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Abstract

A review of separating methods used in domestic and electric vehicle lithium

ion battery recycling is presented, focusing on physical processes which are com-

monly utilised prior to further chemical processing and purification steps. The

four processes of stabilisation, disassembly, separation and binder negation are

reviewed and the strengths and weaknesses in current research identified. The

main limitation with current recycling methods is the comminution step, which

mixes, sometimes intimately, the materials from different cell components. This

mixed waste stream requires further physical separation, and produces cross

contamination in the different material streams. Effective separation of battery

components, which produces enhanced purity of waste streams is essential to

providing a cost-effective recycling process for direct or “closed loop” recycling.

Improvements in the separation process are possible if the materials are sepa-

rated prior to comminution, to prevent contamination of the different materials

streams. In addition to purity of waste streams, one area mostly neglected in

the literature is the health and safety implications and hazards associated with

the chemicals contained within the cells. Little information is known about the

chemical reactions which may occur during the physical separation processes
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and this has been identified as an area which needs substantially more investi-

gation.

Keywords: Physical separation, lithium-ion batteries, circular economy,

recycling, waste management, safety

1. Introduction

Lithium ion battery recycling is still in its infancy, but will become essential.

Heelan et al. [1] reported that in 2016 approximately 95 % of Li-ion batteries

ended up in landfill sites rather than being recycled, and in 2019 still only 5% of

LIB’s are recycled in the European Union [2]. Recycling can provide a variety5

of benefits, such as; decreased pollution, avoidance of toxic byproducts, reduced

land demand in the case of landfills, lessening demand on finite resources and

decreasing the environmental costs associated with mining virgin resources [3, 4].

Critical materials: One key future consideration is around the ethical10

sourcing of some of the battery components. Several of the materials and

elements associated with LIBs such as graphite, Li, Co, and Ni, have been

designated as strategic elements and critical materials by the UK, EU and US

[5, 6, 7, 8], partly due to the overall global scarcity of these elements, but mainly

due to the resource security from geographical and geopolitical factors.15

Recycling Processes: Typically, energy intensive hydrometallurgical and

pyrometallurgical processes are used for element extraction [9], the physical

separation processes required prior to these extraction processes are often over-

looked [10]. These processes are an extremely important part of the recycling

loop and offer further improvements on the recovery rates and costs [11, 12].20

The main motivation for highly efficient physical processing is to ensure a con-

centrated feedstock for further chemical processing and metal recovery. Physical

processes are differentiated here from chemical and thermal processes in that

there is no significant chemical change in the materials. These processes are

generally used in early stages of the recycling loop. Effective separation pre-25
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cludes the need for repetitive separation techniques, and minimises the loss of

valuable resources to waste streams. Metals reclamation focuses on the most

valuable parts of a battery. Copper is reclaimed from the anode current col-

lector, and cobalt and nickel from the cathode. These transition metals are

typically recovered from the cathode using hydrometallurgical processes which30

are cost-intensive: the electrode materials are concentrated in the “black mass”

which is dissolved in acid, after which solvent extraction is used to recover each

metal separately. Materials other than the metal oxides are not recovered in the

process, leading to a high volume of waste. In order to improve recycling effi-

ciency, reduce the cost of consumable reagents, and reduce the volume and cost35

of waste requiring disposal, it is necessary to minimise the amount of superfluous

material subjected to hydrometallurgical recovery.

Reuse or remanufacture: Recycling purely by physical means, such that

the crystal structure or composition of the active material is not modified is

termed “direct recycling” or “short loop recycling” in current literature [13,40

14, 15, 16, 4, 17, 18, 19, 20, 21]. Development of new battery chemistries may

mean that LIBs with obsolete battery chemistries cannot be short loop recy-

cled but must be chemically processed into a more relevant cell chemistry. i.e:

a nickel manganese cobalt (NMC) cell cannot be recycled to produce a nickel

cobalt aluminium (NCA) cell without utilising hydrometallurgical processing45

[22, 12]. This is further complicated with differing chemistries which may ben-

efit from different recycling methods, depending on the value and composition

of the battery components. For example, pyrometallurgical recycling is only

economical for batteries with a high cobalt or nickel content, due to the energy

requirements of the process and the value of cobalt and copper [4], whereas50

cells with a manganese or iron rich content make this process economically un-

viable. Whilst few studies have been published which include cycling data for

recycled graphite [13, 23, 24], all include some form of treatment in order to

remove electrolyte, SEI, or binder, and thus improve performance. Moradi and

Botte [25] emphasised the need to match the 99.9 % purity of new battery grade55

graphite in a recycled graphite product. In order to adequately assess the most
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economic methods of recycling, with least environmental impact, Life Cycle

Analysis (LCA) is used to quantify the benefits of different recycling processes

and has been reviewed extensively elsewhere, [26, 27, 28], therefore is not the

topic of this review.60

Safety is of particular importance for recycling of lithium ion batteries due

to their hazardous nature. The four main hazards are electrical, chemical, ther-

mal and explosive hazards [29]. During the disassembly of groups of connected

lithium-ion batteries, appropriate tools and training must be used to minimise65

the risk of electric shock or causing a short circuit. Short circuiting or other-

wise rapidly discharging a lithium-ion cell risks the cell self-heating to the point

of thermal runaway. During thermal runaway lithium-ion cells self-heat to the

point at which they catch fire, and burn under their own fuel, without need for

an external supply of oxygen, releasing toxic gasses [30, 31, 32]. Nedjalkov et al.70

[33] identify eleven crucial gas mixture hazards from damaged LIBs, including

styrene, biphenyl, acrolein, carbon monoxide (CO), carbonyl sulfide (COS), and

hydrofluoric acid (HF). Cells with a gas-tight outer case may contain the gases

evolved during thermal runaway to the point at which the cell casing fails, caus-

ing the cell to “pop” or explode. Alternatively, gasses given off during a thermal75

event may form an explosive mixture with air [29]. In addition the materials

from the inside of a lithium-ion cell pose chemical hazards on their own. Nickel

and cobalt powders are carcinogenic, electrolyte is flammable, electrolyte ad-

ditives can be toxic as well as flammable, and lithium (in the case of lithium

plating during cycling) will burn in air [32]. Taking all into consideration, the80

chemicals that are contained and produced during a “lithium ion event” are

numerous, likely hazardous and to be avoided if at all possible. Therefore con-

sideration must be taken when developing recycling procedures to protect the

work force from these risks and hazards. Currently limited information is known

about the specifics of chemical and safety hazards which may occur during the85

physical processes and further information is required.
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Efficient physical separation benefits are; low operating costs, and when

optimised, more concentrated and “higher purity” feedstocks which allows for

more expensive downstream processes. A clean separation of materials results90

in fewer steps being required to recover low concentrations of the desired compo-

nents which are mixed in with waste materials. Avoiding these additional steps

can save energy, the need for additional equipment, and thus CO2 emissions.

Higher purity waste streams also makes the low value materials more flexible

in terms of potential applications for these waste products. Currently, methods95

focus upon initial grinding or shredding to produce a free flowing material. This

can intimately mix the battery components, before materials sorting attempts

to separate and purify these components into separate streams.

This study presents a review of primarily physical processes used in the

safe recycling and disposal of lithium-ion batteries (LIB) and the separation of100

their constituent materials, ideally with an intent to re-use or recycle them. A

schematic of the process flow is shown in figure 1. The cells are first stabilised to

make safe, then disassembled or milled. The constituents are then separated into

their relative waste streams, and the black mass is further purified to recover the

cathode and anode critical material value. We discuss and identify strengths,105

weaknesses and improvements in physical sorting processes that are utilised to

separate out the waste streams.

2. Stabilisation

Stabilising cells before opening them is performed in order to prevent ther-

mal runway and product loss through fires. Thermal runaway is undesired due110

to the synthesis and release of hot, toxic and corrosive chemicals, and the loss

of potentially retrievable components such as electrolyte and plastics to com-

bustion [32, 31, 33]. An overview of stabilisation methods is shown in figure

2.
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Figure 1: Schematic diagrams of the process flow for lithium ion battery recycling and disposal:

1. Stabilisation, 2. Comminution, 3. Physical separation, 4. Black mass purification.
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Figure 2: Summary of the stabilisation processes: 1. Ionic self-discharge, 2. Electrical dis-

charge, 3, Thermal treatment, 4. Cryogenic treatment, 5. In process control.

2.1. Discharge115

Literature describing commercial active discharge processes prior to recycling

is limited, however the concept of prior-discharge for stabilisation is a very

common physical process in LIB recycling research literature.

2.1.1. Electrical Discharge

In an ideal process, residual charge would be recovered, rather than dis-120

sipated and wasted. However, such retrieval is hard to achieve as it requires

removal of battery protection circuitry, bypassing of any broken fuses, and the

creation electrical connection to recover the stored energy. Papers which manu-

ally disassemble cells commonly discharge them first via connection to a resistor

[34, 35], or immersion in a salt solution [36, 37, 10, 38, 39]. Other studies have125

explored discharge via conductive particles such as metal chips or powders and

graphite [40, 41, 42, 43]. Sonoc et al. [35] investigated the energy that could be

gained from electrical discharge from full discharge (around 3 V) to complete

over-discharge (0 V). They concluded that less than 1 % of the nominal ca-

pacity could be obtained from complete over-discharging of 3V LIBs, but they130

did also show that disassembled cells at a voltage of 0.5 V could still sponta-

neously combust, this contradicts the work performed in our group where we
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have shown air stability of the cells and electrodes at end of life (70 % State of

Health (SOH)) at 0 % SOC and 2.5 V cell voltage with a large format LMO-

NMC // Graphite cell. The state of charge and state of health of the battery135

are difficult to determine without an electrochemical charge and discharge. Dis-

charge prior to disassembly is common in literature, and it is generally assumed

that this is accomplished via a resistor, but the precise details are often unclear

[44, 45, 46, 47, 48, 49, 50, 51]. In addition, the terms fully or completely dis-

charged, may indicate an open circuit voltage (OCV) anywhere between 3 V (i.e.140

the highest possible value for 0 % state of charge in a LIB) and 0 V. Discharging

cells to 0 V results in the dissolution of Cu into the electrolyte. When subse-

quently left to rest after discharge the voltage increases and copper precipitates

out and causes the distribution of Cu throughout the entire cell, contaminating

downstream products (such as the cathode) unnecessarily [52, 53, 54].145

2.1.2. Solution Discharge

Discharge via brine presents a challenge in the case of highly charged or

damaged cells. The lithiated anode of charged cells has the potential to re-

act violently with water if the cell casing is compromised. The cell casing can

become compromised as corrosion can occur at the anode due to the reaction150

with the chloride ion [36]. Brine discharge electrolyses the water, producing

hydrogen and chlorine gasses, which are flammable and toxic respectively, al-

though evolved chlorine will chlorinate the water it is in. Cell-level water or

brine immersion for discharge has not been studied in detail, with the majority

of literature covering pack-level immersion, which can produce more more vio-155

lent reactions [55, 56].

2.2. Thermal Pre-treatment

2.2.1. Cryogenic

Dorella and Mansur [57], Wang et al. [49] used liquid nitrogen to cool cells160

prior to disassembly. This solidifies the electrolyte, and metallic lithium is
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significantly less reactive at such low temperatures. This method provides a

safe manner in which to disassemble or comminute cells. Liu et al. [58] cooled

electrodes with liquid nitrogen during comminution. As comminution was per-

formed at a temperature below the glass transition temperature of the PVDF165

binder, it became brittle and liable to shattering, which improved the down-

stream froth flotation separation technique (see section 4.4).

2.2.2. Heat

Lee and Rhee [59] heated discharged LIBs at 100-150 °C for 1h prior to

shredding to liberate the cells from their packaging. This is also likely to have170

caused the cells to rupture, and removed the electrolyte. This presents a po-

tential hazard, as it could cause thermal runaway if the cells are not discharged

[32, 60]. A similar approach was described by Granata et al. [61] for a mixed

stream of primary lithium cells and other cells. The lithium primary cell recy-

cling procedure was similar to other proposed procedures for recycling of NiMH175

and LIB, and thus adapted by to process a stream comprising lithium primary

cells, NiMH and LIB. This procedure utilised a nitrogen atmosphere to mitigate

some of the reactivity of lithium primary cells, however it was deemed neces-

sary to use a 0.1 m3 steel container to contain explosions as the mixed cells

were heated to 300 °C for 2 hours. The ratio of cells in the feedstock was 2:2:1180

NiMH : Lithium primary : LIB. Pyrolysis at higher temperatures of 400-600 °C

to remove the electrolyte, binder, and separator has been utilised by a variety of

authors [62, 63, 64, 65]. The evolved organic materials form a complex mixture,

which has been analysed by Zhong et al. [64]. Whilst pyrolysis prior to com-

minution does cause challenges with gas handling and disposal of the evolved185

organics, comminution and separation of electrode coatings from foils is faster,

according to Zhang et al. [62].

2.3. Electrolyte Extraction

Extraction of the electrolyte through use of supercritical or subcritical CO2

has been demonstrated by a variety of authors [14, 13, 24]. Such techniques190
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offer the advantage of recovering the electrolyte solvent for purification and

reuse rather than thermal recovery, and whilst some LiPF6 recovery can be

achieved with CO2 alone, the addition of cosolvents has been shown to improve

extraction [66].

2.4. Summary of stabilisation techniques195

The stabilisation processes for the lithium ion cells discussed are; discharge

(electrical and solution) cryogenic, thermal and in-process stabilisation. From

a safety perspective, stabilisation to 2.5 V OCV or lower in an LCO or NMC -

graphite cell, leaves minimal energy in the cell (< 2 %) and therefore the risk of

thermal runaway is minimised [67]. Different cell chemistries will have different200

safe states of discharge or discharge voltages. In some cases, even when the

cell is discharged, some areas of isolated highly lithiated active materials may

occur which will catch fire upon opening. These stabilisation techniques are

summarised in Table 1. The economic costs of different techniques will vary

enormously depending on scale, regulatory regimes, and the markets for the205

products. Cryogenic cooling has been considered the most expensive based on

the lack of scalability, and the costs involved in cooling processes. Inert process-

ing is considered similarly, although inert environments are generally cheaper

to create than cryogenic environments. Brine, or salt solution discharging is

low cost in terms of materials. Discharge by energy recovery will depend on210

the battery size, and time restraints for both connecting devices up and waiting

until they are safely discharged. It should be noted in this section that we are

discussing the disassembling of cells rather than modules and packs.

The discharge process utilised can be either via a standard resistor where the

energy is dissipated as heat, or discharged in brine solutions with subsequent215

electrolytic reactions. With electrical discharge methods the energy can also

be reclaimed and repurposed, if it is economic to do so. The other stabilisation

methods; cryogenic, thermal and in-process, are typically used before comminu-

tion processes and do not involve the assessment of state of charge of the cells,

or the discharge of energy prior to processing. These processes merely utilise220
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Stabilisation Technique Advantages Disadvantages

Electrical Discharging Potential for energy recov-

ery

Difficult to scale energy

recovery

Brine or Salt Solution Low cost No energy recovery, Waste

effluent may require clean-

ing

Cryogenic Processing Safe, even in cases of

metallic Li or Li plating

Energy intensive, high

cost, poor scalability

Thermal Processing Degrades binders and

removes volatile compo-

nents simultaneously

Electrolyte cannot be re-

covered, produces HF

Inert Gas Comminution Avoids wetting materials Will not stop a fire once

started, requires gas han-

dling and supply

Wet Comminution Very cheap Waste effluent may re-

quire cleaning

Table 1: Comparison of stabilisation techniques for the recycling of lithium-ion batteries,

describing advantages and disadvantages.
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the cells as they are received and rely upon engineering controls to minimise the

effects of any hazardous reactions. With the electrical discharge processes, the

materials streams may be able to be sorted at an earlier stage reducing the cross

contamination of the different materials streams; cathode, anode, plastics. Due

to the cost of stabilisation, the hazardousness of the materials involved, and225

the complexity of different battery architectures; opening and presorting is con-

sidered more expensive than the prevalent recycling approach of comminution

and physical separation, despite being more effective in materials separation.

Solution discharge can lead to corrosion at the terminals and subsequent wa-

ter penetration into the cell. The water reacts with the cell components and230

renders it “safe”, however the water completely destroys any potential reuse

case for the cells or the materials. Non-halide salts discharge the cell effectively

with less corrosion. In the salt discharge cases the energy cannot be reused

or reclaimed, unlike in the energy recovery discharge process. Recovering en-

ergy from cells requires a higher capital cost, and is either a labour-intensive235

process, or will require advanced automation. Such automation would need to

identify cell dimensions, cell format, and cell orientation, as well as have the

means by which to form an electrical connection to each cell to recover the

energy. Advantageously, such an energy recovery process would not need to

dispose of any gases evolved from the electrolysis of salt solutions, and would be240

able to discharge to a 0 % state of charge, without overdischarging, dissolving

the Cu current collector, and contaminating the waste streams. Cryogenic

pre-treatment is where the cells are immersed in liquid nitrogen and frozen

before any subsequent processing is performed. This is typically not done on a

large scale, however it may offer a method of stabilising the cell for transport,245

and for subsequent shredding processes. However the cost of this process is

likely a deterrent compared to the other passivation methods. Thermal pre-

treatment or processing is described by its proponents as capable of handling

a feed of mixed battery chemistries, allowing separation downstream. However,

this technique does lose some material to difficult byproducts such as HF. For a250

mixed stream of cell chemistries, it seems apt, but ideally larger scale processes
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would separate other batteries from LIBs, and sort LIBs by chemistry, treat-

ing each separately, recovering a higher proportion of materials, and avoiding

the evolution of HF. This presents it’s own challenges and therefore opportuni-

ties in cell identification (especially damaged or worn cells), scalability, and the255

cost-effectiveness of treating small batches of material of disparate chemistries.

In-process stabilisation: Stabilisation during comminution does not remove

hazards, but utilises engineering controls to limit risks, such as comminution

under a spray of water, or under an inert gas blanket. The aqueous spray (wa-

ter, or LiOH solution) acts as a heatsink, and hydrolyses any exposed lithium,260

whereas CO2 forms a lithium carbonate layer on any exposed lithium metal.

These precautions improve safety by inhibiting thermal runaway and prevent

loss of material to gaseous byproducts of combustion caused by thermal run-

away. It is noted that use of a water spray is much less energy intensive than

using liquid nitrogen or liquid argon, described in the cryogenic stabilisation. As265

with cryogenic processing and brine discharge, this treats the cells as a bulk ma-

terial, and does not require information on cell health, state of charge, format,

or orientation.

3. Disassembly and Comminution

3.1. Dissassembly270

Disassembly refers to the processes involved in removing cell packaging and

accessing the active materials, this can be manual or automated. This method

is currently used extensively for research purposes but not in any commercial

process routes. The cell disassembly is mostly manual and the cells are opened

using cutting tools to liberate the internal cell components, which are subse-275

quently sorted by hand into the components; anode, cathode, separator. This

method is often used to open cell for tear down analysis and determination of

failure mechanisms [68].
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(a) Hammer mill (b) Shredder (c) Granulator

Figure 3: Schematic diagrams of three commonly used rotating comminution processes.

3.2. Comminution

When discussing automated cell comminution processes, there are relatively280

clear distinctions between continuous and batch processes. Most cell-breaking

techniques seem to be continuous, and generally involve rotating crushing de-

vices. A variety of terminology is used to describe these approaches, including

“hammer crushing” [61], “wet crushing” [37, 69, 70], “shear crushing” [37, 71],

“impact crushing” [72, 71], and “cutting milling” [73]. All of these appear to be285

rotational processes, and therefore overlap considerably with the three classes

of rotating crushing outlined in Figure 3: hammer milling (a), shredding (b),

and granulating (c). Different comminution processes will produce materials

with differing sizes and shapes, heavily influencing downstream separation tech-

niques. Therefore, there is a need to distinguish key parameters in comminution290

before attempting to directly compare separation techniques in literature.

3.2.1. Shredding

Shredding is a common form of automatic cell disassembly, and is widely used

in waste electrical and electronic equipment (WEEE) disposal. The definition

of a shredder is not always consistent as the distinction between a granulator295

and a shredder can be based on the materials being shredded, or on a difference

in the process. Shredding commonly refers to high torque, low speed rotation
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of interdigitated blades or knifes, whereas granulating is usually a higher-speed

process where there may, or may not be interdigitated blades which serve to

pull material between the fast-rotating axle(s), exploiting the brittleness of the300

feed to cause shattering.

3.2.2. Milling

Various studies have used hammer mills, particularly publications focused

on industry [74, 75, 70, 4], but there are significantly fewer laboratory-scale

studies that use a hammer mill for the initial breaking and crushing of the cells305

[41, 76]. Xiao et al. [77] used pilot scale equipment they termed a hammer

crusher rather than a hammer mill. Zhang et al. [71] used a shear crusher to

cut and an “impact crusher” to comminute batteries. The shear crusher opened

and coarsely cut the cells such that some of the casing and separator could be

removed, prior to liberation of coating from foils via impact crushing.310

The influence of water on the comminution process was investigated by

Zhang et al. [37]. Wet comminution prevented over-crushing and resulted in

caking of fine materials, whilst dry comminution was slower to achieve the same

level of liberation between foils and coatings, but resulted in fewer copper, alu-

minium and polymer materials in the fine fractions Zhang et al. [37]. These fine315

fractions are referred to as the “black mass”, which is a free flowing material,

mostly comprising electrode coatings.

3.3. High shear Mixing

A few recent publications have utilised a laboratory-scale high shear mixer,

or blender in order to separate electrode coatings from electrodes [20, 15]. High320

shear mixing provides a simple laboratory-scale approach to separating elec-

trodes from coatings

3.4. Disassembly and Comminution Summary

There is no standard process for comminution, however the output required

comprises free flowing, consistently sized pieces that can be further separated325
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by other physical processes. This can be obtained by automated rotary com-

minution techniques such as shredding and milling, which achieve similar mixed

waste material outputs. These techniques will often give a variable outputs

depending upon the environment and the feedstocks. The output of the disas-

sembly will greatly influence downstream separation processes. Disassembly in330

lieu of commminution could help to avoid intimate mixing of different battery

components, and provide recycled material of greater purity.

The disassembly processes are currently limited, they are mostly performed

manually and used in forensic analysis of cells and extraction of components.

Automated disassembly processes are highlighted here as a research gap in re-335

cycling of batteries, and the economic assessment of which needs studying and

comparing with comminution.

In both automated and manual disassembly processes, first the cell is opened

using tools such as; saws, sharp blades or lasers, then the components are sorted

into packaging, electrolyte, separator, and electrode, prior to other materials340

separation stages. Ideally these manual processes would be fully automated,

however due to variations in cell structures it is difficult. In order to automate

the processes it will be first necessary to determine the cell type, and what

materials are contained within the cell for sorting purposes. This can be done

by automatic bar code readers or by reading the cell type text. However this does345

not fully distinguish between the different NMC types, electrolytes, separators

and conductive additives in the cell.

In terms of chemical hazards; manual techniques are inherently more dan-

gerous for the dissemblers. Even if automated, the complexity of the component

sorting may make it harder to use the same gas blankets or passivating fluids350

used in established shredding or milling processes.

4. Separation

The feed stocks from the disassembly and comminution processes are further

treated to produce higher purity materials streams. Physical separation is used
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so that high concentration material feed stocks can be provided into later recla-355

mation processing stages. The products of separation are the plastics; separator

and pouch material, metal; steel casing, nickel and aluminium tabs, aluminium

and copper current collector, and a “black mass”. The black mass typically con-

tains the materials from the negative and positive electrodes; graphite, PVDF,

carbon black, metal oxides, with some aluminium and copper current collectors.360

This black mass is reclaimed for further processing such as metal dissolution and

precipitation. The black mass separation processes (Section 5) are more com-

plicated and hence more expensive with greater quantities of contaminants [78].

Excess aluminium in the cathode material has been shown to negatively influ-

ence battery performance [34], thus a good separation between foil and cathode365

powder in the physical separation step is required to avoid necessitating further

purification.

4.1. Size separation

Size separation is a process common to all large scale LIB recycling tech-

niques, mostly achieved through sieving both in the laboratory and at scale370

[71, 76, 51]. The black mass which is separated via this process is comprised

mostly of the materials from the electrode coatings, graphite and metal oxides

such as nickel, manganese and cobalt. The current collectors; copper and alu-

minium, can also be found within this mass, and their concentration will vary

depending on comminution conditions. Laboratory scale experiments often gen-375

erate black mass through comminution and sieving, relying on preferential com-

minution of electrode coatings to keep the Al and Cu content of the black mass

low [79, 15, 71, 80]. Current collectors need to be removed from the black mass

prior to hydrometallurgical extraction, in order to maximise cost-effectiveness

[81, 82, 83]. As mentioned in section 3.2.2, water aids the milling process, and in380

this case a greater separation between fine and coarse materials is also observed

[37]. A vibrating screen is shown in figure 4. Table 2 compares the recovery

percentages which some authors have achieved through sieving, and describes

the comminution and separation techniques applied to achieve separation, and
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Figure 4: Diagram of a vibrating screen, separating particles based on size.

in what order these processes were performed.385
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1 2 3b 4 5a BM High shear mixing 85.0 [15]

1 2* 5 3c

LCO
500°C Pyrolysis

90.7 98.2

[80]
C

15 mins, 10°C/min
90.3 98.7

Cu
Comminution time

99.4 99.2

Al 99.3 98.8

1 2,3 4
Cu 90.4

[71]
Co 94.4

Table 2: Comparison of recoveries by percentage mass achieved through sieving, and the order

of processes applied beforehand. * Denotes parameters which were varied. a Washing, b Wet

comminution, c Density, magnetic, and eddy current separation, BM Black Mass

4.2. Magnetic separation

Magnetic separation is used extensively to remove steel casings, as shown

in Figure 5 [40, 84, 82, 85, 41, 86]. At scale, Recupyl [87], AkkuSer [88], and

S.E.Val. s.r.l., (an electronics recycling company based in northern Italy [89])

use magnetic separation for this purpose. It has also been proposed as a sepa-390
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Figure 5: A schematic demonstrating one method of magnetic separation, including a rotat-

ing magnetic drum, magnetic material such as casings, and non-magnetic material such as

electrodes and plastics.

ration step in LIB or mixed LIB and NiMH waste streams by Barik et al. [90]

and Al-Thyabat et al. [78]. Further separation of the contents of the cells are

possible with this method and are currently being investigated. Wang et al.

[91] separated cobalt by mechanochemically processing LiCoO2 with Fe to form

CoFexOy and then magnetically separating the ensuing material.395

When the black mass is formed into a slurry and subjected to wet magnetic

separation steps of various intensities, several active material streams can be

produced depending on the differing magnetic susceptibilities of the component

active materials, and differing solvents in the slurry [25, 92]. Li et al. [93]

reported a Cobalt recovery of 96 % by applying magnetic separation on pyrolised400

electrode coatings. As the active material does not change from the oxide form,

this is considered direct recycling. The cost-effectiveness of such a magnetic

separation process for direct recycling of cathode materials is questionable, as

differing NMC ratios will not separate easily. However it has applications in

recycling processes with a mixed feed of cells for extraction of cathodes [16]. The405

ReCell project has investigated the use of wet magnetic separation on mixtures

of virgin cathode materials: lithium manganese oxide (LMO), nickel manganese

cobalt oxide (NMC) and lithium cobalt oxide (LCO). Preliminary results appear

promising, with recoveries of 94 %, 92% and 92% respectively [94].
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Figure 6: A schematic diagram showing simple density separation using a fluid of intermediate

density. Low density material such as separator, can be removed from the remaining battery

components by flotation on a fluid of intermediate density, such as water.

4.3. Density Separation410

Density separation is used to separate out the low density plastics and pa-

pers, from the mixed cell waste. This can be achieved using shaker tables,

vibrating screens, a fluid of intermediate density, or air separation [88, 87].

The use of a carrying fluid of intermediate density such as water [90, 78]

or diiodomethane [41] as depicted in figure 6 can be used alone, or with a415

hydrocyclone to separate lighter components from heavier components. This

is successful for the removal of plastics from the electrode materials and has

also been reported for the separation of the copper and aluminium current

collectors [76, 82, 88]. Density separation in the form of air classification has

been described as a method to separate anodes and cathodes, as well as Al and420

Cu foils [83, 95]

4.4. Froth Flotation

Froth flotation operates by exploiting the difference in hydrophobicity be-

tween two materials. Fine bubbles are introduced to a vessel containing material

to be separated. Frothing agents can be utilised to stabilise the foam. Common425

frothing agents include pine oil, alcohols and cyclical carbonates. Hydrophobic

materials are collected by bubbles, transported to the surface, and remain within

the stable froth on the surface. The froth laden with the desired hydrophobic

fraction of material is then recovered, as shown in figure 7. In cases where the de-

sired fraction is retained in the slurry, and the undesired fraction is floated in the430
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froth, this is described as reverse flotation. In early froth flotation experiments

[73] on the black mass recovered from milled LIBs, poor selectivity between cath-

ode and anode powders was observed. This was due to the hydrophobic PVDF

binder which was still stuck to the LiCoO2 and graphite powders. If heat treated

to 500 °C to decompose and remove the PVDF, froth flotation can separate car-435

bons from the cathode materials successfully [75, 70, 96, 79, 80, 65, 64, 97]. The

heat treatment decomposes the binder (producing HF [98, 64]) and may modify

the carbon present in the sample. However it is also possible that this decom-

position influences the surface of the metal oxide, either fluorinating the surface

or by removing an organic layer on the MMO. The presence of an organic layer440

on the coating of electrode particles before heat treatment is confirmed through

surface analysis techniques, and is shown to promote hydrophobicity of the cath-

ode particles [99]. In lieu of heat treatment, cryomilling has been used by Liu

et al. [58] to render the PVDF binder brittle, and prone to shattering during

the comminution step, giving improved separation between active material and445

the binder. To maximise the separation using froth flotation, the difference

in the hydrophobicity of the materials is exploited, and surface modification

through binder decomposition, or surface treatment is essential to improve the

selectivity of froth flotation [98, 73]. Fine grinding, comminution, or attrition

can also maximise the hydrophobic graphite surfaces to enhance graphite and450

MO separation [19, 100, 15, 101, 20]. To prevent the release of toxic HF and

P2O5 during the removal of the organic layer through heat treatment, Fenton’s

reagent (Fe2+ + H2O2) can instead be utilised to oxidise and remove the layer,

however further work is required to remove the iron containing impurities from

the products [102, 98]. A comparison of recent froth flotation separation re-455

sults has made in table 3. This table compares the order of stabilisation and

separation techniques used prior to froth flotation, and the improvements made

through optimisation of parameters to grade and recovery by percentage mass.
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Figure 7: A schematic demonstrating one method of froth flotation, including an air dispersal

system and air bubbles, hydrophilic material sinking to the bottom, and hydrophobic material

in the froth.

4.5. Other Processes

Electrostatic separation was proposed by Zhang et al. [71] to isolate polymer460

separators from aluminium and copper, and is shown in Figure 8. Silveira et al.

[103] applied electrostatic separation on three battery samples, and was able to

separate a conductive (Electrode and coating) fraction with a 98.98 % grade,

and a nonconductive (polymer) fraction with a 99.6 % grade. Eddy current

separators can be utilised to separate ferrous metals, non-ferrous metals, and465

non-metals [61, 104], and also aluminium from copper foils [105]. However to

date there is nothing to indicate that these processes are utilised at scale for

separation of lithium ion battery components.

4.6. Summary of Material Separation

Once the cells have been broken down, typically by milling or shredding,470

the materials are then separated primarily by size. Steel casings and ferromag-

netic material can be removed through magnetic separation. The separator and

packaging can be recovered through sieving, density separation, or electrostatic

separation. Further separation of the plastics is achieved through density sep-
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Figure 8: A schematic demonstrating one method of electrostatic separation, including a

rotating drum, positive electrode, and static brush. Non conductive material develops a static

charge and is attracted to the drum, conductive material does not retain a charge and falls

under gravity.

aration of the coarse fraction. The remaining material mainly consists of the475

black mass with the aluminium and copper current collector, which can be sieved

into various “coarse” and “fine” fractions. The fine fraction typically consists

of mainly the cathode and anode electrode composite materials. One disadvan-

tage of this approach is that there is always a high level of contamination of

aluminium in the fine black mass which needs to be further refined, although480

wet sieving results in a better separation of the finer components of the black

mass from Al and Cu current collectors. It is possible to use froth flotation

to separate carbon from mixed metal oxides. This requires thermal or chemi-

cal treatment to remove organic groups from the surface of mixed metal oxide

particles and restore their hydrophilicity. These separation methods provide a485

partially contaminated waste stream, due to the intimate mixing of the materi-

als during comminution. Further work is required to control both the particle

size and the material properties for use in these separation methodologies.

5. Black mass separation

Binders such as polyvinylidene fluoride (PVDF) are used to stick the cath-490

ode and anode powders to each other, the conductive additive and the current
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collectors. Other binder systems such as Styrene Butadiene Rubber (SBR) and

Carboxymethyl Cellulose (CMC) are also used. CMC is soluble in water, al-

lowing for a much easier separation of electrode coatings and foils, however the

SBR is utilised in the manufacturing process as an emulsion and still requires495

removing from the black mass after CMC removal [53, 1].

In order to adequately liberate the electrode active materials for recovery,

it is necessary to break down the binder or otherwise separate or extract the

cathode coatings (binder negation). Such a liberation is mainly achieved by

thermal or chemical processing.500

5.1. Thermal and chemical treatments

With thermal liberation treatments Hanisch et al. [82] showed that PVDF

adhesion strength in LIB electrodes increases between 200-400 °C, but drops

off after 15 minutes at 500 °C. Their “ANVIIL” process (Adhesion Neutral-

isation Via Incineration and Impact Liberation) involves pyrolising cathodes505

at 500 °C for 90 minutes, then using an air jet impact process for 1 minute

to get a 97.1 % recovery of coating powders low in Al. Similar investigations

into temperature and duration of heat treatment processes were conducted by

other authors [97, 64, 96, 80]. As discussed in section 4.4, heat treatment is

used extensively by authors in order to remove or degrade the binder on elec-510

trode coatings, and restore hydrophobicity or hydrophilicity prior to froth flota-

tion [96, 79, 80, 65, 64, 97]. Dissolution of PVDF can be achieved by using

hot solvents such as N-Methyl-2-pyrrolidone (NMP), N-N-dimethylacetamide

(DMAC), N,N-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), and

Ethanol [106, 10, 21]. He et al. [38] investigated the effects of the aforemen-515

tioned 5 solvents and the effect of adding ultrasonic agitation to the binder

removal process, establishing that ultrasound-assisted NMP was the most ef-

fective binder removal process [50]. Disadvantages of NMP include cost and

toxicity, hence why alternative solvents such as 1-Butyl-3-methyl-imidazolium-

tetrafluoroborate ([BMIm][BF4]) have been investigated [107]. Several chem-520

ical processes [50] use organic acids to separate Al and Cu current collec-
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tors from the powder coatings. The cathodes can also be dissolved from the

current collector with acids, a process which can be intensified by utilising

reductive leaching by adding hydrogen peroxide to the acid leaching process.

[108, 9, 109, 110, 111, 112, 113]. The Al current collectors can also be removed525

using NaOH, with some Li dissolution and minimal Co dissolution [111, 41, 86].

5.2. Mechanochemical treatments

An alternative binder negation method to thermal processing is mechanochem-

ical processing. Mechanochemical processing involves mixing electrode materi-

als with a reagent and some grinding media, grinding for extended periods to530

produce water or acid soluble metal complexes, and then dissolving the cathode

coatings. Dissolution can be performed via acidic leaching [114], or using water.

It is noted that mechanochemical processing does not evolve the toxic byprod-

ucts associated with thermal treatment of battery materials. Soluble chlorides

of the metals can be synthesised from the metal oxides. Saeki et al. [115] used535

PVC (polyvinyl chloride) and Wang et al. [48] used PVC, NaCl, NH4Cl, Zn2Cl

and FeCl3 as chlorine donors to form soluble CoCl and LiCl, which was then

dissolved with water, negating the need for hot acidic conditions, and the dis-

posal of said acids. The observations of the metals reclaimed by each group were

quite different due to the level of PVC utilised in the work, with 90 % of the540

cobalt being reclaimed when excess chloride was utilised. Wang et al. [48] also

investigated EDTA as complexing agent for Co and Li removal. Recoveries of 98

% Co and 99 % Li were achieved by co-grinding with LiCoO2:EDTA powders,

then dissolving with water and recovering cobalt oxide and lithium carbonate

via precipitation.545

5.3. Summary of Black Mass Separation

The successful separation of the black mass is heavily reliant upon the re-

moval of the polymer binder components. PVDF and analogues are notoriously

difficult to remove and therefore harsh and environmentally detrimental meth-

ods such as thermal decomposition (which produces HF) or harmful organic550
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solvents are generally used. The binder chemicals can reduce the effectiveness

of the subsequent leaching processes and therefore it is essential to remove them.

Metal extraction is typically performed by leaching with acids, or the cathode

may be reclaimed by removal of the aluminum with alkali. The mechanochem-

ical processes being investigated have only been investigated at a low level and555

requires significantly more research to understand their value. In these pro-

cesses typically additional chemicals are utilised in a milling process to extract

the metals without using acids or alkali saving additional expense. This black

mass separation is the last step before the metal oxides are fully returned to

their metals or remade into the precursor salts for re-manufacturing of cathodes.560

Interestingly very little has been reported about graphite extraction. Graphite

is a very stable material, and it is assumed that the extraction will be via a

physical process rather than a chemical process, however removal of organic

species and functional groups from the surface of the graphite may be necessary

if the graphite is to be re-used in a LIB.565

Once the binder is removed froth flotation can be utilised to remove any

additives. In all cases the contamination of the black mass from the initial

shredding and milling processes causes additional work and expense to purify

the cathode and anode materials. If the components were first separated that

would reduce the level of contamination and has to date not been the subject570

of many investigations.

6. Summary and Outlook

The main physical processes involved in LIB recycling consist of stabilisa-

tion, opening, and separation and black mass collection. Stabilisation of the

LIB prior to recycling can be achieved through brine or ohmic discharge, al-575

though there is confusion in literature as to whether the cell should be reduced

to a 0 % state of charge, or to 0 V open circuit voltage. In-process stabilisa-

tion during shredding or milling is the current route preferred in industry, and

the main process utilised for opening of the cells. The shredded or ground
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battery components are separated using sieves, filters, magnets, air separators580

and shaker tables to separate a lithium rich solution, low density plastics and

papers, magnetic casings, coated electrodes and fine electrode powders. To lib-

erate the black mass the coated electrodes and electrode powders are typically

heated or milled to break down the PVDF binder, and allow for liberation of

the coatings and modification of the surface of the carbon components. These585

powders can then be separated using froth flotation. The black mass separation

for short loop recycling and materials reclamation has focused upon cathode

and mixed metal oxides with little reported about graphite. There are many

future opportunities for alternative reclamation methodologies, such as; electro-

static and eddy current separation processes, which to date has been limited in590

their usage. Further optimisation of chemical, thermal and mechanochemical

methods is required to separate the electrode coatings from the current col-

lectors in low cost and environmentally friendly processes. In particular novel

mechanochemical processes can dissolve the relevant metals from the electrode

coatings using water based solvents, precluding the use of expensive, toxic, and595

environmentally harmful solvents such as NMP, or the evolution of corrosive

gasses such as HF during thermal treatment.

Materials purity is of importance for re-manufacturing in particular. Di-

rect loop recycling can be employed which rather than complete conversion back

to the component metals and metal oxides; utilises materials directly after sep-600

aration. Here a route which separates out the components, with less materials

mixing or contamination is preferred. This highlights a research gap for cell

disassembly and component sorting for low contamination concentrated waste

streams rather than shredding and subsequent sorting. Cell disassembly may

lead to higher materials reclamation yields, higher purity waste streams and605

more complete liberation and reclamation of the black mass from the current

collectors. This however requires more work prior to disassembly, where the

chemistry, state of charge (SOC) and state of health (SOH) analysis is known

before separation. Safety: The mechanical, chemical and process safety of re-

cycling has not been considered extensively to date but is of great importance.610
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Several toxic chemicals are contained within the cell and can also be produced

during the recycling processes. The chemical reactions and products that form

upon comminution, thermal runaway, or by any of the above processes are

not understood and the risks are difficult to assess. The potential exposure to

harmful chemicals must be mitigated during the handling and transfer of the615

materials during these physical processes. If a closed process is used, then the

chemicals are contained, however if the materials are moved from one process

to another, the potential exposure to carcinogens and toxic chemicals is greater.

The understanding of these chemical processes presents a research opportunity

and challenge in itself. In terms of disassembly vs shredding, the cell chem-620

istry, SOC and SOH will have a big impact upon safe dismantling of cells.

Currently, cell disassembly has been performed manually only at a laboratory

scale. However future research into greater automation and robotic disassembly

techniques may offer alternative solutions to shredding and be able to overcome

some of the hurdles in the dismantling process scale-up.625

Design for disassembly of cells and electrode components for future for

recycling of lithium ion batteries is also important for recycling. Issues regarding

the binder negation still need resolving. Thermal treatment of PVDF produces

HF, which is toxic. Manufacturing with alternative fluorine free and water

soluble binders will be beneficial for binder removal through subsequent heat or630

solvent treatments.

If full (100 %) recyclability of lithium ion batteries is to be achieved then al-

ternative methodologies to the current commercial processes are required. Cur-

rent physical processes utilised in battery recycling are typically based around

semi-automated discreet techniques, which need to be combined to be effective635

for materials separation. Other more automated, or robotic disassembly meth-

ods which separate out the cell components first, may offer opportunities for

greater purity waste streams. This offers opportunities for future research into

the health and safety, cell and component identification, and process control.

A major opportunity highlighted here is in the separation of the black masses640

post cell disassembly or comminution. With purer black mass streams short or
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direct loop recycling is enabled without the requirement for further purification

or chemical processes. In addition many of the reclaimed materials may have

alternative use cases in other industries where small impurity levels can be tol-

erated. This should the the topic of future investigations for the facilitation of645

a 100 % recycled lithium ion battery.
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Nomenclature650

LIB Lithium-ion batteries

NMP N-Methyl-2-pyrrolidone

OCV Open Circuit Voltage

PVDF Polyvinylidene fluoride

WEEE Waste Electrical and Electronic Equipment655

CMC Carboxymethyl Cellulose

SBR Styrene Butadiene Rubber
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[34] S. Krüger, C. Hanisch, A. Kwade, M. Winter, S. Nowak, Journal of

Electroanalytical Chemistry 726 (2014) 91–96. doi:10.1016/j.jelechem.

2014.05.017.740

[35] A. Sonoc, J. Jeswiet, V. K. Soo, Procedia CIRP 29 (2015) 752–757. doi:10.

1016/j.procir.2015.02.039.

[36] J. Shaw-Stewart, A. Alvarez-Reguera, A. Greszta, J. Marco, M. Masood,

R. Sommerville, E. Kendrick, Sustainable Materials and Technologies

(2019) e00110. doi:10.1016/j.susmat.2019.e00110.745

33

http://dx.doi.org/10/f8z6zd
http://dx.doi.org/10/f5t9kq
http://dx.doi.org/10.1007/978-3-319-70572-9_3
http://dx.doi.org/10.1002/cjoc.201180284
http://dx.doi.org/10.1016/j.jpowsour.2012.02.038
http://dx.doi.org/10.1016/j.psep.2011.06.022
http://dx.doi.org/10.3390/batteries2010005
http://dx.doi.org/10.3390/batteries2010005
http://dx.doi.org/10.3390/batteries2010005
http://dx.doi.org/10.1016/j.jelechem.2014.05.017
http://dx.doi.org/10.1016/j.jelechem.2014.05.017
http://dx.doi.org/10.1016/j.jelechem.2014.05.017
http://dx.doi.org/10.1016/j.procir.2015.02.039
http://dx.doi.org/10.1016/j.procir.2015.02.039
http://dx.doi.org/10.1016/j.procir.2015.02.039
http://dx.doi.org/10.1016/j.susmat.2019.e00110


[37] T. Zhang, Y. He, L. Ge, R. Fu, X. Zhang, Y. Huang, Journal of Power

Sources 240 (2013) 766–771. doi:10.1016/j.jpowsour.2013.05.009.

[38] L.-P. He, S.-Y. Sun, X.-F. Song, J.-G. Yu, Waste Management 46 (2015)

523–528. doi:10.1016/j.wasman.2015.08.035.

[39] D.-i. Ra, K.-S. Han, Journal of Power Sources 163 (2006) 284–288. doi:10.750

1016/j.jpowsour.2006.05.040.

[40] J. Nan, D. Han, X. Zuo, Journal of Power Sources 152 (2005) 278–284.

doi:10.1016/j.jpowsour.2005.03.134.

[41] E. Gratz, Q. Sa, D. Apelian, Y. Wang, Journal of Power Sources 262

(2014) 255–262. doi:10.1016/j.jpowsour.2014.03.126.755

[42] J. Li, G. Wang, Z. Xu, Waste Management 52 (2016) 221–227. doi:10.

1016/j.wasman.2016.03.011.

[43] H. Nie, L. Xu, D. Song, J. Song, X. Shi, X. Wang, L. Zhang, Z. Yuan,

Green Chemistry 17 (2015) 1276–1280. doi:10.1039/C4GC01951B.

[44] L. Li, R. Chen, F. Sun, F. Wu, J. Liu, Hydrometallurgy 108 (2011) 220–760

225. doi:10.1016/j.hydromet.2011.04.013.

[45] L. Li, J. Lu, Y. Ren, X. X. Zhang, R. J. Chen, F. Wu, K. Amine, Journal of

Power Sources 218 (2012) 21–27. doi:10.1016/j.jpowsour.2012.06.068.

[46] Z. Zhang, W. He, G. Li, J. Xia, H. Hu, J. Huang, Int. J. Electrochem. Sci

9 (2014) 3691–3700.765

[47] S. Chen, T. He, Y. Lu, Y. Su, J. Tian, N. Li, G. Chen, L. Bao, F. Wu,

Journal of Energy Storage 8 (2016) 262–273. doi:10.1016/j.est.2016.

10.008.

[48] M.-M. Wang, C.-C. Zhang, F.-S. Zhang, Waste Management 51 (2016)

239–244. doi:10.1016/j.wasman.2016.03.006.770

34

http://dx.doi.org/10.1016/j.jpowsour.2013.05.009
http://dx.doi.org/10.1016/j.wasman.2015.08.035
http://dx.doi.org/10.1016/j.jpowsour.2006.05.040
http://dx.doi.org/10.1016/j.jpowsour.2006.05.040
http://dx.doi.org/10.1016/j.jpowsour.2006.05.040
http://dx.doi.org/10.1016/j.jpowsour.2005.03.134
http://dx.doi.org/10.1016/j.jpowsour.2014.03.126
http://dx.doi.org/10.1016/j.wasman.2016.03.011
http://dx.doi.org/10.1016/j.wasman.2016.03.011
http://dx.doi.org/10.1016/j.wasman.2016.03.011
http://dx.doi.org/10.1039/C4GC01951B
http://dx.doi.org/10.1016/j.hydromet.2011.04.013
http://dx.doi.org/10.1016/j.jpowsour.2012.06.068
http://dx.doi.org/10.1016/j.est.2016.10.008
http://dx.doi.org/10.1016/j.est.2016.10.008
http://dx.doi.org/10.1016/j.est.2016.10.008
http://dx.doi.org/10.1016/j.wasman.2016.03.006


[49] X. Wang, G. Gaustad, C. W. Babbitt, Waste Management 51 (2016) 204–

213. doi:10.1016/j.wasman.2015.10.026.

[50] D. Pant, T. Dolker, Waste Management 60 (2017) 689–695. doi:10.1016/

j.wasman.2016.09.039.

[51] R. Zheng, W. Wang, Y. Dai, Q. Ma, Y. Liu, D. Mu, R. Li, J. Ren, C. Dai,775

Green Energy & Environment 2 (2017) 42–50. doi:10.1016/j.gee.2016.

11.010.

[52] S.-T. Myung, Y. Hitoshi, Y.-K. Sun, Journal of Materials Chemistry 21

(2011) 9891–9911. doi:10/crpwjj, 00153.

[53] V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. Van den Bossche, L. Boon-780

Brett, Renewable and Sustainable Energy Reviews 81 (2018) 1427–1452.

doi:10/gcqbdp.

[54] Y. Zheng, K. Qian, D. Luo, Y. Li, Q. Lu, B. Li, Y.-B. He, X. Wang, J. Li,

F. Kang, RSC Advances 6 (2016) 30474–30483. doi:10/gcwff9, 00000.

[55] L. Hoffmann, D. Sturk, A. A. Tidblad, in: Testing of Electric Vehicle Per-785

formance and Safety, European Green Vehicles Initiative, FONDATION

UNIVERSITAIRE, RUE D’EGMONT 11 - BRUSSELS, 2014.

[56] C. Xu, M. Ouyang, L. Lu, X. Liu, S. Wang, X. Feng, ECS Transactions

77 (2017) 209–216. doi:10.1149/07711.0209ecst.

[57] G. Dorella, M. B. Mansur, Journal of Power Sources 170 (2007) 210–215.790

doi:10.1016/j.jpowsour.2007.04.025.

[58] J. Liu, H. Wang, T. Hu, X. Bai, S. Wang, W. Xie, J. Hao, Y. He, Minerals

Engineering 148 (2020) 106223. doi:10.1016/j.mineng.2020.106223.

[59] C. K. Lee, K.-I. Rhee, Journal of Power Sources 109 (2002) 17–21.

[60] X. Feng, J. Sun, M. Ouyang, F. Wang, X. He, L. Lu, H. Peng, Journal of795

Power Sources 275 (2015) 261–273. doi:10.1016/j.jpowsour.2014.11.

017.

35

http://dx.doi.org/10.1016/j.wasman.2015.10.026
http://dx.doi.org/10.1016/j.wasman.2016.09.039
http://dx.doi.org/10.1016/j.wasman.2016.09.039
http://dx.doi.org/10.1016/j.wasman.2016.09.039
http://dx.doi.org/10.1016/j.gee.2016.11.010
http://dx.doi.org/10.1016/j.gee.2016.11.010
http://dx.doi.org/10.1016/j.gee.2016.11.010
http://dx.doi.org/10/crpwjj
http://dx.doi.org/10/gcqbdp
http://dx.doi.org/10/gcwff9
http://dx.doi.org/10.1149/07711.0209ecst
http://dx.doi.org/10.1016/j.jpowsour.2007.04.025
http://dx.doi.org/10.1016/j.mineng.2020.106223
http://dx.doi.org/10.1016/j.jpowsour.2014.11.017
http://dx.doi.org/10.1016/j.jpowsour.2014.11.017
http://dx.doi.org/10.1016/j.jpowsour.2014.11.017


[61] G. Granata, F. Pagnanelli, E. Moscardini, Z. Takacova, T. Havlik, L. Toro,

Journal of Power Sources 212 (2012) 205–211. doi:10.1016/j.jpowsour.

2012.04.016.800

[62] G. Zhang, Y. He, H. Wang, Y. Feng, W. Xie, X. Zhu, ACS Sus-

tainable Chemistry & Engineering 8 (2020) 2205–2214. doi:10.1021/

acssuschemeng.9b05896.

[63] R. Weyhe, A. Melber, Demonstrationsanlage für ein kostenneutrales,

ressourceneffizientes Processing ausgedienter Li-Ion Batterien der Elektro-805

mobilität - EcoBatRec : Abschlussbericht zum Verbundvorhaben : Pro-

jektlaufzeit: 04/2012-03/2016, Technical Report 16EM1002, 01122325,

ACCUREC Recycling Gesellschaft mbH, Mülheim, 2016.

[64] X. Zhong, W. Liu, J. Han, F. Jiao, W. Qin, T. Liu, C. Zhao, Waste

Management 89 (2019) 83–93. doi:10.1016/j.wasman.2019.03.068.810

[65] C. Zhao, X. Zhong, Colloids and Surfaces A: Physicochemical and En-

gineering Aspects 596 (2020) 124741. doi:10.1016/j.colsurfa.2020.

124741.
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