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Abstract  

 

Interrupted time series designs are a valuable quasi-experimental approach for evaluating 

public health interventions. Interrupted time series extends a single group pre-post comparison 

by using multiple timepoints to control for underlying trends. But history bias – confounding 

by unexpected events occurring at the same time of the intervention – threatens the validity of 

this design and limits causal inference. Synthetic control methodology, a popular data-driven 

technique for deriving a control series from a pool of unexposed populations, is increasingly 

recommended. In this paper, we evaluate if and when synthetic controls can strengthen an 

interrupted time series design. First, we summarise the main observational study designs used 

in evaluative research, highlighting their respective uses, strengths, biases, and design 

extensions for addressing these biases. Second, we outline when the use of synthetic controls 

can strengthen interrupted time series studies and when their combined use may be problematic. 

Third, we provide recommendations for using synthetic controls in interrupted time series and, 

using a real-world example, we illustrate the potential pitfalls of using a data-driven approach 

to identify a suitable control series. Finally, we emphasize the importance of theoretical 

approaches for informing study design and argue that synthetic control methods are not always 

well-suited for generating a counterfactual that minimises critical threats to interrupted time 

series studies.  Advances in synthetic control methods bring new opportunities to conduct 

rigorous research in evaluating public health interventions. However, incorporating synthetic 

controls in interrupted time series studies may not always nullify important threats to validity 

nor improve causal inference. 

 

Key words: Interrupted time series, synthetic controls, quasi-experimental, causal inference, 

history bias 
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Key messages 

 

• Interrupted time series design is a valuable quasi-experimental design for evaluating 

public health interventions. 

 

• Synthetic control methodology is a data-driven technique for deriving a control series 

from a pool of unexposed populations. 

 

• Incorporating synthetic controls in interrupted time series studies is increasingly 

recommended as a useful tool for improving causal inference. 

 

• Theoretical considerations of plausible time-varying confounding are recommended in 

order to determine whether synthetic controls are able to minimise critical threats to 

validity in interrupted time series evaluations. 
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Introduction 

 

Interrupted time series (ITS) is an increasingly popular quasi-experimental design for 

evaluating public health interventions when randomisation is not possible. ITS extends a single 

group pre-post (or before-after) comparison by using regularly collected data to model the 

underlying trend in the outcome, thereby controlling for gradual and cyclical patterns over time 

(e.g., secular trends, seasonality).1,2 Such designs are especially well-suited for evaluating the 

effects of interventions that target population-level outcomes over a clearly defined time 

period,1–4 and have been used to evaluate a range of public health interventions including new 

vaccines, traffic speed zones, and changes to drug packaging.5–8 They have also been used to 

retrospectively evaluate the health impacts of unplanned events, such as the financial crisis,9 

and the unintended consequences of other events, such as the release of Netflix’s 13 Reasons 

Why.10 

 In using a single group to evaluate the impact of an intervention, ITS studies are 

susceptible to bias. In particular, a simple ITS is susceptible to time-varying confounding since 

it is unable to disentangle true effects of the intervention from some other simultaneously 

occurring event or co-intervention. This bias is known as history bias and threatens the validity 

of causal inference in ITS.11 However, such threats to validity can be mitigated by adding 

additional design features, such as a control series, that can strengthen and extend a basic ITS 

to a controlled ITS (CITS) design.12 A CITS design includes both a within- and between-group 

component, which can account for confounding from other co-occurring events by adding an 

external control series that has been exposed to such events but not to the intervention. 

Synthetic control methodology, popularised by Abadie and colleagues, is a data-driven 

technique that derives a comparison unit from a weighted average of eligible comparison units 

(the “donor pool”) that minimizes the differences between preintervention trends in the treated 

and synthetic control series.13–15 The method is well-suited for deriving a counterfactual for 
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between-group studies, such as case-control and controlled before-after studies where 

contemporaneous time series data are available for treated and untreated units, especially when 

there is no obvious single comparator.16 The strengths and limitations of synthetic controls have 

been discussed in full elsewhere,1,3,15–18 and has been recently described as “the most important 

innovation in the evaluation literature in the last fifteen years”.19 Synthetic controls are 

increasingly recommended in evaluations of public health interventions – including ITS studies 

– with the promise of improving causal inference.13,14,16,20,21  

This paper aims to critically examine if and when synthetic controls can strengthen an 

ITS evaluation. Specifically, we use an ITS lens to critique the data-driven approach of using 

synthetic controls to identify a control series in a CITS study design. We use schematic 

diagrams and a worked example to describe the main threats to the validity of ITS studies and 

demonstrate when and how synthetic controls can be used in CITS and when their use may be 

problematic. Datasets and R code are provided in the supplementary material so that readers 

may reproduce the worked example. 
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Evaluative study designs  
 

Study designs used to evaluate public health interventions in observational research are defined 

in Box 1. A counterfactual is defined as what would have happened had the intervention not 

taken place and, in the context of these evaluative study designs, a counterfactual represents the 

main comparator used to estimate the effect of the intervention. The different evaluative study 

designs fall under two main approaches for identifying a counterfactual: between-group and 

within-group designs. Both approaches, their biases, extensions, and applications are described 

in Table 1. 

 

 

Box 1. Definitions for evaluative study designs in observational research 

Case-control study* 

 
Compares the outcome(s) of interest in two groups, one of which received the intervention 

(‘case’) versus another that did not receive the intervention (‘control’) 

Before-after study 

 Compares the outcome(s) of interest in the same group before and after it receives an intervention 

Controlled before-after study 

 
Combines the two study designs above by comparing the before-after change in the outcome(s) of 

interest between the case and control group, typically using difference-in-difference estimation 

Interrupted time series study 

 

Extends the before-after design by comparing the outcome(s) of interest at multiple time points 

before and after an intervention in the same group, thus allowing for control of the underlying 

trend 

Controlled interrupted time series study 

 

Combines the interrupted time series and the controlled before-after designs by comparing the 

before-after change in the outcome(s) of interest between the case and control series, while 

controlling for the underlying trend 

Adapted from Cochrane definitions for non-randomised controlled study designs.22 Note the definitions provided 

here relate to the study designs referenced in this paper and is not a comprehensive list of all evaluative study 

designs in observational research.  

*We are using the term case-control to refer to study designs with aggregated units as the unit of analysis (e.g., 

geographical areas which do and do not experience an intervention), rather than individuals as the unit of 

analyses, where cases refer to individuals with a disease of interest and controls to individuals who do not have 

the disease. 
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Table 1. Different approaches for identifying a counterfactual  

Counterfactual model 

Within-group  

(+ control) 

Between-group 

(+ synthetic control) 

Time period before the population 

received the intervention 

External population that did not 

receive the intervention 

Reason for use Pre-intervention period is the most 

suitable counterfactual as there is 

no available external comparator 

that does not suffer from time-

invariant confounding  

Comparison group is the most 

suitable counterfactual as there is 

an appropriate external comparator 

and time-varying confounding 

poses the greatest threat to internal 

validity 

Simple study design Before-after Case-control* 

 

Main strength Control of time-invariant factors Control of time-varying factors 

Main threats to 

internal validity  

Maturation & history bias 

(time-varying confounding) 

Selection bias† 

(time-invariant confounding) 

Extended study design Interrupted time series Controlled before-after 

 

 

Causal identification Predicted counterfactual; 

modelling and forecasting using 

multiple timepoints (ie time series) 

for the treated population before 

and after the intervention 

External counterfactual; 

difference-in-difference estimation 

using data for the treated and 

control population before and after 

the intervention 

Main threats to 

internal validity 

History Non-parallel trends 

Additional extensions 

to minimise bias 

Controlled interrupted time series Controlled before-after with 

synthetic control 

Causal identification Predicted + external 

counterfactual; 

difference-in-difference estimation 

using modelling and forecasting 

for treated and control series 

before and after the intervention 

Matched + external counterfactual; 

difference-in-difference estimation 

using multiple timepoints (ie time 

series) for the treated and a 

matched control population before 

and after the intervention 

Applied examples in 

public health 

evaluations  

Ejlerskov et al.22 Evaluating the 

effect of UK supermarket policies 

for reducing less-healthy food at 

checkouts  

Abadie et al.13 Evaluating the 

effect of California’s Tobacco 

Control Program 

*We are using the term case-control to refer to study designs with aggregated units as the unit of analysis 

(e.g., geographical areas which do and do not experience an intervention), rather than individuals as the 

unit of analyses, where cases refer to individuals with a disease of interest and controls to individuals 

who do not have the disease. 

†We are defining selection bias as systematic differences between the treated and control groups that 

confound the true effects of the intervention with group differences.  
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Using interrupted time series to evaluate public health interventions 

 

 
A simple ITS design uses a within-group approach to identify a counterfactual. ITS advances a 

basic before-after design by using multiple timepoints to model underlying trends and account 

for time-varying confounding from secular trends and seasonality (Figure 1a). These underlying 

trends are then used to predict the expected time series and serve as the counterfactual 

(methodology described in full elsewhere).1–3,9  The main reason for using an ITS design is 

when the pre-intervention period is the most suitable counterfactual, often because the treated 

group is unique and so there is no suitable comparison group (Table 1). A common example is 

when a country implements a country-wide public health intervention, such as Australia 

enacting new cycle helmet legislation.23 In such examples, it is difficult to identify a suitable 

comparison group as it is unlikely that any other country shares the same legislative context, 

number of bicycles, road structure, rates of road accidents and cycling-related injuries, or 

population size and density as Australia.  As a result, Australia before the new cycle helmet 

legislation serves as the more suitable counterfactual (as compared to another country), 

especially when controlling for underlying trends.  

 

Addressing history bias to improve causal inference in interrupted time series 

evaluations 

 

However, interrupted time series is susceptible to bias. In particular, time-varying confounding 

from unexpected events or co-interventions that happen at the same time of the intervention 

(i.e., history bias).11,12 These unexpected events are independent of underlying trends and 

cannot be predicted or forecasted, such as an economic recession or an environmental disaster. 

Thus, history bias poses the greatest threat to the validity of ITS studies and undermines causal 
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inference. Figure 1b illustrates history bias and shows that, if another event simultaneously 

occurred, a simple ITS design is unable to estimate the intervention’s effect on the outcome. 

History bias can be potentially mitigated by adding additional design features to 

strengthen a basic ITS design and improve causal inference. The most common addition is 

selecting a well-chosen control series that has not been exposed to the intervention but has been 

exposed to the confounding other event, producing a CITS (Box 1 & Table 1).12,24–26 This is 

schematically illustrated in Figure 1c, where the control series has been exposed to the 

confounding event but not the intervention. The benefit of including a control series depends 

on its ability to rule out history bias and, as a result, researchers are required to case-select an 

appropriate control. Specifically, an appropriate control should be selected based on having 

experienced the relevant time-varying confounders and being affected by these confounders to 

the same extent as the intervention series while not having experienced the intervention itself. 

If an evaluation of a control series, which experienced the confounding event, shows no impact 

on the outcome, then this additional design element serves as a useful sensitivity analysis or 

robustness check to the analysis of the intervention series and/or can be formally incorporated 

into the one model using difference-in-difference estimation. This accounts for history bias (at 

least by the known other event) and thus helps to strengthen causal inference.12 

 

Using synthetic controls to improve causal inference in between-group evaluations 

 

Synthetic control methodology is a data-driven technique that generates a control series by 

calculating a weighted average from a pool of potential controls (the so-called donor pool). The 

weighting algorithms use prediction errors, such as mean squared prediction errors (MSPE), to 

minimise differences between the treated and control series’ pre-intervention trends.13–15 The 

underlying assumption is that the donor pool can be used to accurately estimate the 



 9 

counterfactual based on pre-intervention trends in the outcome and (possibly) other covariates. 

The method is designed to improve causal inference by reducing selection bias when using a 

between-group approach to estimate the counterfactual.14 Selection bias describes systematic 

differences in the treated and control groups that may confound effect estimates, and is 

pervasive in the between-group approach for identifying a counterfactual.11  While adding a 

before-after element may reduce selection bias – extending a case-control design to a controlled 

before-after design – the benefits of this design extension rely on the parallel trends assumption 

(i.e., in the absence of the intervention, differences in the slopes of the treated and control series 

are constant over time). This assumption is the main threat to the validity of a controlled before-

after design. Synthetic control methods are thus instrumental for improving causal inference 

for the between-group approach for identifying a counterfactual.16,19 

 

Using synthetic controls to improve causal inference in interrupted time series 

evaluations 

 

The use of synthetic controls is increasingly recommended for ITS.13,14,16,20,21 As outlined 

above, a control series only strengthens an ITS design when it is able to address history bias. 

An appropriate control series should experience the time-varying confounder(s) but not the 

intervention (Figure 1b & 1c). In contrast, synthetic control methodology shifts the selection of 

a control series away from a theoretically and contextually informed case-selection approach 

to a data-driven method. As a result, synthetic control methods may derive a control series that 

has a parallel trend to the intervention series prior to implementation (as illustrated in Figure 

1d). However, there is no guarantee that the controls in the donor pool have experienced the 

all-important confounding from other events. This key issue of interpolation bias, irrespective 

of synthetic control fit, is also acknowledged by Abadie et al.13 (p. 495). In this instance, a 
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synthetic control series would fail to improve causal inference in a CITS design as the vertical 

blue line representing other confounding events in Figure 1d would not be reflected in the 

synthetic control series. 

 

Problems and benefits  

The benefits of using synthetic controls in ITS depends on the nature of the history bias and the 

distribution of the confounding event among the donor pool. The donor pool is a group of 

potential controls that have not experienced the intervention, which are then weighted according 

to the matching algorithm.28 If the majority of the potential controls in the donor pool have not 

experienced the confounding event, then it is likely that the derived synthetic control is unable 

to rule out this confounding and minimise history bias. On the other hand, if all the potential 

controls in the donor pool are hypothesized to have experienced the confounding event, then 

the use of synthetic controls in ITS may be beneficial.  

An example using a real-world evaluation of an intervention is instructive here. Humphreys 

et al.29 evaluated the impact of Florida’s “stand your ground” (SYG) law on homicide.29 The 

law, enacted October 1, 2005, extends the right to use lethal force in self-defense in public 

places when threat is perceived.  The authors used an ITS design to examine whether extending 

the right to use self-defence escalated aggressive encounters and increased rates of homicide in 

Florida and checked for history bias by also analysing homicide rates in a selected subset of 

comparison states that did not have SYG laws. Recent guidance instead recommends using 

synthetic control approaches to identify a control series from a donor pool of all comparison 

states that do not have SYG laws.20,21,31 

However, the appropriateness of this recommendation depends on the other events 

occurring at the same time that Florida’s SYG law was enacted. The other events could range 

from state-specific legislative changes (e.g., enacting concealed carry laws) to country-wide 
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events (e.g., an economic recession). If state-specific events pose the most likely threat to an 

ITS study’s validity, then only the subset of states that have enacted the concealed carry law 

(i.e., the other confounding event) but have not enacted SYG laws (i.e., the intervention) should 

be selected (see Figure 2a). Under these conditions, a synthetic control method would be 

inappropriate because it would instead involve deriving a control series based on all states 

without SYG laws, without considering exposure to the confounding event that may bias the 

intervention effect estimate. This is because the matching algorithm constructs the synthetic 

control weights by minimising differences in pre-intervention trends.13–15  Hence, the weighting 

procedure is unable to capture important time confounding events happening at the same time 

as the intervention, if such events cannot be predicted from pre-intervention trends alone (i.e., 

unexpected or abrupt events, also known as “shocks”). In this scenario the use of synthetic 

controls instead of case-selection could be problematic since it uses a CITS design but fails to 

address history bias. 

If, however, country-wide events pose the most likely threat to an ITS study’s validity, 

then the use of synthetic controls may strengthen an ITS design. This is because all comparison 

states in the donor pool have experienced the other confounding event. For instance, in the 

example of an SYG evaluation, a country-wide confounding event could have been the 

economic recession. If this is the primary hypothesised confounder, all donor states would have 

been equivalent in their ability to address history bias (assuming the recession affected all states 

equally; Figure 2b). Under these conditions, the benefits of using synthetic control methods 

hold – it reduces selection bias by minimising systematic differences between the treated and 

control series, satisfies the parallel trends assumption, and removes researcher bias in the 

selection of the control series.16 It is important to emphasise that in an ITS design history bias 

is the most critical threat to validity and so these benefits are only of value if history bias is 

already accounted for.1,26  
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Recommendations for using synthetic controls in interrupted time series  
  

Because synthetic control methods are not designed to address the critical threat to validity for 

ITS, we would argue that the benefits of incorporating them within ITS designs may be limited 

to certain situations. First, researchers should identify plausible confounding events or co-

interventions that occurred at the same time as the intervention and affect the outcome of 

interest.24 The identification of such confounding events should be guided by a researcher’s 

knowledge of the wider literature and temporal context of the intervention. This includes an 

informed understanding of the theoretical mechanisms by which the intervention is proposed 

to impact the outcome of interest and how other coinciding events or co-interventions may also 

impact the same outcome. Insights from qualitative research and previous empirical studies, as 

well as graphical models such as causal directed acyclic graphs (DAGs), may facilitate the 

identification of key confounding events.32–34 When all control units are hypothesized to have 

experienced these confounding events (Figure 2b), then synthetic control methods can be used 

to disentangle bias from other confounding events without restricting the donor pool. 

Alternatively, synthetic control methods can be used when the donor pool can be feasibly 

restricted so that all control units entered into the donor pool are hypothesized to have 

experienced the confounding events while still having a sufficient number of donors for 

synthetic control weighting. This strategy for restricting the donor pool combines theoretically 

informed case-selection with data-driven techniques to identify the most appropriate control 

series for mitigating bias in ITS and improving causal inference.  

 If concerns remain around whether the donor pool (restricted or otherwise) is able to 

capture important time-varying confounders that threaten the internal validity of the ITS design, 

then researchers should opt to carry out additional robustness checks and reconsider the 

appropriateness of synthetic control methodology to derive the control series for a CITS study. 
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The use of placebo tests would help to evaluate the robustness of the synthetic control itself.15 

“In-time” placebo tests artificially reassign the intervention to occur during the pre-intervention 

period, while “in-space” placebo tests artificially reassign the intervention to control units in 

the donor pool (full methodological details described elsewhere).15,35 Although placebo tests 

are valuable extensions to generally assess a researcher’s confidence in the intervention effects 

estimated from the synthetic control, they are less able to speak to the specific concerns raised 

here about the appropriateness of synthetic controls in mitigating against time-varying 

confounding from abrupt events (or “shocks”) that occur at the same time as the intervention. 

In order to address this specific concern of history bias within an ITS design, we recommend 

selecting the most appropriate control series based on theoretical considerations.12 For example, 

a carefully case-selected geographical area or negative control outcome, which are 

hypothesized to be affected by other confounding events but not the intervention, would be 

better equipped to assess whether the intervention effect estimate is impacted by history bias, 

as illustrated in Figure 1c.9,36,37 Therefore, when there are concerns that the donor pool is unable 

to capture the important time-varying confounders, a case-selected control area or a negative 

control outcome instead of a synthetic control may be the preferable control series for a CITS 

study.  
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An illustrative example 

 

Keeping with the same real-world evaluation of Florida’s SYG law, the most plausible time-

confounding events to affect homicide rates are US-wide (e.g., the 2008 economic recession).29 

We therefore extended the original study’s CITS design from four comparison states (New 

York, New Jersey, Ohio, Virginia) to a synthetic control (donor pool: 15 comparison states). 

Monthly homicide rates from January 1999 to December 2014 were obtained at the state-level 

from the Centers for Disease Control and Prevention’s (CDC) Wide-ranging Online Data for 

Epidemiologic Research (WONDER). The weights for the synthetic control were identified 

using underlying trends in homicide rates, as well as state-level characteristics (e.g., 

demographics; Supplementary Table 1). The donor pool consisted of 15 comparison states that 

did not pass SYG laws between January 1999 to December 2014, including by statue or case 

law (Supplementary Table 2).38 Because Florida’s homicide counts were outside the range of 

comparison states, we directly model homicides rates – which did fall within the range of 

comparisons states and thus within the convex hull – using a segmented log-linked Gaussian 

generalized linear model and exponentiated the coefficients to represent relative risk (RR). 

Synthetic control analyses were run in R (version 3.5.2) using the Synth package.28 We also ran 

a sensitivity analysis specifying Newey-West standard errors to account for residual 

autocorrelation at lag 1.20 This sensitivity analysis replicates our findings hence the results are 

not presented here but reproducible code is provided in the supplementary material. All data 

and code are available from the Open Science Framework 

(https://osf.io/dtyvq/?view_only=2b35d8f8e4af4b369246cfe4e218c001). 

After adjusting for underlying trends, the original CITS found that the SYG law was 

associated with an increase in homicide rates in Florida (RR=1.25; 95%CI:1.18–1.32; p<.0001) 

but had no effect in the four comparison states (RR=1.05; 95%CI:0.98–1.13; p=0.19258) 

https://osf.io/dtyvq/?view_only=2b35d8f8e4af4b369246cfe4e218c001
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(Figure 3a). The CITS estimated a 18.6% increase in homicide rates following the 

implementation of SYG relative to the comparison states (RR=1.19; 95%CI:1.08–1.30; 

p=0.00033). The synthetic control series showed good pre-intervention fit (Figure 3b). But, 

unlike the four comparison states, the synthetic control showed a small significant increase in 

homicide rates following the enactment of Florida’s SYG law (RR=1.10; 95%CI:1.03–1.19; 

p=0.00714). Although this attenuated the estimated intervention effect from 18.6% to 12.9%, 

the increase remained significant (RR=1.13; 95%CI:1.03–1.24; p=0.01324).  

These analyses identify an increase in monthly homicide rates in Florida following the 

SYG law. Because the confounding was from a US-wide social or economic event, the synthetic 

control series was an appropriate control. It was also more sensitive to identifying, thus 

mitigating, history bias than the original four comparison states used – strengthening causal 

inference in this ITS evaluation. However, if the hypothesized confounding was state-specific, 

localized to certain comparison states, then using a synthetic control series instead of case-

selection could be inappropriate.  

We demonstrate this limitation theoretically using a synthetic control in ITS by 

extending the worked example. First, we simulated an artificial time-confounding effect in 

October 2005 that increased homicides in only two comparison states: Maryland and 

Connecticut (cf. Figure 2a). Second, we performed the analyses on these artificial data for a 

CITS using these two comparison states (Maryland and Connecticut) and a CITS using a 

synthetic control (same donor pool: 15 comparison states). We found a 30.2% step increase in 

the control series (RR=1.30; 95%CI:1.18–1.44; p<.0001), which reflected the artificially 

simulated confounding event in the comparison states (Figure 4a). After removing this 

confounding effect through CITS estimation, there was no increase in homicides rates in Florida 

relative to comparison states (RR= 0.96; 95%CI:0.84–1.08; p=0.48535). In contrast, the 

synthetic control was insensitive to the confounding event, showing the same results with these 
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artificial data to the original data. This meant that the synthetic control was unable to adequately 

remove the confounding effect and continued to estimate that Florida’s SYG law resulted in a 

12.9% increase in homicide rates (RR=1.13; 95%CI:1.03–1.24; p=0.01324). The reason that 

this example of a synthetic control is insensitive to the simulated confounding event is because 

the matching algorithm(s) in synthetic control methodology is unable to control for time-

varying confounding that cannot be predicted from the preintervention period alone, such as 

the abrupt one-off event specified here. Consequently, the algorithm is blind to this type of 

confounding and the derived synthetic control is not designed to rule out this threat to internal 

validity. 

  

 

Conclusion 

 

There are many advantages to using synthetic control approaches. It helps to reduce selection 

bias, satisfies the parallel trends assumption, and removes researcher bias when selecting from 

a pool of eligible controls.16 Such advantages speak directly to the main threats of validity for 

between-group approaches and can thus help to improve causal inference for these public health 

evaluations. However, the advantages of synthetic control methods are not necessarily aligned 

with the main critical threat to the validity of an ITS evaluation: history bias. We showed when 

and how synthetic control approaches may be beneficial and when and how they may be 

problematic for ITS. We thus express caution against viewing synthetic control methods as a 

panacea in CITS designs. Instead, we recommend that researchers base their selection of a 

control series on their main source of confounding that may bias their effect estimates in an ITS 

public health evaluation. If the donor pool can reliably reflect this confounding, then the use of 

synthetic controls can be useful. But if it cannot, then case-selecting an appropriate control area 

or using a negative control outcome may be the more reliable method for minimizing critical 
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bias and improving causal inference. These observations underline the importance of 

prioritising a theoretical approach above a purely data-driven approach when aiming to 

strengthen an ITS study design. 

 

 

 

 

 
 

 

 
  



 

 

Figure 1. Schematic diagram showing history bias from a confounding other event in interrupted time series 

designs (simple and controlled). Adapted from Lopez-Bernal et al.12 



 
 

 

Figure 2. Illustrative example of when the use of synthetic controls in interrupted time series 

is problematic (state-specific confounding (a)) and beneficial (country-wide confounding (b)). 
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Figure 3. The impact of stand your ground (SYG) law on homicide rates in Florida, 1999-2014, 

using real data with a US-wide confounding event: (a) CITS with four comparison states (New 

York, New Jersey, Ohio, Virginia); (b) CITS with synthetic control (donor pool: 15 comparison 

states). Adapted from Humphreys et al. (2017).30 
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Figure 4. The impact of stand your ground (SYG) law on homicide rates in Florida, , 1999-

2014, using artificial data with a state-specific confounding event: (a) CITS with two 

comparison states affected by the confounding event (Maryland, Connecticut); (b) CITS with 

synthetic control (donor pool: 15 comparison states). Adapted from Humphreys et al. (2017).30 
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