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Abstract: We report how the complex intra-pulse polarization dynamics of coherent optical
wavebreaking and incoherent Raman amplification processes in all-normal dispersion (ANDi)
fibers vary for femto and picosecond pump pulses. Using high temporal resolution vector super-
continuum simulations, we identify deterministic polarization dynamics caused by wavebreaking
and self-phase modulation for femtosecond pulses and quasi-chaotic polarization evolution driven
by Raman amplification of quantum noise for picosecond pulses. In contrast to cross-phase
modulation instability, the Raman-based polarization noise has no power threshold and is reduced
by aligning the higher energy polarization component with the lower index axis of the fiber. The
degree of polarization stability is quantified using new time domain parameters that build on the
spectrally averaged degree of coherence used in supercontinuum research to quantify the output
spectral stability. We show that the spectral coherence is intrinsically linked to polarization noise,
and that the noise will occur in both polarization maintaining (PM) and non-PM fibers, spanning
a broad range of pulse energies, durations, and fiber birefringence values. This analysis provides
an in-depth understanding of the nonlinear polarization dynamics associated with coherent and
incoherent propagation in ANDi fibers.
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1. Introduction

Supercontinuum generation in all-normal dispersion (ANDi) photonic crystal fiber (PCF) offers
an energy-scalable route to developing high brightness, single cycle sources with octave-spanning
bandwidths [1–4]. Pumping in the ANDi regime relaxes constraints on the short pulse durations
required to maintain excellent spectral coherence by an order of magnitude in comparison with
anomalous dispersion pumping [5,6] by ensuring that pulse-preserving optical wavebreaking
is the dominant spectral broadening process [7,8]. This increases the range of pump sources
available for coherent supercontinuum generation and potentially reduces system cost and
complexity. Applications include optical coherence tomography [9,10], frequency metrology
[11] with possible extension to gigahertz repetition rates [12], coherent anti-Stokes Raman
scattering [13], and mid-infrared photonics [14–16]. However, the applicability of these sources is
limited when noise amplifying effects dominate the propagation and wavebreaking does not occur.
Consequently, investigating the causes and complex dynamics of coherent pulse-preserving and
incoherent noise amplifying effects in ANDi PCF is currently at the forefront of supercontinuum
research [6,17–19]. In this paper, we extend recent research to consider the previously unexplored
polarization dynamics of both coherent and incoherent ANDi supercontinuum generation.
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For pulse durations above approximately 1.5 ps, non-phase-matched Raman-assisted parametric
four-wave mixing (FWM) leads to the amplification of out-of-band quantum noise [6,20–22].
This degrades the pulse coherence starting from its leading edge when the influence of Raman
amplification surpasses that of the coherent self phasemodulation (SPM) and optical wavebreaking
processes, i.e. when dispersion is high, or when a long fiber or pump pulse duration is used [6].
Additionally, a recent numerical investigation has shown that cross-phase modulation (XPM)
can assist Raman-based decoherence of orthogonally polarized pulse components [19], which
depends on the polarization group velocity mismatch (GVM). The output coherence of the low
energy component is highest when it is polarized along the high index fiber axis because this
minimizes its overlap with the incoherent leading edge of the high energy component. The
effect is distinct from other birefringence-dependent effects [23], cross-phase and polarization
modulation instability (MI), which also lead to decoherence and destabilization of the pulse
polarization in ANDi supercontinuum generation [24–26] or, equivalently, with normal dispersion
pumping in step-index silica fibers [27].
Here, we study the nonlinear polarization dynamics associated with both coherent and

incoherent spectral broadening processes in ANDi PCF. We build on the concept of wavelength
dependent coherence, commonly used in supercontinuum generation and frequency metrology,
to define new measures of the intra-pulse polarization evolution in the time domain, which allow
us to compare the spectral coherence with the polarization dynamics, as is required to study time
domain applications of ultrafast pulses such as optical switching and gating.
We first confirm that the nonlinear polarization dynamics associated with coherent optical

wavebreaking are deterministic. Then we identify two distinct polarization regimes for incoher-
ently broadened pulses: a deterministic regime of quickly varying polarization where SPM and
XPM contribute most strongly at the leading and trailing pulse edges, and a noise-dominated
polarization regime that starts from the pulse leading edge then moves towards the peak when
Raman-assisted parametric FWM and XPM dominate. We show that polarization noise occurs
in both polarization maintaining (PM) and non-PM fibers, and is reduced (but not eliminated)
when the GVM asymmetry of the XPM-assisted Raman amplification is exploited by aligning
the highest energy polarization component to the low index fiber axis. Unlike cross-phase MI,
Raman-based polarization noise has no power threshold.
We study pulse parameters typical of megahertz repetition rate sub-10 ps lasers operating

around 1 µm (e.g., Yb fiber, Yb:KGW, Nd:glass) and a PCF design with a dispersion at this
wavelength which approximates that of step-index silica fiber, ensuring that our findings are
also applicable to other research areas. Similar polarization instabilities may also arise in
systems with gain, such as picosecond fiber amplifier systems limited by Raman [28], fiber
chirped pulse amplification systems limited by SPM and XPM [29], parabolic amplifiers [30],
fiber-based optical parametric oscillators and amplifiers [31,32], nonlinear optical and amplifying
loop mirrors [33,34], sources of noise-like pulses based on Raman amplification and nonlinear
polarization evolution in ANDi fiber cavities [35,36], and telecommunications systems which
combine Raman and FWM to extend transmission bandwidths beyond what is achievable in
Er-doped fiber [37,38].
Our identification of deterministic and noise-dominated polarization regimes is potentially

relevent to sources based on materials other than silica. For example, low loss gas filled hollow
core fibers [39] are useful for spectroscopy and sub-femtosecond pulse generation in the vacuum
ultraviolet [40,41], with research motivated by their tunable dispersion profiles [42]. The large
Raman contribution of, for example, atmospheric gasses [43–45] suggests that with picosecond
pumping Raman-induced polarization noise could occur even more readily in these sources [46].
Similarly, our observed polarization dynamics may occur in much shorter lengths of normal
dispersion liquid core fiber than ANDi silica PCF [47,48] because of the larger nonlinear index
of many liquids in comparison with silica [49], and because many gas and liquid core fibers
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permit strong polarization mode coupling. Additionally, both deterministic and noise-dominated
polarization dynamics are expected to occur in ANDi supercontinuum generation pumped by
different pulsed sources, such as lasers used to seed chalcogenide or fluoride fiber for mid-infrared
generation [15,50–52].
Section 2 introduces our model. In section 3 we show how optical wavebreaking and XPM

affect the polarization dynamics of femtosecond pump pulses. In section 4 we show how the
polarization stability of picosecond pump pulses is affected by Raman amplification, SPM, and
XPM. In section 5 we show how the polarization stability is affected by the competition between
wavebreaking and Raman amplification in both weakly and strongly birefringent fibers. In section
6 we outline key distinctions between cross-phase and polarization MI and the Raman-based
polarization noise. Section 7 concludes the work.

2. Numerical model

We use a polarization-resolved vector extension of the generalized nonlinear Schrödinger equation
(GNLSE) to simulate the pulse propagation (see Appendix A for equations and the integration
methods). The GVM is adjusted over the range ±2 ps/m, corresponding to a maximum fiber
birefringence of ∆n = 6 × 10−4 and a minimum beat length of 1.7 mm. Hence we consider both
PM and non-PM fibers [53].
The input pulses have a central wavelength of λ0 = 1040 nm and a Gaussian temporal field

profile given by A(T) =
√
P0exp[−2ln(2)(T/T0)2], where P0 is the peak power, T = t − z/νgx, z is

the propagated distance, νgx is the group velocity of the central wavelength of the x-polarized
field component (denoted Ax throughout), and T0 is the full width at half maximum (FWHM)
pulse duration. This definition of T allows for the y polarization component to be advanced
or delayed using the GVM, ∆β1 = β1x − β1y. Our aim is to investigate the influence of XPM,
SPM, optical wavebreaking, and Raman amplification on the intra-pulse polarization and spectral
coherence, so we assume transform limited pulses throughout. Strongly chirped pulses do not
significantly modify the general characteristics of these effects (see Ref. [6]), so the coherence
of, e.g., 100 fs pump pulses chirped to ∼10 ps would evolve in a similar way to the coherence of
the picosecond pump pulses shown here.

Fig. 1. Left, orange solid (left axis): Dispersion curve for the silica hexagonal lattice ANDi
PCF. Λ = 1.7 µm, and d/Λ = 0.3. Left, blue dashed (right axis): Loss profile used in the
simulations. Right: Visual representation of the orientation, θ (Eq. (5)), and ellipticity, ψ
(Eq. (6)), at snapshot time TS. Ax and Ay are the x- and y-polarized field envelopes, and a
(Eq. (7)) and b (Eq. (8)) are the semi-major and semi-minor polarization axes, respectively.

The ANDi PCF dispersion (left plot, solid line in Fig. 1) and nonlinear response, γ =
2πn2/(λAeff), are calculated using an analytical approach [54,55] with an air hole pitch and
relative size of Λ = 1.7 µm and d/Λ = 0.3, respectively, where n2 is the nonlinear index, λ
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is wavelength, and Aeff is the effective mode area. (The wavelength dependence of γ is also
included). For these parameters, γ(λ0) = 0.03 rad/(Wm) and D(λ0) = −31 ps/(nm km). Loss is
equal to that of standard single mode silica fibers [56] (left plot, dashed line in Fig. 1), and the fiber
length is 1 m for all of the simulations. The Raman effect is included using the experimentally
measured silica response [57] via a fractional contribution to the nonlinear response of fR = 0.18,
and has a peak frequency detuning of ΩR/(2π) = 13.2 THz (47.6 nm at λ0).

We use the soliton number (Eq. (1)) to interpret the results. The dispersion length is given by
LD = T2

0/|β2 |, and LN = 1/(γP0) is the nonlinear length. Equations (2) give the characteristic
lengths for coherent optical wavebreaking, LWB, and incoherent Raman-assisted parametric
FWM, L?R [6]. Here, g?s = 2γRe

(√
K(2q − K)

)
is the mixed parametric-Raman gain coefficient

[20–22], K = −β2Ω2
R/(2γP0) is the ratio of the linear and nonlinear contributions to the phase

mismatch between the pulse and (anti)-Stokes wave, q = (1 − fR) − fR χ̃(3)R (−ΩR), and χ̃
(3)
R is

the complex Raman susceptibility (−1.38i at the Raman peak frequency detuning [22]). The
ratio L?R/LWB quantifies the competition between SPM/optical wavebreaking processes and
Raman-assisted parametric FWM, and is central to determining whether the output will be
coherent or incoherent [6].

N =
√

LD
LN

(1)

LWB ≈ 1.1
√
LDLN, L?R =

1
g?s P0

(2)

We study ensembles of 60 pulses, forming 1770 unique pairs (see Appendix B for numerical
methods). Each pulse has different one photon per mode and per polarization axis quantum noise
[5,24] and spontaneous Raman scattering [58]. The output spectral amplitude and phase stability
are quantified using the complex first-order degree of coherence and its wavelength domain
average (Eqs. (3) and (4), respectively, where angular brackets denote the ensemble average)
[6,59]. Both are defined over the interval [0; 1], with 1 indicating perfect coherence.���g(1)12 (λ, ta − tb)��� = ����� 〈Ã?a (λ, ta)Ãb(λ, tb)〉√

〈|Ãa(λ, ta)|2〉〈|Ãb(λ, tb)|2〉

�����
a,b

(3)

〈|g(1)12 |〉 =

∫ ∞
0 |g

(1)
12 |〈|Ã(λ)|

2〉dλ∫ ∞
0 〈|Ã(λ)|

2〉dλ
(4)

We analyze the polarization state of each output pulse using the orientation, θ(T), and ellipticity,
ψ(T), given by Eqs. (5) and (6), respectively. The orientation refers to the semi-major axis of the
ellipse and can vary between [−45◦; 135◦] (see Appendix C). ψ(T) can vary between [0◦; 45◦],
corresponding to linear and circular polarization, respectively. δ(T) = φx(T) − φy(T) is the
phase difference between the x- and y-polarized components, Ax(T) and Ay(T). a(T) and b(T)
are magnitudes of the field on the semi-major and semi-minor axes given by Eqs. (7) and (8),
respectively, and |A(T)| =

√
|Ax(T)|2 + |Ay(T)|2 is the magnitude of the field.

θ(T) =
1
2
arctan

[2|Ax(T)| |Ay(T)|cos(δ(T))
|Ax(T)|2 − |Ay(T)|2

]
(5)

ψ(T) = arctan
[
b(T)
a(T)

]
(6)

a(T) = |A(T)|

√
1 +

√
1 − sin2(2θ(T))sin2(δ(T))

2
(7)
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b(T) = |A(T)|

√
1 −

√
1 − sin2(2θ(T))sin2(δ(T))

2
(8)

We use the construction on the right of Fig. 1 to provide a visual representation of the
polarization at a single isolated (snapshot) time TS. While θ, ψ, and their statistics are well
defined, the ellipses shown are an approximation of the path traced by the field ®A = x̂Ax + ŷAy
over an optical cycle (see Appendix D). The ellipses are not used to analyze the polarization data.
This representation is chosen because the Poincaré sphere is often difficult to interpret in print.

σθ (T) =

√√√
1
60

60∑
j=1
[θj(T) − 〈θ(T)〉]2 (9)

〈σθ〉 =

∫ ∞
−∞

σθ (T)〈|A(T)|2〉dT∫ ∞
−∞
〈|A(T)|2〉dT

(10)

The ensemble orentation stability is quantified using the standard deviation, σθ (T) (Eq. (9),
where j is the pulse number in the ensemble). To draw a direct comparison between the time
domain polarization noise and spectral domain coherence, we remove the time dependence of
σθ (T) by averaging over the time domain to get 〈σθ〉 (Eq. (10)). We analyse the stability of
the ellipticity, ψ(T), in the same way by using equivalent definitions for its standard deviation,
σψ(T), and average over the time domain, 〈σψ〉. Perfect polarization stability over the ensemble
is indicated by 〈σθ〉 = 0◦ and 〈σψ〉 = 0◦ (i.e., the standard deviation of the orientation and
ellipticity is 0◦ for all T).

3. Nonlinear polarization dynamics for femtosecond pump pulses

ANDi supercontinuum generation is generally driven by optical wavebreaking when pumped
using femtosecond pulses [6] so, in this section, we investigate the polarization dynamics
of femtosecond pulses propagating through 1 m of PCF with a small orientation and zero
birefringence to isolate nonlinear polarization effects from linear effects.
Figure 2 shows how optical wavebreaking results in deterministic nonlinear polarization

dynamics. An ensemble of 200 fs input pulses is shown on the left. The input peak power is 8
kW with a ratio of 23 dB between Px and Py (top left, spectrum bottom left), chosen because it is
representative of commercial Yb-fiber lasers. Ax and Ay have the same initial phase, expressed as
the chirp (top right) using λ(T) = λ0 ÷ [1 − (λ0/2πc)∂φ(T)/∂T], chosen because the derivative
means the chirp has a greater sensitivity to noise than the phase, increasing the visibility of noise
contributions and making it easier to identify the effects of each nonlinear process. The intensity
ratio and zero phase difference imply a linear polarization state (ψ(T) = 0◦) with θ(T) = 4◦,
visualized bottom right for TS = 0 ps. 〈σθ〉 and 〈σψ〉 are negligible (∼ 10−7 degrees), and
therefore the ellipses of the 60 pulses are indistinguishable.

The right-hand side of Fig. 2 shows the ensemble after 1 m of PCF. The amplitude and phase
profiles are modified through a combination of optical wavebreaking and XPM. Hence, the
polarization parameters evolve nonlinearly through Eqs. (5) to (8), and vary significantly over the
duration of the pulse [60,61]. This is demonstrated by the ellipses (bottom right, TS = 1.3 ps),
for which θ = 5.1◦ and ψ = 2.5◦. These ellipses are indistinguishable because wavebreaking
and XPM are coherent processes for short pump pulses (〈|g(1)12 |〉 ≈ 1 after 1 m of PCF), so
the amplitude, phase, and therefore the orientation and ellipticity are not affected by quantum
noise. As a result, the shot-to-shot polarization dynamics are stable even though the intra-pulse
polarization has changed due to nonlinear polarization evolution, which happens coherently for
optical wavebreaking.
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Fig. 2. Deterministic polarization evolution due to wavebreaking. 200 fs, 8 kW transform
limited linearly polarized Gaussian pulses with a 4◦ angle with respect to a principal fiber
axis undergo wavebreaking in 1 m of ANDi PCF with ∆β1 = 0 ps/m. Input (left): Pulses
top left, spectra bottom left, phase (expressed as the chirp) top right, polarization ellipses at
snapshot time TS = 0 ps bottom right. Output (right): The noise-insensitive, deterministic
nonlinear polarization dynamics are dominated by differences in the temporal shapes of Ax
and Ay, and there is only a small difference in their chirps. The orientation and ellipticity are
illustrated for each pulse in the ensemble in the bottom right (snapshot time Ts = 1.3 ps,
where the polarization state is strongly modified).

The full temporal evolution of θ(T) and ψ(T) is shown for the ensemble in Fig. 3 alongside the
ensemble average output pulse shape, 〈P(T)〉. The combined effect of wavebreaking and XPM
increases the maximum polarization orientation and ellipticity from 4◦ and 0◦ to 6.1◦ and 3.2◦,
respectively. Self-steepening displaces the central turning point of both θ and ψ from the origin
to T = 0.35 ps. Repeating these simulations with a small amount of birefringence or changing
the ellipticity of the input pulses does change the propagation dynamics in detail because of
the redistribution of energy between Ax and Ay and the 2/3 scaling of XPM with respect to
SPM. However, because these effects and the resulting nonlinear polarization evolution occur
coherently when using femtosecond pump pulses, changing these parameters does not result in a
change in either the coherence or the polarization statistics.

Fig. 3. θ(T) (black solid), ψ(T) (red dashed), and the ensemble average of P(T) (teal
shading) for the ensemble after 1 m of PCF. The individual shots are indistinguishable on
this scale. Visualization 1 shows the polarization dynamics of the output ensemble.

Figure 3 shows that the orientation tends to 0◦ for T< − 3.5 ps at the pulse leading edge and
T>3 ps at the trailing edge despite the starting value of 4◦. This is because of the greater spectral
broadening of Ax than Ay caused by the 2/3 scaling of XPM versus SPM, and because Ax drives
the nonlinear interaction. This causes Ax to disperse more quickly than Ay, with output durations

https://doi.org/10.6084/m9.figshare.12200048
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of 5.5 ps and 2.7 ps, respectively, so that A(T) ≈ Ax(T) at the pulse edges (see the output temporal
profiles of Ax and Ay in Fig. 2). The full ensemble dynamics of θ(T), ψ(T), and the ellipses are
shown in Visualization 1.

4. Nonlinear polarization dynamics for picosecond pump pulses

When using few-kW peak power picosecond pump pulses, ANDi supercontinuum generation is
driven primarily by Raman-assisted parametric FWM, XPM-assisted Raman amplification, and
secondarily by SPM and self-steepening [6,19]. Here, we investigate the polarization dynamics
of 7 ps, 8 kW Gaussian pulses with θ = 4◦ propagating in ANDi PCF with zero birefringence as
in section 3. All input pulse parameters are the same as for Figs. 2 and 3 except for the duration
and energy (60 nJ). 〈σθ〉 and 〈σψ〉 are negligible at the fiber input (∼ 10−7 degrees).

Figure 4 shows the ensemble after 1 m of PCF. Each shot shows stochastic time and wavelength
domain modulations (top row) as well as chirp noise (bottom left) where Raman amplification is
significant in the time domain (−5 ps to 1.5 ps). As in section 3, the nonlinear amplitude and phase
modulations transfer directly to both the polarization ellipticity and orientation. The ellipses
(bottom right) visualize θ and ψ for each shot at TS = −3.4 ps (where Raman amplification
is strongest). The nonlinear amplitude and phase modulations are incoherent where Raman
amplification dominates, so the intra-pulse polarization dynamics between −5 ps and 1.5 ps are
highly sensitive to quantum noise and are no longer deterministic.

Fig. 4. 7 ps, 8 kW transform limited linearly polarized Gaussian pulses after propagating
through 1 m of ANDi PCF with ∆β1 = 0 ps/m. Top left: time domain. Top right: wavelength
domain. Bottom left: chirp. Bottom right: polarization. Incoherent Raman amplification
has resulted in stochastic modulations in the temporal and spectral domains as well as the
chirp. The noise contributions to Ax and Ay are different, randomizing the polarization
where incoherent Raman amplification is strongest (−3.4 ps).

By setting ∆β1 = 0 ps/m, Ax and Ay remain temporally overlapped for the full fiber length,
and so the polarization noise occurs at the same propagation distance as the Raman-based
decoherence. This is shown in the left-hand plot of Fig. 5, where 〈σθ〉 and 〈σψ〉 are shown with
〈|g(1)12 |〉 as a function of z, confirming that polarization noise is intrinsically linked to Raman-based

https://doi.org/10.6084/m9.figshare.12200048
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decoherence. The stable and linear input polarization state becomes highly sensitive to noise for
just a modest reduction in 〈|g(1)12 |〉 from ∼ 1 to 0.81 over 1 m of PCF.

Fig. 5. Left: 〈|g(1)12 |〉, 〈σθ 〉, and 〈σψ〉 as a function of z for the ensemble shown in Fig. 4.
Right top and bottom: θ(T), ψ(T), and the ensemble average of P(T) (teal shading) at L = 1
m. θ and ψ for the individual pulses, ensemble average, and analytic calculation are shown
by the pale orange, dark orange, and black lines, respectively. Insets: The analytic theory
and the simulation match closely where Raman is not significant. Arrows: Displacement of
the central turning points due to self-steepening. Visualization 2 shows how the ensemble
polarization state varies with T .

The right-hand plots in Fig. 5 show the ensemble temporal evolution of θ(T) (top) and ψ(T)
(bottom). The severity of the polarization noise between −5 ps and 1.5 ps is clear: θ(T) and ψ(T)
span −44.7◦ to 134.9◦ (close to the full range) and 0◦ to 31◦, respectively, indicating complete
depolarization where Raman effects dominate (between the vertical purple dashed lines). In this
region, max(σθ (T)) = 35◦, max(σψ(T)) = 8◦, giving 〈σθ〉 = 0.71◦ and 〈σψ〉 = 0.34◦ over the
entire pulse. 〈P(T)〉 (right axis) verifies that Raman and the depolarization coincide in the time
domain. Further simulations in which we increase the pulse duration, energy, or propagation
distance result in complete destruction of the pulse coherence due to Raman amplification and
thus expand the noise-dominated region beyond this range and cause 〈σθ〉 and 〈σψ〉 to increase.

The orientation and ellipticity of each pulse remains insensitive to quantum noise where Raman
does not dominate, leaving deterministic polarization regions in the pulse wings. max(σθ (T))
and max(σψ(T)) are approximately 10−5 degrees in these regions. The polarization evolution
there is characterised by coherent ultrafast oscillations in θ(T) and ψ(T), caused by beating
between the phase contribution from SPM in Ax and XPM in Ay. This process is similar to the
coherent nonlinear polarization evolution seen with the femtosecond results above, but with
the picosecond pulses the peak power remains high over the full fiber length due to negligible
dispersion and the absence of wavebreaking, so the accumulated nonlinear phase mismatch from
SPM and XPM is significantly larger in comparison with the femtosecond pulse ensemble (∼ 340
rad and ∼ 65 rad, respectively). This leads to the larger oscillation frequency of the orientation
and ellipticity for picosecond pump pulses.

We confirm that SPM and XPM are responsible for the coherent oscillations in θ and ψ in the
pulse wings by solving Eqs. (5) and (6) analytically (solid black lines, Fig. 5). We define δ(T)
using Eq. (11) with the same fiber and pulse parameters as in the simulations. Equation (11) is
valid where SPM and XPM are the only contributors to the phase mismatch and where Ax drives
the nonlinear interaction. The analytic results closely match the simulation, with amplitudes

https://doi.org/10.6084/m9.figshare.12200051
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agreeing to within 5% and the two approaches yielding approximately equal oscillation periods.

δ(T) =
−1
3
γ |Ax(T)|2L (11)

Differences visible in the insets are attributed to dispersive and self-steepening effects, which
are included in the simulations but not in the analytic calculation. Self-steepening causes the
difference in position of the turning point of θ and ψ along the T-axis (at 0 ps for the analytic
calculation but 0.44 ps for the simulation, black and orange arrows, respectively). To illustrate
the deterministic and noise dominated polarization regimes (and the transitions between them),
the full ensemble dynamics of θ(T) and ψ(T) are shown for T between ±10 ps in Visualization 2.

5. Competition between wavebreaking and Raman amplification

The competition between optical wavebreaking and Raman-assisted parametric FWM determines
the coherence of the supercontinuum process in the normal dispersion regime [6]. Both this
competition and the coherence are parameterised by the ratio of L?R to LWB (see Eqs. (2)), and
so longer pump pulses for which Raman amplification dominates result in a lower coherence
than shorter pump pulses with the same peak power. In this section we study the effect of XPM
by simulating the ensemble polarization statistics as the propagation dynamics are changed
from coherent to incoherent, and extend the discussion in sections 3 and 4 to include the fiber
birefringence.
We have calculated 〈|g(1)12 |〉, 〈σψ〉, and 〈σθ〉 over a broad range of polarization GVM (∆β1),

pulse energy and duration values while keeping the peak power fixed at 15 kW (approximating
values commonly used in experiments and simulations [4,6,8,19]). This higher peak power means
that the polarization dynamics can be observed for ensembles with much lower output coherence
than in sections 3 and 4. We parameterize the pulse characteristics using Npump (Eq. (1)) and
the constant peak power gives LN = 2.5 mm (γP0 = 405 rad/m). The pulse duration and energy
range from 0.1 ps to 9 ps and 1.6 nJ to 140 nJ, respectively, giving L?R = 0.1 m and varying LWB
from 4 cm to 3.4 m, permitting both coherent and incoherent dynamics. LD spans 0.56 m to 4.3
km, and N spans 15 to 1313. The ratio of Px to Py is 23 dB (linear polarization and θ = 4◦ as in
sections 3 and 4), and the GVM has values between ±2 ps/m.

Fig. 6. Polarization dynamics for coherent and incoherent spectral broadening in birefringent
ANDi fiber. Left: 〈|g(1)12 |〉 (Eq. (4), left axis) and L

?
R/LW (Eqs. (2), right axis, dashed line)

as a function of N (Eq. (1)) and T0. Center and right: 〈σθ 〉 and 〈σψ〉, showing a monotonic
increase in polarization noise with N. The polarization noise is maximized when the
dominant polarization component (Ax) travels slower (∆β1>0 ps/m) because this maximizes
the overlap of Ay with the Raman amplification at the leading edge of Ax.

https://doi.org/10.6084/m9.figshare.12200051
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The coherence degradation is shown as a function of N and T0 in the top row of Fig. 6
(left vertical axis) for non-birefringent fiber only because 〈|g(1)12 |〉 shows no GVM dependence.
The ratio L?R/LWB is shown by the dashed line (right vertical axis), and shows that Raman
amplification becomes the dominant nonlinear effect between N = 400 and 600, below which
the short pulse durations maintain 〈|g(1)12 |〉 ≥ 0.9 (i.e., coherent propagation). The bottom left
and right plots of Fig. 6 show 〈σθ〉 and 〈σψ〉 as a function of N and GVM (∆β1). Coherent
propagation (low values of N) corresponds to deterministic polarization dynamics (low values of
〈σ〉) for N ≤ 400. In this region, both 〈σθ〉 and 〈σψ〉 are below 10−3 degrees.
For N>600, the decoherence coincides with polarization ellipticity and orientation noise

as Raman amplification becomes dominant (L?R/LWB<0.1 and 〈|g(1)12 |〉<0.9). The relationship
between the coherence and polarization noise is monotonic, and only weakly dependent on the
polarization GVM for N<800 (where 〈σθ〉<0.73◦ and 〈σψ〉<0.35◦).
The influence of the GVM on the polarization noise is most significant for N>800, and is

maximized when the dominant polarization component (Ax) travels slower than the weaker
component (Ay), i.e., when ∆β1>0 ps/m. This ensures that the temporal overlap of Ay with the
incoherent leading edge of Ax is maximized, increasing the amplitude and phase noise of Ay
[19] and thus leading to very significant polarization noise. For example, when N = 1313 and
∆β1 = −2 ps/m so that the dominant polarization component travels faster, 〈σθ〉 = 1.9◦ and
〈σψ〉 = 0.65◦. For the opposite case (∆β1 = 2 ps/m) these increase to 3.5◦ and 1.2◦, respectively.
Hence, Raman-based polarization noise is reduced when the pulse is polarized primarily along
the low index axis, and the reduction to the lowest levels would be expected in PM as opposed to
non-PM fiber.

6. Distinction from cross-phase and polarization modulation instability

Cross-phase modulation instability (MI) is a process in which noise present in an optical signal
is amplified rapidly by XPM between polarization components [62], causing both decoherence
and polarization noise. The cross-phase MI frequency detuning and gain bandwidth have values
of order 1 THz [60], determined by a phase matching condition involving the birefringence,
dispersion, and the peak power through a nonlinear phase contribution [63]. Cross-phase MI
amplifies out-of-band noise when the gain is not adequately saturated by the wings of the pulse
spectrum and when both polarization axes are excited, i.e., when the pulse bandwidth is narrow
(picosecond duration or longer) and when θ = 45◦. It has been shown that cross-phase MI is
suppressed in birefringent fibers when the peak power exceeds a threshold, Pth (Eq. (12)), beyond
which the phasematching condition is no longer met [63]:

Pth =
3(∆β1)2

4β2γ
(12)

Cross-phase MI in the normal dispersion regime is well documented [27], and the effect has
been included in our simulations (see Appendix A). However, we have isolated the propagation
regimes in sections 3, 4, and 5 from that in which cross-phase MI plays a strong role by using
pulses with only a small polarization offset from a principal fiber axis.
Two key distinctions exist between our observed Raman-based polarization noise and that

caused by cross-phase MI. Firstly, we have shown in sections 4 and 5 that, unlike cross-phase
MI, the onset of Raman-based polarization noise does not require a significant polarization
misalignment from a principal fiber axis (see Appendix E, where we show that polarization noise
still occurs for a ratio of Px to Py of 43 dB). Polarization noise is significant for both high and low
birefringence fibers for a broad range of pulse parameters in the data shown in Fig. 6. Secondly,
the Raman-based polarization noise is not subject to a peak power threshold. As an example,
Pth = 5.6 kW for the simulations where ∆β1 = 2 ps/m (Eq. (12)), which is approximately three
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times smaller than the peak powers used in this work. The polarization noise is therefore expected
to be negligible for this GVM when only cross-phase MI is considered. This is in direct contrast
with the Raman-based polarization noise, which is instead maximized for this GVM by the
improved overlap of the weaker polarization component with the incoherent leading edge of the
dominant component (see section 5).

In addition to cross-phase MI, polarization MI in low birefringence ANDi fiber has also been
shown to result in polarization noise and decoherence in femtosecond pulses [24]. As with
cross-phase MI, polarization MI only occurs where phasematching conditions set by the fiber
birefringence, dispersion, and the pulse peak power are met, resulting in a reduction in the
severity of polarization MI-induced decoherence and polarization noise for high birefringence
fibers [21,60]. This is not the case for Raman-based polarization noise in picosecond pulses,
which varies slowly with fiber birefringence and is maximimized for high birefringence fiber
when the pulse is primarily polarized along the slow axis (shown in Fig. 6).

7. Conclusion

We have explored the intra-pulse polarization dynamics of both coherent wavebreaking and
incoherent Raman amplification in ANDi supercontinuum generation by considering sub-20 kW
linearly polarized pulses with a small angular offset from a principal fiber axis. We have shown
that the polarization orientation and ellipticity exhibit periodic and deterministic dynamics (i.e.,
not influenced by quantum noise) where nonlinear propagation is dominated by elastic processes
such as SPM, wavebreaking, self-steepening, and dispersion, and that the polarization becomes
highly unstable where incoherent broadening processes dominate.
We find that even for strongly polarized input pulses both the orientation and ellipticity of

the polarization becomes highly sensitive to quantum noise for just a moderate reduction in
the coherence where incoherent Raman-assisted parametric FWM and XPM-assisted Raman
amplification dominate. Unlike polarization noise associated with cross-phase MI, this process is
found to have no power threshold for a given GVM and is maximized when the weaker polarization
component has a higher group velocity. Conversely, polarization noise is reduced (but not fully
prevented) when the high energy component propagates along the low index axis of the fiber; this
approach to reducing polarization noise is most effective for highly birefringent fiber. Polarization
noise should therefore be anticipated for ANDi supercontinuum experiments employing either
non-PM or PM fiber once incoherent broadening occurs. Additionally, Appendix E shows that
polarization noise is significant even for very strongly polarized input pulses. We anticipate that
our findings will be experimentally observable with the development of a broadband, single shot
extension of any existing polarization- and field-resolved pulse retrieval technique [64–66].
These observations may aid the development of other pulsed light sources, such as the

intracavity dynamics of Raman-based noise-like pulse generation in ANDi fiber lasers which use
nonlinear polarization evolution gating [36]. These sources can produce coherent modelocked or
incoherent noise-like pulse trains depending on the cavity polarization control [36], which bears
similarities to our observation that the severity of the polarization noise depends on whether the
pulse is polarized along the low or high index axis. Additionally, our observations are expected to
be relevant to investigations of non-silica fibers, especially those with stronger nonlinear indices
or Raman contributions than fused silica, such as gas and liquid core fibers [43–45,49,67] and
ANDi fibers targeted for infra-red pumping [15,50–52,68]. Developments in these fields would
benefit applications such as frequency metrology [11], short-wavelength and ultrafast pulse
generation [3,41,69], spectroscopy [40], microscopy [13], and noise-like pulse generation for
applications which do not require a high degree of coherence [70].
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Appendix A. Polarization-resolved generalized nonlinear Schrödinger equation

The pulse propagation is simulated using the generalized nonlinear Schrödinger equation (GNLSE)
shown by Eq. (13).

∂A(z,T)
∂z

= [L̂(T) + N̂(T)]A(z,T) (13)

Solutions are found in the frequency domain [71] using the integration and adaptive step sizing
methods outlined in [72] and [73], respectively. L̂ and N̂ are linear and nonlinear operators, shown
by Eqs. (14) and (15). Polarization dynamics are included using A(z,T) = x̂Ax(z,T) + ŷAy(z,T)
and Jones calculus [74] to apply the linear and nonlinear operators to Ax and Ay because this
method has been shown to reproduce complex polarization dynamics in nonlinear fiber systems
accurately [75] (x̂ and ŷ are orthogonal unit vectors along the fiber birefringence axes). Ω = ω−ω0
is the angular frequency grid centered at 0 THz and T is the retarded time frame comoving with
Ax, given by T = t − z/νgx where νgx is the group velocity of Ax.

ˆ̃L(Ω) =
α(Ω)

2
− i

[
∆β1Ω −

β2(Ω)

2
Ω

2
]

(14)

N̂x(T) = −iγ
(
1 +

1
ω0

∂

∂T

)
×

[
(1 − fR)

(
|Ax |

2 +
2
3
|Ay |

2
)

+fR
∫ ∞

0
hR(τ)

∑
j=x,y
|Aj(T − τ)|2dτ + iΓR

] (15)

The linear operator, ˆ̃L(Ω) (frequency domain, Eq. (14)), includes the full fiber dispersion
profile (β2(Ω)), loss (α(Ω)), and the polarization GVM (∆β1). Our definition of T sets β1 = 0
ps/m for Ax, and ∆β1 = β1x − β1y for Ay (where β1 = 1/νg). This centered Ax at T = 0 ps in all
of the simulations while allowing Ay to be advanced (∆β1>0 ps/m) or delayed (∆β1<0 ps/m)
with respect to Ax.

The nonlinear operator (Nx(T), Eq. (15)) accounts for self-steepening, SPM, XPM and cross-
phase MI, and Raman scattering via hR(τ), which is the Raman response of fused silica. (We
omit the field dependence on z and T for brevity). ΓR accounts for spontaneous Raman scattering
[58]. We did not include the orthogonal component of the Raman gain in our model because it
has a peak value which is much smaller than that of the parallel component, so it contributes
negligibly to the amplification of quantum noise. This approximation also helped to reduce
execution time by requiring fewer fast Fourier transforms (FFTs) when applying the nonlinear
operator. Ny(T) is obtained by swapping Ax and Ay in Eq. (15).

Appendix B. Scaling propagation simulations for large ensemble sizes

An ensemble size of 60 pulses has been chosen so that the polarization statistics are reliable,
resulting in large simulation sizes of 120 GNLSEs per ensemble (two coupled GNLSEs per
pulse, or one for each polarization component). The analysis in section 5, for example, required
27,720 GNLSEs to be solved in total, with each having 215 time-frequency grid points. This
necessitated large-scale parallelization of our code so that we could use small propagation step
sizes for high accuracy while maintaining a reasonable execution time, which is achieved in our
case using general purpose graphical processing units and the arrayfire library [76] for vectorised
mathematical operations. We further reduced the simulation runtime by using the FFTW3 library
[77] in a few cases where it was necessary to perform FFTs on a CPU to reduce communication
overheads (when, for example, only one FFT of a single pulse was required).
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Appendix C. Defining the polarization ellipse orientation

The calculation of the polarization ellipse orientation using Eq. (5) in section 2 means θ(T) takes
maximum values of ±45◦ from the fiber x-axis. Using this calculation alone would result in an
incomplete representation of the orientation because Ay-dominant states would be indistiguishable
from Ax-dominant states in our model (i.e., the orientation is ambiguous as it refers to either the
semi-major or semi-minor ellipse axis).

To resolve this ambiguity, we use Eqs. (16) and (17) to adjust θ based on the relative magnitudes
of the field envelopes at angles θ and θ ± 90◦ (T-dependence omitted for brevity).

A1 =
[
|Ax |

2cos2(θ) + |Ay |
2sin2(θ) + |Ax | |Ay |cos(δ)sin(2θ)

]1/2 (16)

A2 =
[
|Ax |

2sin2(θ) + |Ay |
2cos2(θ) − |Ax | |Ay |cos(δ)sin(2θ)

]1/2 (17)

When A2>A1, θ defines the angle subtended by the semi-minor axis, and so we add 90◦ to the
orientation whenever this is the case to ensure that the orientation is always defined using the
semi-major axis. Additionally, we assume that the polarization state is degenerate under a rotation
of 180◦. This is permitted because we consider pulses with durations much larger than a few
optical cycles and because the temporal resolution of our simulations (4.2 fs) is larger than the
field period at λ0 (3.47 fs). Our model thus incorporates all Ax- and Ay-dominant polarization
states in addition to those with |Ax | = |Ay |.

Appendix D. Visualizing the polarization state

Our orientation and ellipticity calculations (and subsequent statistical analyses) are well defined
for all isolated points (‘snapshots’) in time, TS, in our model. However, because the GNLSE
invokes the slowly-varying envelope approximation we choose to use the ellipse representation
to provide an approximate and intuitive visualization of the orientation and ellipticity. Ellipses
are chosen instead of the Poincaré sphere because this three-dimensional representation can be
difficult to interpret in print.
The visualisations of the orientation and ellipticity are plotted parametrically in cartesian

coordinates, (x, y). First, we define an array ζ which takes on values between ±π in steps of π/512.
We then set the ellipse x and y axes equal to Ax(TS)cos[ζ + φx(TS)] and Ay(TS)cos[ζ + φy(TS)],
respectively, where φx(TS) and φy(TS) are the phase angles of the polarization components Ax(T)
and Ay(T) at snapshot time TS. The resulting orientation and ellipticity correspond to the real
values at time TS. Array ζ is included so that a full ellipse is plotted rather than just the vector
®A(TS) = x̂Ax(TS) + ŷAy(TS), because this would not show the ellipticity of the field at time TS.

Appendix E. Influence of polarization misalignment from a principal fiber axis

Throughout this work we have chosen input pulses for which the polarization ellipse semi-major
axis is misaligned from a principal fiber axis by 4◦ by setting |Ax |

2/|Ay |
2 = 200 (peak power ratio

of 23 dB). This is representative of many commercial fiber laser systems. Here, for completeness,
we extend the investigation of Raman-based polarization noise to include different polarization
misalignments.
Figure 7 shows how 〈σθ〉 and 〈σψ〉 are affected when the input polarization misalignment

from the fiber x-axis takes values of 6◦ (|Ax |
2/|Ay |

2 = 100; peak power ratio of 20 dB), 4◦
(|Ax |

2/|Ay |
2 = 200; peak power ratio of 23 dB), and 0.4◦ (|Ax |

2/|Ay |
2 = 2× 104; peak power ratio

of 43 dB). All other parameters are the same as those used in Fig. 4. The polarization noise is
shown as a function of fiber length alongside the average coherence, 〈|g12 |〉 (green solid curve,
left axis), which is approximately the same for each input orientation because of the constant
peak power of 8 kW.
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Fig. 7. Average coherence (green solid, left axis) and average polarization statistics for peak
power ratios of 20, 23, and 43 dB (right axis). Increasing the polarization misalignment
from a principal fiber axis increases the polarization noise.

As expected, increasing the misalignment of the initial ellipse orientation from a principal
fiber axis increases the polarization noise. Each ensemble starts with 〈σ〉 ≈ 10−7 degrees, but
after 1 m of PCF 〈σθ〉 = 0.9◦, 0.7◦, and 0.06◦ for input peak power ratios of 20, 23, and 43 dB,
respectively. The respective ellipticity statistics follow a similar trend: 〈σψ〉 = 0.42◦, 0.34◦, and
0.02◦. Hence, although reduced for lower orientation misalignments, the polarization noise is
significant even for strongly polarized sources. The variation is attributed to the greater influence
of the noise-seeded Raman bands on Ay when the energy of this polarization component is
increased.
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