 2H$	$I_{R2(0)}$ $N = 1H$	%D _{R2}	κ	
1	1.09	3.41	36	1.39	1.00	31	1.23	
2	1.09	3.47	37	1.26	1.00	37	1.01	
3	1.17	3.58	35	1.33	1.00	34	1.04	
Average $\kappa = 1.09$								
non-deuterated 2-phenylimidazoline -3								
non-deuterate	ed 2-phenylimidazol	e					- 2	

^{13.0} ^{12.5} ^{12.0} ^{11.5} ^{11.0} ^{10.5} ^{10.0} ^{9.5} ^{9.0} ^{8.5} ^{8.0} ^{7.5} ^{7.0} ^{6.5} ^{6.0} ^{6.5} ^{5.0} ^{4.5} ^{4.0} ^{3.5} ^{3.0} ^{2.5} ^{2.0} ^{1.5} ^{1.0} ^{0.5} ^{0.0} ^{Figure S172. Stacked ¹H NMR (400 MHz, DMSO- d_6) of non-deuterated substrates and reaction mixture.}

u h

- 1

deuterated reaction mixture

Figure S174. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between 2-phenylimidazoline and 2-phenylimidazole (entry 2, Table S41).

Figure S175. ¹H NMR (400 MHz, DMSO- d_6) of the competition experiment between 2-phenylimidazoline and 2-phenylimidazole (entry 3, Table S41).

3.5. Linear Regression Analysis.

Table S42. Linear regression analysis for k_{rel} determination for catalyst Ir-1.

H	H	Catalyst: [(COD)Ir(IMes)PPh ₃]BArF ₂₄		Competition F	late Constants						
	Ľ)		Expet	rimental	Calculated f	rom Solver	En	rors	Averaged		
Н Н	~~		κ ^{expti}	$\log \kappa^{exptl}$	$\log \kappa^{calcd}$	κ ^{calcd}	Δ (exptl - calcd)	$(\Delta (exptI - calcd))^2$	κ^{exptl}	κ^{calcd}	$\kappa^{calcd/}\kappa^{exptl}$
k_1 k_2	R2	acetophenone vs benzophenone	0.99 1.01 1.03	-0.01 0.00 0.01	0.003	1.01	-0.02 0.00 0.02	0.00 0.00 0.00	1.01	1.01	1.00
lr-1 D ₂ (limit	ting reagent)	benzamide vs acetophenone	6.14 6.27 6.37	0.79 0.80 0.80	0.80	6.31	-0.17 -0.04 0.06	0.03 0.00 0.00	6.26	6.31	1.01
		acetophenone vs N,N-dimethylbenzamide	3.18 3.74 4.82	0.50 0.57 0.68	0.59	3.91	-0.73 -0.18 0.91	0.54 0.03 0.83	3.91	3.91	1.00
$H/D \qquad DG_1 \qquad DG_2.$	H/D	nitrobenzene vs ethylbenzoate	5.58 6.76 6.71	0.75 0.83 0.83	0.76	5.75	-0.17 1.01 0.96	0.03 1.02 0.92	6.35	5.75	0.91
H/D D/H		acetophenone vs nitrobenzene	3.52 3.19 3.46	0.55 0.50 0.54	0.27	1.86	1.65 1.33 1.60	2.73 1.76 2.56	3.39	1.86	0.55
P1	P2	acetophenone vs ethylbenzoate	9.63 10.58 10.95	0.98 1.02 1.04	1.03	10.71	-1.08 -0.13 0.25	1.17 0.02 0.06	10.38	10.71	1.03
Substrates	k _{rei}	benzamide vs acetanilide	1.35 1.62 1.68	0.13 0.21 0.22	-0.11	0.78	0.57 0.85 0.90	0.33 0.72 0.81	1.55	0.78	0.50
1-methyl-2-phenylimidazole 2-phenyloxazoline	10.13 2.80	acetanilide vs nitrobenzene	15.01 15.63 14.89	1.18 1.19 1.17	1.18	15.14	-0.13 0.49 -0.25	0.02 0.24 0.06	15.18	15.14	1.00
2-phenylpyrimidine	2.66	2-phenylpyridine vs acetophenone	16.92 16.48 16.88	1.23 1.22 1.23	1.22	16.78	0.14 -0.30 0.10	0.02 0.09 0.01	F 16.76	16.78	1.00
2-phenylthiazoline 2-phenylthiazole	2.26	2-phenylpyrimidine vs benzamide	8.90 4.97 7.48	0.95 0.70 0.87	0.85	7.07	1.82 -2.10 0.41	3.32 4.41 0.17	7.12	7.07	0.99
1-phenylpyrazole	1.77	1-phenylpyrazole vs 2-phenylpyridine	1.52 1.82 1.79	0.18 0.26	0.25	1.77	-0.25 0.05	0.06	· 1.71	1.77	1.03
2-phenylpyridine	1.00	2-phenyloxazoline vs 2-phenylpyridine	2.25	0.35	0.45	2.80	-0.55 -0.02	0.30	2.90	2.80	0.96
benzamide	0.48	2-phenylthiazole vs 1-phenylpyrazole	1.01 1.04	0.01 0.02	0.06	1.15	-0.14 -0.11	0.02 0.01	1.07	1.15	1.08
2-phenylbenzothiazole	0.27	2-phenylthiazoline vs 2-phenylthiazole	1.14 1.04 1.02	0.06 0.02 0.01	0.04	1.11	-0.01 -0.07 -0.09	0.00 0.01 0.01	r 1.03	1.11	1.08
acetophenone	0.06	2-phenyloxazoline vs 2-phenylthiazoline	1.03	0.01	0.09	1.24	-0.08 -0.23	0.01	r 1.01	1.24	1.23
nitrobenzene	0.06	2-phenylthiazole vs 2-phenylbenzothiazole	1.01 1.00 7.26	0.00 0.86	0.87	7.48	-0.23 -0.23 -0.22	0.05 0.06 0.05	7.48	7.48	1.00
N,N-dimethylbenzamide	0.02	2.nhanvlavridine vs 2.nhanvlbenzathiazale	7.71 7.48 3.45	0.89 0.87 0.54	0.57	3.68	0.23 0.00	0.05	3.67	3.68	1.00
ethylbenzoate	0.01	e prenypyriume vs z-prienybenzounazole	4.05	0.61 0.55	0.57	5.00	0.38 -0.16	0.03	5.07	5.00	1.00
All k_{rel} constrained >= 0.001		1-methyl-2-phenylimidazole vs 2-phenylthiazoline	4.43 5.97 3.18	0.65 0.78 0.50	0.65	4.49	-0.05 1.49 -1.30	0.00 2.21 1.70	4.53	4.49	0.99
$\log \kappa = \log \kappa_1 - \log \kappa_2$		1-methyl-2-phenylimidazole vs 2-phenylpyridine	10.95 8.69 10.68	1.04 0.94 1.03	1.01	10.13	0.82 -1.43 0.55	0.67 2.05 0.31	r 10.11	10.13	1.00
		2-phenylpyridine vs 2-phenylpyrimidine	1.28 1.11 1.18	0.11 0.05 0.07	-0.42	0.38	0.90 0.73 0.81	0.81 0.54 0.65	1.19	0.38	0.32

Sum of squares of errors: 32.51

ų	ų	Catabet: [/CODNr/IMecVCI]		Competitio	n Constants						
DG1	DG ₂		Expet	rimental	Calculated fr	om Solver	Erro	ors	Averaged		
			κ^{exptl}	$\log \kappa^{expti}$	$\log \kappa^{calcd}$	€ Calcd	Δ (exptl - calcd)	$(\Delta (exptl - calcd))^2$	κ ^{expti}	K calcd	$\kappa^{calcd}\kappa^{expt}$
R1	R2	acetophenone vs benzamide	1.42 1.50 1.66	0.15 0.18 0.22	0.38	2.37	-0.95 -0.87 -0.71	0.90 0.75 0.51	1.53	2.37	1.55
	lr-2	benzenesulfonamide vs acetophenone	1.07 1.39 1.27	0.03 0.14 0.10	0.34	2.17	-1.09 -0.78 -0.89	1.19 0.61 0.80	1.24	2.17	1.74
	D ₂ (limiting reagent)	acetophenone vs N,N-dimethylbenzamide	9.87 9.24 10.09	0.99 0.97 1.00	0.99	9.73	0.13 -0.49 0.35	0.02 0.24 0.13	9.73	9.73	1.00
H/D b	H/D	benzenesulfonamide vs benzamide	5.44 6.30 4.84	0.74 0.80 0.68	0.71	5.14	0.30 1.16 -0.30	0.09 1.35 0.09	5.53	5.14	0.93
H/D	D/H	1-phenylpyrazole vs acetophenone	28.94 28.05 32.17	1.46 1.45 1.51	1.47	29.72	-0.78 -1.67 2.45	0.61 2.79 6.00	29.72	29.72	1.00
P1	P2	benzenesulfonamide vs methylphenylsulfone	32.07 40.55 43.56	1.51 1.61 1.64	1.59	38.73	-6.66 1.82 4.83	44.34 3.33 23.37	38.73	38.73	1.00
Substrates	k _{rel}	1-phenylpyrazole vs 2-phenylpyridine	1.44 1.32 1.37	0.16 0.12 0.14	-0.19	0.64	0.80 0.68 0.74	0.64 0.47 0.54	1.38	0.64	0.46
2-phenylimidazole 2-phenylimidazoline	7.11 4.45	2-phenyloxazoline vs 2-phenylpyridine	1.46 1.33 1.43	0.16 0.12 0.16	-0.41	0.39	1.07 0.95 1.04	1.15 0.89 1.09	1.41	0.39	0.27
1-methyl-2-phenylimidazo	ble 3.08	1-phenylpyrazole vs 2-phenylthiazole	1.58 1.79 1.49	0.20 0.25 0.17	0.43	2.70	-1.12 -0.90 -1.21	1.25 0.81 1.46	1.62	2.70	1.66
2-phenylpyrimidine 2-phenylthiazoline	1.26	2-Phenylthiazoline vs 2-phenyloxazoline	1.78 1.82 1.83	0.25 0.26 0.26	0.42	2.64	-0.87 -0.82 -0.81	0.75 0.67 0.65	1.81	2.64	1.46
2-phenylpyridine	1.00	1-methyl-2-phenylimidazole vs 2-phenylpyridine	2.26 1.84 1.93	0.35 0.27 0.28	0.49	3.08	-0.82 -1.24 -1.15	0.67 1.53 1.33	2.01	3.08	1.53
1-phenylpyrazole 2-phenyloxazoline	0.64	1-methyl-2-phenylimidazole vs 2-phenyloxazoline	8.55 7.61 8.74	0.93 0.88 0.94	0.90	7.98	0.57 -0.36 0.77	0.32 0.13 0.59	8.30	7.98	0.96
2-phenylthiazole	0.24	1-methyl-2-phenylimidazole vs 2-phenylthiazole	12.98 14.29 12.39	1.11 1.15 1.09	1.11	13.00	-0.01 1.29 -0.61	0.00 1.66 0.37	13.22	13.00	0.98
benzenesulfonamide acetophenone	0.05	1-methyl-2-phenylimidazole vs 2-phenylthiazoline	2.78 1.82 2.28	0.44 0.26 0.36	0.48	3.02	-0.24 -1.20 -0.74	0.06 1.43 0.55	2.29	3.02	1.32
benzamide	0.01	2-Phenylpyrimidine vs 2-phenylpyridine	1.17 1.27 1.33	0.07 0.10 0.12	0.10	1.26	-0.09 0.01 0.07	0.01 0.00 0.01	1.26	1.26	1.00
N,N-dimethylbenzamide methylphenylsulfone	0.002	2-phenylimidazoline vs 2-phenylimidazole	1.03 1.01 1.04	0.09 0.00 0.02	-0.20	0.63	0.60 0.38 0.42	0.36 0.14 0.17	1.09	0.63	0.57
,		2-phenylimidazole vs 2-phenylpyridine	7.06 8.12 7.30	0.85 0.91 0.86	0.85	7.11	-0.05 1.01 0.19	0.00 1.02 0.04	7.49	7.11	0.95
All k_{rel} constrained >= 0.0 log $K = \log K_1 - \log K_2$	001	2-phenylimidazole vs 1-phenylpyrazole	10.79 10.53 11.43	1.03 1.02 1.06	1.05	11.13	-0.35 -0.61 0.30	0.12 0.37 0.09	r 10.91	11.13	1.02
		2-phenylimidazoline vs 2-phenylpyridine	4.67 3.65 4.83	0.67 0.56 0.68	0.65	4.45	0.22 -0.80 0.38	0.05 0.63 0.14	4.38	4.45	1.01

Table S43. Linear regression analysis for k_{rel} determination for catalyst Ir-2.

All	k _{rel} co	nstra	ined	>=	0.001

Sum of squares	
of errors:	109.301

Figure S176. Plot of experimental *versus* calculated (from linear regression) competition constants κ for catalyst **Ir-1**.

Figure S177. Plot of experimental *versus* calculated (from linear regression) competition constants κ for catalyst **Ir-2**.

4. Intramolecular Competition Experiments

4.1. General Information

General Procedure (GP2)

The substrate (0.10 mmol) and the catalyst (0.005 mmol) of choice were added to one J. Young Schlenk flask under air. The solvent, DCM (6 mL), was added in such a way to rinse the inner walls of the flask. The flask was then sealed (with gas inlet left open) under air before being cooled in a dry ice–acetone bath. The flask was evacuated and flushed with deuterium three times *via* a balloon. The gas inlet was then closed with fast thread tap, creating a sealed atmosphere of deuterium. After sealing the flask was placed in the thermostated water bath at 25 °C and the reaction timer was started. The reaction mixture was stirred for 1 h (for catalyst **Ir-1**) or 16 h (for catalyst **Ir-2**) before removing excess deuterium and replacing it with air. The reaction mixture was quenched with few drops of MeCN and transferred to a single necked flask together with washings (DCM) before removing the solvent under reduced pressure. The residue was dissolved in a small portion of 1:1 mixture of petroleum ether with diethyl ether (or ethyl acetate) and passed through a short plug of silica, eluting with a 1:1 mixture of petroleum ether with ethyl acetate where necessary, depending on the substrates used. The solvent was evaporated under reduced pressure and the residue was analysed directly by ¹H NMR spectroscopy.

Determination of Competition Rate Constants

The level of deuterium incorporation (%D) in the substrates was determined by ¹H NMR. The integrals were calibrated against a peak corresponding to a position not expected to be labelled. Equations S-6 and S-7 were used to calculate the extent of labelling and competition rate constant κ' :

$$\%D = 100 - \left(\frac{\text{residual integral}}{\text{number of labelling sites}} \times 100\%\right)$$
(S-6)

$$\kappa' = \frac{\% D_{A}}{\% D_{B}} = \frac{2 - \text{residual integral } H_{A}}{2 - \text{residual integral } H_{B}}$$
(S-7)

4.1. Competition Experiments with [(COD)Ir(IMes)PPh3]BArF24 (Ir-1)

Labelling of *p*-nitroacetophenone

According to GP2: 16.5 mg of substrate and 8.7 mg of catalyst

Spectral details of the reaction mixture:

¹H NMR (400 MHz, CDCl₃) δ = 8.33 – 8.30 (m, 2H, H/D_B), 8.13 – 8.09 (m, 2H, H/D_A), 2.68 (s, 3H, CH₃)

Deuteration expected at δ (H_A) = 8.13 – 8.09 ppm and δ (H_B) = 8.33 – 8.30 ppm.

Determined against integral at $\delta = 2.68$ ppm.

Table S44. Determination of the competition rate constant κ' from the labelling of *p*-nitroacetophenone.

	residual integral		residual integral		
Entry	(H/D_A)	$\% D_A$	(H/D_B)	$\% D_B$	ĸ
1	0.84	58	1.13	44	1.33
2	1.12	44	1.32	34	1.29
3	0.97	52	1.22	39	1.32
Average		51		39	1.32

Figure S178. ¹H NMR (400 MHz, CDCl₃) of labelled *p*-nitroacetophenone (entry 1, Table S44)

Figure S180. ¹H NMR (400 MHz, CDCl₃) of labelled *p*-nitroacetophenone (entry 3, Table SX)

Labelling of ethyl 4-nitrobenzoate

According to GP2:19.5 mg of substrate and 8.7 mg of catalyst *Spectral details of the reaction mixture:*

¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.26 (m, 2H, H/D_A), 8.23 – 8.18 (m, 2H, H/D_B), 4.43 (q, *J* = 7.1 Hz, 2H, CH₂), 1.42 (t, *J* = 7.1 Hz, 3H, CH₃).

Deuteration expected at δ (H_A) = 8.30 – 8.26 ppm and δ (H_B) = 8.23 – 8.18 ppm. Determined against integral at δ = 4.43 ppm.

Table S45. Determination of the competition rate constant κ' from the labelling of ethyl 4-nitrobenzoate.

Figure S181. ¹H NMR (400 MHz, CDCl₃) of labelled ethyl 4-nitrobenzoate (entry 1, Table S45)

Figure S183. ¹H NMR (400 MHz, CDCl₃) of labelled ethyl 4-nitrobenzoate (entry 3, Table S45)

Labelling of 4-acetyl-1-(pyridin-2-yl)benzene

According to GP2: 19.7 mg of substrate and 8.7 mg of catalyst Spectral details of the reaction mixture:

¹H NMR (400 MHz, CDCl₃) $\delta = 8.76 - 8.68$ (m, 1H, Ar), 8.12 - 8.08 (m, 2H, H_A), 8.07 - 8.03 (m, 2H, H_B), 7.80 – 7.75 (m, 2H, Ar), 7.31 – 7.26 (m, 1H, Ar), 2.65 (s, 3H, CH₃).

Deuteration expected at δ (H_A) = 8.12 - 8.08 ppm and δ (H_B) = 8.07 - 8.03 ppm.

Determined against integral at $\delta = 2.65$ ppm.

Note: Small signals, corresponding to the Ir-1 catalyst, were present in the ¹H NMR spectra, however there is no overlap with the substrate signals.

Table S46. Determination of the competition rate constant κ' from the labelling of 4-acetyl-1-(pyridin-2-yl)benzene.

	_	residual integral	% D _A	residual integral	% D _B	ĸ
	Entry	(H/D_A)		(H/D_B)	5	
	1	1.51	25	1.97	1.5	16.33
	2	1.66	17	1.98	1.0	17.00
	3	1.55	23	1.97	1.5	15.00
A	verage		21		1.3	16.11

D324682 Person kpb19112 DT-68-1 @proton CDCl3 {C:\NMRdata} DJN 14

Figure S184. ¹H NMR (400 MHz, CDCl₃) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 1, Table S46)

Figure S186. ¹H NMR (400 MHz, CDCl₃) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 3, Table S46)

Labelling of 2-(4-acetyl)phenyloxazoline

According to GP2: 18.9 mg of substrate and 8.7 mg of catalyst Spectral details of the reaction mixture:

¹H NMR (400 MHz, CDCl₃) $\delta = 8.06 - 8.01$ (m, 2H, H_A), 8.01 - 7.96 (m, 2H, H_B), 4.47 (t, J = 9.6 Hz, 3H, CH₂), 4.10 (t, *J* = 9.6 Hz, 2H, CH₂), 2.62 (s, 3H, CH₃).

Deuteration expected at δ (H_A) = 8.06 - 8.01 ppm and δ (H_B) = 8.01 - 7.96 ppm.

Determined against integral at $\delta = 4.47$ ppm.

Note: Small signals, corresponding to the Ir-1 catalyst, were present in the ¹H NMR spectra, however they do not overlap with the substrate signals.

Table S47. Determination of the competition rate constant κ' from the labelling of 2-(4acetyl)phenyloxazoline.

		residual integral		residual integral		
E	Entry	(H/D_A)	$\% D_A$	(H/D_B)	$\% D_B$	ĸ
	1	0.41	80	1.96	2.0	39.75
	2	0.44	78	1.96	2.0	39.00
	3	0.76	62	1.97	1.5	41.33
Av	erage		73		1.8	40.03

0.0

0.5

Figure S189. ¹H NMR (400 MHz, CDCl₃) of labelled 2-(4-acetyl)phenyloxazoline (entry 3, Table S47)

Labelling of 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole

According to GP2: 22.4 mg of substrate and 8.7 mg of catalyst *Spectral details of the reaction mixture:*

¹H NMR (400 MHz, C_6D_6) $\delta = 8.56 - 8.51$ (m, 1H, Ar-H), 8.36 - 8.32 (m, 1H, H_A), 8.17 - 8.11 (m, 2H, H_B), 7.25 - 7.21 (m, 1H, Ar-H), 7.11 - 7.04 (m, 1H, Ar-H), 6.66 - 6.61 (m, 1H, Ar-H), 3.77 - 2.60 (m, 2H, GH)

3.69 (m, 2H, CH₂), 3.67 – 3.58 (m, 2H, CH₂).

Deuteration expected at δ (H_A) = 8.36 – 8.32 ppm and δ (H_B) = 8.17 – 8.11 ppm. Determined against integral at δ = 6.66 – 6.61 ppm.

Note: Small signals, corresponding to the **Ir-1** catalyst, were present in the ¹H NMR spectra, however they do not overlap with the substrate signals.

Table S48. Determination of the competition rate constant κ' from the labelling of 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole.

	residual integral		residual integra	1	
Entry	(H/D_A)	$\% D_A$	(H/D_B)	$\% D_B$	κ΄
1	0.80	60	1.45	28	2.18
2	0.42	79	1.57	22	3.67
3	0.48	76	1.62	19	4.00
Average		72		23	3.29

D328680

Person kpb19112 DT-88-1

@proton C6D6 {C:\NMRdata} DJN 4

	8
8.54 8.53 8.35 8.35 8.35 8.35 8.35 8.15 8.15	7.24 7.22 7.16 7.09 7.07 7.05 6.65 6.65 6.65
~~~//	



**Figure S190**. ¹H NMR (400 MHz, C₆D₆) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 1, Table S48)



**Figure S192**. ¹H NMR (400 MHz, C₆D₆) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 3, Table S48)

#### 4.2. Competition Experiments with (COD)Ir(IMes)Cl (Ir-2)

Labelling of 4-acetyl-1-(pyridin-2-yl)benzene



According to GP2: 19.7 mg of substrate and 3.2 mg of catalyst *Spectral details of the reaction mixture:* 

¹H NMR (400 MHz, CDCl₃)  $\delta$  = 8.76 – 8.72 (m, 1H), 8.13 – 8.09 (m, 2H, H_A), 8.09 – 8.04 (m, 2H, H_B), 7.82 – 7.78 (m, 2H, Ar), 7.33 – 7.27 (m, 1H, Ar), 2.65 (s, 3H, CH₃).

Deuteration expected at  $\delta$  (H_A) = 8.13 – 8.09 ppm and  $\delta$  (H_B) = 8.09 – 8.04 ppm. Determined against integral at  $\delta$  = 2.65 ppm.

**Table S49.** Determination of the competition rate constant  $\kappa'$  from the labelling of 4-acetyl-1-(pyridin-2-yl)benzene.

Entry	residual integral	% D _A	residual integral	% D _B	ĸ
	$(H/D_A)$		$(H/D_B)$		
1	1.32	34	1.96	2	17.00
2	1.52	24	1.97	2	16.00
3	1.21	40	1.95	3	15.80
Average		33		2	16.27

D324684 Person kpb19112 DT-71-1 @proton CDCl3 {C:\NMRdata} DJN 16



**Figure S193**. ¹H NMR (400 MHz, CDCl₃) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 1, Table S49).



S49). D330953 Person kpb19112 DT-100-2 @proton CDCl3 {C:\NMRdata} DJN 57



**Figure S195**. ¹H NMR (400 MHz, CDCl₃) of labelled 4-acetyl-1-(pyridin-2-yl)benzene (entry 3, Table S49).

#### Labelling of 2-(4-acetyl)phenyloxazoline



According to GP2: 18.9 mg of substrate and 3.2 mg of catalyst Spectral details of the reaction mixture: ¹H NMR (400 MHz, CDCl₃)  $\delta = 8.06 - 8.01$  (m, 2H, H_A), 8.01 - 7.96 (m, 2H, H_B), 4.47 (t, J = 9.6 Hz, 3H, CH₂), 4.10 (t, J = 9.6 Hz, 2H, CH₂), 2.62 (s, 3H, CH₃). Deuteration expected at  $\delta$  (H_A) = 8.06 - 8.01 ppm and  $\delta$  (H_B) = 8.01 - 7.96 ppm. Determined against integral at  $\delta = 4.47$  ppm.

**Table S50.** Determination of the competition rate constant  $\kappa'$  from the labelling of 2-(4-acetyl)phenyloxazoline.

Entry	residual integral	% D _A	residual integral	% D _B	κ΄
	$(H/D_A)$		$(H/D_B)$		
1	1.41	30	1.93	4	8.43
2	1.27	37	1.93	4	10.43
3	0.48	76	1.88	6	12.67
Average		47		4	10.51

D324699 Person kpb19112 DT-72-1

@proton CDCl3 {C:\NMRdata} DJN 31



Figure S196. ¹H NMR (400 MHz, CDCl₃) of labelled 2-(4-acetyl)phenyloxazoline (entry 1, Table S50)







Figure S198. ¹H NMR (400 MHz, CDCl₃) of labelled 2-(4-acetyl)phenyloxazoline (entry 3, Table S50)

Labelling of 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole



According to GP2: 22.4 mg of substrate and 3.2 mg of catalyst Spectral details of the reaction mixture:

¹H NMR (400 MHz,  $C_6D_6$ )  $\delta = 8.56 - 8.51$  (m, 1H, Ar-H), 8.36 - 8.32 (m, 1H, H_A), 8.17 - 8.11 (m, 2H, H_B), 7.25 – 7.21 (m, 1H, Ar-H), 7.11 – 7.04 (m, 1H, Ar-H), 6.66 – 6.61 (m, 1H, Ar-H), 3.77 – 3.58 (m, 4H, 2×CH₂).

Deuteration expected at  $\delta$  (H_A) = 8.36 – 8.32 ppm and  $\delta$  (H_B) = 8.17 – 8.11 ppm. Determined against integral at  $\delta = 6.66 - 6.61$  ppm.

Table S51. Determination of the competition rate constant  $\kappa$ ' from the labelling of 2-(4-(pyridin-2yl)phenyl)-4,5-dihydrooxazole.

Entry	residual integral	% D _A	residual integral	% D _B	к'
_	$(H/D_A)$		$(H/D_B)$		
1	1.53	24	1.74	13	1.81
2	1.59	21	1.79	11	1.95
3	1.53	24	1.79	11	2.24
Average		23		11	2.00

D328065

Person kpb19112 DT-87-1

@proton C6D6 {C:\NMRdata} DJN 17



76	74	23	2	99.	63	61	60	
m.	m	m	m	m	m	m	m	
5		5	1	2	1	_	_	



Figure S199. ¹H NMR (400 MHz, C₆D₆) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 1, Table S51)



**Figure S200**. ¹H NMR (400 MHz, C₆D₆) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 2, Table S51)

© 230760 Person kpb19112 DT-87-3 @proton C6D6 {C:\NMRdata} DJN 16

0	
62 62 62 62 62 62 62 62 62 62 62 62 62 6	51 27 27 27 27 27 27 27 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27
	ต่ต่ต่ต่ต่ต่



**Figure S201**. ¹H NMR (400 MHz, C₆D₆) of labelled 2-(4-(pyridin-2-yl)phenyl)-4,5-dihydrooxazole (entry 3, Table S51)

## 5. References.

- [S1] A. Beillard, X. Bantreil, T.-X. Métro, J. Martinez and F. Lamaty, *Dalton Trans.*, 2016, 45, 17859-17866.
- [S2] M. Trose, F. Lazreg, M. Lesieur and C. S. J. Cazin Green Chem., 2015, 17, 3090-3092.
- [S3] M. Debdab, F. Mongin and J. P. Bazureau, Synthesis, 2006, 23, 4046-4052.
- [S4] M. Trose, F. Lazreg, M. Lesieur and C. S. J. Cazin, J. Org. Chem. 2015, 80 (20), 9910-9914.
- [S5] N. A. Yakelis and R. G. Bergman, Organometallics, 2005, 24, 3579–3581.
- [S6] A. J. Martínez-Martínez and A. S. Weller, Dalton Trans., 2019, 48, 3551-3554.
- [S7] A. R. Cochrane, S. Irvine, W. J. Kerr, M. Reid, S. Andersson and G. N. Nilsson, J. Label. Compd. Radiopharm., 2013, 56, 451-454.
- [S8] A. R. Kennedy, W. J. Kerr, R. Moir and M. Reid, Org. Biomol. Chem., 2014, 12, 7927-7931.
- [S9] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176-2179.
- [S10] J. H. Kim, R. T. Mertens, A. Agarwal, S. Parkin, G. Berger and S. G. Awuah, *Dalton Trans.*, 2019, 48, 6273-6282.
- [S11] M. R. Kumar, K. Park and S. Lee, Adv. Synth. Catal, 2010, 352, 3255-3266.
- [S12] A. S. B. Prasad, T. M. Stevenson, J. R. Citineni, V. Nyzam and P. Knochel, *Tetrahedron* 1997, 53, 7237-7254.
- [S13] C. M. Zinser, K. G. Warren, R. E. Meadows, F. Nahra, A. M. Al-Majid, A. Barakat, M. S. Islam, S. P. Nolan and C. S. J. Cazin, *Green Chem.*, 2018, 20, 3246-3252
- [S14] J. B. Badiang and J. Aubé, J. Org. Chem., 1996, 61 (7), 2484-2487.
- [S15] W.-C. Chen, Y.-C. Hsu, W.-C. Shih, C.-Y. Lee, W.-H. Chuang, Y.-F. Tsai, P. P.-Y. Chen and T.-G. Ong, *Chem. Commun.*, 2012, 48, 6702-6704.

## 6. Copies of NMR Spectra 6.1. ¹H and ¹³C{¹H} NMR of synthesised substrates

N,N'-dimesitylethanediimine

¹H NMR (400 MHz, CDCl₃)

D317246.1.fid Person kpb19112 DT-1 @proton CDCI3 {C:\NMRdata} DJN 49







0 100 f1 (ppm) . 200 190 . 180 . 170 . 150 140 . 130 . 110 . 80 , 70 50 30 . 20 10 160 120 90 60 40



## ¹⁹**F NMR** (376 MHz, acetone-*d*₆)

D321566
Person kpb19112
DT-33-NaBArF
@19F Acetone {C:\NMRdata} DJN 40

-10 -20 -30 -40 -50 -60 -70 -100 f1 (ppm) -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 ¹¹**B** NMR (128 MHz, acetone- $d_6$ ) D 11111 (120 1911) D321566 Person kpb19112 DT-33-NaBArF @B11 Acetone {C:\NMRdata} DJN 40 



*[(COD)Ir(IMes)(PPh₃)]BArF*₂₄**Ir-1** ¹**H NMR** (400 MHz, CDCl₃)

D323541 Person kpb19112 DT-40-2a @proton CDCI3 {C:\NMRdata} DJN 10







## 2-Phenylthiazole

# ¹H NMR (400 MHz, CDCl₃) D31863 Person kpb19112 DT-DG-10 @proton CDCl3 {C:\NMRdata} DJN 21

7.99
 7.38
 7.38
 7.48
 7.42
 7.42
 7.42
 7.33
 7.26 CDCI3










2-(4-cyano)phenylpyridine ¹H NMR (400 MHz, CDCl₃) D260096 Person 23-3 100816-1 @proton CDCl3 {C:\NMRdata} DJN 1









Benzophenone ¹**H NMR** (400 MHz, CDCl₃) 7.83 7.82 7.80 7.80 7.80 7.51 7.55 7.55 7.47 7.47 7.47 7.48 7.47 7.48





Benzamide ¹**H NMR** (400 MHz, DMSO-*d*₆)









*Nitrobenzene* ¹**H NMR** (400 MHz, DMSO-*d*₆













2-Phenylbenzothiazole ¹H NMR (400 MHz, CDCl₃)



2-Phenylimidazoline ¹**H NMR** (400 MHz, DMSO-d₆

