
Fuzzy Logic Application to Searchable
Cryptography

Hassan B.Kazemian1[0000−0003−3568−0715] and Yang Ma2[0000−0003−2445−3226]

1 School of Computing and Digital Media, London Metropolitan University, London,
United Kingdom.

h.kazemian@londonmet.ac.uk
2 Underwriters Laboratories, UK Security Lab, Basingstoke, United Kingdom.

Yang.Ma@ul.com

Abstract. Public Key Encryption with Keyword Search (PEKS) allows
users to search encrypted files by a specific keyword without compromis-
ing the original data security. Almost all current PEKS schemes enable
users to search exact keyword only instead of imprecise keyword (such as
“latest”, “biggest”, etc.). Therefore, if the keyword is fuzzy, these PEKS
schemes will be terminated and then report errors. Besides, some PEKS
schemes are not secure mainly because they are vulnerable to Off-line
Keyword Guessing Attack (OKGA). This research paper incorporates
with Mamdani Fuzzy Inference System to PEKS for supporting Fuzzy
Keyword Search. Secondly, the proposed scheme is proved to be semantic
secure under the random oracle models so that it is able to resist OKGA.
In addition, the new scheme allows users to search multiple keywords and
therefore, it could be applied to the general public networks.

Keywords: Public Key Encryption with Keyword Search (PEKS) · Off-
line Keyword Guessing Attack (OKGA) · Mamdani Fuzzy Inference Sys-
tem.

1 Introduction

The rising popularity of cloud computing attracts companies and individuals to
upload their data into the online trusted servers (i.e. cloud servers). It brings
about substantial merits, such as saving local memory and reducing maintenance
fee, etc. How to keep data security becomes an intractable problem. Interestingly,
Public Key Encryption with Keyword Search (PEKS) protects information se-
curity and data transmission security.

Boneh et al. [1] defined the first PEKS scheme in 2004 which requires a secure
channel (i.e. Secure Sockets Layer) between the server and the receiver. But
building a secure channel is much expensive and unrealistic in some cases. Be-
sides, Byun et al. [3] pointed out that the first PEKS was compromising from
Off-line Keyword Guessing Attack (OKGA). In 2008, Baek et al. [2] proposed a
new PEKS scheme to remove the secure channel from the first PEKS system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by London Met Repository

https://core.ac.uk/display/327072106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Kazemian and Ma

But, Yau et al.[4] also found that Baek et al.’s PEKS suffers OKGA. Tang et
al. [5] introduced a new PEKS scheme resisting OKGA, but the encryption al-
gorithm is complex. Soon later, Rhee et al. [6] defined the concept of Trapdoor
Indistinguishability to PEKS (called dPEKS) for preventing OKGA. However,
dPEKS scheme is able to search single keyword only instead of multiple keywords
so that it may not be applied to the general public networks. Meanwhile, Baek
et al.’s proposed MPEKS [2] scheme to solve multiple keywords search problem.
However, MPEKS also needs a secure channel. Later on, Wang et al. [7] came up
with a Secure Channel Free MPEKS system to remove the secure channel and
support multiple keywords search, but it suffers OKGA. Recently, PEKS wit-
nesses a dramatic development and becomes much security and functionalities.

In practice, several keywords are distilled to represent the whole document in-
stead of one keyword only. Besides, the user may type imprecise keyword for
searching, such as “latest”, “biggest”, etc. Due to PEKS ciphertext may contain
fuzzy keyword leading to system errors, therefore, Mamdani Fuzzy Inference
method could be perfectly applied to PEKS scheme in order to solve fuzzy
keyword search problem. In 1973, Lotifi Zadeh’s [8] came up with new fuzzy
algorithms to analyse complex systems and decision processes. Later, Ebrahim
Mamdani [9] revisited Lotifi’s approach and then proposed an inference system
to control a steam engine and boiler combination based on linguistic rules from
human knowledge. However, Mamdani-style inference is not computationally ef-
ficient, Michio Sugeno [10] proposed a new fuzzy inference using a single spike
(a singleton) as the rule consequent. Recently, Fuzzy sets theory has been ap-
plied successfully in many areas. Singh et al.[11] pointed out fuzzy systems could
applied to classification, modelling control problems. Lermontov et al. [12] anal-
ysed water quality using fuzzy set. Meanwhile, Marchini et al. [13] proposed a
framework for fuzzy indices of environmental conditions.

This paper formally defines a new PEKS scheme named Public Key Encryp-
tion with Multi-keywords Search using Mamdani System (m-PEMKS) and then
presents a concrete construction of it. Besides, m-PEMKS is proved to be seman-
tic secure under random oracle models so that it could resist OKGA. In addition,
the proposed scheme incorporates with Mamdani System to solve fuzzy keyword
search problem, which is the first paper combining Fuzzy Logic and PEKS.

2 Methodology

2.1 Bilinear pairings

Let G1 be an additive cyclic group and GT be a multiplicative cyclic group. g is a
generator of G1 and a prime number p is the order of G1. Suppose a and b are the
elements in Zp. A bilinear pairing can be regarded as a map e : G1 ×G1 → GT ,
which has the following properties:
i. Bilinear: e(aU, bV) = e(U, V)ab for all U, V ∈ G1 and a, b ∈ Zp.
ii. Computable: e(U, V) ∈ GT is computable in a polynomial time algorithm, for

Fuzzy Logic Application to Searchable Cryptography 3

any U, V ∈ G1.
iii. Non-degenerate: e(U, V) 6= 1.

2.2 The Bilinear Diffie-Hellman (BDH) assumption

Given g, xg, yg, zg as input (where x, y, z ∈ Zp), compute e(g, g)xyz ∈ GT . An
algorithm A has an advantage ε in solving BDH assumption in G1, if Pr[A(g, xg,
yg, zg) = e(g, g)xyz] ≥ ε. It is shown that BDH assumption holds in G1 if no t
time algorithm has an advantage at least ε in solving BDH assumption in G1.

2.3 The 1-Bilinear Diffie-Hellman Inversion (1-BDHI) assumption

Given g, xg as input (where x ∈ Zp), compute e(g, g)
1
x . An algorithm A has an

advantage in solving 1-BDHI assumption in G1, if Pr[A(g, xg) = e(g, g)
1
x] ≥ ε.

It is shown that 1-BDHI assumption holds in G1 if no t time algorithm has an
advantage at least ε in solving 1-BDHI assumption in G1.

2.4 Fuzzy Rule Based Model

The fuzzy rule based model has four steps as follows:
1. Fuzzification of the input variables: The aim of this step is transforming crisp
inputs into fuzzy inputs by the membership functions.
2. Rules evaluation: The fuzzified inputs are applied to the antecedents of the
fuzzy rules and then apply “AND” operation to these rule antecedents.
3. Aggregation of the rule outputs: The membership functions of all rule conse-
quents previously clipped or scaled are combined into a single fuzzy set.
4. Defuizzification: The defuizzification method, center of gravity (COG), is uti-
lized to transform fuzzy outputs into crisp outputs.

3 Public Key Encryption with Multi-keywords Search
using Mamdani System

Let sender, server and receiver be three parties in PEKS scheme. The sender is
a party who runs PEKS algorithm to create a Searchable ciphertext. Besides,
the receiver is a party who executes Trapdoor algorithm to create a Trapdoor
query. Once the server receives the encrypted messages from the sender and the
receiver, it will run Test algorithm to estimate whether two ciphertexts contain
the same keyword or not, and replies to the receiver in the end.

3.1 Formal Definition of m-PEMKS

The proposed scheme has eight Probabilistic Polynomial Time algorithms:
1. KeyGenParam−PEMKS(1

ζ): Input 1ζ for generating a common parameter cp.

4 Kazemian and Ma

2. KeyGenParam−RSA(k): Input k for generating a global parameter gp.
3. KeyGenServer−PEMKS(cp): Input cp and then produce a public and private
PEMKS key pair (pkSer−PEMKS , skSer−PEMKS) of the server.
4. KeyGenServer−RSA(gp): Input gp and then produce a public and private RSA
key pair (pkSer−RSA, skSer−RSA) of the server.
5. KeyGenReceiver−PEMKS(cp): Input cp and then produce a public and private
PEMKS key pair (pkRec−PEMKS , skRec−PEMKS) of the receiver.
6. Encryption(pkSer−PEMKS , pkRec−PEMKS , pkSer−RSA,W): A searchable en-
cryption E=(E1,E2)=SCF-PEMKS(pkSer−PEMKS ,pkRec−PEMKS ,Wpart1)||RSA(
pkSer−RSA,Wpart2) is created, whereW=(Wpart1,Wpart2)=[(w1,w2,...,wn);wn+1].
7. Request(pkSer−PEMKS , skRec−PEMKS , pkSer−RSA,W): A trapdoor request
R=(R1,R2)=Trapdoor(pkSer−PEMKS ,skRec−PEMKS ,Wpart1)||RSA(pkSer−RSA,
Wpart2) is created, where W=(Wpart1,Wpart2)=[(w1, w2, ..., wm); wfuzzy].
8. Test(E,R, skSer−PEMKS , skSer−RSA): Test algorithm contains two parts: Ex-
act Match and Fuzzy Match.
For Exact Match: Input the server’s PEMKS private key skSer−PEMKS , an en-
cryption E1=SCF-PEMKS(pkSer−PEMKS ,pkRec−PEMKS ,Wpart1) and a request
R1=Trapdoor(pkSer−PEMKS ,skRec−PEMKS ,W ∗part1). If W ∗part1 ∈ Wpart1, the
system will go to Fuzzy Match. Otherwise, the system will terminate.
For Fuzzy Match: Input the server’s RSA private key skSer−RSA, an encryp-
tion E2=RSA(pkSer−RSA,Wpart2) and a request R2=RSA(pkSer−RSA,W ∗part2).
Then, the server decrypts E2 and R2 to obtain Wpart2 and W ∗part2. Let W ∗part2
and Wpart2 be the conclusion and the condition of the rules in Mamdani system.
Next, the encrypted file is filtered by Mamdani system and the server will reply
to the receiver in the end.

3.2 The Concrete Construction of m-PEMKS

The details of m-PEMKS are listed in the following (Fig. 1):
1. KeyGenParam−PEMKS(1

ζ): Let G1 be an additive cyclic group and GT be a
multiplicative cyclic group. g is a random generator of G1 whose order is a prime
number p. A bilinear pairing is a map e : G1 ×G1 → GT . Let H : {0, 1}◦ → G1

and H∗ : GT → {0, 1}• be two specific hash functions. This algorithm returns
the common parameter cp = {g, p,G1, GT , e,H,H

∗}.
2. KeyGenParam−RSA(K): Randomly select prime numbers u and v (where
u 6= v) and calculate L = u× v and φ(L) = (u− 1)× (v − 1).
3. KeyGenServer−PEMKS(cp): The server randomly chooses a ∈ Zp and then
computes A = aP . Besides, the server chooses B ∈ G1 uniformly at random.
Therefore, the server’s PEMKS public key is pkSer−PEMKS = (cp,A,B) and
the PEMKS private key is skSer−PEMKS = (cp, a).
4.KeyGenServer−RSA(gp): The server randomly selects x ∈ Zq, where gcd(φ(L),
x) = 1 and 1 < x < φ(L). Next, the server calculates y by y ≡ x−1(modφ(L)).
Therefore, the server’s RSA public key is pkSer−RSA = (x, L) and the private
key is skSer−RSA = (y, L).
5. KeyGenReceiver−PEMKS(cp): The receiver randomly chooses c ∈ Zp and then
computes C = cP . Therefore, the receiver’s PEMKS public key is pkRec−PEMKS =

Fuzzy Logic Application to Searchable Cryptography 5

(cp, C) and the PEMKS private key is skRec = (cp, c).
6. Encryption(pkSer−PEMKS , pkRec−PEMKS , pkSer−RSA,W): The sender ran-
domly chooses t ∈ Zp and a keyword-vectorW=(Wpart1,Wpart2)=[(w1,w2,...,wn);
wn+1]. The sender then computes a searchable encryption E = (E1, E2) =
[(M,N1, N2, ..., Nn);Nn+1] = [(tA,H∗(D1), H

∗(D2), ...,H
∗(Dn)); (wn+1)

xmodL],
where D1 = e(H(w1), C)

t,D2 = e(H(w2), C)
t,...,Dn = e(H(wn), C)

t.
7.Request(pkSer−PEMKS , skRec−PEMKS , pkSer−RSA,W): The receiver randomly
chooses t∗ ∈ Zp and a keyword-vector W=(Wpart1,Wpart2)=[(w1,w2,...,wm);
wfuzzy]. The receiver then computesR = (R1, R2) = [(Z, T1, T2, ..., Tm), Tfuzzy] =
[(e(A, t∗B), cH(w1)⊕e(A,B)t

∗+c, cH(w2)⊕e(A,B)t
∗+c, ..., cH(wm−1)⊕e(A,B)t

∗+c)
; (wfuzzy)

xmodL].
8. Test(E,R, skSer−PEMKS , skSer−RSA): For i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m},
where j ≤ i.
(i) For Exact Match: Firstly, the server calculates
Tw1

= T1 ⊕ Z • e(aB,C) = cH(w∗1), ...,
Twj = Tj ⊕ Z • e(aB,C) = cH(w∗j), ...,
Twm = Tm ⊕ Z • e(aB,C) = cH(w∗m)
Then, the server checks whether H∗[e(Twj ,

M
a)] = Ni or not. If “yes”, the system

will go to Fuzzy Match. Otherwise, the system will terminate.
(ii) For Fuzzy Match: The server decrypts wn+1 and wfuzzy from {[(wn+1)

xmodL]y

modL} and {[(wfuzzy)xmodL]ymodL}. Let wfuzzy and wn+1 be the conclusion
and condition of the rules in Mamdani system.

Without loss of generality, suppose wfuzzy is the keyword “latest” while wn+1

stands for a set of “DATE”. Therefore, three rules can be defined in the following:
Rule1: IF DATE is oldest, THEN the encrypted file is unnecessary.
Rule2: IF DATE is newest, THEN the encrypted file is necessary.
Rule3: IF DATE is either new or old, THEN the encrypted file may necessary
or may unnecessary.

Fig. 1. The concrete construction of m-PEMKS

6 Kazemian and Ma

3.3 The Correctness of m-PEMKS

For Exact Match: for i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}, the proposed scheme
is completely correct in the following:
Firstly,
Twj = Tj ⊕ Z • e(aB,C) = cH(w∗j) ⊕ e(A,B)t

∗+c ⊕ e(A, t∗B) • e(aB, cP) =

cH(w∗j)⊕e(A,B)t
∗+c⊕e(A,B)t

∗•e(A,B)c = cH(w∗j)⊕e(A,B)t
∗+c⊕e(A,B)t

∗+c =
cH(w∗j)
Then,
H∗[e(Twj ,

M
a)] = H∗[e(cH(w∗j),

tA
a)] = H∗[e(cH(w∗j), tP)] = H∗[e(H(w∗j), C)

t] =
Ni

For Fuzzy Match: this algorithm is still correct due to the properties of Mamdani
Fuzzy Inference System.

3.4 The Security Analysis of m-PEMKS

The proposed scheme contains two cryptographic algorithms: PEKS and RSA.
The security of proposed scheme mainly relies on Ciphertext Indistinguishabil-
ity of Chosen Plaintext Attack (IND-CPA) and Trapdoor Indistinguishability of
Chosen Plaintext Attack (Trapdoor-IND-CPA).

IND-CPA security is that a malicious server (Game1) could not decide which
PEMKS ciphertext contains which encrypted keyword, if it has not received the
Trapdoor containing the given keyword. Besides, if a malicious receiver (Game2)
that has not obtained the server’s PEMKS private key cannot check whether
PEMKS ciphertext and Trapdoor have the same keyword, even if he/she inter-
cepts all Trapdoors for any specific keyword. ForTrapdoor-IND-CPA security,
it is an outside attacker excluding the server and the receiver (Game3) cannot
differentiate any difference between Trapdoors containing the same keyword.
To conclude, the proposed scheme satisfies Ciphertext Indistinguishability and
Trapdoor Indistinguishability against a Chosen Plaintext Attack (CPA).

Theorem 1. The m-PEMKS above is IND-CPA secure against CPA in Game1
under the random oracle model assuming that BDH assumption is intractable.

Game1: A is supposed to be a malicious server.
Proof: Suppose that E has (g, p,G1, GT , e, xg, yg, zg) as an input of BDH as-
sumption whose running time is bounded by T . E’s aim is to calculate a BDH
key e(g, g)xyz of xg, yg and zg using A’s IND-CPA. Besides, A asks for at most
h and h∗ times for the queries of H and H∗ hash functions.

Setup Simulation
E firstly sets C = xg and randomly selects a ∈ Zp and then calculates A = ag.
E also picks up B ∈ G1 uniformly at random. After that, A obtains the common
parameter (g, p,G1, GT , e,H,H

∗), the server’s PEMKS public key (cp,A,B) and

Fuzzy Logic Application to Searchable Cryptography 7

PEMKS private key (cp,a) and the receiver’s PEMKS public key (cp,C). Besides,
E chooses two hash functions H and H∗ in the following:
- A can query a keyword wi to H function at any time. To respond, E searches
H_List for a tuple (wi, Fi, fi, θi) and the H_List is empty in original. If the
tuple exists, A will receive H(wi) = Fi as a response. Otherwise, E does the
following steps:
i. E picks up a coin θi uniformly at random and then calculates Pr[θi = 0] =
1

h+1 .
ii. E selects fi ∈ Zp uniformly at random. If θi = 0,E will calculate Fi = yg+fig.
If θi = 1, E will calculate Fi = fig.
iii. E returns Fi as an answer to A and adds (wi, Fi, fi, θi) into H_List.
- A queries Di to H∗ function at any time. Then, E searches H∗_List for a
tuple (Di, Ni). If the tuple exists, A will receive Ni as a response. Otherwise, E
selects Ni ∈ {0, 1}• uniformly at random and then returns it to A and also adds
(Di, Ni) into H∗_List.
Phase 1-1 Simulation (Trapdoor queries)
A issues a query for the trapdoor corresponding to the keyword-vector Wl =
(w∗l1, w

∗
l2, ..., w

∗
lm). To respond, E executes the following steps:

- E randomly selects i′ ∈ {1, 2, ...,m}
- E runs the above algorithms for simulating H function to create a tuple
(wli′ , Fli′ , fli′ , θli′). If θli′ = 0, E will output “Suspend” and terminate the sys-
tem. Otherwise, E conducts the following:
• E selects t∗ ∈ Zp and then computes T1 = fl1C ⊕ e(A,B)t

∗+x = fl1xg ⊕
e(A,B)t

∗+x = xFl1 ⊕ e(A,B)t
∗+x = xH(wl1) ⊕ e(A,B)t

∗+x, T2 = xH(wl2) ⊕
e(A,B)t

∗+x,...,Tm = xH(wlm) and Z = e(A, t∗B). Therefore, TW = (Z, T1, T2
, ..., Tm).
Challenge Simulation
A sends W0=(w01,w02,...,w0n) and W1=(w11,w12,...,w1n) to E. Once E receives
the target keyword-vector pair, he/she does the following:
- E randomly selects i ∈ {1, 2, ..., n}.
- E runs the above algorithms for simulating H function to obtain two vectors
of tuples (W ∗0i, F ∗0i, f∗0i, θ∗0i) and (W ∗1i, F

∗
1i, f

∗
1i, θ

∗
1i). If θ∗0i and θ∗1i are equal to 1,

E will output “Suspend” and terminate the system. Otherwise, E runs the above
algorithms for simulating H function at 2(n−1) times to obtain two vectors of tu-
ples ((w∗01, F ∗01, f∗01, θ∗01), ..., (w∗0i−1, F ∗0i−1, f∗0i−1, θ∗0i−1), (w∗0i+1, F

∗
0i+1, f

∗
0i+1, θ

∗
0i+1)

, ..., (w∗0n, F
∗
0n, f

∗
0n, θ

∗
0n)) and ((w∗11, F

∗
11, f

∗
11, θ

∗
11), ..., (w

∗
1i−1, F

∗
1i−1, f

∗
1i−1, θ

∗
1i−1),

(w∗1i+1, F
∗
1i+1, f

∗
1i+1, θ

∗
1i+1), ..., (w

∗
1n, F

∗
1n, f

∗
1n, θ

∗
1n)) . If θ∗0i and θ∗1i are equal to 0

for all i = 0, ..., i − 1, i + 1, ..., n, E will output “Suspend” and terminate the
system. Otherwise, E does the following:
– E chooses β ∈ {0, 1} uniformly at random.
– E chooses Ni ∈ {0, 1}• uniformly at random and creates a target SCF-PEMKS
Ciphertext S∗ = (M∗, N∗1 , N

∗
2 , ..., N

∗
n) = (zA,H∗[J1], H

∗[J2], ...,H
∗[Jn])

So, S∗ = (M∗, N∗1 , ..., N
∗
i−1, N

∗
i+1, ..., N

∗
n) = (zA,H∗[e(H(wβ1), C)

z], ...,
H∗[e(H(wβi−1), C)

z], H∗[e(H(wβ1+1), C)
z], ...,H∗[e(H(wβn), C)

z])
Note that Ji = e(H(wβi), C)

z = e(yg + fβig, xg)
z = e(yg, xg)z • e(fβig, xg)z

8 Kazemian and Ma

= e(g, g)xyz • e(zg, xg)fβi
Note also that e(fγig, xg)z = e(fγig, C)

z = e(H(wγi), C)
z

Phase 1-2 Simulation (Trapdoor queries)
A can continue to ask E for Trapdoor queries for the keyword-vector Wi. E
answers to A as in Phase 1-1, as long as wi 6∈W0,W1.
Guess
A outputs the guess β∗ ∈ {0, 1}. Then, E selects d in the list for H∗ function

and returns
dβ∗
i

e(zg,xg)
fβ∗
i

as its guess for BDH key.

Analysis of Game1
Let Event1 and Event2 be events that E does not suspend during Phase 1-
1 and Phase 1-2 (Trapdoor queries) and E does not suspend during Chal-
lenge Simulation respectively. Therefore, the probability of Event1 happening
is at least [(1 − 1

h+1)
m]h ≥ 1

em . Besides, the probability of Event2 happening
is at least (1 − 1

h+1)
2(n−1){1 − (1 − 1

h+1)
2} ≥ (1

h+1) • (
h
h+1)

2(n−1). In addi-
tion, let Hybridr for r ∈ {1, 2, ..., n} be an event that the attacker A can
successfully guess the keyword of the left part of a “hybrid” PEMKS Cipher-
text formed with r, coordinates from Wβ followed by (n − r) coordinates from
W1−β . Consequently, Pr[Event3] = 2Σn

k=1(Pr[Hybridr] − Pr[Hybridr−1]) =
2(Pr[Hybridr]−Pr[Hybrid0]) = 2ε. However, the probability that A requests a
query for either H∗(e(H(W ∗0i), C)

z) or H∗(e(H(W ∗1i), C)
z) is at least 2ε, so the

probability that A issues a query for H∗(e(H(W ∗i), C)
z) is at least ε. In total,

E’s success probability ε∗ is (h
h+1)

2(n−1) • ε
em(h+1)h∗ , which is negligible.

Theorem 2. The m-PEMKS above is IND-CPA secure against CPA in Game2
under the random oracle model assuming that 1-BDHI assumption is intractable.

Game2: A is supposed to be a malicious receiver.
Proof: Suppose that E has (g, p,G1, GT , e, xg) as an input of 1-BDHI assump-
tion whose running time is bounded by T . E’s aim is to calculate a 1-BDHI key
e(g, g)

1
x of xg using A’s IND-CPA. Besides, A asks for at most h and h∗ times

for the queries of H and H∗ hash functions.

Setup Simulation
E firstly sets A = xg and B ∈ G1. E also selects c ∈ Zp uniformly at random and
calculates C = cP . Then,A obtains the common parameter (g, p,G1, GT , e,H,H

∗),
the server’s PEMKS public key (cp,A,B), the receiver’s PEMKS public key
(cp,C) and PEMKS private key (cp,c). Besides, E chooses two hash functions H
and H∗ in the following:
– A can query a keyword wi to H function at any time. To respond, E selects
fi ∈ Zp uniformly at random and then calculates Fi = fig and finally returns
Fi as a response to A.
– A can query Di to H∗ function at any time. Then, E searches H∗_List for
a tuple (Di, Ni). If the tuple exists, A will receive Ni as a response. Otherwise,
E selects Ni ∈ {0, 1}• uniformly at random and then sends it to A. E also adds

Fuzzy Logic Application to Searchable Cryptography 9

(Di, Ni) into H∗_List.
Challenge Simulation
A sends (W ∗0i, F ∗0i, f∗0i, θ∗0i) and (W ∗1i, F

∗
1i, f

∗
1i, θ

∗
1i) toE, whereW ∗0 = (w01, w02, ...,

w0n) and W ∗1 = (w11, w12, ..., w1n). E randomly chooses β ∈ {0, 1} and Ni ∈
{0, 1}•. Then, E creates a target PEMKS Ciphertext S∗ = (M∗, N∗1 , N

∗
2 , ..., N

∗
n)

= (ψxg,H∗[J1], H
∗[J2], ...,H

∗[Jn])
So, S∗ = (M∗, N∗1 , N

∗
2 , ..., N

∗
n) = (ψxg,H∗(e(H(wβ1

), C)ψ), H∗(e(H(wβ2
), C)ψ)

, ...,H∗(e(H(wβn), C)
ψ))

Notice that e(H(wβ∗
i
), C)ψ) = e(fig, cg)

ψ = e(g, g)ψ·fic.
Guess
A outputs the guess β∗ ∈ {0, 1}. Then, E returns ψ = 1

x·fic as the guess for
1-BDHI key.

Analysis of Game2
Let Event4 and Event5 be events that E does not suspend during Challenge
Simulation and A does not issue a query for either one of H∗(e(H(W ∗0i), C)

ψ)
or H∗(e(H(W ∗1i), C)

ψ) respectively. So, the probability of Event4 happening is
equal to 1. Besides, according to Bayes’s rule and the definition above, the prob-
ability of Event5 happening is at least 2ε and therefore, the probability that A
issues a query for H∗(e(H(W ∗i), C)

ψ) is at least ε. Therefore, e(H(W ∗j), C)
ψ =

e(g, g)ψ·fic will appear in H*_List. Due to A asks for at most h∗ times H∗ hash
function queries, the probability that E selects the correct answer is at least 1

h∗ .
In total, E’s success probability ε∗ is ε

h∗ , which is negligible.

Theorem 3. The m-PEMKS above is Trapdoor-IND-CPA secure against CPA
in Game3 under the random oracle model assuming that BDH assumption is
intractable.

Game3: A is supposed to be an outside attacker excluding the server and the
receiver.
Proof: Suppose that E has (g, p,G1, GT , e, xg, yg, zg) as an input of BDH as-
sumption whose running time is bounded by T . E’s aim is to calculate a BDH
key e(g, g)xyz of xg, yg and zg using A’s Trapdoor-IND-CPA. Besides, A asks
for at most h and h∗ times for the queries of H and H∗ hash functions.

Setup Simulation
E firstly sets A = xg,B = yg, C = zg and returns (cp,A,B) as the server’s
PEMKS public key and (cp, C) as the receiver’s PEMKS public key. E also
chooses two H and H∗ hash functions at random.
Phase 3-1 Simulation (Trapdoor queries)
A issues a query for the trapdoor corresponding the keyword-vector Wi, where
i ∈ {1, 2, ...,m}. To respond, E chooses t∗ ∈ Zp uniformly at random. Then, E
computes T1 = zH(wi1)⊕ e(yg, xg)t

∗+z, T2 = zH(wi2)⊕ e(yg, xg)t
∗+z, ..., Tm =

zH(wim) ⊕ e(yg, xg)t∗+z and Z = e(t∗yg, xg). So TW = (Z, T1, T2, ..., Tm). Fi-
nally, E returns TW to A.

10 Kazemian and Ma

Challenge Simulation
A sends (W ∗0 ,W ∗1) toE, whereW ∗0 = (w01, w02, ..., w0m),W ∗1 = (w11, w12, ..., w1m).
E creates the challenge Trapdoor request as follows:
E randomly selects a bit β ∈ {0, 1}. Therefore, T1 = zH(wβ∗1)⊕ e(yg, xg)

t∗+z =

zH(wβ∗1)⊕ e(g, g)
xyz • e(g, g)xyt∗ , T2 = zH(wβ∗2)⊕ e(g, g)

xyz • e(g, g)xyt∗ , ...,
Tm = zH(wβ∗m)⊕ e(g, g)

xyz • e(g, g)xyt∗ , R = e(t∗yg, xg).
Phase 3-2 Simulation (Trapdoor queries)
A can continue to ask Trapdoor queries for the keyword-vector Wi. While, E
answers to A as in Phase 3-1, as long as Wi 6=W0,W1.
Guess
A outputs the guess β∗ ∈ {0, 1}. If β = β∗, E outputs “yes”, otherwise, E out-
puts “no”.

Analysis of Game3
Due to A is a malicious outside attacker, he/she cannot distinguish any differ-
ence between two Trapdoors even though these two Trapdoors have the same
keyword. The reason is that E randomly chooses t∗ ∈ Zp and t∗ changes every
time leading to Ti = cH(wβi) ⊕ e(A,B)t

∗+c changes every time. Even if two
Trapdoors have the same keyword, the results are still different because of t∗.
Therefore, the key part of Trapdoor Indistinguishability in this proposed scheme
is the confidentiality of e(A,B)t

∗+c.

Suppose the attacker A obtains the value of e(A,B)t
∗+c, he/she can distinguish

whether two Trapdoors have the same keyword. The reason is that the attacker
A only calculates one extra XOR operation as Ti = cH(wβi) ⊕ e(A,B)t

∗+c ⊕
e(A,B)t

∗+c = cH(wβi). Therefore, the attack A can distinguish that Tw0i =
cH(w0i) and Tw1i = cH(w1i) are equal as long as w0i = w1i. Consequently,
the attack A could distinguish two Trapdoors TW0

and TW1
. However, accord-

ing to Challenge Simulation in Game3, it is easy to acquire e(A,B)t
∗+c =

e(g, g)xyz • e(g, g)xyt∗ , which satisfies BDH assumption. Hence, the attacker
A cannot calculate the value of e(A,B)t

∗+c and therefore, it cannot compute
Ti = cH(wβi)⊕ e(A,B)t

∗+c.

4 The Performance of m-PEMKS

The proposed system is implemented by JAVA, which requires two libraries in
the following: JPBC library [14] and jFuzzyLogic library [15, 16].

The proposed scheme applies the Single Input Single Output (SISO) Mamdani
Fuzzy Inference System. The is because of the properties of Artificial Intelligence
and Cryptography. Artificial Intelligence explores and analyses the data for dis-
covering the relationships between the different data sets. On the contrary, the
purpose of cryptography is hiding as much as possible information. Besides, the
input value of Mamdani system is plaintext. Therefore, if m-PEMKS applies
Two or More Input Single Out (T/MISO) Mamdani Fuzzy Inference System,

Fuzzy Logic Application to Searchable Cryptography 11

sufficient data will be exposed to the public networks and therefore, crackers are
able to launch attacks to recover more information. Fig. 2 shows the member-
ship functions for an example of searching “latest” financial reports and Fig.3
shows the assessed value for each input. More specially, three senders upload
the financial reports with different dates to the server by m-PEMKS system.
Once the server receives them, it will run Test algorithm incorporating with
SISO Mamdani Fuzzy Inference System to filter the “latest” reports. By Fig.3, it
can be seen that the first report partly belongs to the old and acceptable finan-
cial report while the second report belongs to the acceptable financial report.
However, the third report completely belongs to the “latest” financial report.

Fig. 2. Membership functions for an example of searching “latest” financial reports

Fig. 3. Assessed values for an example of searching “latest” financial reports

5 Conclusion

In this paper, a novel and a robust Public Key Encryption with Multiple Key-
words Search using Mamdani System(m-PEMKS) scheme is presented. The new
scheme is proved to be semantic secure in the random oracle models under BDH
and 1-BDHI assumptions and also satisfies the properties of Ciphertext Indistin-
guishability and Trapdoor Indistinguishability and therefore, it is able to resist
Off-line Keyword Guessing Attack. Furthermore, Single Input Single Output
Mamdani technique is applied to m-PEMKS so that it has the ability to solve
fuzzy and imprecise keywords, such as “latest” and “tallest”, etc., as described in
the paper.

12 Kazemian and Ma

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R. and Persiano, G. (2004). Public Key
Encryption with Keyword Search. Advances in Cryptology - EUROCRYPT 2004,
pp.506-522.

2. Baek, J., Safavi-Naini, R. and Susilo, W. (n.d.). Public Key Encryption with Key-
word Search Revisited. Computational Science and Its Applications ? ICCSA 2008,
pp.1249-1259.

3. Byun, J., Rhee, H., Park, H. and Lee, D. (2006). Off-Line Keyword Guessing At-
tacks on Recent Keyword Search Schemes over Encrypted Data. Lecture Notes in
Computer Science, pp.75-83.

4. Yau, W., Heng, S. and Goi, B. (n.d.). Off-Line Keyword Guessing Attacks on Recent
Public Key Encryption with Keyword Search Schemes. Lecture Notes in Computer
Science, pp.100-105.

5. Tang, Q. and Chen, L. (2010). Public-Key Encryption with Registered Keyword
Search. Public Key Infrastructures, Services and Applications, pp.163-178.

6. Rhee, H., Park, J., Susilo, W. and Lee, D. (2010). Trapdoor security in a searchable
public-key encryption scheme with a designated tester. Journal of Systems and
Software, 83(5), pp.763-771.

7. Wang, T., Au, M. andWu,W.: An Efficient Secure Channel Free Searchable Encryp-
tion Scheme with Multiple Keywords, Network and System Security, v9955, 251-265
(2016).

8. Zadeh, L. (1973). Outline of a New Approach to the Analysis of Complex Systems
and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-3(1), pp.28-44.

9. Mamdani, E.H. and Assilian, S. (1975). An experiment in linguistic synthesis with
a fuzzy logic controller, International Journal of Man?Machine Studies, 7(1), 1?13.

10. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to
modeling and control. IEEE Trans. Sys. Man. Cybern. 1985, 15, 116?132.

11. Singh, J., Singh, N. and Sharma, J. K. 2006. Fuzzy modeling and identification of
intelligent control for refrigeration compressor. J. Sci. Ind. Res., 65: 22-30.

12. Lermontov, A.; Yokoyama, L.; Lermontov, M.; Machado, M.A.S. River quality
analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil.
Ecol. Indic. 2009, 9, 1188?1197.

13. Marchini, A.; Facchinetti, T.; Mistri, M. F-IND: A framework to design fuzzy
indices of environmental conditions. Eco. Indic. 2009, 9, 485?496.

14. De Caro, A. and Iovino, V. (2011). jPBC: Java pairing based cryptography. 2011
IEEE Symposium on Computers and Communications (ISCC).

15. Cingolani, Pablo, and Jesús Alcalá-Fdez. jFuzzyLogic: a Java Library to Design
Fuzzy Logic Controllers According to the Standard for Fuzzy Control Program-
ming.International Journal of Computational Intelligence Systems, Vol. 6, Supple-
ment 1 (2013), 61-75.

16. Cingolani, Pablo, and Jesus Alcala-Fdez. jFuzzyLogic: a robust and flexible Fuzzy-
Logic inference system language implementation. Fuzzy Systems (FUZZ-IEEE),
2012 IEEE International Conference on. IEEE, 2012.

