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Abstract. Suppose that a population, comprised of a minority and a majority

group, is allocated into units, which can be neighborhoods, firms, classrooms, etc.

Qualitatively, there is some segregation whenever the allocation process leads to

the concentration of minority individuals in some units more than in others. Quan-

titative measures of segregation have struggled with the small-unit bias. When

units contain few individuals, indices based on the minority shares in units are

upward biased. For instance, they would point to a positive amount of segrega-

tion even when the allocation process is strictly random. The Stata command

segregsmall implements three recent methods correcting for such bias: the non-

parametric, partial identification approach of D’Haultfœuille and Rathelot (2017),

the parametric model of Rathelot (2012), and the linear correction of Carrington

and Troske (1997). The package also allows for conditional analyses, namely mea-

sures of segregation taking into account characteristics of the individuals or the

units.

Keywords: segregation, small-unit bias, partial identification

1 Introduction

We consider a population made of two groups (minority and majority) whose individu-
als are spread across units. Units can be geographical areas, residential neighborhoods,
firms, classrooms, or other clusters provided that every individual belongs to exactly
one unit. We seek to measure the extent to which individuals from the minority group
are concentrated in some units more than in others. Throughout the paper, we follow
the literature and use the word “segregation” as a neutral term to refer to such concen-
tration. Measuring the magnitude of segregation is a necessary step to understand the
underlying mechanisms and design adequate policies.

A natural way to measure segregation is to start from the minority shares Xi/Ki,
where Xi is the number of individuals from the minority group and Ki the number of
individuals (or unit’s size) in unit i, and then compute an inequality index based on the
distribution of the proportions (Xi/Ki) across units.

There are two possible benchmarks to assess the magnitude of these indices. Even-
ness relates to the case where all minority shares Xi/Ki are equal across units. Ran-
domness relates to the case where the underlying allocation process assigns minority
individuals at random across units. If pi is the probability that an arbitrary individ-
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2 Measuring Segregation on Small Units

ual in unit i belongs to the minority, randomness means that probabilities pi are equal
across units i. Past research has stressed the di↵erence between both benchmarks, espe-
cially when the units are of small size (Cortese et al. 1976). The minority share Xi/Ki

is only an estimate of pi, and even if (pi)i are all equal, there will be some variation
in (Xi/Ki)i, especially if the units’ sizes (Ki)i are small. If one is interested in the
deviations from the randomness case, indices based on minority shares, which measure
the deviation from evenness, will overestimate the level of segregation. This issue is
known as small-unit bias.

The problem is pervasive in applied research. For workplace and school segregation,
a large share of firms have less than ten employees and classrooms have usually between
twenty and forty students. The bias also arises when the units are not small per se but
only surveys of individuals are available. This is the case when one attempts to measure
residential segregation using the local strata of households surveys.

Two main approaches have been proposed in the literature to deal with the small-
unit bias. One strand proposes to correct the so-called naive inequality indices based
on the minority shares (Xi/Ki)i. The idea was initially proposed by Cortese et al.
(1976) and Winship (1977) for the Duncan index. Carrington and Troske (1997, CT
hereafter) extend the correction to other indices. Åslund and Skans (2009) adapt it
to measure segregation conditional on covariates. Allen et al. (2015) develop another
adjustment based on bootstrap. These corrections all aim at switching the benchmark
from evenness to randomness, by subtracting an estimate of the bias from the initial,
naive index.

Another approach, adopted by Rathelot (2012, R hereafter) and D’Haultfœuille and
Rathelot (2017, HR hereafter), defines segregation using an inequality index based on
the unobserved probabilities (pi)i, as a functional of the distribution Fp of pi. In line
with the rest of the literature, they assume that Xi are independently distributed in a
Bin(Ki, pi). Conditional on Ki and pi, R assumes a mixture of Beta distributions for
Fp and derives the segregation index as a function of the parameters of the distribution.
HR follow a nonparametric method leaving Fp unspecified; they show that the first mo-
ments of Fp are identified under the previous binomial assumption and obtain partial
identification results on the segregation measure. Both R and HR construct confidence
intervals for the segregation indices. HR also extend the methodology to study condi-
tional segregation indices, namely measures of “net” or “residual” segregation taking
into account other covariates (either of units or individuals) that may influence the
allocation process.

The Stata command segregsmall allows social researchers to measure segregation
in the context of small units. The command implements the methods proposed by
R, HR, and CT. Conditional indices are available for all three methods. With R and
HR, the command computes confidence intervals obtained by bootstrap. Finally, the
command also implements a test of the binomial assumption.

This paper describes the command and presents the three methods it implements.
Section 2 defines the set-up, the parameters of interest, and synthesizes the estimation
and inference methods of R, HR, and CT. Section 3 details the syntax, options, stored re-
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sults of the segregsmall command, and discusses its execution time. Section 4 presents
an application of the command on French firm data to measure workplace segregation
between foreigners and natives across workplaces. Section 5 concludes.

2 Set-up, estimation, and inference

2.1 The setting and the parameters of interest

The population studied is assumed to be split into two groups: a group of interest,
henceforth the minority group, and the rest of the population. Individuals are dis-
tributed across units. For each unit, we assume that there exists a random variable p
that represents the probability for any individual belonging to this unit to be a member
of the minority. The total number of individuals in a unit is denoted by K.

We now introduce the segregation indices we focus on hereafter. We consider first
unconditional indices; conditional indices are introduced in Section 2.6. Let us first
assume that K is fixed. A segregation index ✓ is then a functional of the cumulative
distribution function (cdf) Fp of p and of m01 = E(p), that is ✓ = g(Fp,m01).1 Roughly
speaking, one expects such an index to be minimal when Fp is degenerate, and maximal
when p 2 {0, 1}. In the former case, the probability of belonging to the minority is the
same in all units, whereas in the latter case, the minority group is concentrated in a
subset of units only.

The command segregsmall estimates five classical segregation indices satisfying
this property, namely:

D =

R
|u�m01| dFp(u)

2m01(1�m01)
(Duncan),

T = 1�
R
{u ln(u) + (1� u) ln(1� u)} dFp(u)

m01 ln (m01) + (1�m01) ln(1�m01)
(Theil),

A(b) = 1� m
�b
1�b

01

1�m01

�R
(1� u)1�bub dFp(u)

 1
1�b (Atkinson with b 2 (0, 1)),

CW =

R
(u�m01)2 dFp(u)

m01(1�m01)
(Coworker),

G =
1�m01 �

R
F 2
p (u) du

m01(1�m01)
(Gini).

When K is random and takes values in K, ✓ is defined as a weighted average of
indices conditional on K = k, denoted ✓k = g(F k

p ,m
k
01) with F k

p the cdf of p conditional

on K = k, and mk
01 = E[p|K = k]. Whether we study segregation at the unit-level or

1. Such a notation may seem redundant since m01 already depends on Fp, but the reason why we

make the dependence on m01 explicit will become clearer below.
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at the individual-level matters for the weights used. The unit-level index ✓u satisfies

✓u =
X

k2K
Pr(K = k)✓k, (1)

whereas the individual-level segregation index ✓i is defined by

✓i =
X

k2K

kPr(K = k)

E(K)
✓k. (2)

To estimate ✓, we assume hereafter that the researcher has at her disposalK; however
the probability p remains unobserved. Instead, she only observes X, the number of
individuals belonging to the minority in the unit. By definition of p, we have E[X|K, p] =
Kp, which implies that the proportion of individuals from the minority, X/K, is an
unbiased estimator of p. However, because it varies conditional on p, X/K is more
dispersed than p. As a result, we have for usual segregation indices including the five
ones above,

g
�
FX/K ,m01

�
> g(Fp,m01) = ✓.

In other words, even in the absence of statistical uncertainty on the distribution of
X/K, we would still overestimate the segregation index by using X/K in place of p.
Moreover, this bias increases as K decreases. We refer to this issue as the small-unit
bias hereafter.

The binomial assumption We assume henceforth that individuals are allocated into
units independently from each other. Namely, X is assumed to follow, conditional on p
and K, a binomial distribution Bin(K, p). This hypothesis may be restrictive when the
allocation process is in some way sequential and influenced by the composition of units.
Importantly, this assumption is testable (see Section 2.5).

2.2 Nonparametric approach

Identification This approach, followed by HR, leaves the distribution Fp of p unre-
stricted. Combined with the binomial assumption, it entails a nonparametric binomial
mixture model for X. Let us first suppose that K is constant; if not, we can simply
retrieve aggregated indices ✓u and ✓i using (1) and (2). We also assume that K > 1; if
K = 1, the distribution of X is not informative on ✓ and we only get trivial bounds on
it, namely 0 and 1 for the five indices above.

First, some algebra yields a one-to-one mapping between the distribution of X,
defined by the K probabilities P0 = (P01, . . . , P0K)0 with P0j = Pr(X = j), and the
first K moments of Fp, denoted m0 = (m01, . . . ,m0k)0:

P0 = Qm0,

with Q the K ⇥K matrix with generic entry (i, j) equal to
�K
j

��j
i

�
(�1)j�i.
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It follows that m0 is identified from the distribution of X, hence any parameter
depending only on m0 is point identified. It is the case of ✓CW as soon as K � 2.
Second, there may be a single distribution F ⇤ corresponding to m0. This happens if
(and only if) m0 belongs to the boundary @M of the moment space M.2 Then F ⇤ is a
discrete distribution with at most L+ 1 support points, where L is the integer part of
(K + 1)/2. For instance, when K = 2, M = {(m01,m02) 2 [0, 1]2 : m2

01  m02  m01},
since V(p) � 0 and p2  p. Then @M corresponds to Dirac and Bernoulli distributions,
for which we have respectively V(p) = 0 and p2 = p.

When m0 belongs to the interior
�
M of the moment space, there are infinitely many

distributions Fp corresponding to m0. Then, unless we consider ✓CW, ✓ is not identified
in general. Nevertheless, HR show that the sharp identified set on ✓ can be computed
in a relatively easy way under the following restriction.

Assumption 1. g(F,m01) = ⌫
�R

h(x,m01) dF (x),m01

�
, where h and ⌫ are continuous

and ⌫(·,m01) is monotonic.

Assumption 1 fails for the Gini but is satisfied by the Duncan, the Theil, the Atkin-
son, and the Coworker indices. Under this condition, the bounds on

R
h(x,m01) dF (x),

and thus on ✓, are attained on distributions with no more than K + 1 support points.
Specifically, let DK+1

m0
denote the set of distributions on [0, 1] with at most K+1 support

points for which the vector of first K moments equals m0. Then the sharp identified
set on ✓ is [✓, ✓], with

✓ = inf
F2DK+1

m0

g (F,m01) , ✓ = sup
F2DK+1

m0

g (F,m01) . (3)

The following theorem, which reproduces Theorem 2.1 of HR, summarizes the pre-
vious discussion. Hereafter, we let ✓ and ✓ denote the sharp lower and upper bounds
on ✓, whether or not ✓ is point identified.

Theorem 1. – If m0 2 @M, ✓ = ✓ = g(F ⇤,m01), where F ⇤ is the unique cdf for which
the first K moments are equal to m0. Moreover, F ⇤ has at most L+ 1 support points.

– If m0 2
�
M and Assumption 1 holds, ✓ and ✓ are defined by (3).

In the interior case, computing the bounds still requires a nonlinear optimization
under constraints that are also nonlinear in the support points. Yet, the problem can be
further simplified under additional assumption using the theory of Chebyshev systems.
In particular, it requires that the function h in Assumption 1 does not depend on m01,
a condition satisfied by the Theil and Atkinson indices. Basically, for those two indices,
no numerical optimization is needed to compute the bounds ✓ and ✓. The idea behind
is that the bounds are attained by two special discrete distributions, called principal

representations. The interest is that finding the principal representations boils down
to obtaining the roots of specific polynomials, which is much simpler and faster than
solving (3). We refer to HR for more details on that matter.

2. This claim and several others of this section are proved in Krein and Nudelman (1977).
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Estimation Let us assume to have in hand an i.i.d. sample (Xi)i=1,...,n of n units,
with constant sizes equal to K > 1. Theorem 1 shows that ✓ is either point or par-

tially identified, depending on whether m0 2 @M or m0 2
�
M. We follow this result

to estimate (✓, ✓). In a first step, we estimate P0, and thus m0 = Q�1P0, by con-
strained maximum likelihood. The constraints come from the binomial mixture model:
P0 2 P = {Qm : m 2 M}. To compute the constrained MLE, HR show Lemma 1 below.
Let us defineNk =

Pn
i=1 1{Xi = k}, SL+1 = {(x1, . . . , xL+1) : 0  x1 < . . . < xL+1  1}

and TL+1 = {(y1, . . . , yL+1) 2 [0, 1]L+1 :
PL+1

k=1 yk = 1}.

Lemma 1. The constrained MLE bP = ( bP1, . . . , bPK)0 satisfies

bPk =

✓
K

k

◆ L+1X

j=1

byjbxk
j (1� bxj)

K�k, 8 k 2 {1, . . . ,K},

where bx = (bx1, . . . , bxL+1) and by = (by1, . . . , byL+1) are given by

(bx, by) = argmax
(x,y)2SL+1⇥TL+1

KX

k=0

Nk ln

8
<

:

L+1X

j=1

yjx
k
j (1� xj)

K�k

9
=

; .

In a second step, we estimate (✓, ✓). First, we check whether bm 2 @M. A simple
possibility to do so is testing whether the unconstrained MLE eP = ( eP1, . . . , ePK)0 satisfies

eP = bP (in which case bm 2
�
M with probability approaching one) or not. Note that the

unconstrained MLE simply satisfies ePk = Nk/n for all k.

When eP 6= bP , we simply let b✓ = b✓ = g( bF , bm1), where bF is the distribution corre-
sponding to (bx, by). We refer to this situation as the constrained case. If eP = bP , there
are infinitely many distributions corresponding to bm and we estimate bounds for ✓. We
refer to this situation as the unconstrained case. For the Theil and Atkinson indices,
the estimated bounds are obtained from the principal representations computed from
bm. For the Duncan index, optimization is required to obtain the estimated bounds. We
obtain estimators of ✓ and ✓ by solving the optimization problems (3), replacing m0

by its estimator bm. Finally, the Coworker index only depends on (m01,m02). Thus,
whether or not eP = bP , this index can be estimated directly by replacing (m01,m02) by
(bm1, bm2).

Inference When Assumption 1 holds, HR show that the estimators of the bounds are

consistent: (b✓,b✓) P�! (✓, ✓) as the number of units n tends to infinity. Under additional
assumptions, HR characterize their asymptotic distributions. This enables to build
valid asymptotic confidence intervals (CIs) for the index ✓ using a modified bootstrap
procedure. The construction needs to take into account the fact that the lower bound
and upper bound collapse when m0 2 @M (point-identification) whereas they di↵er

when m0 2
�
M (partial identification). The underlying idea relates to the construction
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of CIs in the case of partial identification (see Imbens and Manski (2004), Stoye (2009)).
HR define a confidence interval for the interior case, where only one of the two ends of
the interval matters in the asymptotic coverage, and another for the boundary case. In
order to obtain the nominal asymptotic coverage in all situations, HR define the final
confidence interval by selecting one of them according to the length of the estimated

identification interval (b✓ � b✓) relative to sampling error.3

Random unit size The previous identification and estimation results can be adapted
to cases where K is random and takes values in K. Using the definitions of ✓u and ✓i
in (1) and (2), the idea is to reason conditional on the unit size to get each ✓k, k 2 K,

and replace the theoretical weights by plug-in estimators. More precisely, let b✓k and b✓k
denote the estimators of the bounds of ✓k based on the subsample of units of size k.

Let cPr(K = k) = n�1
Pn

i=1 1{Ki = k} and dE(K) = n�1
Pn

i=1 Ki. Then the estimators
of the bounds on ✓u and ✓i satisfy

b✓u =
X

k2K

cPr(K = k)b✓k, b✓u =
X

k2K

cPr(K = k)b✓k,

b✓i =
X

k2K

kcPr(K = k)

\E(K)
b✓k, b✓i =

X

k2K

kcPr(K = k)

\E(K)

b✓k.

Remark that as soon as for one size k the index ✓k is not point identified, the resulting
aggregated index will be partially identified too. In other words, point identification of
✓u or ✓i requires to be in the constrained case for each k 2 K. This is unlikely to happen
when the support of K contains very small sizes k, typically lower than 10.

Similar to the constant unit case, confidence intervals for the aggregated indices
✓u and ✓i are constructed by the modified bootstrap procedure detailed in HR. The
randomness of K just involves an additional step that consists in drawing K in its
empirical distribution.

Assuming independence between K and p The previous estimation and inference pro-
cedures are fully agnostic as regards possible dependence between K and p, which is a
safe option when unit size may be a potential determinant of segregation. However, if
one is ready to impose independence between these two variables, the identified bounds
on ✓u = ✓i get closer to each other. This is because the F k

p coincide with the uncondi-

tional distribution of p. Thus, we can gather all units and identify the first K moments
of Fp, with K = max(K). Estimation and inference are performed as in the case of con-
stant unit size, with K replaced by K. Thus, assuming independence between K and
p leads to an improvement in identification, since we identify more moments for most
of the data than. It also leads to more accurate estimators, since one estimates a single

3. Essentially, when this length is large (resp. small) relative to sampling error, the uncertainty related

to partial identification (resp. to sampling) prevails and the interior-type (resp. boundary-type)

confidence interval is used.
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vector P on the whole sample, instead of doing so on each subsample {i : Ki = k},
for all k 2 K. An important particular case occurs when only some individuals in the
unit are observed (e.g., survey data). Imagine units are of size (Ki)i=1,...,n but that,
for each unit i, only nK,i individuals are sampled and observed. We let Xi denotes the
number of individuals belonging to the reference group in this subgroup of nK,i people.
As previously, Xi follows a binomial distribution Bin(nK,i, pi) conditional on pi and
nK,i. The previous results apply by simply replacing the unit size K by the number nK

of individuals observed in each unit. Moreover, in such settings, it is usually plausible
to assume that the random variable nK is independent of p conditional on the unit size
as nK depends on the survey process which, a priori, is orthogonal to the segregation
phenomenon.

2.3 Parametric approach

This approach, followed by R, is similar to that of HR, except that it imposes a para-
metric restriction on Fp. Specifically, it is supposed to be a mixture of Beta distribu-
tions. Combined with the binomial assumption for the conditional distribution of X,
the model becomes fully parametric and thus can be estimated by maximum likelihood.
The indices are therefore point identified, contrary to the nonparametric approach of
HR.

A concern might be that the parametric restriction leads to invalid results when
the model is misspecified. However, R shows through simulations that segregation in-
dices associated with various distributions, both continuous and discrete, are accurately
proxied by his parametric approach.

Estimation and inference As in HR, we first assume that K is constant. Let B(·, ·) de-
note the beta function, c the number of components of the beta mixture, v = (↵j ,�j ,�j)j=1,...,c

the vector of parameters with (↵j ,�j) 2 R⇤
+ ⇥ R⇤

+ the two shape parameters of the j-th
Beta distribution and �j 2 [0, 1] its weight (

Pc
j=1 �j = 1). The probability density func-

tion of p distributed as a c -component mixture of Beta distributions with parameters
v is:

fv(t) =
cX

j=1

�j
t↵j�1(1� t)�j�1

B(↵j ,�j)
, 8t 2 [0, 1].

In this model, the probability that k individuals belong to the minority group can be
written, after some algebra, as:

Prv (X = k) =

✓
K

k

◆ cX

j=1

�j
B(↵j + k,�j +K � k)

B(↵j ,�j)
.

Thus, the log-likelihood satisfies, up to terms independent of the parameter v,

`(v) =
KX

k=0

Nk ⇥ ln

8
<

:

cX

j=1

�j
B(↵j + k,�j +K � k)

B(↵j ,�j)

9
=

; ,
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Maximizing v 7! `(v) yields the maximum likelihood estimator bv. Using the parametric
assumption on Fp, bv translates into an estimator bFp of the distribution of p, which in

turn yields an estimator b✓ of ✓. The explicit expressions of the five indices above, as
functions of the parameter v, are given in Appendix 7.1. Inference can be achieved by
the delta method or by the bootstrap, performed at the unit level.

Random unit size The adaptation to this case is exactly similar to HR method. For each
k 2 K, the MLE of ✓k is obtained using the subsample of units of size k. The weights
are estimated by their empirical counterparts. The estimated aggregated indices are
then obtained by plug-in, using (1) and (2). When K and p are assumed independent,
all units can be pooled, independently of their size, to compute the MLE of v for the
whole sample. As above, the resulting estimator bv allows us to estimate the distribution
of p, and then ✓.

2.4 Correction of the naive index

The approaches of HR and R are immune to the small-unit bias as they directly
estimate g(Fp,m01). Other, previous approaches rather start from the naive index
✓N = g(FX/K ,m01) and attempt to modify it, so that the parameter becomes less sen-
sitive to changes in K. We present here the correction proposed by CT, which is the
most popular in applied work.

CT’s correction relies on the distinction between the randomness and evenness
benchmarks, introduced notably by Cortese et al. (1976) and Winship (1977). Evenness
corresponds to X/K being constant, whereas randomness refers to the case where p is
constant. Under the binomial model, however, evenness cannot occur. The central idea
of CT is then to convert ✓N , which measures departure from evenness, into a distance to
randomness. Let ✓raN denote g(FXra/K ,m01), where Xra|K ⇠ Bin(K,E(X/K)). Xra/K
is the proportion we would observe if p was constant and equal to E(p) = E(X/K).
Then, assuming that ✓ 2 [0, 1], a constraint satisfied by the five indices above, CT’s
correction ✓CT is defined by ✓CT = (✓N � ✓raN )/(1 � ✓raN ). CT suggest the following

simulation-based estimator of ✓CT . Let bE(p) denote the sample average of X/K. For
s = 1, ..., S, draw Xra

i,s ⇠ Bin(Ki, bE(p)) independently for each unit i. Then, letting bF ra
s

and bm1,s denote respectively the empirical distribution and mean of (Xra
i,s/Ki)i=1,...,n,

compute b✓raN,s = g( bF ra
s , bm1,s). The estimator of ✓raN is then the mean over the S repli-

cations, b✓raN = S�1
PS

s=1
b✓raN,s. Finally,

b✓CT = (b✓N � b✓raN )/(1� b✓raN ), with b✓N the plug-in

estimator of ✓N . The quantiles of (b✓raN,s)s=1,...,S can be used to test that the data are
consistent with random allocation using randomization tests (see Boisso et al. 1994, and
CT).

Links with HR and R In general, ✓CT 6= ✓. They do coincide however in the extreme
cases of no segregation, where p is constant, and “full” segregation, where p follows a
Bernoulli distribution. We refer to Section 2.3 of R and Section 2.4 of HR for further
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discussion on the relationship between ✓CT and ✓.

2.5 Test of the binomial assumption

We have relied so far on the binomial assumption X|K, p ⇠ Bin(K, p). This assumption
implies that P0 2 P = {Qm : m 2 M}. A vector (m1, ...,mK) in M has to satisfy some
restrictions, such as m2 � m2

1 (i.e., non-negative variance). Hence, we could have
Q�1P0 /2 M if the distribution of X conditional on K and p is not binomial. In other
words, the binomial assumption is testable.

HR propose a likelihood ratio test of P0 2 P, where the constrained estimator
under the null hypothesis is bP , whereas the unconstrained MLE is eP . Note that these
estimators are already computed to estimate (✓, ✓). For a unit size equal to k, the test
statistic satisfies

LRk = 2
kX

x=0

Nx ln

 
ePx

bPx

!
= 2

kX

x=0

Nx ln

✓
Nx

n bPx

◆
,

where we let Nx ln[Nx/(n bPx)] = 0 if Nx = 0.

With a random unit size, the test statistic is then LRn =
P

k2K
cPr(K = k)LRk,

where in LRk, Nx =
Pn

i=1 1{Ki = k,Xi = x}. The critical values of the test are
obtained by approximating the distribution of LR under the null by bootstrap. The
bootstrap is performed as follows. First, we draw n units of sizes K⇤

i in the empirical

distribution of K. Second, we draw X⇤
i according to bPK⇤

i , where bP k is the constrained
MLE of P k

0 , the distribution of X conditional on K = k. The bootstrapped test statistic
LR⇤ is then computed in the sample (K⇤

i , X
⇤
i )i=1,...,n, which is drawn under the null

hypothesis. For a level 1� ↵ 2 (0, 1), the critical region of the test is defined by:

CR = {LR > c1�↵ (LR⇤)} ,

with c1�↵ the quantile of order 1� ↵ of LR⇤.

The results of HR imply that the test has an asymptotic level equal to ↵ and is con-
sistent. Remark however that it tests P0 2 P, which is an implication of the binomial
assumption, rather than this assumption itself. This means that the binomial assump-
tion may fail but still, P0 2 P: X|K, p could fail to be binomial, yet the distribution of
X given K could be rationalized by a binomial mixture.

2.6 Conditional segregation indices

Conditional indices aim at accounting for the fact that part of the segregation along the
minority/majority dimension may be driven by sorting according to other dimensions.
In this sense, they measure the net or residual level of segregation, when the contribution
of covariates to segregation is removed (see Åslund and Skans 2009). To illustrate this
point, let us consider workplace segregation between foreigners and natives. Foreigners
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may be hired more in some sectors of the economy on the basis of sector-specific skills.
Imagine an extreme case where, within each sector, all firms hire foreigners with the
same probability. As long as these probabilities di↵er from one sector to another, an
unconditional segregation index would be positive. On the contrary, the conditional
index defined in (4) below would indicate no segregation as it controls for the influence
of the sector, a characteristic of units, in the allocation process. Similarly, foreigners
may be hired with the same probability for all low-skilled jobs (resp. all high-skilled
jobs), but the probabilities for these two types of job may di↵er. In this case again,
failing to account for this characteristic would lead to a positive unconditional index,
while the conditional index defined in (5) below would indicate no segregation.

The previous discussion underscores that covariates can be defined either at the unit
level or at the level of an individual/position. We separate the two cases below, as they
lead to di↵erent treatments.

Unit-level covariates Let Z 2 {1, . . . , Z} denote a characteristic of a unit, which is
assumed to be discrete. To take into account Z in the allocation process, we measure
segregation conditional on Z. For each z 2 {1, . . . , Z}, let ✓0z denote the segregation
index we consider conditional on Z = z. The subscript 0 indicates that we consider
a generic index of interest, which could correspond to either ✓ or ✓CT . Whatever the
index, the estimation of ✓0z is done exactly as in the unconditional case, focusing on
the subsample {i : Zi = z}.

The index ✓0z can be of interest by itself. We can also consider an aggregate condi-
tional index defined as follows:4

✓cond0,u =
ZX

z=1

Pr(Z = z)✓0z. (4)

The estimation of ✓cond0,u is obtained by plug-in, with n�1
Pn

i=1 1{Zi = z} the empirical
counterpart of Pr(Z = z). For HR and R methods, a similar bootstrap procedure as in
the random size case provides asymptotic confidence intervals for ✓cond0,u .5

Individual- or position-level covariates Let W 2 {1, . . . ,W} denote a characteristic of
an individual or of a position. To resume the example of workplace segregation, a
characteristic attached to individuals can be education, whereas a characteristic linked
to positions can refer to the type of occupation (e.g., high-skilled versus low-skilled).
While these two forms of covariates may lead to di↵erent interpretations, they are similar
as regards estimation and inference.

4. Note that for ✓CT , the aggregate conditional indices defined by (4), and similarly for (5) below,

slightly di↵er from the conditional index of Åslund and Skans (2009). Broadly speaking, (4) and (5)

aggregate the corrected indices computed conditional on each type while Åslund and Skans (2009)

do one unique correction in order to directly obtain their conditional corrected index. The former

has the advantage to be more general and notably can be used as such in HR and R approaches.

5. The initial step of the bootstrap procedure becomes drawing units in the joint empirical distribution

of (K,Z).
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For each unit and each type w 2 {1, . . . ,W}, we suppose to observe Xw and Kw,
which are respectively the number of individuals with characteristic W = w (or in po-
sitions satisfying W = w) who belong to the minority group, and the overall number of
individuals (or positions) of type W = w in the unit. As above, we define ✓0w as the
segregation index of interest conditional on W = w. With individual- or position-level
covariates, the idea is to consider the subsample of individuals (or positions) such that
W = w, instead of a subsample of units. Hence, ✓0w can be estimated exactly as in the
unconditional case simply using (Xw,Kw) instead of (X,K).6

Again, ✓0w might be a relevant parameter of interest on his own. Researchers can
also be interested in an aggregated conditional index:

✓cond0,i =
WX

w=1

Pr(W = w)✓0w. (5)

The estimation of ✓cond0,i is obtained by plug-in, with (
Pn

i=1 Kwi)/(
Pn

i=1 Ki) the em-
pirical counterpart of Pr(W = w). For HR and R methods, as previously, a modified
bootstrap procedure provides asymptotic confidence intervals for ✓cond0,i .7

3 The segregsmall command

The segregsmall command is compatible with Stata 14.2 and later versions.

3.1 Syntax

The syntax of segregsmall is as follows:

segregsmall varlist
⇥
if
⇤ ⇥

in
⇤
, method(string) format(string)

⇥

conditional(string) withsingle excludingsinglepertype independencekp

level(#) repbootstrap(#) noci testbinomial repct(#) atkinson(#)
⇤

3.2 Description and main options

The command segregsmall estimates the five classical segregation indices mentioned
above (Duncan, Theil, Atkinson, Coworker, and Gini) using D’Haultfœuille and Rath-
elot (2017), Rathelot (2012), or Carrington and Troske (1997) method. It provides
confidence intervals obtained by bootstrap in the approaches of HR and R and allows
for conditional analysis for all three methods.

6. Remark that, in the general random sizes case without assuming K ?? p, it makes more sense to

consider the index ✓i that uses individual-level weights (compared to unit-level ones) because the

types are defined at this individual-/position-level.

7. The initial step of the bootstrap procedure becomes drawing units in the empirical distribution of

units, hence keeping fixed the composition of the units with respect to W .
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method specifies the method used. Its argument must be one of: np, beta, ct. Argument
np, standing for nonparametric, implements HR method. The command does not
report the Gini index in this case as it does not verify Assumption 1. The choice
beta implements R’s method assuming a Beta distribution for Fp.8 Both methods
provide estimates of the same parameters of interest, namely ✓ if K is fixed and,
unless independencekp is specified, (✓u, ✓i) if K is random. By default, they report
asymptotic confidence intervals obtained by bootstrap. With the argument ct, the
command estimates the naive and CT-corrected indices ✓N and ✓CT . Confidence
intervals are not computed for these parameters.

format indicates the format of the dataset used and needs to be either unit (datasets
where an observation is a unit) or indiv (datasets where an observation is an indi-
vidual). The option determines the variables to be put in varlist . For unconditional
analyses (the default without option conditional), these are:

• K X for unit-level datasets, K and X correspond to the variables K and X in-
troduced in Section 2: the number of individuals and the number of minority
individuals. K has to be strictly positive integers and X positive or null integers.
X should be lower or equal to K for each unit.

• id unit I minority for individual-level datasets, id unit is the identifier of the
unit the individual belongs to. I minority is a dummy variable equal to 1 when
the individual belongs to the minority group, 0 otherwise.

conditional this option triggers the computation of conditional segregation indices.
Its arguments must be either unit or indiv and it specifies the level at which are
defined the covariates included in the analysis. For conditional analysis, varlist has
to be:

• K X Z for unit-level datasets, or id unit I minority Z for individual-level
datasets, with covariates defined at unit-level (unit). The variables K, X, id unit,
and I minority are the same as in unconditional analyses. Z corresponds to the
variable Z, the characteristics of units defined in Section 2.6. Z needs to take
values in {1, 2, . . . , Z} with Z � 2.

• id unit I minority W for individual-level datasets with covariates defined at the
level of individuals or any sub-unit level (indiv). W corresponds to the variable
W , the individual (or position) characteristics introduced in Section 2.6. W has to
take values in {1, 2, . . . ,W} with W � 2.

3.3 Additional options

withsingle includes single units (with only one individual) in the analysis. As explained
in Section 2.2, single units are in general uninformative about the level of segregation.

8. R assumes a mixture of Beta distributions. However, simulations reveal that the di↵erences between

the indices obtained with a two or higher component mixture versus a simple Beta are marginal

in most cases, segregsmall uses a Beta assumption for simplicity. Also, the command allows to

assess the reliability of this restriction since the indices obtained with the beta restriction can be

compared with the nonparametric estimates that leaves Fp unrestricted.
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By default, they are not included in the data used. The option is available both for
unconditional or conditional analyses.

excludingsinglepertype excludes single cells (unit ⇥ type) from the analysis. The
option is only relevant and available in conditional analyses with covariates defined
at the individual/sub-unit level. In this setting, the role of a unit in unconditional
analyses is played by a cell defined as the intersection of a unit and an individual
type (see Section 2.6). As just described, units with only one individual are dropped
by default. Yet, this does not prevent the existence of single cells coming from units
with more than one individual but that have only one individual of a given type
W = w. Without option excludingsinglepertype, those single cells are included
in the analysis, which can lead to broad estimated identification sets in HR method,
all the more so as the number W of types is large. With the option, they are
dropped. For consistency, the options withsingle and excludingsinglepertype
are mutually exclusive.

independencekp assumes independence between K and p. The option is only available
with np and beta methods.

level sets the confidence level, which has to be a scalar in (0, 1). With np and beta
methods, by default, the traditional 90%, 95%, and 99% confidence levels are saved
(see Section 3.4) and the 95% confidence interval is displayed in Stata output. The
option permits to save and display a personalized level besides (the other three are
still stored). With ct method, by default, the empirical quantiles of the index under
random allocation are stored for the orders 0.01, 0.05, 0.10, 0.90, 0.95, and 0.99.
The option additionally saves the empirical quantiles at order ⌧ and 1 � ⌧ with ⌧
the argument of the option.

repbootstrap specifies the number of bootstrap iterations used to construct confidence
intervals in np and beta methods. The default number is 200. It is also the number
of bootstrap repetitions used to test the binomial assumption.

noci restricts the command to estimation: confidence intervals are not computed. The
option is only applicable to np and beta methods.

testbinomial implements the test of the binomial assumption. More precisely, with
method(np) and without options independencekp nor noci, the test is made by
default and saved: the option only displays the result in Stata output. In any other
situations (beta or ct methods, no CIs, or assuming K ?? p), the option performs
the test in addition to estimation and potential inference. In both cases, the number
of bootstrap repetitions used for the test is the same as the one specified by option
repbootstrap. When the user wants to test the binomial assumption, we recom-
mend always to do so combined with inference using HR method in the general case
(namely, without assuming independence between K and p): together with the test,
it will give estimation and confidence intervals from np method virtually for free.
The option is only available in unconditional analyses.9

9. The test of the assumption type by type can be done manually by restricting the sample used

through the options
⇥
if

⇤⇥
in

⇤
.
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repct sets the number S of draws used to estimate ✓raN in CT’s correction. Its argument
needs to be a positive integer. The default value is 50.

atkinson allows the user to specify the parameter b of the Atkinson index. Its argument
has to be a real in (0, 1). The default value is 0.5; it is the only one that ensures
the symmetry property for the Atkinson index (i.e., the index does not change when
swapping the minority/majority labels).

3.4 Saved results

The objects saved by segregsmall depend on the options, in particular, whether the
analysis is unconditional or conditional. They can be gathered into three types of infor-
mation about: (i) the data included in the analysis, (ii) the method and assumptions
used, (iii) the estimation and inference results.

In this section, we list the objects saved in e() by the command and detail their
contents when they relate to estimation and inference results. The remaining objects
have self-explanatory names and are described in the help page of the segregsmall
command.

Data included in the analysis Below, names with prefix I denote dummy variables
equal to 1 if what follows is true, 0 otherwise. Objects stored in unconditional analyses
are printed in black. Additional objects stored in conditional analyses are displayed
in gray. The superscript *u indicates that the objects are only relevant and saved for
unit-level covariates, the superscript *i for the individual-level covariates.

Scalars:

e(I withsingle)

e(I excludingsinglepertype)

e(I unit level characteristic)

e(nb types)

e(nb units total)

e(nb units single)

e(nb units studied)

e(nb individuals)

e(nb minority individuals)

e(prop minority hat)

e(K max)

e(nb K with obs)

e(nb cells studied sum across type)
*i

e(nb single cells sum across type)
*i

Matrices:

e(list K with obs)

e(type frequencies)

e(type probabilities)

e(summary info data per type)

e(nb units studied per type)
*u

e(nb cells studied per type)
*i

Method used

Scalars:
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e(I method np)

e(I method beta)

e(I method ct)

e(I conditional)

e(I unit level characteristic)

e(I hyp independenceKp)

e(I noci)

e(nb bootstrap repetition)

e(specified level)

e(I testbinomial)

e(nb ct repetition)

e(b atkinson)

Estimation and inference Objects relative to unconditional analyses are in black (left-
hand column); those relative to conditional analyses are in gray (right-hand column).
Superscripts *np and *beta indicate that objects are only relevant and saved with np
and beta method.

Scalars:

e(I constrained case)
*np

e(I constrained case)
*np

Matrices:

e(estimates ci)

e(info distribution of p)
*np,*beta

e(test binomial results)

e(I constrained case per type)
*np

e(estimates ci aggregated)

e(estimates ci type #)

The matrices whose name includes estimates ci store the results of estimation and
possible inference. The content of e(estimates ci) varies with the method used but
its structure remains similar. Each row corresponds to an index.

With beta method, ten rows represent the two possible aggregated indices ✓u (unit-
level weights) and ✓i (individual-level weights), when K is considered as random, for
each of the five indices (Duncan, Theil, Atkinson, Coworker, and Gini). For each pos-
sible index weights ⇥ mapping, the columns store the estimated index using R method
with a Beta distribution restriction on Fp, and asymptotic confidence intervals at the
traditional 90%, 95%, and 99% levels (plus the one specified by level if any).

With np method, the rows are identical but there are only eight parameters since
the Gini indices are absent. For each possible index weights ⇥ mapping, the columns of

e(estimates ci) save: the estimated bounds b✓u and b✓u for unit-level weights (or b✓i and
b✓i for individual-level weights); a dummy variable equal to 1 if the confidence interval
used is the boundary-case interval and 0 for the interior-case; the resulting asymptotic
CI at the classical 90%, 95%, and 99% levels (plus the one specified by level if any).10

In conditional analyses, either with unit- or individual/position-level covariates, the
matrices e(estimates ci aggregated) and e(estimates ci type #) store exactly
the same information as e(estimates ci): the former for the aggregated conditional in-
dex ✓cond0,u or ✓cond0,i , the latter for the index conditional on a given type #, that is ✓0z with

10. The boundary/interior CIs were discussed briefly in Section 2.2 §Inference. We refer to the original

paper for further details.



X. D’Haultfœuille, L. Girard and R. Rathelot 17

unit-level characteristics or ✓0w with individual/position-level characteristics (# ranges
from z = 1 to Z or w = 1 to W ).

With ct method, five rows correspond respectively to the Duncan, the Theil, the
Atkinson, the Coworker, and the Gini indices. In columns: the naive index ✓N ; the
index under random allocation b✓raN ; the CT-corrected index ✓CT ; the empirical standard

deviation of the draws (b✓raN,s)s=1,...,S under random allocation; the “standardized score”

originally proposed by Cortese et al. (1976), namely (✓N �b✓raN ) divided by that standard

deviation; the empirical quantiles of (b✓raN,s)s at the orders: 0.01, 0.05, 0.10, 0.90, 0.95,
0.99 (⌧ and 1� ⌧ , with ⌧ the argument of option level if this option is used).

e(I constrained case) is a dummy equal to 1 in the constrained case, 0 otherwise.
As discussed in Section 2.2, with random unit size, it requires to be in the constrained
case (Dbm restricted to a singleton) for each size k 2 K. In this case, np method yields
point-estimates for all indices. e(I constrained case) is identical in conditional anal-
yses. The dummy is equal to 1 provided we are in the constrained case for each type.
Otherwise, ✓cond0,u and ✓cond0,i are only partially-identified with np method.

e(test binomial results) is stored when the test of the binomial assumption is
performed (see option testbinomial). It is a row vector whose first element saves the
value of the test statistic LRn and the second the p-value of the test where the null
hypothesis is the binomial assumption.

np and beta methods save e(info distribution of p) in unconditional analyses.11

This matrix contains the information learned about the distribution of p in the estima-
tion. In the general case, without assuming K ?? p, it means the information as regards
the conditional distributions F k

p , for each k 2 K. With option independencekp, it is
about the unconditional distribution Fp.

With beta option, all the (F k
p )k2K (or Fp when assuming K ?? p) are supposed to

follow a Beta distribution. In the general case, e(info distribution of p) is a matrix
with |K| rows. Each row is associated with a size k and the columns report: the size k;
the number of units of size k in the data used i.e.,

Pn
i=1 1{Ki = k}; the latter quantity

expressed as a proportion over the n units studied; the number of components of the
Beta mixture considered (that is 1); and the maximum likelihood estimators b↵1 and b�1
of the two shape parameters characterizing the Beta distribution assumed for F k

p . In
the case where K ?? p is supposed, the matrix e(info distribution of p) is similar
but consists of a single row as only one estimation is done pooling all units together. It
contains the maximal size K, the number of units n used for the estimation, and the
estimates of the parameters that characterize the Beta distribution assumed for Fp.

With np option, the structure of e(info distribution of p) is more involved for
the approach is nonparametric. Without the restriction K ?? p, it contains 3⇥K rows
and should be read by blocks of three rows. The k-th block concerns F k

p . The first
line shows some general information, namely the size k, the number of units of size k,

11. In conditional analyses, the information can be retrieved manually for each type by restricting the

sample used.
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and the proportion of such units within the data used (as in beta method). The most
important element is displayed in the fourth column and consists of a dummy variable
equal to 1 if we are in the constrained case for F k

p , that is bm 2 @M conditional onK = k.
In this case, despite the nonparametric approach, the constrained maximum likelihood
estimation yields an estimate bF of F k

p which turns out to be a discrete distribution with
at most b(k + 1)/2c+ 1 support points (see Section 2.2 §Estimation). In this situation,
the fifth column of the first row, within the three-row block, indicates the number of
support points of bF and the two following rows characterize bF by reporting its support
points and the corresponding probabilities. In the unconstrained case, the dummy is 0
and the two last rows, within the three-row block, are empty as there is no estimate of F k

p

then. When assumingK ?? p, the matrix e(info distribution of p) is analogous but
is made of a single three-row block as it only deals with the unconditional distribution Fp.
In this case (see Section 2.2 §Assuming independence between K and p), the estimation
uses the first K moments of Fp. It is likely to fall in the constrained case since K will
exceed 10 in most applications, a size above which simulations reveal that the probability
to be in the constrained case is close to one even with large sample sizes n.

e(info distribution of p) is interesting because virtually any segregation index
is a functional of the distribution Fp (of the conditional distributions (F k

p )k in general
when taking into account the randomness of K). Consequently, an estimate of Fp

(respectively of the (F k
p )k) enables to recover any other personalized segregation index.

3.5 Execution time

The times reported below are average over 50 repetitions on a desktop computer run un-
der Windows 10 Enterprise with an Intel(R) Core(TM) i5-6600 CPU 3.30GHz processor
(RAM 16 Go). The operations of segregsmall can be decomposed into a preparation
stage and a stage devoted to estimation and inference.

Preparation stage The preparation stage is common to the three methods and reshapes
the dataset. Its execution time is quick compared to the whole command and increases
in the number n of units. For instance, with unit-level datasets, for K taking values
in K = [5, 15], it lasts around 0.06 second with n = 1,000, and 0.99 second with n =
300,000. In conditional analyses, the execution time is approximately multiplied by the
number of types: for example, 6.03 seconds for 5 types and 9.17 seconds for 10 types,
with K = [5, 15] and n = 300,000. With individual-level datasets, the preparation stage
is longer since it is necessary first to form the units. With K = [5, 15], it takes 0.24 sec-
onds with 1,000 units and 9.99 seconds with 300,000 units.

Estimation and inference stage The subsequent operations depend on the method used.
The central brick of np and beta methods is the estimation of the indices for a given
dataset (original or bootstrapped). The construction of CIs repeats the operation for
each bootstrapped dataset. The execution time is thus more or less linear in the number
of bootstrap repetitions (fixed by option repbootstrap). ct method requires to reshu✏e
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the data under the randomness benchmark, hence an execution time broadly linear in
the number of draws (controlled by option repct). Table 1 illustrates this dependence
for np and beta methods as well as the e↵ect of option conditional. Regarding the
latter, for all three methods, the same operations as in unconditional analyses are done
for each type (see Section 2.6). As a consequence, the execution time of segregsmall
is roughly linear in the number of types included in the analysis.

Table 1: Execution time in seconds. Setting: unit-level datasets, n = 300,000, K = [5, 15],
200 bootstrap replications, 5 types with covariates at unit-level for the conditional analysis.

Analysis Confidence intervals beta method np method

unconditional no 3.2 1.3

unconditional yes 374.2 176.9

conditional yes 1870.8 906.8

As highlighted by Table 2, the number n of units has a minor impact, mainly through
the preparation stage.

Table 2: Execution time in seconds. Setting: unit-level datasets, K = [5, 15], options

independencekp and noci for np and beta methods, 50 draws (default) for ct method.

Sample size n beta method np method ct method

1,000 0.30 2.39 0.51

10,000 0.34 2.60 0.80

50,000 0.46 2.19 0.88

100,000 0.67 2.68 1.13

The primary determinant of the computation time is the unit sizes: both the number
of distinct values of the support K and the magnitude of K, as shown by Table 3. With
ct method, the execution time quickly increases with the magnitude of K while the
increase is moderate for np method and even lighter for beta method.12

4 Example

We use the command to measure workplace segregation between natives and foreigners
in France (see D’Haultfœuille and Rathelot (2017) for details about the context). A
large share of workers is employed in small establishments. This section shows the
importance of correcting for the small-unit bias, which may lead to erroneous economic
conclusions.

The data used is the 2007 Déclarations Annuelles des Données Sociales (DADS),
French data linking workers to their employer. Data are exhaustive in the private sector

12. Remark however that the execution times reported in Table 3 include the draws under random

allocation for ct method whereas estimation only is performed for np and beta methods.
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Table 3: Execution time in seconds. Setting: unit-level datasets, for each K, n = 10,000

(except 9,000 for the first row) – 1,000 units per distinct size, option noci for np and beta
methods, 50 draws (default) for ct method.

Support K of K beta method np method ct method

[1, 9] 0.28 0.99 0.23

[10, 19] 0.31 2.26 0.57

[20, 29] 0.26 5.10 2.16

[30, 39] 0.31 7.45 6.26

[40, 49] 0.36 8.20 15.1

[50, 59] 0.42 12.7 30.7

[60, 69] 0.51 11.0 56.6

[70, 79] 0.59 15.5 93.1

[80, 89] 0.70 22.7 150.3

[90, 99] 0.81 24.1 232.0

[100, 109] 0.93 26.3 332.1

(1.77 million establishments). In the application, we use the 1.04 million establishments
that have between 2 and 25 employees. The minority group consists of individuals born
outside of France and with the nationality of a country outside Europe. The overall
proportion of minority individuals is 4.1% in the sample studied. Figure 1 shows the
estimates of workplace segregation by firm size, for the Duncan, the Theil, the Atkinson
(with parameter b = 0.5), and the Coworker indices. The Gini index does not satisfy
the conditions required by the nonparametric method of HR and is thus not displayed
(but see Figure 2 in Appendix 7.2 for the graph on the Gini without the nonparametric
estimator).

The distinct methods of the package are used: the estimated bounds b✓ and b✓ by
np method on ✓ (“np bounds”); the 95%-level confidence interval for this parameter
using the modified bootstrap procedure of np method, with the default 200 bootstrap
iterations (“np CI”); the point-estimate b✓ by beta method (“beta”); the naive index ✓N
(“naive”); the CT-corrected index ✓CT using ct method with the default 50 draws under
random allocation (“ct”).

Figure 1 shows that the naive indices overestimate the actual level of segregation:
they are almost always above the confidence interval obtained by np method (except for
the Atkinson index with K 2 {7, 8}). This bias decreases with the size of the units. For
the Duncan, the Theil, and the Atkinson indices, the estimated identification interval
for ✓ quickly becomes informative for K � 5 and reduces to a singleton for K � 9 (see
discussion in Section 2.2). The unit size being larger than 1, the estimated bounds of
np methods boil down to a point-estimate for the Coworker index.

The point-estimate b✓ using beta method is within the identification bounds of HR for
the Duncan, the Theil, and the Atkinson indices, but is below HR’s confidence intervals
for the Coworker index. The CT-corrected measure ✓CT underestimates the Duncan
and Theil indices, being always below the np method’s confidence interval. ✓CT lies
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Figure 1: Duncan, Theil, Atkinson, and Coworker indices by firm size.

within the confidence interval and even is quite close to the estimated identification set
of ✓ for the Atkinson and Coworker indices.

Interestingly, the naive indices exhibit a stronger negative relationship between seg-
regation levels and unit size than corrected ones. Neglecting the small-unit bias would
produce a statistical artifact as the magnitude of the bias decreases with K and there-
fore would support a negative correlation while it may not be so. On the contrary, the
distribution-based indices that account for the small-unit bias are able to address this
question (see Section 5 of HR for further details).

Finally, we report below the Stata output obtained with the segregsmall command
for np method and with option testbinomial. Appendix 7.2 displays the output asso-
ciated with beta and ct methods. Compared to the analyses of Figure 1 (K by K), the
estimation is performed over the entire sample of units (K = [2, 25]) in this output with-
out assuming K ?? p. As detailed in Section 3.3, the test of the binomial assumption is
automatically performed and saved in this configuration; the option only displays the
result in the Stata output. In this application, we cannot reject the binomial assumption
at any standard level.

. segregsmall K X, format(unit) method(np) testbinomial
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*** Construction of relevant databases for the analysis ***

*** Estimation and inference ***

Estimation - current unit size analyzed (out of 24 distinct sizes):

.........+.........+....

Preparation of bootstrap -

Bootstrap - current bootstrap iteration (out of 200):

.........+.........+.........+.........+.........50

.........+.........+.........+.........+.........100

.........+.........+.........+.........+.........150

.........+.........+.........+.........+.........200

Bounds for segregation indices using nonparametric (np) method:

Unconditional analysis

Number of units studied in the analysis: 1036840

(0 unit with a single individual are excluded from the analysis)

Number of individuals studied: 6178564

Proportion of minority (or reference) group: 4.1e-02

Assumption on dependence between K and p for estimation and inference: none

Inference: by bootstrap, 200 repetitions

Unconditional segregation indices:

Index Weight-level Lower bound Upper bound [95% Conf. Interval]

Duncan unit .58677 .82346 .57864 .8292

Duncan individual .63061 .74808 .61966 .75742

Theil unit .39246 .52092 .38901 .5251

Theil individual .37937 .44251 .37558 .44732

Atkinson unit .53907 .83164 .52638 .84667

Atkinson individual .56948 .73299 .54977 .7537

Coworker unit .37032 .37032 .3674 .37325

Coworker individual .31356 .31356 .31084 .31629

Test of binomial assumption (H0: conditional binomial distribution):

(distribution under the null obtained by bootstrap, 200 repetitions)

Result value of test statistic p-value

1.5398598 .23

5 Conclusion

This paper presented the Stata segregsmall command which implements three meth-
ods (D’Haultfœuille and Rathelot (2017), Rathelot (2012), and Carrington and Troske
(1997)) to measure segregation indices in settings when units (neighborhoods, firms,
classrooms, etc.) contain few individuals. In such situations, naive indices overestimate
the actual level of segregation and produce measures that are not comparable across
settings or over time, since the small-unit bias might vary. segregsmall enables social
scientists to compute segregation indices in those cases and makes the HR nonpara-
metric approach easy to use. It provides asymptotic confidence intervals for HR and R
parameters. For all three methods, conditional indices can be estimated: they account
for other covariates (either at unit- or individual/position-level) that may influence the
allocation process of individuals into units and therefore measure “net” or “residual”
segregation. HR and R methods can be used whatever the unit size to measure seg-
regation as a departure from the relevant benchmark of randomness. Even with large
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units with above one hundred individuals, the parametric approach of R method re-
mains quite a↵ordable as regards computational requirements, even including inference
by bootstrap.
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7 Appendices

7.1 Expressions of the indices in the parametric approach

We use here the same notation as in Section 2.3. If B is a random variable distributed
according to the mixture of Beta distributions characterized by v, we have

µ(v) := E(B) =
cX

j=1

�j
↵j

↵j + �j
.

Duncan index Let I(t; a, b) = B(t; a, b)/B(a, b) with B(t; a, b) =
R t
0 ua�1(1 � u)b�1 du

the incomplete beta function. Using B(a, b+ 1) = B(a, b)b/(a+ b) and I(1� t; a, b) = 1
�I(t; b, a), we obtain

D =
µ(v)

Pc
j=1 �jI(µ(v);↵j ,�j)�

Pc
j=1 �j↵j (↵j + �j)

�1 I (µ(v);↵j + 1,�j)

µ(v)(1� µ(v))
.

Theil index To derive the expression of the Theil index as a function of v, we use that
if B ⇠ Beta(↵,�), then 1�B ⇠ Beta(�,↵) and E[B ln(B)] = ↵(↵ + �)�1{ (↵ + 1) �
 (↵+ � + 1)}, with  the digamma function. This yields

T = 1�

Pc
j=1 �j

n
↵j

↵j+�j
 (↵j + 1) + �j

↵j+�j
 (�j + 1)�  (↵j + �j + 1)

o

µ(v) ln {µ(v)}+ (1� µ(v)) ln {1� µ(v)} .

Atkinson index Let �(t) =
R +1
0 ut�1 exp(�u) du denote the gamma function. Using

that B(a, b) = �(a)�(b)/�(a+ b) and �(t+ 1) = t�(t), the Atkinson index satisfies, for
any b 2 (0, 1),

A(b) = 1� µ(v)
�b
1�b

1� µ(v)

8
<

:

cX

j=1

�j
�(↵j + b)�(�j + 1� b)

�(↵j)�(�j)(↵j + �j)

9
=

;

1
1�b

.

Coworker index If B ⇠ Beta(↵,�), then E[B2] = ↵(↵+ 1)/{(↵+ � + 1)(↵+ �)}. This
implies

CW =

8
<

:

cX

j=1

�j
↵j(↵j + 1)

(↵j + �j + 1)(↵j + �j)
� µ(v)2

9
=

;
��

µ(v)� µ(v)2
 
.

Gini index Contrary to the previous indices, there is no closed-form expression for
the Gini index under a mixture of Beta distributions for Fp because of the termR
{Fp(u)}2 du. This quantity has to be approximated by numerical methods. The
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Gini index can only be written as

G =

2

641� µ(v)�
Z 1

0

8
<

:

Z u

0

cX

j=1

�j
t↵j�1(1� t)�j�1

B(↵j ,�j)
dt

9
=

;

2

du

3

75
��

µ(v)� µ(v)2
 
.

7.2 Supplementary material for the example

Figure 2 is equivalent to the analysis displayed in Figure 1 for the Gini index. Because
the Gini index does not satisfy Assumption 1, only the output of beta and ct methods
are reported: the point-estimate b✓ (“beta”) and the 95%-level asymptotic confidence
intervals obtained by bootstrap (“beta CI”) using beta method (with the default 200
bootstrap iterations); the naive or direct index ✓N (“naive”); the CT-corrected index
✓CT using ct method with the default 50 draws under random allocation (“ct”).

As with the Duncan, the Theil, the Atkinson, and the Coworker indices, Figure 2
illustrates some points discussed in Section 2 in the particular case of the Gini index.
Regarding CT correction, there is no reason why ✓CT should be close to ✓. For the
Gini, the CT-corrected index happens to fall far below the confidence interval for the
distribution-based index obtained by beta method.

0

0.25

0.50

0.75

1

5 10 15 20 25

naive beta beta CI ct

Gini

Figure 2: Gini index by firm size.

We report below the Stata output obtained with beta and ct methods. These esti-
mations are done over the whole sample of units (K = [2, 25]). As an illustration, the
option independencekp is used for beta method.

. segregsmall K X, format(unit) method(beta) independencekp repb(400) level(0.98)

*** Construction of relevant databases for the analysis ***

*** Estimation and inference ***

Estimation - K and p assumed independent: units are merged (maximal size = 25)
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Bootstrap - current bootstrap iteration (out of 400):

.........+.........+.........+.........+.........50

.........+.........+.........+.........+.........100

.........+.........+.........+.........+.........150

.........+.........+.........+.........+.........200

.........+.........+.........+.........+.........250

.........+.........+.........+.........+.........300

.........+.........+.........+.........+.........350

.........+.........+.........+.........+.........400

Estimates for segregation indices using parametric (beta) method:

Unconditional analysis

Number of units studied in the analysis: 1036840

(0 unit with a single individual are excluded from the analysis)

Number of individuals studied: 6178564

Proportion of minority (or reference) group: 4.1e-02

Assumption on dependence between K and p for estimation and inference: independence

Inference: by bootstrap, 400 repetitions

Unconditional segregation indices:

Index Weight-level Point-estimate [98% Conf. Interval]

Duncan unit .75967 .75777 .76129

Duncan individual .75967 .75777 .76129

Theil unit .43393 .43098 .43639

Theil individual .43393 .43098 .43639

Atkinson unit .76516 .76254 .76741

Atkinson individual .76516 .76254 .76741

Coworker unit .2795 .27604 .28258

Coworker individual .2795 .27604 .28258

Gini unit .89272 .89135 .89388

Gini individual .89272 .89135 .89388

. segregsmall K X, format(unit) method(ct) repct(100)

*** Construction of relevant databases for the analysis ***

*** Estimation and correction ***

CT-correction - current random allocation iteration x10 (out of 100):

.........+

Estimates for segregation indices using CT-correction (ct) method:

Unconditional analysis

Number of units studied in the analysis: 1036840

(0 unit with a single individual are excluded from the analysis)

Number of individuals studied: 6178564

Proportion of minority (or reference) group: 4.1e-02

No inference for naive and CT-corrected indices

CT-correction is made using 100 draws under random allocation (u.r.a.)

Unconditional segregation indices:

Index Weight-level Naive Expected u.r.a. CT-corrected

Duncan n.a. .85864 .71364 .50634

Theil n.a. .57585 .35113 .34632

Atkinson n.a. .90735 .75392 .62349

Coworker n.a. .41953 .16779 .3025

Gini n.a. .94481 .832 .67147
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