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Abstract

We study the problem of an advertising agent
who needs to intelligently distribute her bud-
get across a sequence of online keyword bid-
ding auctions. We assume the closing price
of each auction is governed by the same un-
known distribution, and study the problem
of making provably optimal bidding deci-
sions. Learning the distribution is done un-
der censored observations, i.e. the closing
price of an auction is revealed only if the bid
we place is above it. We consider three al-
gorithms, namely ε−First, Greedy Product-
Limit (GPL) and LuekerLearn, respectively,
and we show that these algorithms provably
achieve Hannan-consistency. In particular,
we show that the regret bound of ε−First is
at most O(T

2
3 ) with high probability. For

the other two algorithms, we first prove that,
by using a censored data distribution esti-
mator proposed by Zeng [19], the empirical
distribution of the closing market price con-
verges in probability to its true distribution
with a O( 1√

t
) rate, where t is the number of

updates. Based on this result, we prove that
both GPL and LuekerLearn achieve O(

√
T )

regret bound with high probability. This in
fact provides an affirmative answer to the re-
search question raised in [1]. We also evalu-
ate the abovementioned algorithms using real
bidding data, and show that although GPL
achieves the best performance on average (up
to 90% of the optimal solution), its long run-
ning time may limit its suitability in practice.
By contrast, LuekerLearn and ε−First pro-
posed in this paper achieve up to 85% of the
optimal, but with an exponential reduction
in computational complexity (a saving up to
95%, compared to GPL).

1 Introduction

Sponsored search is the most significant example of
monetisation of Internet activities. This multi-billion
dollar industry poses many challenging research prob-
lems for both advertisers and search engines. One of
the most well-studied, but nonetheless still open, prob-
lems is the optimisation of marketing campaigns for
an advertiser, or an autonomous agent acting on her
behalf1, with a fixed budget. This fundamental prob-
lem has been studied in a number of stylised models,
yet many of the questions arising in real sponsored
search auctions remain unanswered. In this paper, we
focus on one such question—bidding when prices are
not known but must be learnt to choose the right bid-
ding strategy.

In this work, we follow a stochastic market price model
that was used in [1, 7]. In particular, we take the
point of view of an advertising agent with a specified
budget for a given time horizon, who wants to find a
bidding strategy that maximises the number of clicks.
We consider a model with a single keyword and a sin-
gle slot. Each time a user searches for the keyword,
an auction is run to decide which of the interested
agents is assigned the ad slot on the search results
page. The winner is the agent with the highest bid
who pays the market price which is determined by the
second highest bid: i.e., the slot is sold in the style of a
second-price auction. In practice, other factors affect-
ing allocation of the slot include randomisation used
by the search engine and advertiser/keyword-specific
“quality scores” that adjust advertisers’ bids. Given
these factors and the lack of information about bids
and strategies of the other advertisers, an advertising
agent cannot easily take into account her own effect
on the market price, and so instead views the price as
a random variable.

The key challenge of this stochastic model is that the
distribution of the market price is not known in ad-

1We will interchangeably use the terms agent and ad-
vertiser within this paper.



vance. Thus, to select the right bidding strategy, the
agent needs to learn that distribution. This learning
problem is further complicated by “censored observa-
tions” [1, 7]: the agent observes the market price only
when she wins the auction; otherwise she just learns
that the market price is above her bid. Although exist-
ing methods, designed for budget-limited online opti-
misation, can provably achieve asymptotically optimal
performance for the case with no censorship [2, 18],
they fail within the settings studied here. In particu-
lar, due to the censored observations, these methods
cannot reproduce efficient estimation of the distribu-
tion of the market price, as they use conventional em-
pirical estimation techniques [9, 16].

To combat this, Amin et al. (2012) proposed Greedy
Product-Limit (GPL) and LuekerLearn, two meth-
ods that use the Kaplan–Meier estimator [9], designed
for estimating the distribution of censored data, and
achieve good performance in experiments with real
bidding data. However, no theoretical performance
analysis has been provided. Against this background,
this paper addresses this gap by providing theoretical
justification for these algorithms and a novel one that
we develop for this setting. Our results prove asymp-
totic optimality of the algorithms, guaranteeing good
performance as the number of auctions increases. We
first look at ε−First, an algorithm inspired by a class
of methods designed for multi-armed bandits [5, 18],
tailored to our settings. In particular, this algorithm
uses the first ε fraction of the auctions to estimate the
market price distribution. Based on this estimate, it
then solves a Markov decision process (MDP) in order
to determine the optimal bidding policy. We prove
that this algorithm achieves Hannan–consistency (i.e.,
sub–linear regret bound). Put differently, we show
that the regret (i.e., the difference between the perfor-
mance of a particular algorithm and that of an optimal
solution) of the algorithm is at most O(T

2
3 ) with high

probability, where T is the number of auctions. Note
that the Hannan–consistency property (i.e., the sub-

linear O(T
2
3 ) regret bound) guarantees that the aver-

age regret (i.e., the total regret divided by the num-
ber of auctions) converges to 0 as the number of auc-
tions is increased, and thus, the bidding behaviour of
a Hannan–consistent algorithm becomes more similar
to that of the optimal solution (due to the decreasing
performance gap defined by the average regret).

In addition to ε−First, we also provide an affirma-
tive answer to the conjectures posed in [1]. That is,
we show that, by replacing the Kaplan–Meier estima-
tor with a novel censored data distribution estimator
proposed by Zeng [19], GPL and LuekerLearn, the al-
gorithms studied by Amin et al., do indeed achieve
sub–linear regret bounds, and thus, are also Hannan–
consistent. In particular, we show that, by using
Zeng’s estimator, the empirical distribution of the clos-

ing market price converges in probability to its true
distribution with a O( 1√

t
) rate, where t is the number

of updates. Relying on this result, we prove that GPL
achieves O(

√
T ) regret bound with high probability.

On the other hand, LuekerLearn achievesO(
√
T+lnT )

regret bound, also with high probability. Given this,
our work extends the state of the art as follows:

• We provide a theoretical regret analysis for
ε−First, GPL and LuekerLearn, and we show that
they achieve Hannan–consistency.

• We compare the performance of each algorithm
through extensive empirical evaluations, using
real bidding data from Microsoft adCenter. In
particular, we demonstrate that, although GPL
typically outperforms the other algorithms, it
requires significantly higher computational com-
plexity, which could limit its suitability in prac-
tice. On the other hand, both ε−First and
LuekerLearn can achieve performance close to
that of GPL (typically within 10%), but with a
much lower computational cost (with up to 50
times speed-up in computation time).

The remainder of the paper is organised as follows. In
the next section we review related work. The model we
study is presented in Section 3. We review existing and
new algorithms for learning and bidding in Section 4.
Our main contribution — theoretical guarantees — are
derived in Section 5. Numerical evaluation using real-
world data sets is presented in Section 6, and Section 7
concludes.

2 Related Work

Bid optimisation in sponsored search auctions is a
topic of considerable research in the autonomous
agents community [4, 8, 10, 12, 14]. One of the first
papers on the topic offers heuristic algorithms for pre-
diction and bidding that were shown to work in prac-
tice [10]. Moreover, Feldman et al. [6] prove that
simple randomised strategies for optimising a budget
across multiple keywords achieve good performance.
In that work, cost per click and number of clicks for
each bid are known to the bidder. Berg et al. [3] com-
pare bidding algorithms such as equating return-on-
investment (ROI) and knapsack-based solutions based
on the predictions they require (e.g., number of clicks
and cost per click) and evaluate them in a simulated
bidding environment of the Trading Agent Competi-
tion in Ad Auctions [8]. Unlike all the above papers,
our focus is on bidding with online learning—in or-
der to make bidding decisions, we need to learn the
distribution of the market price.

The two papers closest to our work that combine learn-
ing and bidding in ad auctions are [1] and [20]. In par-



ticular, our work can be seen as a continuation of the
research started by Amin et al. [1] who compared var-
ious algorithms for prediction and bidding. We adopt
the same model, but focus on theoretical guarantees
of the algorithms considered in [1] as well as that of
our proposed ε−First algorithm. Zhou and Narodit-
skiy [20] address the keyword bidding problem when
multiple slots are available, but do not provide theo-
retical guarantees for their proposed algorithm.

Furthermore, two very recent related works are [18]
and [2]. Both works propose general frameworks for
studying multi-armed bandit problems with supply (or
budget) constraints. Although bidding in repeated
auctions is a problem that can be modeled in these
frameworks, they do not address the one-sided cen-
sored observations issue, which is the main challenge
addressed here. It is worth noting that we can still ap-
ply these models to our settings by combining them
with the censored data solutions described in Sec-
tion 4. However, since they are designed for more
generic problems, they do not exploit the domain–
specific features of our problem, and thus, they provide
weaker performance guarantees. Nevertheless, they
may form a strong basis for our future work.

Finally, it is worth to note that our problem can also
be formalised as a Markov decision process (MDP) (see
Section 3 for more details), and thus, it shows similar-
ities to the domain of reinforcement learning [15, 17].
However, as existing RL methods do not take into ac-
count censored data, it is not trivial how to incorpo-
rate them into our settings. Given this, we ignore the
large literature of RL, as we argue that they are out
of scope of our paper. Nevertheless, a possible future
work would be to find an efficient way to combine RL
techniques with censored data estimation.

3 Model Description

Our model consists of a sequence of T single slot
second–price auctions, where the bidder (or agent) has
to repeatedly place her bid in order to win a single key-
word at each time step t ∈ {1, . . . , T}. We refer to T
auctions as a bidding period and use B to denote the
budget for the period. That is, the total cost spent
on the auctions cannot exceed this budget. At each
time step t, we assume that the market price xt of the
keyword is an independent and identically distributed
(i.i.d.) random variable drawn from an unknown, but
fixed, distribution with probability distribution func-
tion p. We assume that p has a finite support [0, C]
for some sufficiently large C > 0. This assumption is
reasonable, as the market price is typically less than a
couple of dollars. In our model, if a particular bid of
the agent at time step t is higher than xt, the agent
wins the auction, and the budget is decreased by xt.
Otherwise, the agent does not win, and the budget

remains the same. More formally, let bt and Bt de-
note the agent’s bid, and the residual budget (i.e., the
remaining budget) at time step t, respectively. Note
that B1 = B. Given this, we have

Bt+1 = Bt − xt

if bt ≥ xt, and
Bt+1 = Bt

otherwise. Note that the agent cannot place a bid
that is higher than the current residual budget. That
is, bt ≤ Bt for each time step t. We assume that
both bt and xt are discrete values chosen/drawn from
Z+. This assumption is reasonable, as the bids and
market prices can be regarded as multiplications of
the smallest unit of currency allowed for bidding.

Now, our goal is to find a bidding policy that max-
imises the number of wins over the time interval
{1, . . . , T}. It is worth to note that if B ≥ CT , we
can achieve the optimal solution by repeatedly bid-
ding with C. In particular, since bidding C always
guarantees winning, if our budget is larger than CT ,
we can always win at each time step. Given this, we
now only focus on the nontrivial case, and thus, we
from hereafter assume that

B < CT (1)

Given this condition, our problem can be formalised as
follows. Let A denote a bidding policy that places bid
bA (Bt, t) at each time step t , where Bt is the residual
budget at that time step. In addition, let GA(B, T )
denote the expected total number of wins of policy A
with respect to total budget B and time limit T :

GA(B, T ) = E

[
T∑
t=1

I{bA(Bt, t) ≥ xt}

]
, (2)

where I{·} is the indicator function. Note that
bA(Bt, t) ≤ Bt and

Bt+1 =

{
Bt − xt, if bA(Bt, t) ≥ xt
Bt, otherwise.

We aim to find an optimal policy

A∗ = arg max
A

GA(B, T )

that maximises the expected total number of wins. For
the sake of simplicity, we denote the expected perfor-
mance of A∗ with G∗(B, T ). It is known that if we
have exact information about the distribution func-
tion p, we can calculate A∗ using a Markov decision
process (MDP) formulation [1, 15] . In particular, let
F (b) = P (X > b) denote the survival function of the
market price2 (i.e., the probability that the market

2The problem of estimating the distribution of censored
data first appeared in the survival analysis literature [9, 13].
Hence the name of the survival function.



price is higher than bid b). Suppose that the optimal
policy A∗ chooses bid b∗(B′, t) if the budget is B′ at
time step t. It can be shown that A∗ has to satisfy the
following set of Bellman equations [15]:

b∗(B′, t) = arg max
b(B′,t)

{
b(B′,t)∑
σ=1

p(σ)
[
1 +G∗(B′ − σ, T − t)

]
+ F (b(B′, t))G∗(B′, T − t)

}

G∗(B′, T − t+ 1) =

b∗(B′,t)∑
σ=1

p(σ)
[
1 +G∗(B′ − σ, T − t)

]
+ F (b∗(B′, t))G∗(B′, T − t)

for each t ∈ {1, . . . , T} and 0 ≤ B′ ≤ B. That is,
b∗(B′, t) denotes the optimal bid (i.e., the one that
maximises the expected number of future wins) at time
step t and budget B′, while the second equation im-
plies that the optimal number of wins at time step t
and budget B′ can be achieved by taking the optimal
bid and continuing with the optimal policy A∗ (for
more details, see e.g. [1, 15]). Note that G∗(B′, 0) = 0
for any 0 ≤ B′ ≤ B. Given this, we can recursively
solve the Bellman equations given above, and thus, de-
termine the optimal bid for each time step t in order to
calculate the optimal solution G∗(B, T ). Hereafter we
may refer to A∗ as the optimal stochastic solution, as
opposed to the deterministic approach, that addition-
ally has full information about the sequence of market
prices xt, which A∗ typically does not have (see Sec-
tion 4.3 for more details).

Since p is unknown for us, A∗ cannot be determined
in an exact manner. This implies that A∗ represents
a theoretical optimum value, which is unachievable in
general. Nevertheless, for any algorithm A, we can
define the regret for A as the difference between the
total number of wins of A and that of the theoretical
optimum A∗. More precisely, letting RA denote the
regret, we have

RA(B, T ) = G∗(B, T )−GA(B, T )

Thus, our objective is to derive algorithms for learning
p and bidding that minimise this regret.

4 Algorithms

Given the problem definition, we now turn to the de-
scription of the algorithms that we study within this
paper. In particular, we investigate three algorithms:
(i) ε−First, (ii) GPL and (iii) LuekerLearn. These
algorithms are described in the next sections.

4.1 The ε−First Algorithm

Algorithm 1 The ε−First Algorithm

1: Inputs: T > 0, B > 0, 0 < ε < 1;
2: Exploration phase:
3: for t = 1→ εT do
4: randomly choose bid bt from uniform distribu-

tion over
[
1, BεT

]
;

5: observe ot = min {xt, bt};
6: end for
7: Exploitation phase:
8: use Suzukawa’s estimator to calculate p̂;
9: solve the Bellman equations given in Equation 4;

10: for t = εT → T do
11: place the bid b+(Bt, t) accordingly to the solu-

tion of the Bellman equations;
12: end for

As mentioned earlier, the key challenge of finding an
optimal solution for the budget–limited auction prob-
lem is that we do not know the distribution function
p of the market price in advance. Given this, we need
to learn (or estimate) this distribution from the ob-
served sequence of market prices x1, x2, . . . , xT . This
naturally lends itself to the idea of ε−First, which first
estimates the distribution of the market price and then
optimises the bidding policy. In particular, it uses an
ε fraction of the total number of auctions T within a
period to estimate the market price distribution func-
tion p. Following this, in the rest of (1− ε)T auctions,
we solve the budget–limited auction problem with the
estimated market price distribution function p̂ learnt
from the learning phase. Hereafter we refer to the
former phase as exploration, while to the latter as ex-
ploitation, respectively. In what follows, we describe
these phases in more detail (the pseudo code is de-
picted in Algorithm 1).

We start with the description of the exploration phase.
Within this phase, our goal is to accurately estimate
the market price distribution. To do so, we can use
the first ε proportion of the total auctions T . Now, re-
call that we can only observe xt when it is not higher
than the chosen bid bt. That is, the sequence of xt
is (right) censored by the sequence of bt. In par-
ticular, at each time step, we can only observe the
value of ot = min {xt, bt}. This, indeed, makes the
estimation of p a challenging problem. Note that [1]
used the product–limit, or Kaplan–Meier (KM), esti-
mator to address this challenge [9]. However, it is well
known that the KM estimator has a negative bias [13].
To overcome this issue, we consider a modification of
the KM estimator, an estimation technique proposed
by [16], for estimating functionals of the distribution
p. This method is proven to be unbiased, and thus,
we can use McDiarmid’s inequality to guarantee the
O
(
t−1
)

convergence rate of the p̂t estimate. This con-
vergence rate provides the basis for the performance
analysis of ε−First (see Section 5 for more details).

Suzukawa’s method can be adopted to the estimation



of the market price distribution as follows. It relies
on the assumption that we know the distribution from
which the bids bt are drawn. Let S denote the survival
function of this bid distribution, and ot = min {xt, bt}
denote the observed value at t. Let ϕb(x) be a function
defined as

ϕb(x) = 1 if x ≤ b
ϕb(x) = 0 otherwise.

In addition, let δt = I{xt ≤ bt} denote the indicator
function whether the market price does not exceed the
bid at time step t. Given this, Suzukawa’s estimation
for the market price’s cumulative probability function
P is formalised as:

P̂t(b) =
1

t

t∑
i=1

δiϕb(oi)

S−(oi)
(3)

where S−(oi) = limx>0,x→0 S(oi − x) and P̂t(b) is the
estimate of P (b) after t observations. Using techniques
similar to those from [16], we can easily derive that

P̂t(b) is indeed an unbiased estimator of P (b).

Based on this, ε−First places the bids within the ex-
ploration phase as follows. For each t ≤ εT , ε−First
uniformly chooses a bid bt from

[
1, BεT

]
(Algorithm 1,

lines 4− 5). This guarantees that the total cost spent
within the exploration phase will not exceed the total
budget B. When the exploration ends, let p̂ and F̂
denote Suzukawa’s KM estimation of the market price
distribution function p, and the survival function, re-
spectively (line 8). Next, we will describe how ε−First
uses these estimates to tackle the budget–limited auc-
tion problem.

We now turn to the description of the exploitation
phase. Let BεT denote the residual budget after the
exploration phase ends. In order to determine the bids
at each time step, ε−First solves the following Bellman
equations:

b+(B′, t) = arg max
b(B′,t)

{
b(B′,t)∑
σ=1

p̂(σ)
[
1 +G+(B′ − σ, T − t)

]
+ F̂ (b(B′, t))G+(B′, T − t)

}

G+(B′, T − t+ 1) =

b+(B′,t)∑
σ=1

p̂(σ)
[
1 +G+(B′ − σ, T − t)

]
+ F̂ (b+(B′, t))G+(B′, T − t) (4)

for each εT ≤ t ≤ T and 0 ≤ B′ ≤ BεT , where
b+(B′, t) is the chosen bid of ε−First at time step t
and budget B′. Recall that G+(B′, 0) = 0 for any
0 ≤ B′ ≤ B. These together allow us to (recursively)

Algorithm 2 The GPL Algorithm

1: Inputs: T > 0, B > 0, p̂1 is uniform;
2: for t = 1→ T do
3: solve the Bellman equations given in Equation 5

for p̂t;
4: place a bid b+(Bt, t) according to the solution of

the Bellman equations;
5: use Zeng’s estimator to update p̂t+1;
6: end for

evaluate each value of b+(B′, t), and thus, the bidding
policy within the exploitation phase of ε−First (Algo-
rithm 1, lines 9− 12).

The intuition behind ε−First is that by properly set-
ting the value of ε, we can quickly estimate the dis-
tribution of the market price with sufficient accuracy.
Thus, the solution of the Bellman equations within
the exploitation phase is close to the optimal solution,
resulting in a good overall bidding performance (see
Section 5 for more details).

4.2 The GPL Algorithm

The GPL algorithm, introduced by [1], can be de-
scribed as follows. For each time step t, it uses an
MDP model to determine the current optimal policy,
given the current estimate p̂t of the market price dis-
tribution function p. That is, it solves a set of Bellman
equations, similar to the exploitation phase of ε−First,
but with a different p̂t at each time step. According to
this optimal policy, it then chooses the next bid, and
observes the censored value ot. Based on this obser-
vation, GPL uses a novel censored data distribution
estimator, proposed by [19], to update the estimation
of the market price distribution function, p̂t+1, for the
next time step. Note that here we replace the KM es-
timator, which is used in [1], with Zeng’s method (for
a brief description of Zeng’s method and further expla-
nations, see Section 5). The above mentioned steps are
repeated until t = T (see Algorithm 2 for the pseudo
code). More formally, suppose that the residual bud-

get at time step t is Bt. In addition, let F̂t denote the
estimate of the survival function at t. GPL solves the
following equations:

b+(B′, τ) = arg max
b(B′,τ)

{
b(B′,τ)∑
σ=1

p̂t(σ)
[
1 +G+(B′ − σ, T − τ)

]
+ F̂t(b(B

′, t))G+(B′, T − τ)

}

G+(B′, T − τ) =

b+(B′,τ)∑
σ=1

p̂t(σ)
[
1 +G+(B′ − σ, T − τ − 1)

]
+ F̂t(b

+(B′, τ))G+(B′, T − τ − 1) (5)



where t ≤ τ ≤ T −1 and 0 ≤ B′ ≤ Bt. In addition, we
have G+(B′, 0) = 0 for all 0 ≤ B′ ≤ Bt. For the sake
of simplicity, we set p̂1 to be a uniform distribution
in (0, B]. Given the solutions, GPL then places bid
b+(Bt, t) at each time step t (Algorithm 2, lines 2−6).

4.3 The LuekerLearn Algorithm

Similar to GPL, this algorithm was also described in
[1], and is based on the algorithm proposed by Lueker
for the online stochastic knapsack problem [11]. In
particular, within the online stochastic knapsack prob-
lem, an item with profit rt and weight xt arrives into
the system at each time step t such that the pair
{rt, xt} is drawn from a fixed and known joint distribu-
tion. At each time step, we have to decide whether to
put the arrived item into a knapsack with the total ca-
pacity B such that the total weight of the chosen items
cannot exceed this capacity. Our goal is to maximise
the total profit of the chosen items. It is easy to see
that within our settings, if the market price distribu-
tion p is known in advance, the budget–limited auction
problem can be reduced to the online stochastic knap-
sack problem by setting rt = 1 for each t. Given this,
Lueker’s algorithm, originally designed for the online
stochastic knapsack problem, can be adopted to the
budget–limited auction with full knowledge of p as fol-
lows (for more details, see [11]). At each time step
1 ≤ t ≤ T , Lueker’s algorithm chooses a bid b+(Bt, t)
that satisfies

b+(Bt, t) = max {b} s.t.

b∑
σ=0

p(σ)σ ≤ Bt
T − t+ 1

(6)

where Bt is the current residual budget. The efficiency
of this algorithm is guaranteed by the following:

Proposition 1 (Theorem 2 from [11]) Suppose
that we have full information about the market price
distribution p. Consider the optimal deterministic so-
lution, that has the full information about the sequence
of market prices {xt} as well (i.e., it knows the value
of each xt in advance). Given this, the difference
between the performance of Lueker’s algorithm and
that of the optimal deterministic solution is at most
O (lnT ).

The proof can be found in [11]. However, since nei-
ther the sequence of {xt} nor p is known in advance,
we combine Lueker’s algorithm with Zeng’s estimator
(instead of the KM estimator) in order to learn the
market price distribution and determine an efficient
bid at the same time. This leads to the LuekerLearn
algorithm (see Algorithm 3), that places a bid b+(Bt, t)
as follows:

Algorithm 3 The LuekerLearn Algorithm

1: Inputs: T > 0, B > 0, p̂1 is uniform;
2: for t = 1→ T do
3: place a bid b+(Bt, t) according to Equation 7;
4: use Zeng’s estimator to update p̂t+1;
5: end for

b+(Bt, t) = max {b} s.t.

b∑
σ

p̂t(σ)σ ≤ Bt
T − t+ 1

(7)

where p̂t is the estimate of p at time step 1 ≤ t ≤ T ,
and b+(BT , T ) = BT . Based on the censored ob-
servation ot, it then updates the estimation of p (i.e.,
p̂t+1), using the Zeng’s estimator (Algorithm 3, lines
2 − 5). The intuition of the algorithm is that as the
estimate p̂t gets more accurate over time, the algo-
rithm converges to the original algorithm provided by
Lueker. Since Proposition 1 guarantees the efficiency
of the latter, LuekerLearn can also achieve low regret
bounds, as we will prove later in this work.

5 Performance Analysis

Within this section, we analyse the performance of the
aforementioned algorithms. In particular, we derive
performance regret bounds for each of the algorithms.
We also show that these regret bounds imply the fact
that the algorithms converge to the theoretical optimal
solution with high probability. We start with ε−First:

Theorem 2 Let T ≥ 8(− ln β
2 ) for some 0 < β < 1.

For any 0 < ε < 1 and B > εCT , and T > C where
C is the support of the market price, the regret of the
modified version of ε−First where Suzukawa’s method
is used for the estimation of the market price distribu-

tion, is at most CεT +

√
8(− ln β

2 )T

ε with probability of

at least (1−β). In addition, by setting ε =
(
−2 ln β

2

C2T

) 1
3

,

the regret bound can be refined to 3
(
−2 ln β

2

) 1
3

C
1
3T

2
3 .

Note that the condition B > εCT guarantees that
within the exploration phase, the bids are uniformly
sampled from the entire interval [1, C], since the algo-
rithm samples from the [1, BεT ]. This condition guar-
antees that Suzukawa’s estimator can fully cover the
interval [1, C]. In addition, theO(C

1
3T

2
3 ) regret bound

is weak if the C < T condition does not hold. In par-
ticular, by fixing T and increasing C, we will get a
regret bound that is worse than O(T ). Nevertheless,
this regret bound achieves Hannan consistency (i.e.,
sub–linear in T ) if C < T .

It is also worth to note that since we only consider
the case B ∼ O(T ), O(T

2
3 ) regret bound is equiva-



lent to O(B
2
3 ), as T

2
3 > B

2
3

C
2
3

. Given the results for

ε−First, we now turn to the analysis of GPL and
LuekerLearn. If we consider the sequence of the bids
as random variables, then the consistency and the zero
bias property of KM estimators such as Suzukawa’s re-
quire independency between the bids and the market
price3. However, since in both GPL and LuekerLearn
we choose the current bid based on the empirical dis-
tribution which is built by using the previous obser-
vations, it is easy to see that the current bid is not
independent from the sequence of the previous market
prices. Thus, the consistency (and the convergence
rate) of the empirical distribution might not be guar-
anteed if the standard KM or Suzukawa’s estimator
is used within GPL and LuekerLearn (for more de-
tails, see, e.g., [13, 16]). This implies that neither GPL
or LuekerLearn can achieve Hannan–consistency if we
use their versions proposed in [1] without any modi-
fications. To overcome this issue, we replace the KM
estimator within GPL and LuekerLearn with a novel
censored data estimator proposed by Zeng [19]. Due to
its complexity and the space limitations, the detailed
description of Zeng’s estimator is omitted (for more
details, see [19]). However, we sketch it as follows.

Zeng’s method assumes that there is an underlying set
of (known) variables L that describes the dependency
between the two sequences of chosen bids and mar-
ket prices. Furthermore, suppose that L is sufficient
enough such that for each t, xt (i.e., the market price)
is independent from bt (i.e., the chosen bid value), con-
ditional to the value of L at time step t, denoted with
Lt. In addition, this method requires that either xt or
bt follows Cox’s proportional model; that is, at least
one of the following conditions must hold:

p(xt|Lt = l) ∼ λx exp {β′l} (8)

p(bt|Lt = l) ∼ λb exp {γ′l} (9)

for some unknown λx, λb random variables, and some
(unknown) parameters β and γ, respectively. Let P̂t
denote Zeng’s estimate of the market price P after t
time steps. Zeng proved that

√
t(P̂t−P ) is a Donsker–

class empirical process. Based on this result, we state
the following:

Theorem 3 The abovementioned assumptions hold
for both GPL and LuekerLearn. Given this, by us-
ing Zeng’s estimation method, the estimate P̂t of the
market price distribution converges in probability to the
true distribution P with rate O( 1√

t
) in both GPL and

LuekerLearn.

This theorem implies the following statements:

3In fact, it is sufficient to guarantee that the covariance
between the bids and the market price is 0.

Theorem 4 There exists a constant K > 0 that only
depends on the market price distribution p, such that
the regret of GPL, combined with Zeng’s estimator, is
at most O(2K

√
T ) with high probability.

Similarly, we have the following theorem for
LuekerLearn:

Theorem 5 There exists a constant K > 0 that only
depends on the market price distribution p, such that
the regret of LuekerLearn, combined with Zeng’s esti-
mator, is at most O(2K(

√
T + lnT )) with high proba-

bility.

Similarly to the case of ε−First, here we can also trans-
form the regret bounds of GPL and LuekerLearn to
O(2K

√
B) and O(2K(

√
B + lnB)), respectively.

Note that Theorems 4 and 5 imply that GPL converges
faster to the optimal solution than LuekerLearn, as T
tends to infinity. This is due to the additional lnT
term within the regret bound of LuekerLearn. The rea-
son behind this is that LuekerLearn in fact converges
with rate O(lnT ) towards GPL. Hence an additional,
O(lnT ), gap is needed here. Also note that by using
Zeng’s method in ε−First , we would get worse results,
compared to Theorem 2, as with the approach from
Suzukawa, we could derive exact constant coefficient
values for the regret bound, while Zeng’s method only
provides asymptotic regret bounds. In addition, since
in both Theorems 4 and 5, the value of K is typically
hard to be identified, the results of these theorems
are in fact focussing on the asymptotic behaviour of
the algorithms (i.e., both algorithms are Hannan con-
sistant), and do not address whether the bounds are
tight.

6 Numerical Evaluation

While we have so far developed theoretical upper
bounds for the performance regret of the algorithms,
we now turn to practical aspects and examine their
performance in a realistic setting,as it might be the
case that regret bound for ε−First is not tight, and
thus, it might perform better than O(T

2
3 ) in many

cases, as we will demonstrate later within this sec-
tion. Given this, in this section, we aim to investi-
gate whether the algorithms achieve high performance
when applied to practical sponsored search auction
problems. To do so, we first describe our parame-
ter settings in Section 6.1. We then continue with
the numerical results of the algorithms’ performance
in Section 6.2.

6.1 Parameter Settings

To investigate the performance of the algorithms, we
use the same dataset as [1], taken from a real-world
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Figure 1: Numerical results on a subset of keywords with single distribution peaks, and with budgets ranging from
10% to 100% of the maximal budget Bk(T ): A) A typical single-peaked distribution of the market price. B) The
performance of the algorithms, measured in competitive ratio against the optimal solution. C) Computational
cost of the algorithms.

sponsored search auction database. Given this, we fol-
low the parameter settings described there. In partic-
ular, for each experiment, we use U = 10 periods, each
of which comprises T = 100 auctions and the budget
is refilled at the beginning of each period. For a fair
comparison to the results of Amin et al., the maxi-
mal budget Bk(T ) for keyword k is also selected in the
same way they do. In particular, we set Bk(T ) such
that G∗(Bk(T ), T ) = fT for f = 0.1 (i.e., 10%) and
T = 100. This setting aims to satisfy that, on average,
we can win 10% of the auctions. Within each exper-

iment, we vary the budget from Bk(T )
10 up to Bk(T )

with a step of Bk(T )
10 . Each experiment was repeated

100 times (for more details of the parameter settings,
see [1]). Within our experiments, we run ε−First with
ε = 0.05 and ε = 0.1, respectively, as these values are
typically more efficient than other value settings4.

6.2 Numerical Results

Given the description of the parameter settings above,
we now investigate the numerical results in more de-
tail. In particular, we observed that the real distri-
bution of the market price can typically be distin-
guished into two groups. In the first group, the mar-
ket price usually concentrates at low values, creating
a single-peaked distribution (see Figure 1A). Within
the second group, the market price is typically more
scattered, causing multiple peaks within the distribu-
tion (see Figure 2A). The performance efficiency of
the algorithms also vary between these distribution
groups. Therefore, we distinguish these two cases, and
separately examine the performance of the algorithms

4Note that all the numerical tests appearing in
this paper are performed on a personal computer,
Intelr Xeonr CPU W3520 @2.67GHz with 12GB RAM
and under Windows 7 operating system. The code was
written and tested on Matlab R2012a.

within these cases. In particular, Figure 1 depicts the
numerical results for the single-peaked case, and Fig-
ure 2 depicts the results for the multi-peaked case,
respectively (here, the second group typically contains
two peaks, as is also shown in Figure 2).

We first evaluate the single-peaked case (Figure 1). As
mentioned earlier, Figure 1A shows the distribution of
the market price. In addition, Figure 1B plots the per-
formance of the algorithm, compared against that of
the optimal stochastic solution described in Section 3.
Here, the optimal stochastic solution also uses an MDP
model to determine the optimal bidding policy, but
assuming full knowledge of the distribution of market
prices. Figure 1C depicts the running time of each al-
gorithm. As can be seen from the figures, GPL and
LuekerLearn provide similar performance, and both
outperform the two versions of ε−First, 0.05–First and
0.1–First, by up to 10%. The reason for this is that
since the market price is typically concentrated at low
values, all the algorithms can quickly learn this. This
allows GPL and LuekerLearn to use small bids to refine
the estimation of the market price distribution at small
values, and thus, to bid more efficiently. In contrast,
as ε−First stops learning after the exploration phase,
its estimation at the small values is not as accurate as
the others’. Given this, ε−First bids suboptimally in
more time steps, compared to the other two. Never-
theless, note that ε−First can still achieve by up to
88% of the optimal solution.

On the other hand, the running time of GPL is sig-
nificantly larger, compared to that of the others (Fig-
ure 1C). In particular, GPL typically needs more than
500 seconds to evaluate the case of maximal bud-
get Bk(T ), while ε−First algorithms only need less
than 10 seconds. The reason for this is that GPL re-
computes the MDP for the optimal decision at each
step, after updating its price distribution. This is



0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

Percentage of the maximal budget
20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of the maximal budget

B) Performance (competitive ratio)

 

 

GPL

LuekerLearn

0.05−first

0.1−first

20 40 60 80 100
0

50

100

150

200

250

300

Percentage of the maximal budget

C) Running Time (sec)

 

 

GPL

LuekerLearn

0.05−first

0.1−first

A) Distribution of market price

Figure 2: Numerical results on a subset of keywords with more than one distribution peaks, and with budgets
ranging from 10% to 100% of the maximal budget Bk(T ): A) A typical two-peaked distribution of the market
price. B) The performance of the algorithms, measured in competitive ratio against the optimal solution. C)
Computational cost of the algorithms.

computationally expensive, especially for large bud-
gets. By contrast, the ε−First algorithms only com-
pute the MDP once, at the end of the exploration
phase. Thus, despite its best competitive ratio per-
formance, the running time of GPL would limit its
suitability for real-time deployment. LuekerLearn also
needs approximately 15 seconds to solve this prob-
lem instance. Given this, for single-peaked distribu-
tions, LuekerLearn yields the best trade-off between
efficiency and computational cost, as it achieves simi-
lar performance to that of the GPL (33 times faster),
and is almost as fast as the ε−First algorithms.

Within the case of distributions with multiple peaks
(in this case, we consider the two-peaked version),
we can see that GPL still provides the best per-
formance (see Figure 2B). However, in this setting,
ε−First outperforms LuekerLearn by approximately
5%. The reason behind this is that due to multi-
ple peaks, LuekerLearn starts to deviate between the
peaks, as it makes more observations (see [1] for more
details). This implies that LuekerLearn makes more
suboptimal bids, as placing bids at the first peak is
typically more desirable, as opposed to the bids close
to the second peak. On the other hand, due to its
restricted learning phase, ε−First typically learns the
values around the first peak, and thus, can act more
efficiently, compared to LuekerLearn. Nevertheless,
both ε−First and LuekerLearn still achieve good per-
formance, as both typically provide at least 80% of the
optimal solution’s.

In terms of computational cost, GPL still requires
the highest running time (more than 600 seconds for
the case of maximal budget Bk(T )). By contrast,
both ε−First and LuekerLearn require at most 10 sec-
onds. Note that ε−First is typically two times faster
than LuekerLearn. Therefore, in the two-peaked case,
ε−First is clearly the best choice for the budget-limited

auction problem, as it provides good performance
(above 85% of the optimal solution), and achieves by
far the lowest computational cost.

7 Conclusions

We studied the online bid optimisation problem in
budget-limited sponsored search auctions, where the
market price is drawn from a fixed, but unknown dis-
tribution, and is censored by the value of our current
bid. Although existing algorithms have been shown
to achieve good performance in practice, no theoret-
ical performance analysis has been provided for this
problem. Given this, we proposed ε−First, and we
show that it provably achieves O(T

2
3 ) regret bound

with high probability, where T is the number of total
auctions. We also provided an affirmative answer to
the research question raised in [1], which conjectures
that GPL, a state-of-the-art algorithm for the budget-
limited sponsored search auction problem, can achieve
asymptotically optimal performance. In particular, we
proved that GPL achieves O(

√
T ) regret bound with

high probability. We also showed in the paper that the
regret bound of LuekerLearn, another state-of-the-art
algorithm, is O(

√
T + lnT ), also with high probabil-

ity. In addition, we compared the performance of the
algorithms on real-world data, and observed that, al-
though GPL provides the highest performance, it is
by far the most computationally expensive algorithm,
and its running time would make it infeasible for real
time deployment. On the other hand, LuekerLearn
would be the best choice in the case of single-peaked
distributions, as it provides the best trade-off between
efficiency and computational cost. For the two-peaked
distribution case, we showed that ε−First outperforms
LuekerLearn with a reduced running time.
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