

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/139533

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/327071626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/139533
mailto:wrap@warwick.ac.uk

Identification of Test Cases for Automated Driving Systems Using
Bayesian Optimization*

Briti Gangopadhyay1 Siddartha Khastgir2 Sumanta Dey1 Pallab Dasgupta1 Giovanni Montana 2 Paul Jennings2

Abstract— With the growth in technology, the automotive
industry is experiencing a paradigm shift from assisted driving
to highly automated driving. However, autonomous driving
systems are highly safety critical in nature and need to
be thoroughly tested for a diverse set of conditions before
being commercially deployed. Due to the huge complexities
involved with Advanced Driver Assistance Systems (ADAS)
/and Automated Driving Systems (ADS), traditional software
testing methods have well-known limitations. They also fail
to cover the infinite number of adverse conditions that can
occur due to a slight change in the interactions between the
environment and the system. Hence, it is important to identify
test conditions that push the vehicle under test to reach or fail its
safe boundary. Hazard Based Testing (HBT) methods inspired
by Systems-Theoretic Process Analysis (STPA) identify such
test conditions (with parametrization) that can lead to system
failure. However, these techniques fall short in discovering
the exact parameter values that lead to the failures. The
presented paper proposes a test case identification technique
using Bayesian Optimization. The proposed method identifies
parameter values by learning from the system’s output, for
a given test scenario. The identified values create test cases
that drive the system to violate its safe boundaries. STPA
inspired outputs (parameters and pass/fail criteria) are used
as inputs to the Bayesian Optimization model. The proposed
method was applied to an SAE Level 4 autonomous Low Speed
Automated Driving (LSAD) system which was modelled in a
driving simulator.

I. INTRODUCTION

Testing and certification in safety-critical domains such
as avionics, medical devices, and railway systems have a
long history and are well developed [1],[2]. However, the
complexities involved in the automotive domain have some
unique features which distinguish this domain from the ones
mentioned above. Current automotive systems have over 100
million lines of code executing on 70 to 100 microprocessor-
based electronic control units [3]. The deployment cycle
for automotive software is typically (2-4) years whereas
for avionics it is approximately 20 years. These constraints
force the industry to adopt different processes and standards
for proper verification and validation. ISO 26262, which is
an industry recognized state of the art standard providing
guidance on testing, does not define a quantifiable and rigor-
ous process for testing Advanced Driver Assistance Systems
(ADAS) and Automated Driving Systems (ADS) [4]. Crash
testing strategies developed by the National Highway Traffic
Safety Administration (NHTSA) and The Insurance Institute

*This work was done in collaboration between Indian Institute of Tech-
nology Kharagpur and WMG, University of Warwick

1Indian Institute of Technology Kharagpur, India
2WMG, University of Warwick, UK

for Highway Safety (IIHS) are also not exhaustive in nature
as it is not manually possible to generate all the crash cases
that an autonomous vehicle would face in its lifetime [5].This
complexity increase with the system's interaction with its
subsystems and different dynamic environment parameters.
In addition, non-deterministic and statistical algorithms are
an inherent part of building intelligent driving systems. The
behaviour of these algorithms is often a black box to the
testing team. From a statistical perspective, it is suggested
that Autonomous Vehicles (AVs) will need to be driven for
more than 11 billion miles to have a 95% confidence that
AV’s are 20% safer than their human counterparts [6]. Even
if this was possible, it would not cover the scenarios that
we are not aware of (unknown unknowns) or the black
swan scenarios [7] and hence would not guarantee safety.
The recent crashes of Uber and Tesla [8] systems exhibit
the requirement for intelligent testing to uncover the black
swan scenarios. Such testing can be done in simulation by
testing the vehicle in different hazardous scenarios which are
parameterized. However, simulations are often expensive and
intelligent identification of these parameterized scenarios is
required. Since, parameter value identification is done in the
context of test scenarios and test cases, the following section
highlights the relationship between them.

A. Use Case, Test Scenario and Test Case

Testing of any system starts with respect to a use case
where use case is a set of actions that take the system
under test from one state to another linking the result
to a particular actor [9]. A use case can have multiple
test scenarios, which provide quantitative description of
the subject vehicle, its activities and/or goals, its geo-
spatially stationary environment (scenery), and its dynamic
environment [10]. Each test scenario can be further
associated with multiple test cases, which are defined as
the set of preconditions and inputs parameters related to the
system under test and agents interacting with it including
actions that drive the system under test to meet a test
objective. Essentially use case, test scenario and test case
follow a pyramidal structure as defined in [9]. For example,
a subject vehicle reducing its speed when a pedestrian is
crossing the road and the pedestrian is occluded would
be a use case. Dynamic element like pedestrian behaviour
describes one test scenarios related to this use case. Concrete
values of throttle, steering commands issued by the subject
vehicle comprises of the test case.

The major contributions of this paper are:

1) A methodology for using Systems Theoretic Process
Analysis (STPA) for setting the context for a test
scenario and using Bayesian Optimization to find
meaningful combinations of test parameters that drive
the system under test to extremal behaviours.

2) The first approach finds one test case of extremal
nature, but in reality, many combinations of param-
eter values can lead to failure cases. We extend the
Bayesian Optimization algorithm to identify multiple
combinations of parameter values for a non-convex
function leading to the failure condition.

II. RELATED WORK & BACKGROUND STUDY

Traditionally, the safety of a system is either assured
via software testing methods such as black box and white
box testing or use of formal verification techniques that
mathematically prove properties known as specifications for
cyber-physical systems [11]. The introduction of Respon-
sibility Sensitive Safety (RSS) [12] helps in formulating a
mathematical model for devising clear rules for faults based
on the common sense of human judgment. If the rules are
predetermined, then investigation of safety properties can be
done via formal verification of the system, and safety can
be determined conclusively. However, RSS in its current
form suffers from scalability as it is difficult to have a
predetermined knowledge of all the actors in the environment
to derive mathematical formulation of every unsafe situation.
The following section discusses relevant white box and black
box approaches present for identification of corner cases that
can lead to failure.

A. White Box Approaches

Ontologies or knowledge graphs that are abstract simpli-
fied representations of the world are used for situation as-
sessment and behaviour planning. Ontology-based processes
can be extended for test scenario creation [13]. However,
complete functional and operational knowledge gathering,
required for such modeling, is not always possible since
operational rules vary from region to region. Goal guided
techniques such as AI Planning can also be used for test case
identification by extending classical AI planning with envi-
ronment and control actions. The action set and the domain
propositions are identified from the requirement specification
of the system. The planning path generated by the planner
from the initial state to goal state produces the test cases that
would cause the system to fail. Such a planning formulation
has been studied on adaptive cruise control systems [14].
The major drawback of such white box approaches are i)
curse of dimensionality, i.e. even if the depth of the search
tree is bounded by a simulation time k the breadth would
increase exponentially with the addition of each element
in the scenario, ii) Computational complexity, such com-
putations are sometimes impossible considering unbounded
numeric state variables and continuous change (planning
with hybrid systems) [15], iii) Having prior knowledge of the
system which captures all the uncertainties generated from
the interaction between environment and ADS/ADAS.

B. Black Box Approaches
Adversarial attacks have been considered as a method of

test case generation for testing of closed loop safety-critical
systems. Methods explained in [16] [17] generate perturbed
or synthetic images as a test case for the underlying
perception algorithm of the ADS/ADAS. However such
local perturbations or static image generation do not cover
the entire test space for dynamic systems. Minimization
of robustness cost functions such as time to collision
using standard optimization engines such as S-TaLiRo
[18] can also be used for test case identification. These
techniques require the system boundaries to be predefined
and do not account for changing environmental conditions.
An often-simpler problem to solve, than searching the
entire test space, is the falsification of a property, which
should hold in all simulations using an optimization
algorithm. Any optimization technique relies on the
development of search algorithms which intelligently
sample the uncertainty space in order to reduce query to
the simulation engine. Several heuristics based sequential
search algorithms such as Simulated Annealing [19],
Tabu search [20], and CMA-ES [21] have been explored
in this domain. However, information gathered during
previous simulations is not taken into account by these
algorithms. One of the techniques that has been gaining a
lot of attention for optimization of black-box systems is
Bayesian Optimization (BO) [22], a technique that finds
the global maxima/minima based on stochastic evaluations
of an unknown function. This technique has been actively
used in hyper-parameter optimization for neural networks,
combinatorial optimization, optimization of parameters in
robotics and even generation of adversarial counterexamples
for complex controllers [22],[23],[24].

The presented study uses test scenarios having a number of
uncertain bounded parameters and a pass criterion to identify
test cases using Bayesian Optimization.

C. Identification of test scenario using STPA
STPA is a hazardous scenario identification method which

is ground with systems theory and control theory [25],[26],
designed to analyse safety in a socio-technical system with
diverse interacting elements [26]. With foundations in sys-
tems based approach, STPA identifies broader range hazards,
which may occur due to a variety of reasons including
component failures, component interactions, human-error,
human-automation interaction, software issues, incorrect re-
quirements and even socio-technical and organisational fac-
tors.
• Step 1: The first step is to define the purpose of the

analysis. This system involves defining the system (at
a higher level) that is to be analysed. It also involves
identifying high level losses or accidents for the system
which need to be avoided along with potential haz-
ardous states

• Step 2: This step involves creating a hierarchical control
structure model of the system, capturing the functional

interactions by creating a set of nested feedback control
loops between the sub-systems.

• Step 3: Once the control actions (CA) in the control
structure have been identified, each CA is analysed to
understand how a CA would manifest into an Unsafe
Control Action (UCA). As per STPA, this can happen
in four general conditions: i) Not providing a control
action ii) Providing a control action iii) Providing a
control action too late, too early or out of sequence
iv) Control action stopped too soon or applied too long.

• Step 4: This step identifies the causal factor and control
flaws. The process model and its variables are studied
to understand how each UCA could occur. The Pass
criteria are obtained from the negation of process model
belief and the reason for the belief causing the UCA.

• Step 5: This is an extension [27] of STPA and deals with
scenario parametrization . The inputs to the proposed
test generation framework are obtained in this step.
Parameterization is done by providing context to the

Fig. 1: Scenario generated from STPA. Subject vehicle is the
vehicle under test. The pedestrian starts at Pedstart position
and is occluded from the field of view by red cars. Slat1
is set to be 3m. Slat3 depends on the choice of the second
occlusion object.1
1.https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-pedestrian/

unsafe control action, where context can be either
dynamic in nature (elements that change their state
at a continuous rate or abruptly.) or scenery elements
(elements that do not change their state over a given
span of time.).

For example, the scenario depicted in Figure 1 is generated

from the STPA analysis of a LSAD system. The subject
vehicle (SV) is treated as a black box. Context to the
pedestrian is provided by varying the speed and the angle
of the pedestrian. The Unsafe Control Action is to provide
a deceleration rate lower than required to avoid the collision
once the pedestrian is detected at a particular speed. The pass
criterion is to avoid collision between the pedestrian and the
subject vehicle.

D. Pass Criteria as an optimization objective

The formal methods community uses axiomic notations
and predicate calculus to specify complex properties that a
system under test should satisfy during all simulations of
a specific test scenario. These properties can be complex
and temporal in nature. Since the test generation framework
samples parameters that cause violations of system’s safe
boundaries, the violation of pass criteria obtained from
step 4 of STPA is treated as the optimization objective
following [24]. W is a set of bonded parameter values
from which exact parameter values w need to be identified.
We use ρ(w) to denote the objective function, namely the
manifestation of the pass criteria in terms of the exact
parameter values w. The objective pushes the optimization
algorithm to sample parameters such that ρ(w)<0. ρ is
a logical combination of multiple individual constraints,
called predicates. These predicates are combined using a
grammar of logical operations: ρ := µ | ¬µ | µ∧µ | µ∨µ
where µ is a predicate and is assumed to be a smooth
and continuous function of a trajectory ξ. The constraint
µ < 0 forms the basis of violation of the overall system
specification ρ. A predicate is falsified if µ(w) over ξ is
less than 0 or satisfied otherwise. Since µ is a real valued
function, it can be converted into an equivalent equation
with continuous output,

¬µ(w) := −µ(w),
(µi ∧ µj)(w) := min(µi(w), µj(w)),

(µi ∨ µj)(w) := max(µi(w), µj(w)).

For example : If the pass criterion for a scenario is given
as speed shall be less than 10kmph when fuel is less than
20% then the pass criterion in formal specification would
be given by (fuel<0.2 → speed<10). Let us assume fuel
is bounded from 0 to 100% and speed from 0 to 50km/hr.
Here W is {fuel,speed}. Hence, ρ(speed,fuel) = ¬(fuel<0.2)
∨ (speed<10). Following the definition ρ can be represented
in terms of two predicates:

1) µ1(fuel) = fuel - 0.2
2) µ2(speed) = 10 - speed

Rewriting ρ in terms of µ:
ρ(speed,fuel) = µ1(fuel) ∨ µ2(speed) = max(fuel - 0.2,10 -
speed)
The objective is to find min(ρ(w)) which will ensure both µ1

& µ2 ≤ 0 and violate the pass criteria. The worst violation
will happen when both the predicates simultaneously reach
minimum value, i.e. when fuel is 0 and speed is 50km/hr.

Similarly, for Figure 1 we must have ρ(vehicle speed,
pedestrian speed, pedestrian angle, deceleration rate)≤ 0 for
collision to happen.

E. Bayesian Optimization

Bayesian optimization is a class of machine-learning based
optimization methods focused on solving the problem

max
x∈A

f0(x)

It is an approach for optimizing objective functions that
take a long time (minutes or hours) to evaluate. In the heart
of this algorithm lies Gaussian Process (GP) models that
are used to derive a prior over the black box function that
is being optimized. Gaussian processes are nonparametric
regression methods that assume the function value of any
µi(w) to be random variables such that any finite number
of them can be modelled by a joint Gaussian distribution.
The mean of the distribution m(w) is initially assumed
to be at 0 and the covariance κ(wi, wj) is given by a
squared exponential kernel e−(|wi−wj |)2 . From such a joint
distribution for every unobserved value w∗ the mean m and
variance σ2 can be estimated [22].

m(w∗|w) = m(w∗) +KT
∗ K

−1(y −m(w))

σ2(w∗|w) = K∗∗ −KT
∗ K

−1K∗

K∗ = κ(w,w∗),K = κ(w,w),K∗∗ = κ(w∗, w∗)

This surrogate function along with assumed mean and vari-
ance of unobserved points is sampled using an acquisition
function to derive a posterior distribution. The acquisition
function chosen in the presented study is Expected Im-
provement which accounts for the size of the improvement
while exploring and exploiting the function to find a global
minimum. If µi'(w) is the minimal value of µi(w) observed
so far. Then the reward utility function is given by

u(w) = max(0, (µi(w)− µi′(w)))

And the expected improvement utility function is.

αEI(w) = E(u(w)|w,D)

III. METHODOLOGY

Given a black box system, a constrained environment, and
a set of bounded parameters, W, the test case generator needs
to find the limiting parameter values w ∈ {W}, such that the
continuous trajectory ξ, starting from initial condition vector,
I, under the choice, w, refutes the pass criteria ρ, that is, ξ
6|= ρ. Since the underlying function being estimated maybe
nonconvex in nature all the test cases causing failure need to
be identified. Algorithm 1 uses background theory discussed
in previous sections for test case generation. The inputs
are identified from the STPA analysis and passed through
Bayesian Optimization module for identification of exact
parameter values that leads to failure. After each iteration,
the samples are sent to the simulator to obtain a stochastic
evaluation and the process continues until the specification
is violated or time budget is exhausted.

Fig. 2: High level diagram of the test case generation
framework.

Algorithm 1 Sampling Using Bayesian Optimization
Input: Bounded Parameter vector W from STPA 3
Pass criteria from STPA step 2
Initial Condition vector : I

1: procedure DERIVEPARSETREE(PassCriteria)
2: ρ← PassCriteria
3: for <each predicate µ in ρ> do
4: BayesianOptimization(µ,W, I)
5: end for
6: end procedure

7: procedure BAYESIANOPTIMIZATION(µ,W, I)
8: for <n = 1,2,....> do
9: Select new wn+1 ∈ W by minimizing
acquisition function α

10: wn+1 ← argmin
w∈W

α(w)

11: Dn+1 ← Dn(wn+1, yn+1)
12: end for
13: return wi for which we get the

minimum yi
14: end procedure

Comments:
α : Expected Improvement (acquisition function).
Dn : Observed (input,output) pair from sampling.
yi : Output of the system for ith input.

We consider Figure 1 as a case study and identify pa-
rameter values of dynamic elements like pedestrian speed,
angle, subject vehicle speed, deceleration rate using Bayesian
Optimization. Typically different combinations of parameter
values for the same test scenario can lead to different
manifestations of the same failure condition. Bayesian Op-
timization, which is at the heart of our methodology is
designed to find a global minima, which is one of many
test cases leading to the failure condition. We propose a
methodology to direct the search to find other minima of
the continuous function f : W→ R, where W is a compact
subset of Rd.

A. Identifying Multiple Minima Regions

The key to identifying multiple minima is to eliminate the
minima already explored from the search space. We do this

by leveraging the fact that the minima are (by definition) of
negative sign (see Figure 4 for a pictorial view). Therefore,
if we square the function, then all the minima rise above
zero. The points originally at zero remain at zero.

Algorithm 2 Extension of Algorithm 1 for identifying
multiple minima
Input: λ
Global Variable :
regionsStack ←[[W1LB ,W1UB],, [WnLB ,WnUB]]

1: procedure FINDMULTIPLEMINIMA(λ)
2: while true do
3: if regionsStack is empty then
4: return minimaList
5: end if
6: region← pop(regionsStack)
7: minPoint← BaysOptMinPoint(region)
8: for <i = 0, 1 ... dimension> do
9: cutoffRegL← minPoint[i]− λ

10: lowBi ← findZeroPnt(cutoffRegL, i, 0)
11: cutoffRegU ← minPoint[i] + λ
12: upBi ← findZeroPnt(cutoffRegU, i, 1)
13: zeroPnts.add([lowBi, upBi])
14: end for
15: omittedRegions.add(zeroPnts)
16: for <i = 0, 1 ... dimension> do
17: newReg1.add(zeroPnts[0..(i− 1)])
18: newReg2.add(zeroPnts[0..(i− 1)])
19: newReg1.add([regLBound, zeroPnts[i][0]])
20: newReg2.add([zeroPnts[i][1], regUBound])
21: newReg1.add(region[(i+ 1)..dimension])
22: newReg2.add(region[(i+ 1)..dimension])
23: end for
24: if newReg(1, 2) not in omittedRegions then
25: regionsStack.push(newReg1, newReg2)
26: end if
27: end while
28: end procedure
29: procedure FINDZEROPNT(cutoffRegion, i, lowUpF lag)
30: while not nearest 0 do
31: zeroPnt← BaysOptZeroPnt(cutoffRegion)
32: boundi ← zeroPnt[i]
33: if lowUpF lag equals 0 then
34: cutoffRegion[i][0]← boundi
35: else
36: cutoffRegion[i][1]← boundi
37: end if
38: end while
39: return boundi
40: end procedure

We find the zeros surrounding the minima in each paramet-
ric direction and eliminate the intermediate points (namely,
the valley containing the minima) from further consider-
ation in the search. Thereafter, a new search begins in

each parametric direction, and this continues in a recursive
manner. This section elaborates this methodology. We use
[WkLB ,WkUB] to denote the domain of parameter Wk ∈
W . Essentially the search happens over the n-dimensional
hyperspace defined by the parameters, W1, . . . ,Wn. Our
algorithm uses a stack called regionsStack to store the
set of regions to be explored. The algorithm starts with
the entire region. After discovering each minimum, the
region in which the minimum was discovered is split in a
way to eliminate the valley containing the minimum. For
simplicity, we consider hyper-rectangular abstractions around
the minima for elimination. The algorithm terminates when
regionStack is empty.
We use a step size, denoted by λ, to demarcate the region
surrounding the discovered minimum within which we look
for the zero (in each parameteric direction). These zeros then
define the rectangular constraints fencing the region to be
eliminated from further consideration. For every dimension,
two exclusive new regions are constructed as upper and lower
search regions. The coordinates of the new search regions for
each i dimension is defined by zero points of previous i− 1
dimension, zero point of i and lower, upper bounds of i+1
dimensions. If in some direction, no zero is found within a
distance λ from the minimum, then the search resumes with
a larger λ. The choice of λ is kept as a hyper-parameter and
is set depending on domain knowledge.
The steps of Algorithm 2 is illustrated with a one-
dimensional function. f(W) = sin(2 ∗ π ∗W/Fs) where a
Fs = 1600Hz and W ranges from [0,5000].f(W) has three
minimum points : f(1200), f(2800), f(4400) = -1. The first
minimum value is identified at wm = 1200 by procedure
BaysOptMinPoint(Algorithm 1). A step length λ = 800
(period/2) is chosen. Procedure findZeroPnt searches nearest
points where function value is 0 each for wm−800 to
wm and wm to wm+800. The observation value used by

Fig. 3: From top left to bottom right a)The red region
specifies the region to be eliminated, the red point is the first
identified minimum point b) The squared function where all
the minima lie above 0 the red lines denote nearest zeroes
c) The two new search regions after elimination

BaysOptZeroPoint method is a square of the actual observed
function value and the rest of its functionality is same as
Algorithm 1. Observing squared value makes the underlying
Gaussian Process believe it is estimating the square of the
actual function without hampering the continuity of the
function. Once the lower zero point wl and upper zero point
wu are identified the next search for minima is done from
(wlowerbound,wl) and (wu,wupperbound). The region between
(wl,wu) is eliminated from search space. This process con-
tinues until all the regions containing a minima are identified.
The algorithm is tested on different non convex functions as
discussed in the results section. The convergence proof of
the algorithm is discussed in the appendix.

IV. RESULTS

This section discusses the results of experiments on non-
convex functions and test scenarios.

A. Identifying multiple minima regions for nonconvex func-
tions

The first function is the Holdertable function defined
by f(x, y) = −|sin(x) ∗ cos(y) ∗ e|(1−

√
(x2+y2)/π)|| where

four global minima occur at (x,y) = (8.05502, 9.66459),
(8.05502, -9.66459), (-8.05502, 9.66459), (-8.05502, -
9.66459) and for all these f(x,y) = -19.2805. The second
function is the Eggholder function defined by f(x,y) =
−(y+47) ∗ sin

√
|y + x/2 + 47| −x ∗ sin

√
|x− (y + 47)|.

This function has one global minima at f(512,404.2319) =
-959.6407. Both the functions have multiple local minima.

TABLE I: Performance of Algorithm 2 on different non
convex functions

Function Domain λ Identified Minima Regions
1 x:[-10,10],y:[-10,10] 2 56
2 x:[0,512],y:[0,512] 100 275
3 Each xi:[-50,50] 50 512

The third function is of the form f(x1, x2....xn) = x1∗x2∗
.... ∗xn where the number of minima increase with increase
with dimension as 2d−1. The algorithm is tested upto 10th
dimension.

Fig. 4: Visualization of Holdertable function after running
Algorithm 2. The purple dots are the identified global mini-
mas and the red dots are local minimas. The blue rectangles
denote the regions eliminated.

B. Testing the pedestrian scenario generated from STPA

The scenario described in Figure 1 is modelled in
IPG Carmaker1. The domain of uncertainty comprises of
the subject vehicle velocity [40km/hr,60km/hr], the pedes-
trian speed [5km/hr,20km/hr], the pedestrian crossing angle
[0o,10o], the deceleration rate after stop command is ex-
ecuted [3m/s2,6m/s2]. As objective function the Euclidean
distance between the latitude and longitudinal distance of
the car and pedestrian is minimized i.e. collision occurs
when

√
(car.y − ped.y)2 + (car.x− ped.x)2 ≤ 0. A safety

envelop of 5m is considered longitudinally, i.e. the func-
tion value would be -5 when the collision occurs with
the car and 0 at the beginning of the safety region.

Fig. 5: Collision detected in simulation at parameter values
subject vehicle velocity = 58.06km/hr, pedestrian speed =
17.82km/hr, Crossing angle = 4.57o, deceleration rate =
3m/s2. This test case gives a function value of -5

Fig. 6: Plot illustrating function value of each sampled
point up to 22 samples. Deceleration for the plot is kept
fixed at 3m/s2. Each point represents (subject vehicle speed,
Pedestrian angle, Pedestrian speed). One of the left zero for
the identified minima is found at [58.05,4.57o,15.69] and
right zero at [58.05,4.57o,19.83].

Certain parameter values of the scenario are predetermined

1http://ipg.de/de/simulationsolutions/carmaker/

for example the radar sensor range is set at 15m and the
distance between first occlusion object and subject vehicle
at 3m. The dynamics of the subject vehicle is a black box.
The search space for this problem is 20*15*10*3*(102)3

(upto 2 decimal places of each parameter is except decel-
eration rate considered). Each point in the search space
can form a test case. The step size λ is chosen to
be (domain range)/2 for each domain. This can be fur-
ther tuned for faster convergence. Multiple test cases are
identified like [58.06,4.57o,17.82,3],[47.21,6.15o,14.88,3],
[60,0o,20,4], [60,10o,18.59,3], [42.36,7.19o,11.64,4] etc.
One such test case as is illustrated in Figure 5. No violations
are observed over a deceleration rate of 5m/s2. Hence, a
safe driving strategy for this scenario would be to have a
deceleration rate of more than 5m/s2.

V. CONCLUSION & FUTURE SCOPE

The presented study discusses a methodology to identify
test cases for complex black boxes like autonomous systems
with fast convergence. This type of analysis can be further
use to define safe strategies for autonomous driving systems.
The algorithms can be further optimized by tuning hyper-
parameters such as λ and searching new regions in parallel.
In future, the authors intend to extend this work to identify
parameters values for temporally changing functions and
testing the methodology over more complex scenarios.

APPENDIX

Assumimg the function f ∈ reproducing kernel Hilbert
Space (RKHS) H described by the Gaussian Process prior
π. Algorithm 2 is shown to converge for n minima in f
considering finite size of domains and fixed λ with the help
of induction.
Basis : for n = 1 continuous function f ∈ H and has only one
global minima. when π is a fixed Gaussian process prior of
finite smoothness, expected improvement converges on the
minimum of any f ∈ H , and almost surely for f drawn
from π. [28].
Hypothesis: Assuming convergence for n = k
Inductive Step: for n = k+1 For each k minima points
a continuous subpart of the original function is subtracted
from the original function using a region described by the
d dimensional hyper rectangle. Let each subpart be denoted
by gi(x). Then, the function after k iteration is given by
f ′(x) = f(x) −

∑k
i=1 gi(x) f

′(x) ∈ H and is continuous
containing only one minima which is same as the base case.
Hence, the method converges for n minimum points.

REFERENCES

[1] Rushby J., ”New Challenges In Certification For Aircraft Soft-
ware,”in ACM International Conference On Embedded Software (EM-
SOFT),2011.

[2] Mller J., Drewes J., May J. and Trog C., ”The formal representation
of the safety case processes described in the EN 5012x norms,” in
European Safety and Reliability Conference, 2009.

[3] R. Charette, ”This Car Runs on Code”, IEEE Spectrum: Tech-
nology, Engineering, and Science News, 2018. [Online]. Avail-
able: https://spectrum.ieee.org/transportation/systems/this-car-runs-on-
code. [Accessed: 15- Aug- 2018].

[4] Yu, H., Lin, C., and Kim, B., ”Automotive Software Certification:
Current Status and Challenges,” SAE Int. J. Passeng. Cars Electron.
Electr. Syst. 9(1):74-80, 2016, https://doi.org/10.4271/2016-01-0050.

[5] Transport Systems Catapult, Taxonomy of Scenarios for Automated
Driving, 2017.

[6] Kalra, N. and Paddock, S.M., Driving to Safety: How Many Miles
of Driving would it Take to Demonstrate Autonomous Vehicle Re-
liability?, Transp. Res. Part A Policy Pract. 94:182-193, Dec 2016,
doi:10.1016/j.tra.2016.09.010.

[7] Khastgir, S., Birrell, S., Dhadyalla, G., and Jennings, P., The Science
of Testing: An Automotive Perspective, SAE Technical Paper 2018-01-
1070, 2018, doi:10.4271/2018-01-1070.

[8] Williams, E. (2018). Fatalities vs False Positives: The Lessons
from the Tesla and Uber Crashes. [online] Hackaday. Avail-
able at: https://hackaday.com/2018/06/18/fatalities-vs-false-positives-
the-lessons-from-the-tesla-and-uber-crashes/ [Accessed 1 Dec. 2018].

[9] Khastgir, S., Dhadyalla, G., Birrell, S., Redmond, S., Addinall, R., &
Jennings, P. (2017). Test Scenario Generation for Driving Simulators
Using Constrained Randomization Technique. WCX 17: SAE World
Congress Experience. https://doi.org/10.4271/2017-01-1672.Copyright

[10] Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F. & Maurer, M.
Defining and Substantiating the Terms Scene , Situation, and Scenario
for Automated Driving. (2015). doi:10.1109/ITSC.2015.164

[11] V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovan-
niVincentelli, and S. A. Seshia, Model predictive control with signal
temporal logic specifications, in Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on. IEEE, 2014, pp. 8187.

[12] Shalev-Shwartz, S., Shammah, S., & Shashua, A. (2017).
On a Formal Model of Safe and Scalable Self-driving Cars,
133.https://doi.org/1708.06374v2

[13] Bagschik, G., Menzel, T. and Maurer, M. (2017). Ontology based
Scene Creation for the Development of Automated Vehicles.

[14] Kamlesh Gosh, Automated Planning Based Methods for Early Verifi-
cation of Reactive Control Systems, Ph. D. dissertation, IIT Kharagpur

[15] Jussi Rintanen. Complexity of planning with partial observability. In
ICAPS 2004. Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling, pages 345354.

[16] DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana

[17] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid,
DeepRoad:GAN-based Metamorphic Autonomous Driving System
Testing, 2018.

[18] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, Utilizing S-TaLiRo as an
automatic test generation framework for autonomous vehicles, IEEE
Conf. Intell. Transp. Syst. Proceedings, ITSC, no. i, pp. 14701475,
2016.

[19] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan,
Staliro: A tool for temporal logic falsification for hybrid systems. in
TACAS, vol. 6605. Springer, 2011, pp. 254257.

[20] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler, Stochastic local search
for falsification of hybrid systems, in ATVA. Springer, 2015.

[21] N. Hansen, The CMA evolution strategy: A tutorial, arXivpreprint
arXiv:1604.00772, 2016.

[22] B. Shahriari, K. Swersky, Z. Wang, R. Adams and N. de Freitas, Tak-
ing the Human Out of the Loop: A Review of Bayesian Optimization,
Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, 2016.

[23] J. V. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V. S. Prabhu,
Testing cyber-physical systems through bayesian optimization, Trans-
actions on Embedded Computing Systems, 2017

[24] S. Ghosh, F. Berkenkamp, G. Ranade, S. Qadeer and A. Kapoor,
”Verifying Controllers Against Adversarial Examples with Bayesian
Optimization,” 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, 2018, pp. 7306-7313. doi:
10.1109/ICRA.2018.8460635

[25] Leveson, Nancy. (2004). A New Accident Model for Engineering Safer
Systems. Safety Science. 42. 237-270. 10.1016/S0925-7535(03)00047-
X.

[26] Engineering a safer world (2012), NG Leveson, The MIT Press.
[27] Siddartha Khastgir (2018). Systems Approach to Creating Interesting

Test Scenarios for Autonomous Vehicles Autonomous Vehicle Test &
Development Symposium 2018 Stuttgart, Germany 5 June 2018.

[28] Grunewalder S, Audibert J, Opper M, and Shawe-Taylor J. Regret
bounds for Gaussian process bandit problems. In Proc. 13th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS
10), pages 273280, Sardinia, Italy, 2010.

