

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/139226

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/327071566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/139226
mailto:wrap@warwick.ac.uk

Graph Sparsification for Derandomizing Massively Parallel
Computation with Low Space

Artur Czumaj

University of Warwick

a.czumaj@warwick.ac.uk

Peter Davies

IST Austria

peter.davies@ist.ac.at

Merav Parter

Weizmann Institute of Science

merav.parter@weizmann.ac.il

ABSTRACT
Massively Parallel Computation (MPC) is an emerging model which

distills core aspects of distributed and parallel computation. It was

developed as a tool to solve (typically graph) problems in systems

where input is distributed over many machines with limited space.

Recent work has focused on the regime in which machines have

sublinear (in 𝑛, number of nodes in the input graph) space, with

randomized algorithms presented for the fundamental problems

of Maximal Matching and Maximal Independent Set. There are,

however, no prior corresponding deterministic algorithms.

A major challenge in the sublinear space setting is that the local

space of each machine may be too small to store all the edges

incident to a single node. To overcome this barrier we introduce a

new graph sparsification technique that deterministically computes

a low-degree subgraph with additional desired properties: degrees

in the subgraph are sufficiently small that nodes’ neighborhoods

can be stored on single machines, and solving the problem on the

subgraph provides significant global progress towards solving the

problem for the original input graph.

Using this framework to derandomize the well-known random-

ized algorithm of Luby [SICOMP’86], we obtain𝑂 (logΔ+log log𝑛)-
round deterministic MPC algorithms for solving the fundamental

problems of Maximal Matching and Maximal Independent Set with
𝑂 (𝑛Y) space on each machine for any constant Y > 0. Based on the

recent work of Ghaffari et al. [FOCS’18], this additive 𝑂 (log log𝑛)
factor is conditionally essential. These algorithms can also be shown

to run in 𝑂 (logΔ) rounds in the closely related model of CON-
GESTED CLIQUE, improving upon the state-of-the-art bound of

𝑂 (log2 Δ) rounds by Censor-Hillel et al. [DISC’17].

CCS CONCEPTS
•Computingmethodologies→Distributed algorithms; •Math-
ematics of computing→Graph algorithms; •Theory of com-
putation → Pseudorandomness and derandomization.
KEYWORDS
Massively Parallel Computation; Derandomization; Maximal Inde-

pendent Set; Maximal Matching; Low Space

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00

https://doi.org/10.1145/3350755.3400282

ACM Reference Format:
Artur Czumaj, Peter Davies, and Merav Parter. 2020. Graph Sparsification

for Derandomizing Massively Parallel Computation with Low Space. In

Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’20), July 15–17, 2020, Virtual Event, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3350755.3400282

1 INTRODUCTION
The last few years have seen an increasing interest in the design of

parallel algorithms. This has been largely caused by the successes

of a number of massively parallel computation frameworks, such

as MapReduce [16, 17], Hadoop [42], Dryad [28], or Spark [43],

which resulted in the need of active research for understanding

the computational power of such systems. The Massively Parallel
Computations (MPC) model, first introduced by Karloff et al. [30]

has become the standard theoretical model of algorithmic study, as

it provides a clean abstraction of these frameworks.

1.1 The MPC model
TheMPCmodel comprises𝑀 machines, each with 𝑆 words of space.

Initially, each machine receives its share of the input. In our case,

the input is a collection𝑉 of nodes and 𝐸 of edges, and eachmachine

receives approximately
𝑛+𝑚
𝑀

of them (divided arbitrarily), where

|𝑉 | = 𝑛 and |𝐸 | =𝑚. Computation proceeds in synchronous rounds
in which each machine can performs arbitrary local computation

on its data without communicating with other machines. At the end

of each round, machines exchange messages. Each message is sent

only to a single machine specified by the machine that is sending

the message. All messages sent and received by each machine in

each round have to fit into the machine’s local space. Hence, their

total length is bounded by 𝑆 . This, in particular, implies that total

communication is bounded by 𝑀 · 𝑆 in each round. The messages

are processed by recipients in the next round. At the end of the

computation, machines collectively output the solution.

Space regimes. Our focus in this paper is on graph algorithms. If

𝑛 is the number of nodes in the graph, the input size can be as large

as Θ
(
𝑛2

)
. To work on truly massive inputs, we ideally want our

local space to be sublinear in input size. Some earlier works (e.g.,

[4, 15, 19]) study the regime where space is roughly the number of

nodes of the graph (i.e., 𝑆 = Θ̃(𝑛)); here, though, we consider the
more restrictive low space regime. That is, we give fully scalable
algorithms which use only 𝑆 = Θ (𝑛Y) space, for any constant Y > 0.

Relation to earlier models. The MPC model shares many similar-

ities to earlier models of parallel computation, for example with

the PRAM model; indeed, it was quickly observed that it is easy to

simulate a single step of PRAM in a constant number of rounds on

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

175

https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1145/3350755.3400282

MPC [25, 30], implying that a vast body of work on PRAM algo-

rithms naturally translates to the MPC model. However, the fact

that theMPCmodel allows for unlimited local computation enabled

it to capture a more “coarse-grained” aspect of parallelism. Recent

works have brought a number of new algorithms for fundamental

graph combinatorial and optimization problems that demonstrated

that in many situations the MPC model can be significantly more

powerful than PRAM (see, e.g., [2–6, 8–10, 13, 15, 19, 22, 33, 34]).

However, the common feature of most of these results is that they

rely on randomization, and very little research has been done to

study deterministic algorithms. The main theme of this paper is to

explore the power of theMPC model in the context of deterministic
algorithms; in particular, to understand whether theMPC model al-

lows faster deterministic algorithms than in the PRAM-like models,

in a similar way as for randomized algorithms.

We consider two corner-stone problems of local computation:

maximal matching and maximal independent set (MIS). These prob-
lems are arguably among the most fundamental graph problems

in parallel and distributed computing with numerous applications.

The study of these problems can be traced back to PRAM algo-

rithms of the 1980s [1, 29, 31, 38] and they have been considered

as benchmark problems in various computational models since

then. In particular, these problems have been central in our under-

standing of derandomization techniques. Luby [38], and indepen-

dently Alon et al. [1], were the first to present a generic transfor-

mation of parallel algorithms for maximal matching and MIS, to

obtain efficient deterministic algorithms for these problems in the

PRAM model. For example, Luby [38] showed that his randomized

MIS 𝑂 (log𝑛)-time algorithm can be derandomized on PRAM in

𝑂 (log3 𝑛 log log𝑛) time. The boundwas later improved to𝑂 (log3 𝑛)
time [23], 𝑂 (log2.5 𝑛) time [26], and then 𝑂 (log2 𝑛) time [27].

Known bounds. For many graph problems, including MIS and

maximal matching, fully scalable randomized 𝑂 (log𝑛) round 𝑛Ω (1)

space MPC algorithms can be achieved by simulating PRAM al-

gorithms [1, 29, 38]. These bounds have been improved only very

recently and only in some settings. For fully scalable algorithms,

we know only of a randomized algorithm due to Ghaffari and Uitto

[22] working in 𝑂 (
√
logΔ) rounds for maximal matching and MIS,

where Δ is the maximum degree. Better bounds are known for

maximal matching algorithms using significantly more space: Lat-

tanzi et al. [33] gave an 𝑂 (1/Y) rounds randomized algorithm us-

ing 𝑂 (𝑛1+Y) space per machine, and Behnezhad et al. [10] pre-

sented an 𝑂 (log logΔ + log log log𝑛)-round randomized algorithm

in 𝑛/2Ω (
√
log𝑛)

space.

Unfortunately, much less is known about deterministic MPC al-

gorithms. Except some parts of the early work in [25] (cf. Lemma

2.2), we are not aware of any previous deterministic algorithms

designed specifically MPC. One can use a simulation of PRAM

algorithms to obtain fully scalable deterministic algorithms for

maximal matching and MIS onMPC, and their number of rounds

would be asymptotically the same; the fastest deterministic PRAM

algorithms require 𝑂 (log2.5 𝑛) [26] rounds for maximal matching,

and 𝑂 (log2 𝑛) rounds for MIS [27]. If one can use linear space per

machine, 𝑆 = 𝑂 (𝑛), then the recent deterministic CONGESTED
CLIQUE algorithms for MIS by Censor-Hillel et al. [12], directly

give an𝑂 (log𝑛 logΔ)-round deterministicMPC algorithm for MIS.

Following our work, Czumaj et al. [14] give a constant-round deter-

ministic CONGESTED CLIQUE algorithm for (Δ + 1)-list coloring,
and an 𝑂 (logΔ + log log𝑛)-round low-space MPC algorithm for

the same problem using a reduction to our MIS algorithm.

1.2 New results
We demonstrate the power of the deterministic algorithms in the

MPC model on the example of two fundamental optimization prob-

lems: finding a maximal matching and finding an MIS.

Theorem 1.1 (Maximal Matching and MIS). For any constant
Y > 0,maximal matching andMIS can be found deterministically
in the MPC model in 𝑂 (logΔ + log log𝑛) rounds, using 𝑂 (𝑛Y) space
per machine and 𝑂 (𝑚 + 𝑛1+Y) total space.

The additive 𝑂 (log log𝑛) term in the bound is most likely nec-

essary: Ghaffari et al. [21] provided an Ω(log log𝑛) conditional
hardness result for maximal matching and MIS, even for random-
ized fully scalable MPC algorithms. They proved that unless there

is an 𝑜 (log𝑛)-round (randomized) MPC algorithm for connectivity

with local space 𝑆 = 𝑛Y for a constant 0 < Y < 1 and poly(𝑛) global
space (see [39] for strong arguments about the hardness of that

problem), there is no component-stable randomizedMPC algorithm

with local space 𝑆 = 𝑛Y and poly(𝑛) global space that computes

a maximal matching or an MIS in 𝑜 (log log𝑛) rounds. We note,

however, that our algorithms are not component-stable, since they

involve global agreement on hash functions.

1.3 Our approach
We consider two regimes separately: the case where maximum

degree Δ is above 𝑛
Y
2 , and the case where it is below.

1.3.1 High-degree case. When degree is high, the most prominent

limitation is that we cannot store nodes’ neighborhoods on a single

machine. This immediately rules out most standard derandomiza-

tion techniques, which rely on checking neighborhoods to ensure

that proper progress is being made. To tackle this problem, we

develop our deterministic graph sparsification technique, a method

of deterministically reducing the number of edges or vertices in a

graph while preserving crucial problem-specific properties.

Deterministic graph sparsification. For the problems of MIS and

maximal matching, our eventual aim will be to derandomize a

variant of Luby’s MIS algorithm [38], which repeatedly finds an

independent set, such that removing the independent set along

with its neighborhood reduces the number of edges in the graph by

a constant factor (a similar approach for maximal matching finds

a matching with an analogous property). The property we must

preserve during sparsification is therefore that we can still find

such a set in the sparsified graph. To do so, we:

(1) provide a randomized sampling procedure which requires

only bounded independence, and

(2) show that we can check whether the property has been pre-

served only by summing functions computable by individual

low-space machines.

With these properties, we show how to apply an implementation

of the method of conditional expectations to derandomize the sam-

pling process, yielding a deterministic means of sparsification. Our

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

176

framework can be applied to any problem where the above points

can be satisfied, and so we hope it may prove useful elsewhere.

We use this procedure to reduce vertices’ degrees to the point

that we can collect 2-hop neighborhoods onto single machines; at

this point we can apply a more standard derandomization to our

variant of Luby’s algorithm to find the independent set we seek. We

can then remove this set, reducing the number of edges in the graph

by a constant factor; after 𝑂 (log𝑛) steps, we will have removed

all edges from the graph and found a maximal independent set.

We show that each step can be implemented in only 𝑂 (1) MPC
rounds, yielding an 𝑂 (log𝑛) total round complexity. Since in the

high-degree regime we have Δ = 𝑛Ω (1)
, this is also𝑂 (logΔ) rounds.

Sections 3 and 4 present this approach in detail for maximal

matching and MIS respectively.

1.3.2 Low-degree case. When Δ ≤ 𝑛
Y
2 , we can already collect two-

hop neighborhoods onto single machines, and therefore need not

perform deterministic graph sparsification: we can apply a more

standard approach to derandomize Luby’s algorithm. This, however,

would give an𝑂 (log𝑛)-round algorithm; for the low degree regime,

we show that we can do better, obtaining an 𝑂 (logΔ + log log𝑛)-
round algorithm. Since in the high-degree case𝑂 (log𝑛) = 𝑂 (logΔ),
this implies an 𝑂 (logΔ + log log𝑛) round complexity overall.

The key idea here is to perform deterministic round compression
on Luby’s algorithm. Round compression is a technique used in

some randomized results inMPC and CONGESTED CLIQUE (e.g.,

[15, 19, 20], though only the former uses the term), which works by

gathering enough information onto machines to simulate multiple

steps of a LOCAL or CONGEST algorithm at once.

To perform round compression deterministically, we first note
that we have the space budget to collect 𝑂 (log𝑛

logΔ)-hop neighbor-

hoods onto machines, and can do so in 𝑂 (log log𝑛) rounds via
graph exponentiation. Next, we prove that a step of Luby’s algo-

rithm can be performed using only 𝑂 (logΔ) random bits. Finally,

we demonstrate that, using the method of conditional expectations,

we can therefore derandomize 𝑂 (log𝑛
logΔ) steps of Luby’s algorithm

at once. The 𝑂 (log𝑛) rounds of Luby’s algorithm are therefore

compressed into only 𝑂 (logΔ) MPC rounds, which, along with

the rounds required to collect neighborhoods, gives us our final

𝑂 (logΔ + log log𝑛) round complexity. This is detailed in Section 5.

1.4 Implications to CONGESTED CLIQUE
As recently observed (cf. [7]), the MPC model is closely related to

the CONGESTED CLIQUE model from distributed computing, (in-

troduced by Lotker et al. [37]) in which computation is performed

by nodes of the input graph, who initially receive input only con-

cerning themselves and their adjacent edges. Nodes then execute a

distributed algorithm in synchronous rounds. In any single round,

nodes can perform an unlimited amount of local computation, send

a possibly different 𝑂 (log𝑛)-bit message to each other node, and

receive all messages sent to them. We measure the complexity of

algorithms by the number of rounds required.

It is not difficult to see (see, e.g., [7]) that any 𝑟 -round CON-
GESTED CLIQUE algorithm can be simulated in 𝑂 (𝑟) rounds in
the MPC model with 𝑛 machines and 𝑆 = 𝑂 (𝑟𝑛). Furthermore,

Behnezhad et al. [7] showed that by using the routing scheme of

Lenzen [35],MPC algorithms with 𝑆 = 𝑂 (𝑛) are adaptable to the
CONGESTED CLIQUE model. These results immediately imply

that the recent deterministic CONGESTED CLIQUE algorithm due

to Censor-Hillel et al. [12] to find MIS in𝑂 (log𝑛 logΔ) rounds can
be extended to be run in the MPC model with 𝑆 = �̃� (𝑛). (When

Δ = 𝑂 (𝑛1/3), the bound improves to 𝑂 (logΔ).) Notice though,

that in contrast to our work, the derandomization algorithm from

[12] relies on a derandomization of Ghaffari’s MIS algorithm [18],

whereas our derandomization is based on Luby’s MIS algorithm.

These simulations imply also that our new deterministicMPC
algorithms for maximal matching and MIS can be implemented to

run in the CONGESTED CLIQUE model using 𝑂 (logΔ) rounds.
By combining Theorem 3, for the regime Δ = 𝜔 (𝑛1/3), with the

𝑂 (logΔ)-round MIS algorithm of [12] for the regime Δ = 𝑂 (𝑛1/3),
we get an 𝑂 (logΔ)-round algorithm for MIS. We further note that,

in the Δ = 𝑂 (𝑛1/3) regime, one can collect 2-hop neighborhoods

onto single machines, and thus find a maximal matching by sim-

ulating MIS on the line graph of the input graph. So, combining

Theorem 3.1 with the MIS algorithm of [12] yields the following:

Corollary 1.2. One can deterministically find MIS and maximal
matching in 𝑂 (logΔ) rounds in the CONGESTED CLIQUE model.

2 PRELIMINARIES
An independent set in a graph 𝐺 = (𝑉 , 𝐸) is any subset of nodes

I ⊆ 𝑉 such that no two nodes in I share an edge. An independent

set I is called a maximal independent set (MIS) if it is not possible
to add any other node of 𝐺 to I and obtain an independent set.

A matching of a graph 𝐺 = (𝑉 , 𝐸) is any independent subset

of edges 𝑀 ⊆ 𝐸 (i.e., no two edges in 𝑀 share an endpoint). A

matching𝑀 of a graph𝐺 is a maximal matching if it is not possible

to add any other edge of 𝐺 to𝑀 and obtain a matching.

For a node 𝑣 ∈ 𝑉 , the neighborhood 𝑁 (𝑣) is the set of nodes 𝑢
with {𝑢, 𝑣} ∈ 𝐸; for any𝑈 ⊆ 𝑉 , we define 𝑁 (𝑈) = ⋃

𝑣∈𝑈 𝑁 (𝑣).
In any graph𝐺 we denote the degree of a node 𝑣 or an edge 𝑒 (the

degree of an edge is the number of other edges sharing an endpoint

to it) by 𝑑 (𝑣) and 𝑑 (𝑒), respectively. If we have a subset of nodes
𝑈 ⊆ 𝑉 or edges 𝐸 ′ ⊆ 𝐸, we will denote 𝑑𝑈 (𝑣) to be the number of

nodes 𝑢 ∈ 𝑈 such that {𝑢, 𝑣} ∈ 𝐸, and 𝑑𝐸′ (𝑣) to be the number of

edges 𝑒 ∈ 𝐸 ′ such that 𝑣 ∈ 𝑒 . We define the degree𝑑𝐸′ (𝑒), of an edge
𝑒 , to be the number of edges in 𝐸 ′ which are adjacent to 𝑒 . We will

use 𝑢 ∼ 𝑣 to denote adjacency between nodes (or edges), with the

underlying graph as a subscript where it is otherwise ambiguous.

Throughout the paper, we use [ℓ] to denote the set {1, . . . , ℓ}.

2.1 Luby’s MIS algorithm
Our algorithms will be based on Luby’s algorithm [38] for MIS:

Algorithm 1 Luby’s MIS algorithm

while |𝐸 (𝐺) | > 0 do
Each node 𝑣 generates a random value 𝑧𝑣 ∈ [0, 1]
Node 𝑣 joins independent set I iff 𝑧𝑣 < 𝑧𝑢 for all 𝑢 ∼ 𝑣

Add I to output independent set

Remove I and 𝑁 (I) from the graph 𝐺

end while

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

177

The central idea in the analysis is to define an appropriated

subset of nodes and show that it is adjacent to a constant fraction

of edges in the graph 𝐺 . Let 𝑋 be the set of all nodes 𝑣 that have

at least
𝑑 (𝑣)
3

neighbors 𝑢 with 𝑑 (𝑢) ≤ 𝑑 (𝑣). Then the following

lemma is shown, for example, in Lemma 8.1 of [41].

Lemma 2.1. Let 𝑋 be the set of all nodes 𝑣 that have at least 𝑑 (𝑣)
3

neighbors 𝑢 with 𝑑 (𝑢) ≤ 𝑑 (𝑣). Then ∑
𝑣∈𝑋 𝑑 (𝑣) ≥ 1

2
|𝐸 |.

Next, one can then show that every node 𝑣 ∈ 𝑋 has a constant

probability of being removed from𝐺 , and therefore, in expectation,

a constant fraction of 𝐺 ’s edges are removed. This approach gives

an 𝑂 (log𝑛)-round randomized algorithm for MIS (with 𝑆 = 𝑛Y).

Luby showed, also in [38], that the analysis requires only pairwise

independent random choices, and that the algorithm can thus be

efficiently derandomized (in𝑂 (log3 𝑛 log log𝑛) parallel time). How-

ever, doing so directly requires many machines (𝑂 (𝑚𝑛2) = 𝑂 (𝑛4)
in [38]), which would generally be considered a prohibitively high

total space bound in MPC. Luby’s MIS algorithm can be also ex-

tended to find maximal matching, since a maximal matching in

𝐺 is an MIS in the line graph of 𝐺 , and in many settings one can

simulate Luby’s algorithm on this line graph.

2.2 Communication in low-space MPC
Low-space MPC is in some ways a restrictive model, and fully scal-

able algorithms for even basic communication therein are highly

non-trivial. Fortunately, prior work on MapReduce and earlier mod-

els of parallel computation have provided black-box tools which

will permit all of the types of communication we require for our

algorithms. We will not go into the details of those tools, but instead

refer the reader to the following summary:

Lemma 2.2 ([25]). For any positive constant 𝛿 , sorting and comput-
ing prefix sums of 𝑛 numbers can be performed deterministically in
MapReduce (and therefore in theMPC model) in a constant number
of rounds using 𝑆 = 𝑛𝛿 space per machine and 𝑂 (𝑛) total space.

The computation of prefix sums here means the following: each

machine𝑚 ∈ [𝑀] holds an input value 𝑥𝑚 , and outputs

∑𝑚
𝑖=1 𝑥𝑖 .

Proof. The result for sorting follows from applying Theorem

3.1 of [25] to the BSP sorting algorithm of [24]. The prefix sums

result comes from Lemma 2.2 of [25]. □

This result essentially allows us to perform all of the commu-

nication we will need to do in a constant number of rounds. For

example, if for each edge {𝑢, 𝑣} we create two entries (𝑢, 𝑣) and
(𝑣,𝑢) in memory, and the sort these lexicographically, we can en-

sure that the neighborhoods of all nodes are stored on contiguous

blocks of machines. Then, by computing prefix sums, we can com-

pute sums of values among a node’s neighborhood, or indeed over

the whole graph. This allows us to, e.g., compute objective functions

for the method of conditional expectations (see Section 2.4). Where

2-hop neighborhoods fit in the space of a single machine, we can

collect them by sorting edges to collect 1-hop neighborhoods onto

machines, and then having each such machine send requests for

the neighborhoods of all the nodes it stores.

An important point to note is that since Lemma 2.2 uses 𝑆 = 𝑛𝛿

for any positive constant 𝛿 , by setting 𝛿 sufficiently smaller than

our space parameter Y, we can perform 𝑛Ω (1) simultaneous sorting
or prefix sum procedures. This will be especially useful to us for

efficiently performing the method of conditional expectations.

2.3 Bounded-independence hash functions
Our derandomization is based on a classic recipe: we first show that

a randomized process using a small random seed produces good

results, by using our random seed to select a hash function from a 𝑘-

wise independent family. Then, we search the space of random seeds

to find a good one, using the method of conditional expectations.
The families of hash functions we require are specified as follows:

Definition 2.3. For 𝑁, 𝐿, 𝑘 ∈ N such that 𝑘 ≤ 𝑁 , a family of

functions H = {ℎ : [𝑁] → [𝐿]} is 𝑘-wise independent if for all
distinct 𝑥1, . . . , 𝑥𝑘 ∈ [𝑁], the random variables ℎ(𝑥1), . . . , ℎ(𝑥𝑘)
are independent and uniformly distributed in [𝐿] when ℎ is chosen

uniformly at random from H .

Wewill use the followingwell-known lemma (cf. [40, Corollary 3.34]).

Lemma 2.4. For every 𝑎, 𝑏, 𝑘 , there is a family of 𝑘-wise indepen-
dent hash functions H = {ℎ : {0, 1}𝑎 → {0, 1}𝑏 } such that choosing
a random function from H takes 𝑘 · max{𝑎, 𝑏} random bits, and
evaluating a function from H takes time 𝑝𝑜𝑙𝑦 (𝑎, 𝑏, 𝑘).

For all of our purposes (except when extending to low degree

inputs, in Section 5), when we require a family of hash functions,

we will use a family of 𝑐-wise independent hash functionsH = {ℎ :

[𝑛3] → [𝑛3]}, for sufficiently large constant 𝑐 (we can assume that

𝑛3 is a power of 2 without affecting asymptotic results). We choose

𝑛3 to ensure that our functions have (more than) large enough

domain and range to provide the random choices for all nodes and

edges in our algorithms. By Lemma 2.4, a random function can be

chosen from H using 𝑂 (log𝑛) random bits (defining the seeds).

2.4 Method of conditional expectations
Another central tool in derandomization of algorithms we use is the

classical method of conditional expectations. In our context, we will

show that, over the choice of a random hash function ℎ ∈ H , the

expectation of some objective function (which is a sum of functions

𝑞𝑥 calculable by individual machines) is at least some value 𝑄 , i.e.,

Eℎ∈H
[
𝑞(ℎ) :=

∑
machines 𝑥

𝑞𝑥 (ℎ)
]
≥ 𝑄 .

Since, by the probabilistic method, this implies the existence of

a hash function ℎ∗ ∈ H for which 𝑞(ℎ∗) ≥ 𝑄 , then our goal is to

find one such ℎ∗ ∈ H in 𝑂 (1) MPC rounds.

We will find the sought hash function ℎ∗ by fixing the 𝑂 (log𝑛)-
bit seed defining it (cf. Lemma 2.4), by having all machines agree

gradually on chunks ofΘ(log𝑛) bits at a time. That is, we iteratively

extend a fixed prefix of the seed until we have fixed the entire seed.

For each chunk, and for each 𝑖 , 1 ≤ 𝑖 ≤ 𝑛Ω (1)
, each machine

calculates Eℎ∈H [𝑞𝑥 (ℎ) |Ξ𝑖], where Ξ𝑖 is the event that the random
seed specifying ℎ is prefixed by the current fixed prefix, and then

followed by 𝑖 . We then sum these values over all machines for

each 𝑖 , using Lemma 2.2 (recall that we have sufficient space to

conduct 𝑛Ω (1)
concurrent applications), obtaining Eℎ [𝑞(ℎ) |Ξ𝑖]. By

the probabilistic method, at least one of these values is at least 𝑄 .

We fix 𝑖 to be such that this is the case, and continue.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

178

After 𝑂 (1) iterations, we find the entire seed to define ℎ∗ ∈ H
such that 𝑞(ℎ∗) ≥ 𝑄 . Since each iteration requires only a constant

number of MPC rounds, this process takes only 𝑂 (1) rounds.

3 MAXIMAL MATCHING IN 𝑂 (log𝑛) ROUNDS
In this section we present a deterministic fully scalable 𝑂 (log𝑛)-
roundsMPC algorithm for the maximal matching problem. Later, in

Section 5, we will extend this algorithm to obtain a round complex-

ity 𝑂 (logΔ + log log𝑛); as promised in Theorem 1.1; this improves

the bound from this section for Δ = 𝑛𝑜 (1) . Due to space constraints,
some proof in this section and in Section 4 are deferred to the full

version of this paper.

Theorem 3.1. For any constant Y > 0, maximal matching can be
found deterministically in the MPC model in 𝑂 (log𝑛) rounds, using
𝑂 (𝑛Y) space per machine and 𝑂 (𝑚 + 𝑛1+Y) total space.

Themain idea is to derandomize a variant of a maximal matching

algorithm due to Luby (cf. Section 2.1), which in 𝑂 (log𝑛) rounds
finds a maximal matching. In each round of Luby’s algorithm one

selects some matching 𝑀 and then removes all nodes in 𝑀 (and

hence all edges adjacent to𝑀). It is easy to see that after sufficiently

many rounds the algorithm finds maximal matching. The central

feature of the randomized algorithm is that in expectation, in each

single round one will remove a constant fraction of the edges, and

hence 𝑂 (log𝑛) rounds will suffice in expectation. This is achieved

in two steps. One first selects an appropriated subset of nodes

and show that it is adjacent to a constant fraction of edges in the

graph 𝐺 (cf. Lemma 2.1). Then, one shows that every node 𝑣 ∈ 𝑋

has a constant probability of being removed from 𝐺 (by being

incident to the matching𝑀 found in a given round), and therefore,

in expectation, a constant fraction of 𝐺 ’s edges are removed.

In order to derandomize such algorithm, we will show that each

single round can be implemented deterministically in a constant

number of rounds in theMPCmodel so that the same property will

be maintained deterministically: in a constant number of rounds

one will remove a constant fraction of the edges, and hence𝑂 (log𝑛)
rounds will suffice. This is achieved in three steps:

• select a set of good nodes 𝐵 which are adjacent to a constant

fraction of the edges,

• then sparsify to E∗
the set of edges incident to 𝐵 to ensure

that each node has degree𝑂 (𝑛Y/2) in E∗
, and hence a single

machine can store its entire 2-hop neighborhood, and

• then find a matching𝑀 ⊆ E∗
such that removal of all nodes

in𝑀 (i.e., removal of𝑀 and all edges adjacent to𝑀) reduces

the number of edges by a constant factor.

Good nodes. We start with a corollary of Lemma 2.1, which spec-

ifies a set of good nodes which are nodes with similar degrees that

are adjacent to a constant fraction of edges in the graph.

Let 𝛿 be a positive constant, with 1/𝛿 ∈ N (wewill later show that

we require 𝑛𝑂 (𝛿)
space per machine, and thereby meet our 𝑛Y space

bound by fixing 𝛿 sufficiently smaller than Y). We will proceed in a

constant (dependent on 𝛿) number of stages, sparsifying the graph

induced by the edges incident to good nodes by derandomizing the

sampling of edges with probability 𝑛−𝛿 in each stage. In order for

this to work, we want our good nodes to be within a degree range

of at most a 𝑛𝛿 factor, for their behavior to be similar.

Let us recall (cf. Section 2.1) that 𝑋 is the set of all nodes 𝑣 which

have at least
𝑑 (𝑣)
3

neighbors 𝑢 with 𝑑 (𝑢) ≤ 𝑑 (𝑣). Partition nodes

into sets𝐶𝑖
, 1 ≤ 𝑖 ≤ 1/𝛿 , such that𝐶𝑖 = {𝑣 : 𝑛 (𝑖−1)𝛿 ≤ 𝑑 (𝑣) < 𝑛𝑖𝛿 }.

Let 𝐵𝑖 = 𝐶𝑖 ∩ 𝑋 . The following is a simple corollary of Lemma 2.1.

Corollary 3.2. There is 𝑖 ≤ 1/𝛿 , such that
∑

𝑣∈𝐵𝑖
𝑑 (𝑣) ≥ 𝛿

2
|𝐸 |.

Proof. By Lemma 2.1,

∑
𝑣∈𝑋 𝑑 (𝑣) ≥ |𝐸 |. Since 𝐵1, . . . , 𝐵1/𝛿 form

a partition of𝑋 into 1/𝛿 subsets, at least one of themmust contribute

a 𝛿-fraction of the sum

∑
𝑣∈𝑋 𝑑 (𝑣) ≥ 1

2
|𝐸 |. □

From now on, let us fix some 𝑖 which satisfies Corollary 3.2.

Denote 𝐵 := 𝐵𝑖 , and for each node 𝑣 ∈ 𝐵, let 𝑋 (𝑣) := {{𝑢, 𝑣} ∈ 𝐸 :

𝑑 (𝑢) ≤ 𝑑 (𝑣)}. Note that the definition of set𝑋 yields |𝑋 (𝑣) | ≥ 𝑑 (𝑣)
3

.

Denote E0 =
⋃

𝑣∈𝐵 𝑋 (𝑣). E0 is the set of edges we will be sub-

sampling to eventually find a matching, and 𝐵 is the set of good

nodes which we want to match and remove from the graph, in

order to significantly reduce the number of edges.

The outline of our maximal matching algorithm is given in Algo-

rithm 2. As long as each iteration reduces the number of edges in

𝐺 by a constant fraction, we need only𝑂 (log𝑛) iterations to find a

maximal matching. We will show that the iterations require 𝑂 (1)
rounds each, so 𝑂 (log𝑛) rounds are required overall.

Algorithm 2 Maximal matching algorithm outline

while |𝐸 (𝐺) | > 0 do
Compute 𝑖 , 𝐵 and E0

Select a set E∗ ⊆ E0 that induces a low degree subgraph

Find matching𝑀 ⊆ E∗
with:∑

nodes 𝑣 matched in𝑀 𝑑 (𝑣) = Ω(|𝐸 (𝐺) |)
Add𝑀 to output matching, remove matched nodes from 𝐺

end while

3.1 Computing 𝑖, 𝐵, and E0

As discussed in Section 2.2, a straightforward application of Lemma

2.2 allows all nodes to determine their degrees, and therefore their

membership of sets 𝐶𝑖
, in a constant number of rounds. A second

application allows nodes to determine whether they are a member

of 𝑋 , and therefore 𝐵𝑖 , and also provides nodes 𝑣 ∈ 𝑋 with 𝑋 (𝑣).
Finally, a third application allows the computation of the values∑

𝑣∈𝐵𝑖 𝑑 (𝑣) for all 𝑖 . Upon completing, all nodes knowwhich 𝑖 yields

the highest value for this sum, and that is the value for 𝑖 which will

be fixed for the remainder of the algorithm.

3.2 Deterministically selecting E∗

We will show now how to deterministically, in 𝑂 (1) stages, select
a subset E∗

of E0 that induces a low degree subgraph, as required

in our MPC algorithm. For that, our main goal is to ensure that

every node has degree 𝑂 (𝑛4𝛿) in E∗
(to guarantee that its 2-hop

neighborhood will fit a singleMPC machine with 𝑆 = 𝑂 (𝑛8𝛿)), and
that one can then locally find a matching𝑀 ⊆ E∗

that will cover a

linear number of edges.

We first consider the easy case when 𝑖 ≤ 4, in which case we set

directly E∗ = E0. Notice that in that case, by definitions of 𝑋 and

𝐵 = 𝐶𝑖 ∩ 𝑋 , we have (i) 𝑑E∗ (𝑣) = 𝑑E0
(𝑣) ≤ 𝑛4𝛿 for all nodes 𝑣 , and

(ii) |𝑋 (𝑣) ∩ E∗ | = |𝑋 (𝑣) | ≥ 𝑑 (𝑣)
3

for all nodes 𝑣 ∈ 𝐵, which is what

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

179

yields the requirements for E∗
(cf. the Invariant below) needed in

our analysis in Section 3.3.

Next, for the rest of the analysis, let us assume that 𝑖 ≥ 5. We

proceed in 𝑖 − 4 stages, starting with E0 and sparsifying it by sub-

sampling a new edge set E 𝑗 in each stage 𝑗 , 𝑗 = 1, 2, . . . , 𝑖 − 4. Note

that for any node 𝑣 we have 𝑑E0
(𝑣) ≤ 𝑛𝑖𝛿 , since nodes in 𝐵 have

maximum degree 𝑛𝑖𝛿 and since 𝑣 only has adjacent edges in E0 if

𝑣 ∈ 𝐵 or ∃𝑢 ∈ 𝐵 : 𝑑 (𝑣) ≤ 𝑑 (𝑢).

Invariant: In our construction of sets E0, E1, . . . , E𝑖−4, in order

to find a good matching in the resulting sub-sampled graph E∗
, we

will maintain the following invariant for every 𝑗 :

(i) for all nodes 𝑣 : 𝑑E 𝑗
(𝑣) ≤ (1 + 𝑜 (1))𝑛−𝑗𝛿𝑑E0

(𝑣) + 𝑛3𝛿 ,
(ii) for all nodes 𝑣 ∈ 𝐵: |𝑋 (𝑣) ∩ E 𝑗 | ≥ (1 − 𝑜 (1))𝑛−𝛿 𝑗 |𝑋 (𝑣) |.
The intuition behind this invariant is that nodes’ degrees de-

crease roughly as expected in the sub-sampled graph, and nodes

𝑣 ∈ 𝐵 do not lose too many edges to their neighbors in 𝑋 (𝑣) (to en-

sure that many of them can be matched in the sub-sampled graph).

One can see that the invariant holds for 𝑗 = 0 trivially, by defini-

tion of sets E0 and 𝐵.

Distributing edges and nodes among the machines. In order to

implement our scheme in the MPC model, we first allocate the

nodes and the edges of the graph among the machines.

• Each node 𝑣 distributes its adjacent edges in E 𝑗−1 across a
group of type 𝐴 machines, with 𝑛4𝛿 edges on all but at most

one machine (which holds any remaining edges).

• Each node 𝑣 ∈ 𝐵 also distributes its adjacent edges in 𝑋 (𝑣) ∩
E 𝑗−1 across a group of type 𝐵 machines in the same fashion.

Type A machines will be used to ensure that the first point of

the invariant holds, and type B machines will ensure the second.

In order to sparsify E 𝑗−1 to define E 𝑗 , we proceed with deran-

domization of a sub-sampled graph. We will fix a seed specifying

a hash function from H (recall that H = {ℎ : [𝑛3] → [𝑛3]} is a
𝑐-independent family for sufficiently large constant 𝑐). Each hash

function ℎ induces a set Eℎ in which each edge in E 𝑗−1 is sampled

with probability 𝑛−𝛿 , by placing 𝑒 ∈ Eℎ iff ℎ(𝑒) ≤ 𝑛3−𝛿 .

Good machines. We will call a machine good for a hash function

ℎ ∈ H if the effect of ℎ on the edges it stores looks like it will

preserve the invariant. We will then show that if all machines are

good for a hash function ℎ, the invariant is indeed preserved.

Formally, consider a machine (of either type) 𝑥 that receives

E(𝑥) ⊆ E 𝑗−1 and let 𝑒𝑥 := |E(𝑥) |. For hash function ℎ ∈ H , we

call 𝑥 good if 𝑒𝑥𝑛
−𝛿 −𝑛0.1𝛿

√
𝑒𝑥 ≤ |E(𝑥) ∩ Eℎ | ≤ 𝑒𝑥𝑛

−𝛿 +𝑛0.1𝛿√𝑒𝑥 .
Our aim is to use the following concentration bound to show

that a machine is good with high probability:

Lemma 3.3 (Lemma 2.2 of [11]). Let 𝑐 ≥ 4 be an even integer. Let
𝑍1, . . . , 𝑍𝑡 be 𝑐-wise independent random variables taking values in
[0, 1], 𝑍 = 𝑍1 + · · · + 𝑍𝑡 and ` = E [𝑍]. Let _ > 0. Then,

Pr [|𝑍 − ` | ≥ _] ≤ 2

(𝑐𝑡
_2

)𝑐/2
.

We will take 𝑍 to be the sum of the indicator variables 1{𝑒∈Eℎ }
for 𝑒 ∈ E(𝑥) (i.e., 𝑍 = |E(𝑥) ∩ Eℎ |). These indicator variables

1{𝑒∈Eℎ } are 𝑐-wise independent, and each has expectation 𝑛−𝛿 .

Using that 𝑐 is a sufficiently large constant, we apply Lemma 3.3

and get that

Pr
[
|𝑍 − ` | ≥ 𝑛0.1𝛿

√
𝑒𝑥

]
≤ 𝑛−5 .

This means that with high probability, 𝑒𝑥𝑛
−𝛿 − 𝑛0.1𝛿

√
𝑒𝑥 ≤

|E(𝑥) ∩ Eℎ | ≤ 𝑒𝑥𝑛
−𝛿 + 𝑛0.1𝛿√𝑒𝑥 , and 𝑥 is good.

By the method of conditional expectations, as described in Sec-

tion 2.4 using objective function 𝑞𝑥 (ℎ) = 1𝑥 is good for ℎ , we can find

a function ℎ which makes all machines good, in a constant number

of rounds. We then set E 𝑗 = Eℎ .

3.2.1 Properties of E 𝑗 : satisfying the invariant. Having fixed a sub-

sampled graph for the stage, we need to show that since all machines

were good, we satisfy our invariant for the stage.

Lemma 3.4 (Invariant (i)). All nodes 𝑣 satisfy

𝑑E 𝑗
(𝑣) ≤ (1 + 𝑜 (1))𝑛−𝑗𝛿𝑑E0

(𝑣) + 𝑛3𝛿 .

Lemma 3.5 (Invariant (ii)). All nodes 𝑣 ∈ 𝐵 satisfy

|𝑋 (𝑣) ∩ E 𝑗 | ≥ (1 − 𝑜 (1))𝑛−𝛿 𝑗 |𝑋 (𝑣) | .

Our invariant is therefore preserved in every stage, and so holds

in our final sub-sampled edge set E∗
:= E𝑖−4.

3.3 Finding a matching𝑀 ⊆ E∗

The construction in Section 3.2 ensures that either 𝑖 ≤ 4, in which

case E∗ = E0, or 𝑖 ≥ 5 and after 𝑖 − 4 stages, we now have a set of

edges E∗ = E𝑖−4 with the following properties:

(i) all nodes 𝑣 have

𝑑E∗ (𝑣) ≤ (1 + 𝑜 (1))𝑛 (4−𝑖)𝛿𝑑E0
(𝑣) + 𝑛3𝛿 ≤ 2𝑛4𝛿 ,

(ii) all nodes 𝑣 ∈ 𝐵 have

|𝑋 (𝑣) ∩ E∗ | ≥ (1 − 𝑜 (1))𝑛 (4−𝑖)𝛿 |𝑋 (𝑣) | .

We can show a property analogous to Lemma 2.1 in E∗
:

Lemma 3.6. Every node 𝑣 ∈ 𝐵 has
∑

{𝑢,𝑣 }∈E∗ 1

𝑑E∗ ({𝑢,𝑣 }) ≥ 1

27
.

Now we are ready to present our deterministic MPC algorithm

that for a given subset of edges E∗
satisfying the invariant, in𝑂 (1)

rounds constructs a matching𝑀 ⊆ E∗
such that the removal of𝑀

and all edges adjacent to𝑀 removes Ω(𝛿 |𝐸 |) edges from the graph.

First, each node 𝑣 ∈ 𝐵 is assigned a machine 𝑥𝑣 which gathers its

2-hop neighborhood in E∗
. Since for every node𝑢 wehave𝑑E∗ (𝑢) ≤

2𝑛4𝛿 by Invariant (i) (or by the definition of 𝐵 and E0 = E∗
, when

1 ≤ 𝑖 ≤ 4), this requires at most 2𝑛4𝛿 · 2𝑛4𝛿 = 𝑂 (𝑛8𝛿) space per
machine. Altogether, since |𝐵 | ≤ 𝑛, this is 𝑂 (𝑛1+8𝛿) total space.

We will fix a seed specifying a hash function ℎ from H . This

hash function ℎ will be used to map each edge 𝑒 in E∗
to a value

𝑧𝑒 ∈ [𝑛3]. Then, 𝑒 joins the candidate matching Eℎ iff 𝑧𝑒 < 𝑧𝑒′ for

all 𝑒 ′ ∼ 𝑒 . Further, since each node 𝑣 ∈ 𝐵 is assigned a machine

which gathers its 2-hop neighborhood in E∗
, in a singleMPC round,

every node 𝑣 ∈ 𝐵 can determine its degree 𝑑Eℎ
(𝑣).

Clearly Eℎ is indeed a matching for every ℎ ∈ H , but we require

that removing Eℎ ∪ 𝑁 (Eℎ) from the graph reduces the number of

edges by a constant fraction. We will show that |Eℎ ∪ 𝑁 (Eℎ) | =
Ω(𝛿 |𝐸 |) in expectation, and therefore by the method of conditional

expectations (cf. Section 2.4) we will be able to find a seed ℎ∗ ∈ H
for which |Eℎ∗ ∪ 𝑁 (Eℎ∗) | = Ω(𝛿 |𝐸 |).

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

180

Lemma 3.7. For anymachine 𝑥𝑣 holding the 2-hop neighborhood of
𝑣 in E∗, the probability that 𝑑Eℎ

(𝑣) = 1, for a random hash function
ℎ ∈ H , is at least 1

218
.

We will denote 𝑁ℎ := {𝑣 ∈ 𝐵 : 𝑑Eℎ
(𝑣) = 1}, i.e., the set of nodes

in the matching induced by hash function ℎ. We want to study the

number of edges incident to 𝑁ℎ . By Lemma 3.7,

E

∑
𝑣∈𝑁ℎ

𝑑 (𝑣)
 ≥

∑
𝑣∈𝐵

𝑑 (𝑣) · Pr [𝑣 ∈ 𝑁ℎ] ≥
1

109

∑
𝑣∈𝐵

𝑑 (𝑣) ≥ 𝛿 |𝐸 |
218

.

By the method of conditional expectations (cf. Section 2.4), us-

ing objective function 𝑞𝑥𝑣 (ℎ) = 𝑑 (𝑣)1𝑣∈𝑁ℎ
, we can select a hash

function ℎ with

∑
𝑣∈𝑁ℎ

𝑑 (𝑣) ≥ 1

218
𝛿 |𝐸 |. We then add the matching

𝑀 := Eℎ to our output, and remove matched nodes from the graph.

In doing so, we remove at least
𝛿 |𝐸 |
436

edges from the graph.

3.4 Finding a maximal matching
Now we are ready to complete the proof of Theorem 3.1, that a

maximalmatching can be found deterministically in theMPCmodel

in 𝑂 (log𝑛) rounds, with 𝑆 = 𝑂 (𝑛Y), and 𝑂 (𝑚 + 𝑛1+Y) total space.
Our algorithm returns a maximal matching in log 1

1−𝛿/536
|𝐸 | =

𝑂 (log𝑛) iterations, each requiring 𝑂 (1) MPC rounds. The space

required is dominated by storing the input graph 𝐺 (𝑂 (𝑚) total
space) and collecting 2-hop neighborhoods when finding an match-

ing (𝑂 (𝑛8𝛿) space per machine,𝑂 (𝑛1+8𝛿) total space). Setting 𝛿 = Y
8

allows us to conclude Theorem 3.1, that for any constant Y > 0, max-

imal matching can be found in the MPC model in 𝑂 (log𝑛) rounds,
using 𝑂 (𝑛Y) space per machine and 𝑂 (𝑚 + 𝑛1+Y) total space. □

4 MIS IN 𝑂 (log𝑛) ROUNDS
In this section we modify the approach from Section 3 for the

maximal independent set problem and prove the following.

Theorem 4.1. For any constant Y > 0, MIS can be found determin-
istically in MPC in 𝑂 (log𝑛) rounds, using 𝑂 (𝑛Y) space per machine
and 𝑂 (𝑚 + 𝑛1+Y) total space.

Later, in Section 5, we will extend this algorithm to obtain a

round complexity𝑂 (logΔ + log log𝑛); this will improve the bound

from Theorem 4.1 when Δ = 𝑛𝑜 (1) .

4.1 Outline
The approach to find an MIS in 𝑂 (log𝑛) MPC rounds is similar to

the algorithm for maximal matching. The main difference is that for

MIS, instead of the edges, as for the matching, we have to collect

the nodes, which happen to require some changes in our analysis

and makes some of its part slightly more complex.

Let A be the set of all nodes 𝑣 such that

∑
𝑢∼𝑣

1

𝑑 (𝑢) ≥ 1

3
. Our

analysis again relies on a corollary to the analysis of Luby’s algo-

rithm (cf. Lemma 2.1) that follows from the fact that 𝑋 ⊆ A.

Corollary 4.2.

∑
𝑣∈A 𝑑 (𝑣) ≥ 1

2
|𝐸 |.

Proof. Nodes 𝑣 in𝑋 (cf. Lemma 2.1) satisfy

∑
𝑢∼𝑣

1

𝑑 (𝑢) ≥ 1

3
. □

We will again partition nodes into classes of similar degree. Let 𝛿

be an arbitrarily small constant and assume 1/𝛿 ∈ N. As in Section

3, partition nodes into sets𝐶𝑖
, 1 ≤ 𝑖 ≤ 1/𝛿 , with𝐶𝑖 = {𝑣 : 𝑛 (𝑖−1)𝛿 ≤

𝑑 (𝑣) < 𝑛𝑖𝛿 }. For any 1 ≤ 𝑖 ≤ 1/𝛿 , let B𝑖 be the set of all nodes 𝑣

satisfying

∑
𝑢∈𝐶𝑖

:𝑢∼𝑣
1

𝑑 (𝑢) ≥ 𝛿
3
. We can easily prove the following.

Corollary 4.3. There is 𝑖 ≤ 1/𝛿 , such that
∑

𝑣∈B𝑖
𝑑 (𝑣) ≥ 𝛿

2
|𝐸 |.

Proof. Each element 𝑣 ∈ A must be a member of at least one

of the sets B𝑖 , since∑
1≤𝑖≤1/𝛿

∑
𝑢∈𝐶𝑖∼𝑣

1

𝑑 (𝑢) =
∑
𝑢∼𝑣

1

𝑑 (𝑢) ≥ 1

3

.

Therefore, there is at least one set B𝑖 that contributes at least a

𝛿-fraction of the sum

∑
𝑣∈A 𝑑 (𝑣), i.e., ∑𝑣∈B𝑖

𝑑 (𝑣) ≥ 𝛿
2
|𝐸 |. □

Henceforth we will fix 𝑖 to be a value satisfying Corollary 4.3,

and let B := B𝑖 and Q0 := 𝐶𝑖
. With this notation, we are now ready

to present the outline of our algorithm:

Algorithm 3 MIS algorithm outline

while |𝐸 (𝐺) | > 0 do
Add all isolated nodes to MIS; remove them from 𝐺

Compute 𝑖 , B and Q0

Select a set Q ′ ⊆ Q0 that induces a low degree subgraph

Find indep. set I ⊆ Q ′
with

∑
𝑣∈𝑁 (I) 𝑑 (𝑣) = Ω(|𝐸 (𝐺) |)

Add I to MIS; remove I and 𝑁 (I) from 𝐺

end while

Notice that since in each roundwe find an independent setI with∑
𝑣∈𝑁 (I) 𝑑 (𝑣) = Ω(|𝐸 (𝐺) |), it is easy to see that Algorithm 3 finds

an MIS in𝑂 (log𝑛) rounds. Hence our goal is to find an independent
set I with

∑
𝑣∈𝑁 (I) 𝑑 (𝑣) = Ω(|𝐸 (𝐺) |) in 𝑂 (1) MPC rounds.

As one can see, Algorithm 3 is very similar to Algorithm 2, and

the major difference is that in Algorithm 3 we sub-sample nodes

instead of edges, since we cannot afford to have removed any edges

between nodes we are considering for our independent set I.

4.2 Deterministically selecting Q ′ ⊆ Q0

We will show now how to deterministically, in 𝑂 (1) stages, find a

subset Q ′
of Q0 that induces a low degree subgraph, as required in

ourMPC algorithm for MIS. For that, our main goal is to ensure that

every node has degree 𝑂 (𝑛4𝛿) in Q ′
(to guarantee that its 2-hop

neighborhood fits a single MPC machine with 𝑆 = 𝑂 (𝑛8𝛿)), and
that one can then locally find an independent I ⊆ Q ′

that covers a

linear number of edges.

We again proceed in 𝑖 − 4 stages (if 𝑖 ≤ 4, then similarly to

Algorithm 2, we will use Q ′ = Q0), starting with Q0 and sampling

a new set Q 𝑗 (Q 𝑗 ⊆ Q 𝑗−1) in each stage 𝑗 = 1, 2, . . . , 𝑖 − 4. The

invariant we will maintain is that, after every stage 𝑗 , 0 ≤ 𝑗 ≤ 𝑖 − 4:

(i) all nodes 𝑣 ∈ Q 𝑗 have 𝑑Q 𝑗
(𝑣) ≤ (1 + 𝑜 (1))𝑛−𝑗𝛿𝑑 (𝑣), and

(ii) all nodes 𝑣 ∈ B have

∑
𝑢∈Q 𝑗∼𝑣

1

𝑑 (𝑢) ≥ 𝛿−𝑜 (1)
3𝑛𝛿 𝑗 .

It is easy to see that the invariant holds for 𝑗 = 0 trivially, by

definition of Q0 and B. In what follows, we will show how, for a

given set Q 𝑗−1 satisfying the invariant, to construct in𝑂 (1) rounds
a new set Q 𝑗 ⊆ Q 𝑗−1 that satisfies the invariant too.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

181

Distributing edges and nodes among the machines. In order to

implement our scheme in the MPC model, we first allocate the

nodes and the edges of the graph among the machines.

• Each node 𝑣 in Q 𝑗−1 distributes its adjacent edges to nodes

in Q 𝑗−1 across a group of machines (type Q machines), with
at most one machine having fewer than 𝑛4𝛿 edges and all

other machines having exactly 𝑛4𝛿 edges.

• Each node 𝑣 in B distributes its adjacent edges to nodes in

Q 𝑗−1 across a group of machines (type B machines), with at

most one machine having fewer than 𝑛4𝛿 edges and all other

machines having exactly 𝑛4𝛿 edges.

Note that nodes may be in both Q 𝑗−1 and B and need only one

group of machines, but for the ease of analysis we treat the groups of

machines separately. Similarly to Section 3.2, type Q machines will

ensure Invariant (i) and type B machines will ensure Invariant (ii).

In order to select Q 𝑗−1 ⊆ Q 𝑗 , we will first fix a seed specifying a

hash function from a H . Each hash function ℎ induces a candidate

set Qℎ into which node in Q 𝑗−1 is “sampled with probability 𝑛−𝛿 ”,
by placing 𝑣 into Qℎ iff ℎ(𝑣) ≤ 𝑛3−𝛿 .

Type Q machines. Consider a type Q machine 𝑥 that gets allo-

cated edges 𝑉 (𝑥) ⊆ Q 𝑗−1 and let 𝑣𝑥 := |𝑉 (𝑥) |. For hash function

ℎ ∈ H , we say 𝑥 is good if |𝑉 (𝑥) ∩ Qℎ | ≤ 𝑣𝑥𝑛
−𝛿 + 𝑛0.1𝛿√𝑣𝑥 .

Each of the indicator random variables 1{𝑣∈Qℎ } is 𝑐-wise inde-
pendent, and has expectation 𝑛−𝛿 . Therefore we can apply to these

random variable Lemma 3.3: taking 𝑍 to be the sum of the indicator

variables for𝑉 (𝑥) (i.e.,𝑍 = |𝑉 (𝑥)∩Qℎ |), and choosing a sufficiently

large constant 𝑐 , Lemma 3.3 implies that Pr
[
|𝑍 − ` | ≥ 𝑛0.1𝛿

√
𝑣𝑥

]
≤

𝑛−5. This means that with high probability, |𝑉 (𝑥) ∩ Qℎ | ≤ 𝑣𝑥𝑛
−𝛿 +

𝑛0.1𝛿
√
𝑣𝑥 , and 𝑥 is good.

Type B machines. Consider a type B machine 𝑥 that gets allo-

cated edges 𝑉 (𝑥) ⊆ Q 𝑗−1; let 𝑣𝑥 := |𝑉 (𝑥) |. For ℎ ∈ H , we call 𝑥

good if

∑
𝑣∈𝑉 (𝑥)∩Qℎ

1

𝑑 (𝑣) ≥ 𝑛−𝛿
∑

𝑣∈𝑉 (𝑥)
1

𝑑 (𝑣) − 𝑛 (0.9−𝑖)𝛿
√
𝑣𝑥 .

As before, we will apply Lemma 3.3, setting 𝑍𝑣 =
𝑛 (𝑖−1)𝛿

𝑑 (𝑣) 1{𝑣∈Qℎ }
and 𝑍 =

∑
𝑣∈𝑉 (𝑥) 𝑍𝑣 . Since 𝑉 (𝑥) ⊆ Q, each 𝑑 (𝑣) is at least 𝑛 (𝑖−1)𝛿 ,

and so the variables 𝑍𝑣 take values in [0, 1]. They have expecta-

tion E [𝑍𝑣] = 𝑛 (𝑖−2)𝛿

𝑑 (𝑣) , and as before, they are 𝑐-wise independent.

Hence, we can apply Lemma 3.3 with sufficiently large 𝑐 to find

that Pr
[
|𝑍 − ` | ≥ 𝑛0.1𝛿

√
𝑣𝑥

]
≤ 𝑛−5. Hence, with high probability,

𝑛 (𝑖−1)𝛿
∑

𝑣∈𝑉 (𝑥)∩Qℎ

1

𝑑 (𝑣) ≥ 𝑛 (𝑖−2)𝛿
∑

𝑣∈𝑉 (𝑥)

1

𝑑 (𝑣) − 𝑛0.1𝛿
√
𝑣𝑥 ,

and therefore

∑
𝑣∈𝑉 (𝑥)∩Qℎ

1

𝑑 (𝑣) ≥ 𝑛−𝛿
∑

𝑣∈𝑉 (𝑥)
1

𝑑 (𝑣) −𝑛
(0.9−𝑖)𝛿√𝑣𝑥 ,

so 𝑥 is good.

Since there are at most
2𝑛2

𝑆
+2𝑛 ≤ 𝑛2 machines, by a union bound

the probability that a particular hash function ℎ ∈ H makes all

machines good is at least 1−𝑛−3. The expected number of machines

which are not good for a random choice of function is therefore less

than 1. So, by the method of conditional expectations (cf. Section

2.4), using objective 𝑞𝑥 (ℎ) = 1𝑥 is good for ℎ , in a constant number

of MPC rounds we can find a hash function ℎ ∈ H which makes all

machines good. We then use such hash function ℎ to set Q 𝑗 = Qℎ .

4.2.1 Properties of Q 𝑗 : satisfying the invariants. Having fixed a sub-
sampled set of nodes Q 𝑗 for the stage, we need to show that since

all machines were good, we satisfy our invariants for the stage.

Lemma 4.4 (Invariant (i)). All nodes 𝑣 ∈ Q 𝑗 satisfy

𝑑Q 𝑗
(𝑣) ≤ (1 + 𝑜 (1))𝑛−𝑗𝛿𝑑 (𝑣) .

Lemma 4.5 (Invariant (ii)). All nodes 𝑣 ∈ B satisfy∑
𝑢∈Q 𝑗∼𝑣

1

𝑑 (𝑢) ≥ 𝛿 − 𝑜 (1)
3𝑛𝛿 𝑗

.

Since our invariants are preserved in every stage, they hold in

our final sub-sampled node set Q ′
:= Q𝑖−4.

4.3 Finding an independent set I
After 𝑖 − 4 stages, we now have a node set Q ′

:= Q𝑖−4 with the

following properties (cf. Lemmas 4.4 and 4.5):

(i) all nodes 𝑣 ∈ Q ′
have 𝑑Q′ (𝑣) ≤ (1 + 𝑜 (1))𝑛 (4−𝑖)𝛿𝑑 (𝑣) ≤ 2𝑛4𝛿 ;

(ii) all nodes 𝑣 ∈ B have

∑
𝑢∈Q′∼𝑣

1

𝑑 (𝑢) ≥ 𝛿−𝑜 (1)
3𝑛 (𝑖−4)𝛿 .

(If 𝑖 ≤ 4, we instead have that for 𝑣 ∈ Q ′
, 𝑑Q′ (𝑣) ≤ 𝑛𝑖𝛿 and for

𝑣 ∈ 𝐵,
∑
𝑢∈Q′∼𝑣

1

𝑑 (𝑢) ≥ 𝛿
3
from setting Q ′ = Q0).

We now show a property analogous to Lemma 3.6 (and hence

Lemma 2.1) for the node set Q ′
.

Lemma 4.6. For each node 𝑣 ∈ B, either 𝑣 has a neighbor 𝑢 ∈ Q ′

with 𝑑Q′ (𝑢) = 0 or 𝑣 satisfies
∑
𝑢∈Q′∼𝑣

1

𝑑Q′ (𝑢) ≥ 0.1𝛿 .

Now we are ready to present our deterministic MPC algorithm

that for a given subset of nodes Q ′
satisfying the invariant, in𝑂 (1)

rounds constructs an independent setI ⊆ Q ′
such that the removal

of I ∪ 𝑁 (I) removes Ω(𝛿 |𝐸 |) edges from the graph.

Each node 𝑣 ∈ B is assigned a machine 𝑥𝑣 which gathers a set 𝑁𝑣

of up to 𝑛4𝛿 of 𝑣 ’s neighbors in Q ′
(if 𝑣 has more than 𝑛4𝛿 neighbors

in Q ′
, then take an arbitrary subset of 𝑛4𝛿 of them), along with

all of their neighborhoods in Q ′
(i.e., 𝑁Q′ (𝑁𝑣)). By Invariant (i),

this requires at most 𝑛4𝛿 · 2𝑛4𝛿 = 𝑂 (𝑛8𝛿) space per machine. Since

|B| ≤ 𝑛, this is 𝑂 (𝑛1+8𝛿) total space. We prove that these sets 𝑁𝑣

preserve the desired property:

Lemma 4.7. Each node 𝑣 ∈ B either has a neighbor 𝑢 ∈ Q ′ with
𝑑Q′ (𝑢) = 0 or satisfies

∑
𝑢∈𝑁𝑣

1

𝑑Q′ (𝑢) ≥ 0.1𝛿 .

We now do one further derandomization step to find an inde-

pendent set. We will fix a seed specifying a hash function from H .

This hash function ℎ will be used to map each node 𝑣 in Q ′
to a

value 𝑧𝑣 ∈ [𝑛3]. Then, 𝑣 joins the candidate independent set Iℎ iff

𝑧𝑣 < 𝑧𝑢 for all 𝑢 ∼ 𝑣 .

Clearly Iℎ is indeed an independent set, but we want to show

that removing Iℎ ∪ 𝑁 (Iℎ) from the graph reduces the number of

edges by a constant fraction. We will show that in expectation (over

a random choice of ℎ ∈ H) this is indeed the case, and then we can

apply the method of conditional expectations (cf. Section 2.4) to

conclude the construction.

Each machine 𝑥𝑣 is good for a hash function ℎ ∈ H if it holds a

node 𝑢 ∈ 𝑁𝑣 ∩Iℎ . Since 𝑥𝑣 holds the neighborhoods in Q ′
of nodes

in 𝑁𝑣 , it can determine whether they are members of Iℎ . We show

that with constant probability, 𝑥𝑣 is good (for random ℎ).

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

182

Lemma 4.8. For any machine 𝑥𝑣 holding a set 𝑁𝑣 and its neighbor-
hood in Q ′, with probability at least 0.01𝛿 (over a choice of a random
hash function ℎ ∈ H) it holds that |𝑁𝑣 ∩ Iℎ | ≥ 1.

For a hash function ℎ ∈ H , we denote 𝑁ℎ := {𝑣 ∈ B : 𝑁𝑣 ∩Iℎ ≠

∅}, i.e., the set of nodes to be removed if the independent set induced

byℎ is chosen. By Lemma 4.8 and by the definition of B (which

ensures

∑
𝑣∈B 𝑑 (𝑣) ≥ 𝛿

2
|𝐸 |),

E

∑
𝑣∈𝑁ℎ

𝑑 (𝑣)
 ≥

∑
𝑣∈B

𝑑 (𝑣) · Pr [𝑣 ∈ 𝑁ℎ] ≥ 0.01𝛿
∑
𝑣∈B

𝑑 (𝑣) ≥ 𝛿2 |𝐸 |
200

.

By the method of conditional expectations (cf. Section 2.4), using

𝑞𝑥𝑣 (ℎ) = 𝑑 (𝑣)1𝑥𝑣 is good for ℎ , we can select a hash function ℎ with∑
𝑣∈𝑁ℎ

𝑑 (𝑣) ≥ 𝛿2

200
· |𝐸 |. We then add the independent set I := Iℎ

to our output, and remove I and 𝑁 (I) from the graph. In doing so,

we remove at least
1

2

∑
𝑣∈𝑁ℎ

𝑑 (𝑣) ≥ 𝛿2 |𝐸 |
400

edges from the graph.

4.4 Completing MIS
Now we are ready to complete the proof of Theorem 4.1. Our al-

gorithm returns an MIS in at most log 1

1−𝛿2/400
|𝐸 | = 𝑂 (log𝑛) stages,

each stage of the algorithm, as described above, taking a constant

number of rounds in MPC. The space required is dominated by

storing the input graph 𝐺 (𝑂 (𝑚) total space) and collecting node

neighborhoods when finding an independent set (𝑂 (𝑛8𝛿) space per
machine,𝑂 (𝑛1+8𝛿) total space). Setting 𝛿 = Y

8
allows us to conclude

Theorem 4.1 by obtaining that for any constant Y > 0, MIS can be

found deterministically in MPC in 𝑂 (log𝑛) rounds, using 𝑂 (𝑛Y)
space per machine and 𝑂 (𝑚 + 𝑛1+Y) total space. □

5 MIS AND MAXIMAL MATCHING IN
𝑂 (logΔ + log log𝑛) MPC ROUNDS

Our efforts in Sections 3–4 were on achieving deterministic MIS and

maximal matching algorithms running in 𝑂 (log𝑛) MPC rounds;

with some additional work we can improve this round complexity

for graphs with low maximum degree Δ, obtaining deterministic

𝑂 (logΔ + log log𝑛)-roundMPC algorithms. In the following, we

will present our algorithm for MIS, and then a reduction to apply

the result also to maximal matching.

Let us first observe that it is sufficient to consider the case where

Δ ≤ 𝑛𝛿 , as otherwise we can use the 𝑂 (log𝑛) algorithm from

Theorem 4.1 to achieve an 𝑂 (logΔ)-round MPC algorithm. There-

fore we no longer need to perform graph sparsification, since we

can already fit 2-hop neighborhoods (and, indeed, 𝑂 (log𝑛
logΔ)-hop

neighborhoods) single machines.

We use this observation to perform round compression on Luby’s

algorithm: since we can collect 𝑂 (log𝑛
logΔ)-hop neighborhoods, ma-

chines have all the information they need to perform 𝑂 (log𝑛
logΔ)

steps of Luby’s algorithm at once, and therefore the 𝑂 (log𝑛) total
necessary steps can be performed in only 𝑂 (logΔ) MPC rounds,

with 𝑂 (log log𝑛) rounds of pre-processing needed to collect the

neighborhoods (by graph exponentiation).

Algorithm 4𝑂 (logΔ+ log log𝑛)-round MIS algorithm for Δ ≤ 𝑛𝛿

Compute a Δ4
-coloring of 𝐺2

Collect
2𝛿 log𝑛

logΔ -hop neighborhoods in 𝐺

for 𝑂 (logΔ) iterations: do
Derandomize

𝛿 log𝑛

logΔ steps of Luby’s algorithm

Update
2𝛿 log𝑛

logΔ -hop neighborhoods with removed nodes

end for

Algorithm 4 presents an overview of the procedure; we now go

into more detail on its constituent parts.

5.1 Coloring and neighborhood collection
For purposes of efficient derandomization, we require hash func-

tions with domain which is 𝑝𝑜𝑙𝑦 (Δ), rather than 𝑝𝑜𝑙𝑦 (𝑛), in order

to have only 𝑂 (logΔ) seed length. We can therefore no longer use

nodes’ identifiers as the hash function domain. However, it is well

known that Luby’s algorithm only requires independence between

nodes that are at most 2-hops apart. This allows us to reduce the

seed length from 𝑂 (log𝑛) to 𝑂 (logΔ) by assigning every node a

new name with only 𝑂 (logΔ) bits, such that every pair of nodes

with distance two has distinct names; this task is equivalent to

vertex coloring in the graph 𝐺2
. For every graph 𝐺 with maximum

degree Δ, Linial [36] showed an 𝑂 (Δ2)-coloring using 𝑂 (log∗ 𝑛)
rounds in the LOCALmodel, and Kuhn [32] extended this algorithm

and showed that it can implemented also in the CONGEST model

within the same number of rounds.

In our context, since we wish to color the graph 𝐺2
, we need to

compute a 𝑂 (Δ4)-coloring 𝜒 on 𝐺2
. We can do so by dedicating

a machine to each node of 𝐺 , collecting that node’s 2-hop neigh-

borhood onto the machine, and then simulating Kuhn’s CONGEST
algorithm on 𝐺2

in a straightforward round-by-round fashion (in

MPC, machines can communicate directly with those representing

nodes in the 2-hop neighborhood, and the CONGEST communica-

tion restrictions imply adherence to the MPC space bounds).

Graph exponentiation for neighborhood collection. In order to

collect
2𝛿 log𝑛

logΔ -hop neighborhoods in 𝑂 (log log𝑛) rounds, we ap-
ply the standard technique of graph exponentiation: each node is

assigned a machine, and we iteratively expand the size of the neigh-

borhood of that node collected onto its machine. In round 𝑖 , if all

machines contain a 𝑟𝑖 -hop neighborhood for their nodes, then each

send this neighborhood knowledge to the machines for all nodes in

the neighborhood. So, machines receive the 𝑟𝑖 -hop neighborhood

for all nodes within the 𝑟𝑖 hops of their node; i.e., they now know

a 2𝑟𝑖 -hop neighborhood. In this way we double the radius of the

neighborhood in eachMPC round, and so we collect
2𝛿 log𝑛

logΔ -hop

neighborhoods in 𝑂 (log log𝑛) rounds. Of course, this process is
subject to memory constraints, but since maximum degree is Δ,

the size of the
2𝛿 log𝑛

logΔ -hop neighborhoods is at most Δ
2𝛿 log𝑛

logΔ = 𝑛2𝛿 ,

and since we choose 𝛿 to be a constant sufficiently smaller than Y,

this fits in the space of a machine.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

183

5.2 Round-compressed derandomization
We can now proceed to the main part of the algorithm: derandom-

ization of
𝛿 log𝑛

logΔ steps of Luby’s algorithm in 𝑂 (1) MPC rounds.

Without loss of generality, we focus on the first group of steps;

subsequent groups behave identically.

We will use hash functions from a pairwise independent family

H∗
of functions ℎ : [Δ4] → [𝑐Δ4], for sufficiently large constant

𝑐 (as before we can assume that we round up domain and range

to a power of 2). For a single step, each node 𝑣 will use a hash

function ℎ from H∗
to map its color in the 𝑂 (Δ4)-coloring 𝜒 to

a value 𝑧𝑣 ∈ [Δ4]. It then joins the independent set I if its value

𝑧𝑣 is lower than any of its neighbours’. By the same argument as

Lemma 4.8 (and the classic derandomization of Luby [38]), we find

that under a uniformly random choice of ℎ, node 𝑣 joins the MIS

with probability Ω(1

𝑑 (𝑣)) (note that the error term incurred by the

rounding of hash function range is less than
1

𝑐Δ2
, and therefore

negligible by choice of sufficiently large 𝑐).

Then, by Lemma 2.1, the critical property of the analysis of

Luby’s algorithm, deleting I ∪ 𝑁 (I) removes a constant fraction

of the edges from the graph in expectation.

Expected value of a sequence of hash functions. Weneed to analyze

𝛿 log𝑛

logΔ steps, i.e., the effect of using sequences of
𝛿 log𝑛

logΔ independent

uniformly random hash functions fromH∗
. Let 𝐸𝑖 denote the num-

ber of edges in the graph at the beginning of step 𝑖 . We know from

the above that E [𝐸𝑖+1 |𝐸𝑖] ≤ 𝑝𝐸𝑖 , for some 𝑝 < 1. By independence,

therefore, E
[
𝐸 𝛿 log𝑛

logΔ

]
≤ 𝑝

𝛿 log𝑛

logΔ 𝐸1.

Derandomizing via the method of conditional expectations. We

now perform the method of conditional expectations, as defined

previously, to allow all machines to agree on a good sequence of hash
functions to use for the

𝛿 log𝑛

logΔ steps. Since we are now using 𝑐-wise

independent hash functions with [𝑂 (Δ4)] domain and range, by

Lemma 2.4, we need an𝑂 (logΔ)-bit seed to specify each. Therefore
the total seed length for all

𝛿 log𝑛

logΔ steps is 𝑂 (log𝑛), and so we can

perform the method of conditional expectations in 𝑂 (1) rounds.
We do so to choose a sequence of hash functions such that 𝐸 𝛿 log𝑛

logΔ

≤

𝑝
𝛿 log𝑛

logΔ 𝐸1, i.e. we reduce the number of edges by an 𝑛
Ω (1

logΔ)
factor.

Since, for each node 𝑣 , we have collected the
2𝛿 log𝑛

logΔ -hop neigh-

borhood of 𝑣 onto a machine, that machine has all necessary infor-

mation to immediately determine how many of 𝑣 ’s adjacent edges

remain after applying any hash function sequence. We therefore

have the necessary property that the quality of a hash function se-

quence (number of edges remaining in the graph after application)

is the sum of functions computable locally by machines.

5.3 Updating neighborhoods
Once we have performed the method of conditional expectations to

simulate
𝛿 log𝑛

logΔ steps of Luby’s algorithm and reduce the number

of edges in the graph by an 𝑛
Ω (1

logΔ)
factor, the final task is to

update the
2𝛿 log𝑛

logΔ -hop neighborhood held by each machine to

reflect the new reduced graph. This can be done simply by having

each node 𝑣 ’s machine directly inform those of all nodes in its

2𝛿 log𝑛

logΔ -hop neighborhood whether 𝑣 remains in the reduced graph.

Thereby all machines are updated of their node’s new 2𝛿 log𝑛

logΔ -hop

neighborhood (which is a subset of its old one), in one MPC round.

5.4 Completing MIS and extending to maximal
matching

We have shown that Algorithm 4, for the case Δ ≤ 𝑛𝛿 , has the

following properties:

(1) With 𝑂 (log log𝑛) rounds of precomputation we compute a

Δ4
-coloring of 𝐺2

, and gather
2𝛿 log𝑛

logΔ -hop neighborhoods.

(2) We then perform iterations which require𝑂 (1) rounds each,
and reduce the number of edges by an 𝑛

Ω (1

logΔ)
factor.

After 𝑂 (logΔ) iterations, therefore, we reduce the number of

edges in the graph to 0, and find a maximal independent set. Ensur-

ing that 𝛿 is sufficiently smaller than Y, we have used 𝑂 (𝑛Y) space
per machine. We required𝑂 (𝑛) machines, so total space is𝑂 (𝑛1+Y).
Combining this algorithm with algorithm 3 for the case Δ > 𝑛𝛿

completes the MIS part of Theorem 1.1.

Reducing maximal matching to MIS.. To obtain the same round

complexity for maximal matching, we note that in the Δ ≤ 𝑛𝛿 case

we can apply the the standard reduction of performing MIS on

the line graph of the input graph. Since we are collecting
2𝛿 log𝑛

logΔ -

hop neighborhoods already, we have the necessary information to

simulate running on the line graph.

We again use 𝑛𝑂 (𝛿)
space per machine; global space is now

𝑚 · 𝑛𝑂 (𝛿) ≤ 𝑛1+𝛿 · 𝑛𝑂 (𝛿)
, which, setting 𝛿 sufficiently smaller than

Y, is again 𝑂 (𝑛Y) and 𝑂 (𝑛1+Y) local and global space respectively.

Combining with the bounds of Algorithm 2 completes the maximal

matching part of Theorem 1.1.

6 CONCLUSIONS
In this paper we study the power of deterministic algorithms in

the Massively Parallel Computation (MPC) model, focusing on two

fundamental graph problems: maximal matching and maximal inde-

pendent set. We develop a new deterministic method for graph spar-

sification and apply it to design the first𝑂 (logΔ + log log𝑛)-round
fully scalable deterministic MPC algorithms for maximal match-

ing and MIS (Theorem 1.1). In combination with previous results,

this also gives the first deterministic𝑂 (logΔ)-round CONGESTED
CLIQUE algorithms for maximal matching and MIS. We expect our

method of derandomizing the sampling of a low-degree graph while

maintaining good properties will prove useful for derandomizing

many more problems in low space or limited bandwidth models

(e.g., the CONGEST model).

ACKNOWLEDGMENTS
This work is partially supported by the Centre for Discrete Mathe-

matics and its Applications (DIMAP), a Weizmann-UK Making Con-

nections Grant, IBM Faculty Award, EPSRC award EP/N011163/1,

and the European Union’s Horizon 2020 programme under the

Marie Skłodowska-Curie grant agreement No 754411.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

184

REFERENCES
[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel

algorithm for the maximal independent set problem. Journal of Algorithms,
7(4):567–583, 1986.

[2] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong.

Parallel graph connectivity in log diameter rounds. In Proceedings of the 59th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 674–685, 2018.

[3] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undi-

rected shortest paths via low hop emulators. In Proceedings of the 52nd Annual
ACM Symposium on Theory of Computing (STOC), 2020.

[4] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni,

and Cliff Stein. Coresets meet EDCS: Algorithms for matching and vertex cover

on massive graphs. In Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1616–1635, 2019.

[5] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms

for findingwell-connected components in sparse graphs. In Proceedings of the 37th
ACM Symposium on Principles of Distributed Computing (PODC), pages 461–470,
2019.

[6] Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Mo-

hammadTaghi Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel

computation of matching and MIS in sparse graphs. In Proceedings of the 37th
ACM Symposium on Principles of Distributed Computing (PODC), pages 481–490,
2019. A preliminary version of a merge of CoRR abs/1807.06701 and CoRR

abs/1807.05374.

[7] Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Brief

announcement: Semi-MapReduce meets Congested Clique. CoRR abs/1802.10297,
2018.

[8] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Ła̧cki, and Va-

hab S. Mirrokni. Near-optimal massively parallel graph connectivity. In Pro-
ceedings of the 60th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 1615–1636, 2019.

[9] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Ła̧cki, Vahab S.

Mirrokni, and Warren Schudy. Massively parallel computation via remote mem-

ory access. In Proceedings of the 31st Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 59–68, 2019.

[10] Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponen-

tially faster massively parallel maximal matching. In Proceedings of the 60th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 1637–1649, 2019.

[11] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In

Proceedings of the 35th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 276–287, 1994.

[12] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing

local distributed algorithms under bandwidth restrictions. In Proceedings of
the 31st International Symposium on Distributed Computing (DISC), pages 11:1–
11:16, 2017.

[13] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng.

The complexity of (Δ + 1) coloring in congested clique, massively parallel com-

putation, and centralized local computation. In Proceedings of the 38th ACM
Symposium on Principles of Distributed Computing (PODC), pages 471–480, 2019.

[14] Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-

round coloring in the congested clique. In Proceedings of the 39th ACM Symposium
on Principles of Distributed Computing (PODC), 2020.

[15] Artur Czumaj, Jakub Ła̧cki, Aleksander Ma̧dry, Slobodan Mitrović, Krzysztof

Onak, and Piotr Sankowski. Round compression for parallel matching algorithms.

In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC),
pages 471–484, 2018.

[16] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on

large clusters. In Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation (OSDI), pages 10–10, 2004.

[17] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on

large clusters. Commununication of the ACM, 51(1):107–113, January 2008.

[18] Mohsen Ghaffari. An improved distributed algorithm for maximal indepen-

dent set. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 270–277, 2016.

[19] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and

Ronitt Rubinfeld. Improved massively parallel computation algorithms for MIS,

matching, and vertex cover. In Proceedings of the 36th ACM Symposium on
Principles of Distributed Computing (PODC), pages 129–138, 2018.

[20] Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC algorithms for

MIS, matching, and coloring on trees and beyond. CoRR abs/2002.09610, February
2020.

[21] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for

massively parallel computation from distributed lower bounds. In Proceedings
of the 60th IEEE Symposium on Foundations of Computer Science (FOCS), pages
1650–1663, 2019.

[22] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with rami-

fications in massively parallel computation and centralized local computation.

In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1636–1653, 2019.

[23] Mark K. Goldberg and Thomas H. Spencer. A new parallel algorithm for the

maximal independent set problem. SIAM Journal on Computing, 18(2):419–427,
1989.

[24] M. Goodrich. Communication-efficient parallel sorting. SIAM Journal on Com-
puting, 29(2):416–432, 1999.

[25] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and

simulation in the MapReduce framework. In Proceedings of the 22nd International
Symposium on Algorithms and Computation (ISAAC), pages 374–383, 2011.

[26] Yijie Han. A fast derandomization scheme and its applications. SIAM Journal on
Computing, 25(1):52–82, 1996.

[27] David G. Harris. Deterministic parallel algorithms for bilinear objective functions.

Algorithmica, 81(3):1288–1318, 2019.
[28] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:

Distributed data-parallel programs from sequential building blocks. SIGOPS
Operating Systems Review, 41(3):59–72, March 2007.

[29] Amos Israeli and Alon Itai. A fast and simple randomized parallel algorithm for

maximal matching. Information Processing Letters, 22(2):77–80, 1986.
[30] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computa-

tion for MapReduce. In Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 938–948, 2010.

[31] Richard M. Karp and Avi Wigderson. A fast parallel algorithm for the maximal

independent set problem. Journal of the ACM, 32(4):762–773, 1985.

[32] Fabian Kuhn. Weak graph colorings: Distributed algorithms and applications.

In Proceedings of the 21st Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 138–144, 2009.

[33] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Fil-

tering: A method for solving graph problems in MapReduce. In Proceedings of
the 23rd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 85–94, 2011.

[34] Jakub Ła̧cki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski. Walking

randomly, massively, and efficiently. In Proceedings of the 52nd Annual ACM
Symposium on Theory of Computing (STOC), 2020.

[35] Christoph Lenzen. Optimal deterministic routing and sorting on the congested

clique. In Proceedings of the 32nd ACM Symposium on Principles of Distributed
Computing (PODC), pages 42–50, 2013.

[36] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Com-
puting, 21(1):193–201, February 1992.

[37] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. Mst construction in

o (log log n) communication rounds. In Proceedings of the fifteenth annual ACM
symposium on Parallel algorithms and architectures, pages 94–100, 2003.

[38] Michael Luby. A simple parallel algorithm for the maximal independent set

problem. SIAM Journal on Computing, 15(4):1036–1053, 1986.
[39] Tim Roughgarden, Sergei Vassilvitski, and Joshua R. Wang. Shuffles and cir-

cuits (on lower bounds for modern parallel computation). Journal of the ACM,

65(6):41:1–41:24, November 2018.

[40] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1-3):1–336, 2012.

[41] Eric Vigoda. Lecture notes for randomized algorithms: Luby’s alg. for maximal

independent sets using pairwise independence. https://www.cc.gatech.edu/

~vigoda/RandAlgs/MIS.pdf, 2006.

[42] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

[43] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2nd
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), 2010.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

185

https://www.cc.gatech.edu/~vigoda/RandAlgs/MIS.pdf
https://www.cc.gatech.edu/~vigoda/RandAlgs/MIS.pdf

	Abstract
	1 Introduction
	1.1 The MPC model
	1.2 New results
	1.3 Our approach
	1.4 Implications to CONGESTED CLIQUE

	2 Preliminaries
	2.1 Luby's MIS algorithm
	2.2 Communication in low-space MPC
	2.3 Bounded-independence hash functions
	2.4 Method of conditional expectations

	3 Maximal matching in O(logn) rounds
	3.1 Computing i, B, and E0
	3.2 Deterministically selecting E*
	3.3 Finding a matching M E*
	3.4 Finding a maximal matching

	4 MIS in O(logn) rounds
	4.1 Outline
	4.2 Deterministically selecting Q' Q0
	4.3 Finding an independent set I
	4.4 Completing MIS

	5 MIS and maximal matching in O(log+loglogn) MPC rounds
	5.1 Coloring and neighborhood collection
	5.2 Round-compressed derandomization
	5.3 Updating neighborhoods
	5.4 Completing MIS and extending to maximal matching

	6 Conclusions
	Acknowledgments
	References

