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ABSTRACT

This work deals with some of the fundamental aspects of 

retarded functional differential equations (RFDE's) on a differentiable 

manifold. We start off by giving a solution of the Cauchy initial value 

problem for a RFDE on a manifold X. Conditions for the existence of 

global solutions are given.

Using a Riemannian structure on the manifold X, a RFDE may 

be pulled back into a vector field on the state space of paths on X.

This demonstrates a relationship between vector fields and RFDE's by 

giving a natural embedding of the RFDE's on X as a submodule of the 

module o* vector fields on the state space. For a given RFDE it is 

shown that a global solution may level out asymptotically to an 

equilibrium path.

Each differentiable RFDE on a Riemannian manifold linearizes 

in a natural way, thus generating a semi-flow on the tangent bundle to 

the state space. Sufficient conditions are given to smooth out the orbits 

and to obtain the stable bundle theorem for the semi-flow

There are examples of RFDE's on a Riemannian manifold. These 

include the vector fields, the differential delay equations, the delayed 

Cartan development and equations of Levin-Nohel type. The retarded heat 

equation on a compact manifold provides an example of a partial RFDE on 

a function space.

We conclude by making suggestions for further research.



INTRODUCTION

In this thesis we attempt to lay the foundations of global 

retarted functional differential equations (RFDE's) on a differentiable 

manifold. As this is as yet a largely unknown area it seems best that 

one should start by a description of the general framework in which we 

operate. Manifolds shall in general be infinite-dimensional and modelled 

on real Banach (or Hilbert) spaces, unless otherwise indicated. (Eells,[/2] 

Dang [32.])*

Let X be a manifold, J the negative closed interval [-r>0] for

r > 0 - called the interval of retardation - and iP(J,X) a manifold of

paths J -*• X lying within the manifold ¡S°(J,X) of continuous paths on X.

A (global) time-dependent RFDE F on X is a map F: [o,K) xlP(J,X) -* TX

s.t. K > 0 and for each t e [o,K), 6 e (P(J,X), the vector F(t,0) belongs

to the tangent space T~, .X at 0(o) e X. The autonomous RFDE 
0(0)

F: !P(J,X) *► TX is defined in the obvious manner. Solutions of F are 

sought as paths a e (P([-r,e),X) for some 0 < e s K s.t.

I
a (t) = F(t,at) t e [ o,e)

^  (1) aQ = 0 e <P(J,X)

where at e (P(J,X), t e [o,e), is defined by at(s) = a(t+s) V  s e J.

The initial value problem (1) is the Cauchy problem for RFDE's.

With the exception of a paper by Oliva in 1969 {[ 3 if 3) on the 

case <P = C°, it appears from a study of the existing literature that the 

problems of RFDE's are not sufficiently well-treated within the above 

setting. On the other hand the continuous flat case: P = C°, X = Rn is 

a beaten track which has been the subject of vigorous research during the 

last few decades; this case will therefore not be emphasized in the present



thesis, ’out we shall be preoccupied most of the time with situations in 

which the ground space X - and hence the state space £*(J,X) - are non­

linear. Flat cases in which X is an infinite dimensional linear space,

e.g. a function space or a space of sections of a vector bundle, are also 

interesting because they constitute a natural setting for retarded partial 

functional differential equations (See Example 4 of Chapter 4, and also

[ » * ] > •

The RFDE (1) and its autonomous version present us with four 

major questions:

(i) The classical Cauchy problem of finding unique local and global 

(i.e. full) solutions of F for a given initial path 0 e (P(J,X);

(ii) Are there any relationships between antonomous RFDE's and vector 

fields? What does the critical set C(F) = {0 e P(J,X): F(0) =0} of a 

RFDE look like, and how does its topology relate to that of the ground 

manifold X?

(iii) Can the autonomous RFDE

a'(t)=F(at) t>,0 (2)

be linearized in a satisfactory manner, and what are the implications of 

this linearization upon the behaviour of solutions particularly wrt growth 

and stability?

(iv) Does the differential equation (2) embrace any examples which are 

interesting from the global analytic point of view described above?

As a whole this thesis is a contribution to the subject of global 

RFDE's because it endeavours to attack the hitherto open questions (i) to 

(iv) by developing some new techniques or by otherwise adopting well-known 

geometric ideas and applying them in order to answer the above questions.



So X is endowed with a Riemannian structure and for the state space

£>(J,X) to be also Riemannian we find it convenient to choose the Sobolev 

paths^(J,X) i.e. (? =t^ (See'Chapter 1, §1). This choise is 

advantagous over that of the continuous paths C°{J,X) which is a manifold 

modelled on a non-Hilbertable Banach space. Moreover, the ^  paths are 

sufficiently differentiable for parallel transport to be smoothly defined 

over the whole of the state space ¿£^(J,X) (Theorem 2.2). Thus in all our 

considerations, and also for the sake of unification, we shall confine 

ourselves to the Sobolev (o^) case rather than the continuous ( (J0) one, 

while the latter is only referred to in passing remarks and suggestions.

The thesis falls into five chapters. Each of the first four 

chapters is primarily intended to shed some light on one of the above 

mentioned major topics (i), (ii), (iii) and (iv).

Chapter I uses a new localization technique (Lemma 1.1) to solve 

the Cauchy initial value problem for a RFDEFon a Banach manifold X which 

admits a linear connection. Our main contributions here are the local 

existence and uniqueness theorem (Theorem 1.1), together with Theorem (1.5) 

and its corollary which give sufficient growth conditions on F to guarantee 

full solutions defined for all future times.

In Chapter 2 we discuss the general relationships between RFDE's 

and vector fields on the state space J?^(J,X) with an eye towards the 

topological structure of the critical set C(F) of an antonomous RFDE F.

The Chapter starts off with a new theorem (viz. Theorem 2.1) saying that 

solutions of the RFDE (2) may reach equilibrium by converging asymptotically 

to a constant critical path, a behaviour which is analogous to that of



trajectories of vector fields. We then go on to introduce the main idea 

which is to show that a smooth RFDE F pulls back by the Riemannian structure 

into a smooth vector field on the state space *^(J,X) (Theorem 2.2).

As a consequence of this construction the differentiable RFDE's on X are 

embedded as a sub-module of the module of vector fields on over

the ring of differentiable functions on ̂ ^(0,X) (Corollaries 2.2.1,2.2.2). 

The vector field is again used to define a class of gradient RFDE's 

(§2.4) for which the Morse inequalities hold (Theorem 2.4). There were 

two main stumbling blocks in the course of the development here: the high 

degree of degeneracy of C(F), and a workable definition of the Morse 

index of a critical path in C(F). The first difficulty is overcome by 

taking a viewpoint of Bott ([4 |) which amounts to counting components 

of C(F) rather than the individual critical paths; the second difficulty 

is resolved by proving Theorem (2.3) to get an explicit formula for the 

Hessians of F and at a critical path. Almost all the results in this 

Chapter are new except perhaps for Proposition (2.3) which is well-known 

([3?]) and Proposition (2.5) which was first proved by Bott in the 

compact case ([4 ])’. our proof of this last proposition is however carried 

out independently of Bott's and we believe that it can be made to work 

even when X is infinite dimenstional.

The fundamental question (iii) of linearization is treated in

Chapter 3. Here the vector field ^  of Chapter 2 is differentiated
P 2covariantly along the path s p a c e ^ ( J , X ) . It then turns out that this 

linearization defines a linear semi-flow (T^l t>g on the tangent bundle



T^(J,X) (Theorem 3.3). Along the fibres of T^(J,X) the methods of 

strongly continuous linear semi-groups of operators apply giving the 

stable bundle theorem (Theorem 3.6). These semi-groups methods were 

applied by Shimanov and Hale to the continuous linear case with X = Rn,

(P = C° (£73] ,[2 1^). and our proof of the stable bundle theorem follows 

Hale closely. Since the linearization consists essentially in differentiating 

the differential equation (2) cova/iantly wrt t, this entails some 

technicalities in establishing smoothness properties of the semi-flow wrt 

time - mainly because of the Sobolev topology. As a by-product we obtain 

a general theorem on the smoothness of orbits of the non-linear RFDE F 

(Theorem 3.1), together with an estimate on the growth of time derivatives 

of orbits of solutions of F (Corollary 3.3.1). Throughout this chapter 

two main tool results are frequently used: the well-known Sobolev embedding 

theorem (Theorem 3.2) and a geometric "bridge" lemma (Lemma 3.2) which is 

probably new and in any case we provide an independent proof valid when X 

is finite dimensional. Another new result is Corollary (3.4.1) which gives 

a criterion for the orbit of a full solution to contain a geodesic segment 

in X.

The relationship between vector fields and RFDE's is again 

emphasized in Chapter 4 by way of examples. Vector fields on the ground 

manifold X are used to construct RFDE's. Among the RFDE's thus obtained 

are the ODE's (i.e. the non-retarded ones), the differential delay equations 

(DDE's), the delayed development, and equations of Levin-Nohel type. Theorem 

(4.1) says that in the gradient case equations of Levin-Nohel type on a 

Riemanian manifold may not admit non-trivial periodic solutions. Our final 

contribution in this direction is an example on the retarded heat equation 

(RHE) as a special case of retarded parabolic partial differential equations.



6.

This is actually shown to be a discontinuous - but closed - RFDE on the 

linear Frechet space of smooth functions on a compact manifold. Because 

of the linearity and symmetry of the situation, and despite the discontinuity 

of the equation and the infinite dimensionality of the ground space, the 

RHE still displays very similar dynamical properties to those of the 

continuous finite dimensional case of Chapter 3. One basic difference 

however is that the RHE can in general be solved in the forward direction 

only along a closed Frechet subspace of the state space; if the equation 

is hyperbolic (See §5 Chapter 4), then backward solutions do exist on the 

complementary subspace. The delayed heat equation (DHE) is also of interest 

because then solutions exist on the whole of the state space.

Chapter 5 is the last chapter, and it sketches - in terms of 

conjectures - new horizons for further development and generalizations of 

the ideas and results of the previous chapters. Some of these conjectures 

are almost certainties and we believe that they may become theorems as soon 

as the loose ends are successfully tied up. The rest of the conjectures - 

especially those concerned with the continuous case P  = £  0 - are still in 

a wild state at present, but there are reasons to expect that they can be 

tamed in the future by extrapolating on the ideas of Chapters 2, 3 of 

this thesis.



CHAPTER I

The Cauchy Problem

We give a solution of the classical initial value problem of 

Cauchy for a retarded functional differential equation on a Banach manifold. 

To that end we shall require the following:

1. Preliminaries:

X is a C^ (p > 4) metrizable manifold without boundary and

modelled on a real Banach space E. Let iro : TX ■+ X denote the tangent
P-2bundle of X, and assume throughout that X admits a C connection (Eliasson

[ ( 7 3 ,  Nomizu [37]). Let 0 < K < ® and r >, 0. Set J = £-r,Cf|, the

interval of retardation, and denote by o^(J,X) the collection of all C

paths e : J -*• X s.t. for each s e J, 3 a chart (U,<t>) at 6(s) in X

with <j) a e absolutely continuous, (<t>«e)' defined a.e. and

f ,  |(<t>»e)'(s)| | ds < - .
J e 1(0) L

where 1 denotes the norm in E. Using a construction of Eells ([(3 ]) 

or otherwise applying a theorem of Eliasson ([ 17} Theorem 5.1), we see 

that ^^(J,X) is a Cp" 3 Banach manifold. Furthermore, define the map 

Po: [o,K) * ^ (J,X) - X to be the evaluation at 0. i.e.

P0(t,6) = 0(0) V e  E ^ ( J , X ) , V t e t 1K ) 1

Then p q is Cp" 3 because its local representation is the restriction of 

the evaluation at 0 in the flat model space. Observe that the tangent 

bundle T-^^(J,X) is naturally identified with v£^(J,TX) (Eliasson C i ̂ 3 » 

Theorem 5.2).

Definition (1.1) (Oliva [3 2})

Let F: [o,K)x o£^(j,x) — * TX be a map covering PQ ,



8.

viz. one s.t. the diagram

commutes. Then the 4-tuple (F, [o,K), J,X) is called a time-dependent 

retarded functional differential equation (RFDE) on X with retardation time J. 

An antonomous RFDE (F,J,X) is defined in the obvious way:

i.e. F assigns to each path 0 a vector F(0) c Tg^QjX at its end-point.

Definition (1.2).

Let 0 < c i K and a e o£2( [o,e) ,X). Define the canonical

a* e / 2([o ,e ),TX) of a via the commutative diagram
T a

lift

A



9.

where # is the trivialization of T(o,e), P] is the projection onto the first 

factor and c the canonical section defined by 

c(t) = (t,l) V  t c [o,e)

Definition (1.3):

Let U ¿ X  be open, o < 6 $ r, o < e i K, and ct:[-6,e) + U a 

(continuous) map. For each t e [o,e) define the map [ot̂ ] ̂   ̂  ̂ : t-^.o! "*■ U

by

[cxt] (s) = a(t+s) V s e O 6 .o]

[-6 ,o]

If no ambiguity arises as regards the interval [-<5,o] we may write

eg
H . o ]

We therefore have the "memory map" 

m : [o,e) x ^ ( [ - 6,e),U) —  JL [-6 ,o] ,U)

(t,a) eg
,o]

with "past history" [-6,0] . Thus at each time t, m picks up the slice of a 

on [t-6 ,t] and shifts it to the left by t.

The RFDE (F, [o,K),J,X) is said to have a local solution with 

initial path 0 t / |(J,X) if "3 0 < e $ K and a E/^([-r,E),X) s.t. 

a| f0,e) is C ‘ and

a' (t) = F(t,k ] ) V t  e l>,e)
c [ - r , o ]

W
tr.o]



10.
: V V

It will turn out that the smoothness properties of the memory 

map m are essential to the study of the general behaviour of solutions of 

RFDE's, and will be discussed in greater detail later on.

§2. Local Existence and Uniqueness:

The main objective of this section is to establish existence 

and uniqueness of a local solution for the RFDE (F, [o,K),J,X) with given 

initial path 0 e / j(J,X). This is achieved by imposing sufficient and 

reasonable smoothness conditions on the manifold X and the RFDE F. The 

key step in that direction is to localize F via a "localizing map" whose 

existence is guaranteed, in a canonical manner, by the following lemma. In 

this, (F, [o,K),J,X) satisfy the standing hypotheses of SI.

Lemma (1.1):

Let 0 e -Z?(J,X). Then for each chart (U,4>) at 0(o) in

X 13 o < 5 5 r s.t. 0{[-6,o]} ¿i U, and if o < e < 6 ,“3 a map

C : [o,e) [*6,o] ,U) -*■ <^(J,X) with the following properties. i)

i) the diagram

X

[o ,e )x^([-6, o],U)------¿i(J.X)
C

commutes, where PQ is evaluation at o.

ii) if 0 e -/^([-6,c),U) is s.t. b | [ -6,o1 = e | [ - 6 , 0]  and
2

a e . Z ( [-r,E) ,X) is defined by

a(t)

(.B(t) t E [o,E)

t E J

then for each t e [o ,e )



11.

C«t] = C(t, [et] )
[-r,o] [-6»P]

iii) Define the sets

Yq = {(t,y ) : t e [o,e), y e [-6,0] ,U) , 6(t-6) = y(-6)} 

d[p,e) x/^C-S.ol.U).

ijt) i ( Y : y ^ J ( [ - i , o ] > U ) >  6(t-6) = y(-6)} . for each

t e [o,e). Then Yq is closed in [o,e) * ( £-6,0] ,U); and, for each

t e [o,e), Yq(t) is a closed Cp" 3 submanifold of ̂  [-6,0] ,U), where we

take [-6,0] ,U) to be naturally embedded as an open Cp 3 submanifold

of X  ̂ (J,X). Moreover, C|Yg is continuous and each C(t,.)|Yg(t), tc [o,e),

is of class Cp 3.

Proof.

By continuity of 0 at 0, for each chart (U,<|>) at 0(o) 3  0 < 6 £ r 

s.t. eit-fi.o]) c. U. For 0 < e « 6 define C as follows: if (t,y) e Yq , 

write

!9(s+t) s e £-r,-6]

y(s) s e [-6 ,0]

if (t,Y) $ Yq , take

C(t,Y)(s) = Y(o) V  s e J

i.e. on Yq C looks like



12.

It is easily seen that C makes the diagram in (i) commutative.

To check (ii), let 3 e * ^ ( [ - 6,e),U) and a e d  [-r ,e) ,X) be

as given. Then, for each t e [o,e), (t,f $t] ) e Yd and so by definition

L-fi.o]

f e(s + t) s e [-r,-6]

c ( t ,  [Bt] )(S) = , 

[ - 6 .0 ]  |, P(s + t ) s e [-6,o}

= a(s + t ) s e J

= Lat] (s) S G J

is the required property,
Eri-.o]

For the continuity of C|Yd , it is sufficient to show

each (t0,Y0) e y q > t 0 > ° ’ and each 0pen Set V in X s,t- C^to ,Yo^ E 1 Ĵ,V^’

C{.£^(J,V)}is a neighbourhood of (t0*Y0) in Yd . In this context, the 

continuity of O allows us to choose > o s.t.(t^ "^"^q ’̂ o -<̂ +^o  ̂ •

(t0 -r-5o * V r +V  c  l>r*0l> 6{( V 6'6o’V 6+V } «  v and

0{(to-r-6o,to-r+6o)} S-V. But Yo e«̂ l ( C_6»°l *v) so v/e define

G = {^o ' «0^0 + V  x ^  ?([-«•»] *y)> a  Y6

then G is an open neighbourhood of (t0,Y0) in yq - Also by the definition

of C and the choice of 6q, it follows easily that C(t,y) e c^^(J.V) \/(t,y) e G.

The above argument may be "seen" in the following picuture

t-S

t-r -S

fl ’



12.

It is easily seen that C makes the diagram in (i) commutative.

To check (ii), let B e * ^ ( [ - 6,e),U) and a e d  *( [-r ,e) ,X) be

as given. Then, for each t e [o,e), (t,[ Bt] ) e and so by definition

L - M

( e(s + t ) s e [-r,-6]

C(t,  [Bt] )(S) = ,

H > ° 1 [ e(s + t) s e [-6 ,o]

= a(s + t ) s e J

= L « t ]  (s)
t n . o ]

is the required property.

s e J

For the continuity of C|Yq , it is sufficient to show

C , V ) } i s  a neighbourhood of (to >YQ) in Yg • in this context, the 

continuity of 0 allows us to choose 6o > o s.t.(tQ -6-<50.t0 _|5+<50) [-6»°] •

(t0 -r-60* V r +6o) C  0i(to-6-6o,to-6+6o)} «  V and

e{(to-r-6o,t0-r+60)} ^  V. But yQ e/ 2( [-6 ,o~] ,V) s o w  e define

G = U t 0 ' «q ^ o + V  * ^  r\ yq

then G is an open neighbourhood of (t0»Y0) ’n Ye‘ Also by tbe definition 

of C and the choice of 6o> it follows easily that C(t,y) e »^(J,V) V (t,y) e 

The above argument may be "seen" in the following picuture

t-S + 4



I

P A G E

M I S S I N G



14.

Thus ker p_5 splits and Yd(t) is a closed Cp~3 submanifold of [I-<5,oQ,U),

of codimension = dimension of E.

We finally show that for each t e [o,e), C(t,.)|Yg(t) is Cp 3 .

Let y0 e Yq(t). Choose a Cp_2 connection on X. This induces a Cp 2 

exponential map exp:Q) C. TX -*■ X where ® i s  an open neighbourhood 

of the zero section (TX)q in TX. Since C(t,YQ) is continuous and J is 

compact, we can choose ip e £?P(J,X) and a tubular neighbourhood 1&C. J * X

of graph (ip) through the Cp‘ 2 diffeomorphism (11̂  ,exp): ^ (0) -*■ U  c j  x x

where -*• J is the pull-back of the disc bundle nJtj'iD — *• X

over ip (Lang [32]Chapter III §1) and graph (C(t,Y0)) 'Ll. Call this

diffeomorphism Exp^. Define a natural chart (Ul/!) centred at \p and containing

Cfc,y q) by

If = (n e / 2(J,X) : graph (n)<s l?) 

y : V +  rf(**(£») <=. r 2 ( / ( T X ) )  ,

'y’(n) = (Exp^) o (idj.n)

where r2(i|i*(TX)) is the Banachable space of all 2 sections of the bundle 

ip*(TX) -*■ J. As C(t,.) is continuous, 3 an open set 7l in o^2( [-6 ,0] ,<t>(U)) 

s.t. $(y 0) e \  and V y  e T( , graph C(t,y) cl If . Because $ is a 

diffeomorphism, it is sufficient to prove that the composition

'lfoC(t,. ) « $_1 : 71 n Yq (U)(t) - r2(/(i))) is of class Cp_3. Now

this is given for Y e 7l O Y*(U)(t) by
( \fc C(t..). $_1)(Y)(S) = ( expi(s)(0(s+t))

s e |>r,-6]

s e O M

■ ' Ii1 expi(s)(9(s+t)* s e [-r,-6]

( t(Exp*lC-«.o]>"1- (id [-6,0]. i"1(Y)))(s)
s e [-6,o]



In view of this observation, the differentiability of C(t,.) is then an 

immediate consequence of the next lemma (Lemma 1.2) and the fact that

ionthe differential structure on is independent of the connectic

> y(f>)

Lemma (1.2):

Let E, F be Banach spaces. Let 0Q e ®^( [-r,-<5] ,F) and v e E. 

Define the hyperplane

Y ^ - 6 »0! = (y : Y e</^( [-6,0] ,E), y (-6) = v}

Give and Yg’(1«)°^ the sup metrics* and suPPose

d. y E,[-6,o] 
v Y0,(-6)°̂  is a LiPschitz (ck,k ^ *) maP-

De'fine the map <T : Y^’  ̂6,°̂  ’♦•/^(J.F)

by

3(y )(s )

rV5)

V d(Y)(s)

s e [-r,-6] 

s e [-6 ,0]

Then i is Lipschitz (C.,k i l.resp.).

s e



Proof:

Without loss of generality, take v = 0 and e0(~5) = 0.

Let i : Y E,[~6>0~1 . yF j 'denote the constant (C°°) mapJ 0 7 o
E,[-«,o]

F,[-r,-6] __„ Y F,[-r,ol
J(y ) V Y e Y

We also have continuous linear maps e^: Yq

and e0: Y F,£'6,01 — * YnF,'-_r’0  ̂ given by Z o o

and

e^ YK s)

e2(Y)(s)

rY(s) s e

( o s e [-<$,o]

f s e [-r,-6]

(  Y (S) s e [ - 6 ,o ]

Hence cl =

maps.

Remark:

e^j + e2-d is Lipschitz (Ck), being a composition of such

Q.E.D.

The above lemma (1.2) still holds if E and F were replaced by 

Cp vector bundles over compact intervals (with some Finslerson them:

Eells [12 ], Eliasson [/7] §4, Abraham-Smale [ 2  J Chapter 1 §5), and

X  ̂ ([-r,-6],F). ^  ̂ ([-6.o] ,E), etc. , by the corresponding Banach spaces 

of sections of E and F, with d a mapping between the appropriate

spaces of sections.



Proof:

Without loss of generality, take v = 0 and 60(_<s) - 0*

Let i • Y E>1~<5,0~1 denote the constant (C°°) map
J " o 7 o

E.C-6,0]

v F,[-r,ol
J(y ) eo V  Y e Yo

v F,f-r,-6]
We also have continuous linear maps e1: Yq •- 

and e2: YoF ’^"6’0  ̂ —  Y0F,t_r*°1 given by

and

/ y (s ) s e [-r,-6]

e ^ Y M s )  = 1

( 0 e L'5»0!

f °
e [-r,-6]

e2(Y)(s) = \
( Y(s) s e [-6,0]

+ e„"d is Lipschitz (Ck), being a composition

maps.

Remark:

Q.E.D.

The above lemma (1.2) still holds if E and F were replaced by 

Cp vector bundles over compact intervals (with some Finslerson them:

Eel Is [12 ], Eliasson [/7‘] §4, Abraham-Smale [ 2  J Chapter 1 §5), and

!j([-r,-6],F), JL ^([-6 ,o'] ,E), etc. , by the corresponding Banach spaces 

of \ sections of E and F, with d a mapping between the appropriate 

spaces of sections.
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Definition (1.4):

Let 6,(U,<t>), e , 6 and C: [o,e)x i( "*0̂ '] (̂  >̂ )

be as in Lemma (1.1). Suppose (F,|o,K),J,X) is a RFDE (satisfying the 

hypotheses of §1). Define the map C : [o,e)x c/^( Q-6,o} >U) -*■ \oyz)x-d!-\ (J»X) 

by

C(t,y) = (t,C(t,Y)) t e [o,e), y e  /  |([-6,o],U).

Call the composition F o C a local representation of F a t  0 , and denote 

it by Fg . Observe that (F g , [o,e), £-6,0} ,U) is a RFDE on U. F is said 

to be locally Lipschitz at 6 if 3 a chart (U,cp) at 6(o) in X and a 

trivialization \Jj : TU = 11̂ (11) U x E of TU, so that when

f : [o , e ) x./2( [-6,o],<KU)) -*■ E denotes the composite map:

[o,e)x ,./?( [-6,0] ,<MU))--------—--------zrr\---- * [o,e)x rjl^ ( [-6,o].,U)
(id[o,c)’ * >

CU

E <- -U x E — TU

then

- V^2>|‘ k SS“|. {,0] h (S) - ''2(S)Ie

V  (t,Y-|) > (t,Y2) e Y|jdi} , Where 0* = 0|[-6,o] and k > 0 is some

constant depending on 0 ,<(>, U but independent of t e [o,e). We say F is 

strongly locally Lipschitz (near 0) if, together with the trivialization 

i|) : TU + U * E, 3a chart [V.'IJ) at 0 in ^f^(J.X) s.t. pE«^ .F, (id, lj) 1) 

is Lipschitz wrt the supremum metric on the corresponding target space of y> , 

in the second variable uniformly wrt the first.



At this point we observe that the effect of the localizing 

map C is to shorten the "memory" of the system (F,[o,K),J,X) by curtailing 

the interval of retardation beyond -6 , so that, thinking of the chart U in 

X as a piece of the flat Banach space E, we reduce the problem to solving 

the classical RFDE f in linear space. We are therefore lead to prove 

a version of the classical local existence and uniqueness theorem in the 

flat, which apparently is non-existent in the literature: (cf. Driver D ° l .  

Cruz and Hale [ 7  1, Hale [21]).

Theorem (1.1):

Let V s  E be open, and 0 < c £ 6 . Let 0Q e - M . v )
o

and Yq be the cylinder Yg = ((t,y): t e [o,e), y e -.¿i([-6 ,o] ,V), 
o o

0Q(t-6) = y (-6)) . Suppose that f: [o,e) * ( [ - « ,o] ,V) -*• E is a map s.t.

fIyX is continuous and is Lipschitz in the second variable uniformly wrt1 U0
the first, and with JL [-6,o] ,V) given the supremum metric. Then the RFDE 

(f, |o,e), l"-6.o],V) has a unique local solution with initial path 0Q.

Proof:

We use a contraction argument.

Yg is dense in the cylinder 
o

Yg C£°) = t(t,y ): t e [o,e), Y e tf°([-«.o] ,V), 0Q(t-«) = Y(-«)>,
o

and because of the uniform Lipschitz condition f|Yg can be extended uniquely
o

to a continuous map f : Yg (l£0) E which is Lipschitz in the 2nd variable
°o

uniformly wrt the first i.e. "3 k > 0 s.t.
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where || .|| is the supremum norm on the Banach space 6 °(C-<5 .cQ .E) • Since 

f is continuous, it is locally bounded, so ~3 M > 0, 0 < e-| < e and ^  > 0

s.t.

| f (t ,y) S }M V M E V j / j n i L o ^ x B ^ ) }  (2)

where

B ( ^ )  = iY  : Y e i ° ( [ - 6 , o ]  ,E), ¡1 Y -  0Qll .< V

Since V is open, 3  L > 0 s.t.

{v: v e E . l v -  0o(o)| s c. V (3)

Define L > 0 by

L = min (e, .¿0) (4)

Now 6 is continuous, so it is uniformly continuous on the 
o

compact interval [-<5,o] > hence 3 <$0 > o s.t. 

s,s'e[-6,o], |s - s'| <6o = »  |0o(s) - 0o(s')|£ < l /

Choose eQ s.t. o < e q < min ( p  6Q . e1, and define 

A(e0 ,/) = {P : B e t°(C-S.eJ.E), BQ = 0O . 6t £ B(0 V t  e [o .e^ }  

where B. stands for [d J  (Definition 1.3). Observe that
1 * C-«.o]

A(etfi) is non-empty, indeed define B* e C°([-6,eo] ,E) by

/V*) t e [-<5,o]

B*(t) = !
( e o(o) t e [o .eJ

Then by the choice of c and the uniform continuity of 0„, 0 u

l»t(s) - Vs)l = ( |e0(t+s) - 0o(s)| s e [-6,-t]

( lVo) " Vs)i s e t-t,o]
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3*g ‘ A(^o /).

m : [o .GqI x £°(["$>e0'] *e) * ^ (C-6.o],E)

m(t,e) = 3t t e Co .eJ  , 6 e *E)

is the memory map with past history [-6 ,0]. By continuity and compactness, 

it follows that the map

m(.,0) : [o.ej — ► C°(C~6 *°1 *E) is continuous, for each B g £°([-6 ,e0] ,E),

and

|| m(t,e)il = || Bt  || $ II 6 II V , t e [ o . e J .  (5)

It is therefore easily seen that m is (jointly) continuous and is continuous 

linear in the 2nd variable. Because m(t,.) is continuous and B(0 is closed, 

it is clear that A(eQ ,̂ ) is a closed subset of the complete metric space

Furthermore, 3 e A(e0> )̂ (t,3t) e (¿°)n { [0 *€(P x

V t  e [o ,e0]. To see this, notice that by the choice of ¿Q in (3) it is 

an easy matter to check that for each 3 e A(eq ,̂ ) 3t eC°( [-6,0] ,V) V  tE [o.ej

We can therefore define the map T: A(eo , 0 — -» t°(. >E) by

/0O(°) + /  f(u,3u)du t e L°»e0)

(T3)(t) = I (6)

I e0(t) t e [-6 ,0]

for each 3 e A(eq,L)- The continuity of f and m imply that

[°’c0] --- ” E

u »-*• f(uf?u)

is also continuous, so that T is well-defined and its fixed point(s) are 

precisely the solution(s) of the RFDE f on [o.ej. It remains to show 

that T is a contraction mapping of A(e .¿) into itself.



21

Let 0 e A(e0 /) and t e [o.ej. If s e [-t,o], then
rt+s

I(TB)t(s) - e0(s)| s |e0(o) - e0(s)| + |f(u,eu)|du

< \i + \ M(t+s) s \ i + JMe0 (by (2))

< L

If s e 1-6,-i], |(TfJ)t(s) - e0(s)| = |e0(t+s) - e0(s)| < \L Thus

TB e A(e0,i). T is a contraction, because if B1 ,02 e A(eQ ,£) we have 

V  t e [-fi.ej ,

KT B1)^) - (TB2)(t)| < f  |f(u,B^) - f (u,B2)|du
0

rO
<k y  || bJ, - B2 || du (by (1)) *

*k c0 IIB1 - e21| (by (5))

and k e < 1. Thus T has a unique fixed point which is the unique local

solution of f with initial path 0Q. Q.E.D.

Having proved the above theorem, the way is now paved clear for 

the main result of this section which says that, under fairly mild conditions 

on X (§1) and F (Definition 1.4), a unique local solution of the Cauchy 

problem always exists for arbitrary initial data in o^j(J,X).

Theorem(l.2):

Let X be a Cp(p ^-4) Banach manifold without boundary and 

admitting a Cp 2 connection (as in §1). Suppose that (F, [o,K),J,X) is 

a RFDE on X where F is continuous and locally Lipschitz at each 0 e ^-,(J,X). 

Then for given 0 z X  2(J,X) F has a unique local solution with initial 

path 0.
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Proof:

Let 9 c / ‘j(J,X). We first localize F around e(o); indeed 

by the hypotheses and Definition (1.4), choose a small chart at 0(o)

in X s.t. the map

fQ = pE „ T<t> » Fj o (idj-0je), i_1)|Y ||0* } is continuous and uniformly

Lipschitz in the supremum metric, 6 = ej[-6,o], and we use the notation

of Definition (1.4). The continuity of fQ on y||q2 j holds because F is 

continuous (by hypothesis) and C|Yg also is continuous (by Lemma 1.1). 

Therefore by Theorem (1.1) the RFDE (fQ ,[o,e), [-6,o], <f>(U)) ^as a un^c'ue 

local solution at ¿(6*) i.e. 3 o < £ 0 < £ . < «  and a c X  \ ([-« ,£ ¿1 .<&)) 

s.t. a]to,e0] is C1 and

«'(t) = [-6,o]
V  t € [o,eQ)

[%1_ “ , 0 [-6,o]
Define a e uf2([.6,eo],U) by

Then it follows that

[5t3 <t’’ 1 (C«t]
C-6,o]

We also define « e •^(f-r’Eol>X) by 

a(t) =

)

/9(t)

L a ( t )

Since a|[-6 ,o] = 0* = ©| [-6 .ol , then by Lemma (1.1)

c(t,[aj ) = c«ti 1 ^ r o . g
[-6 ,0] C-r>o]

( 1 )

( 2 )

(3)

(4)

(5)

I U a  I i’l i '■* * H U  1 1 \ lU ii 1
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The following simple calculation shows that a is indeed a 

solution of F with initial path 6 : if t e |o,e0 ). 

ct'(t) = T(i>-1 {«'(t)}

= T*_1 {pE . T*» Fj. (id[0>e) . r * 1 )(t,[5t]|._6 ^)>)} (by (D)

(by (3))

= F(t,C(t,[5]
1 C-«.o]

)) (Definition (1.4))

= F(t,[al )
C-r,o]

(by (5))

Reversing the above argument and using the uniqueness of Theorem (1.1), it 

is not hard to see that if a. e /^( [-r,e1) ,X) is also a solution of F with

the same initial path 0 , then a(t) = a^t) for every t e [-r,min(e0,e-|)). Q.E.D. 

Remark:

F and the local Lipschitz condition, even when F is autonomous. However 

in the autonomous case a strong local Lipschitz condition would imply 

continuity (Corollary 1.2.1)

Corollary (1.2.1)

The conclusion of Theorem (1.2) also holds if any of the following 

conditions are satisfied:

i) F is continuous and strongly locally Lipschitz near each 0 e^^(J,X).

ii) F is autonomous and strongly locally Lipschitz (Oliva [3$] )

iii) F is autonomous and extends to a Ĉ  map £°(J,X) •* TX.

show that if F is strongly locally Lipschitz then it is locally Lipschitz.

Note that in the above theorem we need both the continuity of

Proof:

Clearly (i11)=^(1i), so that by the above remark we need only



Let e e /^(J,X). We use the notation employed in the proof 

of (iii) of Lemma (1.1). Let (U,<j>),e,6 be as before. Fix 

tQ e [o,e), y 0 e Y^(t0). Takin9 a natura1 chart (If »Ip centred at some

ip e £ P(J,X) very close to c(t0»Y0) in /^(J,X) and s.t. <|>('6) = e(t0-6), 

we see that in a small neighbourhood of (t0»<MY0)) in Y^(e*)

( -  c ( t , . >  ♦_1 )(y )(s ) eV ( s )  (6(s+t))
s e

(Exp . )~\ (id . ♦-1 (Y))1(S)
'I'lhS .o ] [ -« .o ]

S E [-6,0]

Now by using the smoothness of <|> and the exponential map it is not hard 

to see that Lemma (1.2) would then yield that ^ - C t t  ,.)« <f> 1 is Lipschitz 

in the supremum metric in a neighbourhood of <i>(Y0) and locally uniformly 

wrt t near tQ; indeed 3 a neighbourhood H. of $(y q) in [-¿»ol ,<I>(U)),

a neighbourhood I of t in [o ,e ) and a constant C > 0 s.t.

sup i c y , c ( t , o  r V ^ x s )  - ( ^ » q t , . )  ♦_1 )(\)(s)i

s e J

$ C* sup Iy -,(s ) - Y2(s )J 
se|_-S,o]

V  (t,Yi),(t,Y2) e Y$(e*)a (i *n >

Since (-6 ,o] is compact, the constant C may be chosen independent of 

t e [o,e). But F is strongly locally Lipschitz; hence p ^  ° F*(id[0 ,e)*

is Lipschitz and by composition so is

f 0 = Pe # *  * F # ( i d [ o , e ) *  y 1 ) o ( i d [ o , e ) , | f ) 4 £ o ( l d [ o , e ) ’ ♦ Q

thus completing the proof of the Corollary.

The following remarks are now in order.
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Remarks:

1. The case r = o (i.e. zero retardation) corresponds to F being a time 

dependent vector field, which is the ODE case; so that the local existence 

and uniqueness for solutions of vector fields is a special case of Theorem 

(1.2) (cf. Lang [ 3 2  ]). Needless to say this comment applies to all 

results in this thesis which are concerned with RFDE's. For r > o the 

connection between RFDE's and vector fields will be established in due 

course.

2. In the flat case X = E, F is strongly locally Lipschitz iff it is 

locally Lipschitz.

3. The hypotheses on X are weak enough for X to be a manifold of maps 

e.g. X = £ k(N,M) where N is a compact manifold and M is a differential 

(finite dimensional) manifold admitting a connection. This is the reason 

for not assuming that X should admit smooth partitions of unity, because 

these may not exist on manifolds of maps (or even Banach spaces of functions 

e.g. tf°([o,ll,R)) (EelIs [ 1 2 ]).

4. Theorem (1.2) and its preceding lemmas are all valid if ^ ( O . X )  was 

replaced by the continuous paths £°(J,X).

5. If dim X < ~ and F » c|Y^ is only continuous (not necessarily locally 

Lipschitz), then a solution still exists, though it may not be unique. To 

see this, observe that the proof of Theorem (1.1) can be modified so as to 

apply Schauder's fixed point theorem for the map T. However if X is 

infinite dimensional, the continuity condition by itself does not guarantee 

existence (cf. Dieudonne[$  ], Yorke[33])

6. Suppose that E is a separable Hilbert space and X is C°° and separable. 

Then the definition of the localizing map C : [o ,e )x ^^ ( [-6 ,o] ,!))-►/-|(J,X) 

(Lemma 1.1) can be modified in such a way that C is continuous everywhere

t
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and in particular across the boundaries of the cylinder Yg . We sketch 

the construction as follows: if (t,y) £ Yg , define C(t,y) as in Lemma 

(1.1); but X can be given a complete Riemannian structure (Eells ['/2]̂ 5), 

so that U may be chosen small enough for any two points in U to be joined 

by a unique geodesic whose length is equal to .the distance between the two 

points; thus if (t,y) §! Y^ , we join 6 (t~6) and y(-6) by the geodesic 

connecting them and which we call g : [o, A(t,y)] -*■ U where A(t,y)

= dQ(0(t-6) ,y(-6 )) is the distance between 6 (t-6 ) andy(-6 ). Translate 

g by t-6 to get a path g : [t-6 ,t-6 + A (t,y j ] U ,  and define 

k: [-r,-6 + A (t,y)] - X by

k(s) =

e(s+t)

g(s+t)

[r,-6l

s c Ei5.-6+A(t,Y)J

We then re-parameterize k by squashing it back to the interval C~r»~6]

through a change of variable w: [-r ,-6] -* [-r, -6 + A (t,6)j v;h.ere

w(s) = f r-6 + A(t,Y)l(s+6) -6 + A(t,Y)

\/ s e [-r,-6]

p'Finally define C(t,Y) e ¿^(J.X) by

C ( t , Y)( s )  =

k(w(s))

Y(s)

D

* . , f
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Then a tedious and rather lengthy calculation shows that C 

admits a continuous extension to a map [o,£) xlf°(£-6,o] ,U) £°(J»X).

7. Krikorian (C3I ]) describes a method of placing a differentiable structure 

on the spaed of paths /*(J,X) where X is only Cp(p 3- 2) and not necessarily 

admitting a differentiable connection. If ^^(J.X) were given this 

differentiable structure, theorem (1.2) can be shown to hold with X of 

class Cp(p Z2). The proof follows on similar lines to the one presented 

here but is much more cumbersome because of the complicated nature of the 

Krikorian structure.Theorem (1.2) as stated is good enough for our future 

purposes since in most cases we shall be needing some geometric structure 

on X (e.g. a connection, a Riemannian structure, etc.) during our forthcoming 

discussions.

8 . Ihe assertion (ii) of Corollary (1.2.1) had been proved in the 

context by Oliva ( C 3 $ l ,  1969) for the special case of compact manifolds; 

his technique relies heavily on an embedding theorem of Whitney, and his 

hypotheses are considerably stronger than ours. On the other hand - and as 

far as I know - Oliva's paper seems to be the only piece of literature which 

looks at the problem within a global setting.
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3. Continuation:

Suppose that X is a manifold satisfying the permanent hypotheses 

of §1, and let (F,J,X) be an autonomous RFDE which is continuous and locally 

Lipschitz. For each 6 e ̂ ^(J.X) denote by a ’ z<^ -j ( [-r ,e) ,X) the unique 

local solution of F with initial path 0 .

Define the set

1(0) = Ui[o»e): e > o, a a solution a9'Eiof F at 0

with e1 >. e }

Then 1(0) is a half-open interval in R, because it is a union of connected 

sets having o in commonpndeed 1(0) = [o,t (®))- By uniqueness, a solution 

a9 e JL ^( [-r,t+(0)) ,X) of F at 0 is then well-defined. Define the set 

S) (F) R*° x/^(J,X) by

0(F) = ((t.O) : 0 e ^(J.X), o <: t < t+(0)) 

and the solution map a : $)(F) -*■ X by the property that for each

0 e-/^(J,X), a(.,0) = a®.

Our next result tells us that solutions of the RFDE can be 

continued to the right as long as we are within a maximal interval of 

existence (cf. ODE case). This result is well-known to hold for vector 

fields on manifolds and for RFDE1 s on Euclidean space Rn in the t° 

context (cf. Hale [21]), in all cases the proofs run on parallel lines 

although the underlying assumptions are different.

Theorem (1.3):

Let (F,J,X) be a continuous locally Lipschitz autonomous RFDE 

on a manifold X satisfying the hypotheses of §1.
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Suppose 6 e <^(J,X) and tQ e [o,t+(0)). Then

t V l ) = t +( 6) -  t Q

and

Proof:

<x(t,a® ) = a('t+to ,0) V  o .£ t < t+(0) - tQ.

The result holds because of uniqueness and maximality of solutions. 

Indeed, we start with the maximal solution a6 e/2([-r,t+(0)),X) of F at 0. 

Since t e [o,t+(0)) we can slide a0 by an amount tQ to get a map 

a : [-r,t+(0) - t ) -► X defined by

a(t) = a(t + to ,0)

It is then obvious that

and

“t " “t+t0

a'(t) = F(at)
^ 0

V t  e £ - r , t + (0 )  -  t Q)

V t  e [o , t+(0 )  -  t Q) 

V t  z [ o , t +(0 )  -  t  )

( 1 )

6 0
Thus a is a solution of F with initial path a. . Now a (.,a. ) is a

To og
maximal solution of F with initial path a. , so by maximality

lo
t+(0) - t € t+(cxj )

0 lo

and by uniqueness we must have

a(t + t ,0) = a(t) = o(t,a® )
0 lo

To prove equality in (2), we need to show that a cannot be

continued to the right of t+(0) - tQ. Suppose, if possible, that

"3t+(0) - t < e i t+(a® ) and a solution ae : [-r,e) ■* X of F 
0 to

extending a , viz one s.t. ae |[-r,t+(0) - tQ) = a . Reparametrize

( 2)

( 3 )
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this solution to a map 0 :C_r*tQ + e) x where

/§e(t - tQ) t e [t0-r,to+e)

B (t)= )

( a e(t) t e [-r,t0-r)

It is not hard to see that, because ae is a solution of F, then so 

is S but with initial path 0 ; thus by maximality of domain we must
^■ 0 ‘f

have t + e <: t+(9), which is a contradiction. Hence t (at ) ,< t (0) - tQ, 
o *'0

completing the proof. Q.E.D.

It seems that the time is now ripe to introduce a simple but 

far-reaching idea originally due to Krasovskii (["30^ » 1963): if a is the 

(maximal) solution of F at 0 , then by using the memory map we view its 

orbit through 0 as a curve

[b,t+ (0)) ------- -
0 0t i------------ *m(t,a ) = at

. 2
in the infinite-dimensional manifold of paths ^^(J,X), rather than on 

the base manifold X. This point of view carries the philosophy that the 

dynamical properties of F are being faithfully reflected upon the state 

space jf^(J,X) through the orbits of solutions. One realization of the 

above idea is the following result which asserts that orbits with finite 

life-time cannot be imprisoned within compact sets in ^^(J,X) (cf.Hale [2 lJ 

when X = Rn).

Theorem (1.4):

Let X be a Cp(p £ 4) Banach manifold without boundary, and

admitting a Cp  ̂connection (i.e. as in §1); and suppose (F,J,X) is a
- o +

continuous locally Lipschitz RFDE on X. Let 0 e«Cj(J,X) be s.t. t (0) < ® . 

Then for every compact set ^(J,X) 3 e > 0 with t > t (0), - e.

(N.B. e depends on A ) .



Proof:

This is an adaptation of the proof of the corresponding result

for vector fields (r = o, Lang [32]). It is sufficient to take r > o.

Let 8 c/^(J,X) be s.t. t+(8) < Suppose the conclusion of the theorem

is false. Then there is a compact set A  c /  ̂ (J,X) and a sequence

{t }°° <1 [o,t+(8)) s.t. t ■* t+(8) as n + ® and a® e ^  V n  ^ 1 .
n n=l n

Since A i s  compact, 3  a subsequence {t }“ of (tn> and a 0Q e s.t.

0 i=l
lim
i-x»

= 0.

Now since the evaluation map J * /^(J,X) X is continuous, then 

a0(t+(e) + s) = lim a6(tn + s) = lim a® (s) = eQ(s) V s e [-r,o)
!-►<» 1-H»

Extend a9 by continuity to a map

ot : r-r»t+(6)] X of class ■£. ?. Thus 3 . c^?(J,X), so that by
L J 1 t (e) 1

the local existence theorem (Theorem 1.2) 3 a map a e £  [-r,e') ,X)

s.t. t+(0) < e' , a is C1 on [t+(0),e') .

and

a'(t) = F(St) V/1 e [t+(0),e')

a|[-r.t+(e)] = 5

We claim that 5 is a solution of F on the whole of [o,e'); to see this 

observe that 5 satisfies the differential equation F on [o,t+(0)), and 

if we denote the right and left hand derivatives of a by + and - respectively, 

then

(t (0))
+

lim F(St ) -  F(S + )
t-*- tT(0)+ t (0)

= lim F(St) = lim . a ‘(t)
t-*t+(0)- * t - t +(0)_

= (t+(0)) , using the continuity of F. Hence 5 is a

solution of F at 0 extending the maximal solution a9 ; this is a contradiction.Q.E.D



Corollary (1.4.1)

With the hypotheses of Theorem (1.4), let 0 be

s.t. t+(e) < °o . Then the orbit'ia® : t e [o,t+(e))} is not relatively 

compact in ./^(J,X).

The above Corollary suggests that orbits with a finite life-time

may be highly undesirable because they do not belong to compact sets and

are therefore more difficult to control. This provides motivation for studying 

the case of 0 s.t. t+(0) = “ which corresponds by definition to a full 
solution a6 e ■& \([-r .“ W  of F at 0 .
Note that Corollary (3.2.1) says that solutions with compact orbits are 

full. On the other hand, to get full solutions - i.e. t+(0) = c°Vee^(J,X) 

or §)(F) = R x / 2 {j >X) _ it seems necessary that we place a geometric 

structure (viz. a Finsler) on X together with topological completeness.

We therefore make some definitions.

Definition (1.5): (El iasson [17], Palais [ 37  ] , Eel Is [ IZ ] ).

The Banach manifold X is said to be a Finsler manifold with 

Finsler |.| if |.| : TX R is a continuous function on its tangent 

bundle which restricts to an admissible norm |.|x : TxX -*• R, x e X, on 

each tangent space and is s.t. for each x e X, 71 a chart (U,f) at x in X 

and constants k^, kg > o s.t.

k2|vly i l(Ty*)(v)lE f ki M y  \ / y e U

\/v e TyX

Under this assumption X has a canonical metric d, induced by its Finsler 

structure, and defined by

d(xr x2) = inf ( |* Jo* (t)^ ^t)dt : a :[o,l] + X is piecewise

C1 and o(o) = x1, a(l) = x2 }

X is a complete Finsler manifold if (X,d) is complete in the Finsler metric d.



A RFDE (F,J,X) on a Finsler manifold is said to be bounded if 3 M > o 

s-t. IF(0) |Q(o) < M \/e e^(J,X).

Theorem (1.5)

Let X be a complete Cp (p t 4) Finsler manifold, admitting 

a Cp-2 connection. Suppose (F.J.X) is a continuous locally Lipschitz 

RFDE which is bounded in the Finsler. Then for every 6 e / 2(J,X) t+(0) 

i.e. each maximal solution of F is full.

Proof:
. 2

With the hypotheses of the theorem, supposele etC^ J. X) 

and a9 : ["-r,t+(0)) + X a maximal solution of F with t+(6) < « . Take

c [o,t+(0)). Then a6| [t1 .t^ is C1 (Definition 1.3), and by the 

definition of d it follows that ^

J |a9‘ (t)la0(t)dt| (Definition 3.1)d(«9(t-|) ,a°(t2)) v<

<: M| t, - t. (because F is bounded)

■•a9 is globally Lipschitz on [o,t+(0)) wrt the Finsler metric d. By
0 0

the completeness of X (and the uniform continuity of a ), a has a 

(unique) extension to an ^  2 path a9 : C-r,t+(6)) -*■ X. Thus

S9 e t^f2(J,X) and we can apply the local existence theorem to get

t+(0) .6 
o < e <r and a solution a : [-r,c) + X of F with initial path 5

t+(0)

Again this gives a solution B : f-n,t+(9) + e) + X of F at 9 defined by
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-cxe(t) t e [-r,t+(0))

e(t)-

8 (t - t+(0)) t e [t*(0)> t+(0) + e)

0 +
and which extends the maximal solution a to the right of t (0) - a 

contradiction. Therefore we must have t+(0) = 00 ^ 0  eo^^(J,X). Q.E.D.

Corollary (1.5,1)

Suppose X is a complete Cp (p 2 4) Finsler manifold and F is 

continuous and locally Lipschitz. Let a : [-r,t (0)) + X be a

maximal solution of F s.

Proof:

V ( 0 )

F(“t)l

dt = “ . Then t (0) = “

If t (0) < observe that the hypotheses of the Corollary imply that F is

bounded on the orbit {a.} . Repeat the argument used in the proof of
i r> t*o

the theorem to get the required result. Q.E.D.

ill 1 *



CHAPTER 2

Critical Paths

This chapter is primarily intended to throw some light on the 

general behaviour of the autonomous RFDE (F,J,X) at a critical path 

0 e ¿*(J,X), which is, by definition, one s.t. F(0) = 0 e T _ X.

Our methods will lean heavily upon the following basic observation:

A geometric structure on X, viz a complete Riemannian structure 

will allow us to give the state space ^¿^(J,X) a complete Riemannian 

structure (Refer to §4 of this Chapter). This is a natural setting for 

a Morse theory. On the other hand, we shall be able to establish strong 

relationships between RFDE's and vector fields. These considerations, 

provide motivation for choosing o^(J,X) as our state space in preference 

to the continuous paths l6 0(J,X), the latter being only a Finsler manifold 

with a non-Hilbertable model.

1. Asymptotic Behaviour of Solutions:

Let X be a Cp (p j 4) Banach manifold as in Chapter 1 §1, and 

(F,J,X) a continuous (locally Lipschitz) RFDE on X. The following theorem 

describes the connection between the constant critical paths for F and its 

full solutions. It says that whenever a full solution of F converges 

asymptotically then it does so by levelling out to a constant critical path 

for F.

Theorem (2.1):

Suppose that (F.J.X) satisfy the given hypotheses. Let

a: f-r.-x.) -♦ X be a full solution of F s.t. lim a(t) = x e X, where x is
t-«°

some point of X. Define xQ : J-*X to be the constant path through xQ i.e.



3 6 .

Proof:

The proof proceeds by changing coordinates near the constant 

path x0 in Z^(J,X) and then examining the situation in a linear space. 

More precisely, let (U,<j>) be a chart at xQ in X; denote by 

4,: X)(J,U) ■* X^(J,<P(U)) the induced diffeomorphism. Choose the

trivialization ip = T<t>:TU -*■ U * E of TU and look at the composition

7-1

TU = tt” 1 (U) -> U x E

where f = p̂ .» ip » F «• <J> , and p̂- is the projection onto the model E of

We shall prove that <t>(xQ) gives a critical path of the RFDE (f,J,^(U)).

Since lim a(t) = x , 3 t > 0 s.t. 0 e/^(J,U) V  t 5
t-** 0 0

Define a e X  ̂  ([-r ,<») ) by

a(t) = <|>(a(t + tQ)) V' t e [-r,») (1)

Then it is easy to see that

5 t = ^ ott+t0) V  t>"° (2)

Also by the continuity of <t> and.f, we get

lim a(t) = 4>(x ) 
t->®

(3)

and

lim f(o ) = f(<t>(x ))
t-«o 1 0

(4)

u t o



because «t + <T(xo')= <i>(xo) as t + ” , where 4>(xo) is the constant path 

through <̂ {xQ) in E. Now let e > 0 be given. Then (4) says 3 t Q ' * tQ s.

If(+(x0)) - f(Su)l < e/2 V u » t; (5)

By integrating the expression

; f ( i ( x 0 ) )  = t f ( $ ( x 0 ) )  -  f ( s u ) }  + f ( « u ) u > / t ;

and using the fact that a is a solution of f we obtain

f(*(x0)) (t - t;) = f  {f(?(*0 >) - du

+ 5{t) - 5(t;) t * t; (6)

By (5),

| f ( ? ( V ) l ( t ' * I  (t ’ + la ( t ) " “ ftyl

If K > o is an upper bound for (|ci(t)| : t £ tQ}, then

If(♦(*„) * e/2 + K + l«(ty| t > t ;

* -

-*■ e/g as t ■> “

Since c was arbitrarily chosen, then we must have

f (♦(*„» = o

(PE- <!’ • F) ( \ j )  = 0

Hence

F(x0) = 0

because we have chosen i(j = r<f> which is a linear homeomorphism on fibres. 

The theorem is proved. Q.E.D.



Remark: (2.1)

From the point of view of applications the critical paths of 

F have the following significance: in a system which evolves with time 

under a force represented by a FRDE F, the critical paths correspond to 

those states at which the system is momentarily at rest; a constant 

critical path xQ , xQ e X, is an equilibrium state i.e. the solution 

through xq is constant for all future time and the system is permanently
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2. A Vector Field on ( / ^(J,X) induced by F:

Let X be a Cp (p*5) Riemanian manifold modelled on a real

VHilbert space E. Let e e »¿^(J.X). Then the tangent space T ^ ^ J . X )  can

be naturally identified with the topological vector space {6 :Be^(J»TX)TroeB=0} 

where iro: TX -»■ X is the tangent bundle of X (Eliasson [/7 ])• virtue 

of the Riemannianstructure on X we have parallel transport along 6 given by 

a family of isometries (i.e. Hilbert space isomorphisms)

: T„ Te ( t o ) x
9 t-| 9^2 8 J9 ^2 ^ t-j .

0 (t-j) 0^ 2^

For the autonomous RFDE (F,J,X) on X, define the path £ (0): J TX by

CF( e ) ( s ) eT0S {F(e)} V  s e J

Thus f;fr(0)(s) e T0(S)X V s e J, and because of the above identification 

we get a map £F : ¿*(J,X)- To^(J.X) which is in fact a vector field on

^  ij(J,X). This canonically induced vector field will be used as a lever 

with a dual purpose : (a) viewing the set of all RFDE's ^(J,X) on X as 

embedded into the algebra of all vectors fields r(T°^(J,X)) on ^ ( J . X ) ,

(b) developing a Morse theory for a special class of examples of RFOE's.

While (a) will presently be investigated, (b) will be dealt with in later 

sections.

T heorem (2.2):

Let X be a (p > 5)Riemannian manifold, and let o v< k i P"4 .

i) Each Ck vector field n on i(J.X) induces a Ck RFDE F(n): c^(J.X) + TX 

on X given by

F(n) = T o n

l .» ' ■«>t ’il'«
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k F .ii) F is C iff £ is; moreover,

F = T . CF 
wo

iii) Let p* (TX) be the pull-back of ttq : TX -+ X over pQ , so that we 

have a commutative diagram

P > )

*
P (IT Ov 0

IT ( p )o' o'
TX

♦
X

p_4
Then the Riemannian structure on X gives a canonical CK embedding 

i : p*(TX) -*■ T^(J,X) of p*(TX) as a subbundle of tt1 : To^(J,X) -*i/^(J,X)

i.e. the sequence 0 — > pq(TX) --- *■ T,/^(J,X) is exact (Eells £ /2. },

Lang £ 3 2  ]). Each £F is a section of the bundle i (p0(TX)} — V^(J>X).

Proof:
3-3

(i) This is true because the evaluation p : ^( J. X) + X is Cp , and 

in fact, for each 9 e?£^(J,X),

(T0 P0)(P) = 3(o) V B e t / (J,X).
k ft 2It therefore follows immediately that, if n is a C vector field on J. ^(J,X), 

then F(n) is a RFDE of class C^.

(ii) If 0 e/^(0,X), then

(Tpo o £F)(0) = (T0po )(£F(O)) = 6t o°(F(0)) = F(0).

By (i) above, £F is Ck F is C^.
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iii) Observe that for each 6 e/^(J,X) the tangent space T0(/^(J,X) splits 

in the following manner

Te =¿1(0,*) = h0O^ (j ,x ) 8 q0^ 2 (j>x)

where

H0 X  i (0,X) = (B : 3 e T0 c^i(J,X), M i ) =  0 a.a. s c J> 

and

Q0 ̂ i(J,X) = { B : B e T0 -/^(J.X), B(o) = o )

—  denotes covariant differentiation wrt s e J of vector fields along 9 , 
ds

this being in the sense of Milnor (£ 35']). Define the map i0 : T0^ X  H0̂ (J,X)

by

i0(v)(s) = 6t 0S(v ) V s e J

Since parallel transport is a linear homeomorphism on fibres, it is easy to 

see that i0 is also a linear homeomorphism onto the closed subspace 

H0 „¿ij(J,X) of T0 X  i(J,X). To discuss the smoothness of the map

9 i---*■ i0 it is sufficient to consider the situation locally and then

the problem boils down to looking at the solutions of the ODE

dZ
ds

+ r(9(s)) (91 (s), Z(s)) = o S E J. ( 1 )

of parallel transport (Eliasson [17]), where r is the local connector 

associated with the Levi-Civita connection on TX ; JQ is a subinterval of 

J and 9 ranges through an open neighbourhood U  in e/^(J0 «E). There is 

no ".oss of generality in taking J = [-6,o], so that (1) is solved for 

each v c E as initial condition Z(o) = v. View (1) as a family of time- 

dependent vectors fields f0 : JQ * E -*• E parameterized by 9 e If, whose
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solutions Z(.,e) e ^ ( J 0,L(E)) for each 6 e If . Now each f0 is continuous 

linear in the second variable and we have a map

v  —  / 2(J0 ,L(E))

0 1------ ♦ {J0 5 s H  fe(s,.)}

where

fe(s,v) = -r(0(s))(O'(s),v) s e Jo , v e E,

L(E) is the space of continuous linear maps of E into itself. Since r is 

cP“4, then 0 •— *• f0(.,.) is Cp’3by composition. As the solutions of (1) 

depend differentiably on the parameter 0 , then the map

V ---- - / ? ( J 0 ,L(E))

0 i-----* Z(.,0)

is cP""1 . Therefore i : p*(TX) •> t / 2(J,X) is of class Cp' \ Since 

F is Ck, o $ k < p-4 , then CF = i « F is also Ck. The proof is complete. Q.E.D. 

Corollary (2.2.1)

With the hypotheses of the theorem, let Ck(J,X) stand for the 

set of all Ck RFDF's on X and rk(T</2(J,X)) for the set of all Ck vector 

fields on ,£2(J,X). Then £k(J,X) is a module over the ring of Ck functions 

Ck(./2(J,X) ,R) on ^ 2(J,X), and the mapping

ck ( j , x) — - r k ( V ? ( j >X)

F •— -» EF
is an embedding of modules.

Proof:

Addition in Ck(J,X) is defined in the obvious way, while

multiplication
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ck ( ^ ( j , x ) , R )  x ?k( j , x )  ------- *  ek( J , x )

(f,F) I------------ - f.F

is defined by

(f.F) (6) = f(6)F(0) VeeJ*(J,X).
k fThis is well-defined because since f and F are C then so is f.£ (using the 

theorem and the fact that rk(T^(J,X)) is a module over Ck(-^^(J,X) ,R), 

and hence f.F = TpQ « (f.£F) e £k(J,X).

It is an easy matter checking that the map F i— *■ £F respects 

the module operations, because of the linearity of parallel transport.

Moreover this map is injective since F e £k(J,X) and t; = tqs (F(0)) = o 
V s e J ^ F ( e )  = o V ' 0 e i | ( J , X ) .  Q.E.D.

Corollary (2.2.2):

Suppose that k = p = °°. Then the algebra c (J,X) admits a 

skew-symmetric C°°(<^(J,X),r ) - bilinear product £[ .,.]] : C°°(J,X)x c (O.X)-*- c (J.X) 

This bilinear product coincides with the Lie bracket of vector fields when 

J = to).

Proof:

Define [[.,.■]] by the relation

[[F.G]] = Tpq - [CF, S6] F,G e c“ (J,X)

where [ ] is the Lie bracket of vector fields on </^(J,X). Since

[ ... ] is bilinear and skew-symmetric (LangpiJ), then it follows easily 

from the definition that f[.,.]] is also bilinear and skew-symmetric viz.

[[F.G]] = - [[G.F]] F,G e c"(J,X). Q.E.D.



Remark: (2.2)

If the subbundle

i tP0(TX)}

4(J\X)

of Theorem (2.2) is integrable in To¿^(J,X) (Lang £32]])» then ? (J»X) 

becomes a Lie algebra with Lie bracket jj]»-l| • indeed the integrability

of the subbundle implies that for any L,F,G e c (J,X),

J tF*<I
and so

¡O* [M M  + Í G’ [m ]\] +
[ í f, e[cg-li]]

r [ [  L , f1]  , [ [ F . e ] ]
+ [çG. çL ] +[çL, CL ]

= rcF, &G, cLi] + [sG, [eL. sfi] + [cL, c^.c6]] (*)
= 0

1.». [[•..]] satisfies the Jacobi identity, and the mapping F i— ► £F is

a Lie algebra embedding of c °°(J,X) as a sub-Lie algebra of r (To^(J,X)).

The next result provides a link between the trajectories of

and solutions of the RFDE F.
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Proposition (2.1):

Let (F,J,X) be a C1 RFDE on the Cp(p > 5) complete Riemannian 

manifold X. Suppose F is bounded (Definition 1.5). Then £F has full 

trajectories belongi ng to C^(R, e£^(J,X)). Let M cr-C°(R, ̂ -j (J ,X)) stand 

for the subset of all C° y : R ->r/^(J,X) with the property that

y(t + s)(o) t + s^.0, t c R ,  s e J

Y (t ) ( s )  =

y(o)(t + s) t + s <: o, t e R, s e J.
2.Then M is a closed subspace of C°(R, ^f-|(J,X)), and there is

2. Fa bijecticii of M onto r£^(R,X) carrying each trajectory of £ in M into

a full solution of F with the same initial data and defined on the whole

of R; i.e. each trajectory of £F in M is an orbit of F.

Proof:

Since F is c \  then i is also (Theorem 2.2) and hence 

locally Lipschitz in the sense of Lang ([3T]). Then ^  admits unique 

trajectories. To prove that £F has full trajectories we choose a Finsler 

on T / ‘(J,X) which coincides with the one on the subbundle i{pQ(TX} induced

for each 0 et/^(J,X) by

J
by the Riemanian metric on TX, e.g. define

IBISfl 2 
-r

'e

h*ii.- [i £  i«.>i j:r|£# ds

V  6 £ T0i(f^(J,X). Then it is easy to see that each i0 : T0^ X  "*■ H0o^(J,X)

becomes an isometry, so that ||£F(6)||0 =|F(0)|e ô ) V  0 E iX^(J,X).

Hence £F is bounded in the above Finsler because F is bounded by hypotheses. 

By completeness it then follows that CF has full trajectories (cf. Theorem 

(1.5) for r = o).



Using the continuity of the evaluation map, it is easy to

see that M is closed in C°(R, r£ ̂ (J,X)). Let pQ : ^^(J,X) ■* X be the
/ 2
y ( R, X ) by

P0(y ) = P0 ° Y V ' Y  e M

As a consequence of the definition of M and p^, we get that p"0 is a 

bijection of M onto -/^(R.X) whose inverse is the mapping

^l(R.X) ------- C°(R, ¿5(J,X))

a I------* {R fet i--->- at e rj^(J,X)}

Observe that in order to get the inverse we use the continuity of the 

memory map t â . for a c -^^(J,X). Now let y e H be a full trajectory

of CF with y(o) = 0 e/^(J,X). Let a = pQ(y) = pQ t y , then since
F I  2E is C and p is differentiable we see that a : R + X is C ; indeed, if Ko
t E R,

a'(t) = Tp0(Y’(t)) = Tp0 { CF(Y(t))) = F(y(t)) = F(«t)

and aQ = y (°) = G . Thus a is a solution of F over the whole of R 

with initial path 0 . Q.E.D.

The following trivial but crucial proposition highlights 

the significane of the vector field £F in studying the critical paths 

of the RFDE F.

Proposition (2.2) :

The critical paths of F are precisely the critical points of 

CF in ei^(J,X).

Proof:

The parallel transport is a linear isomorphism. Q.E.D.
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Remark (2.3):

Theorem (2.2) says that each vector field on °£^(J,X) projects 

onto an autonomous RFDE on X. On the other hand the trajectories of the 

vector field and the associated RFDE do not correspond in a natural way 

except perhaps on the subset M <=: £°(R, *£ ̂ (J,X)) of Proposition (2.1), 

and in this case we get backward solutions of the RFDE. Since this is 

not in general the case, we therefore do not expect to obtain the local 

existence theorem (Theorem 1.2) as a corollary of the one for vector fields 

on «if J(J,X).



§3. The Hessians:

Let (F,J,X) be a RFDE on a (p >, 5) Riemannian manifold 

X, and let ^  be the induced vector field on o£^(J,X) (52). Suppose 

that 0 e / j(J,X) is a critical path of F; we define the Hessians of F 

and ^  at 6 following very closely the construction of Abraham and 

Robbin ([ ] ]). Indeed the zero section (TX)Q of the tangent bundle 

ir0:TX ■* X is a closed submanifold of TX diffeomorphic to X; thus the

topological vector space T
0 ( o )

(TX) of horizontal tangent vectors to TX

is canonically isomorphic to T0^ X ,  where F(e) = e T ^ q jX is the

zero vector in TQ^ X .  Similarly the space Tq (T0^ X )  of vertical

tangent vectors to TX at °q (0) is isomorphic to Make the

identification

T (TX) -■ T (TX) ® T 
°0(o) °0(o) 0

(T., .X) S T . . 9 T , ,x 
°e(o) 0<°) 0(°) 0 (°)

and denote by 

* °(°) : T
u0(o)

(TX) T0(o)X

the projection onto the second (vertical) factor. The Hessian of F at the

critical path 6 is denoted by (dF)0 and defined by
¡>2,6(o) V  : W '0-*» T , ,X.

e(o)

F FFor the vector field r, the Hessian (d£; )

at 0 is defined similarly.

-^f(J.X)

The main result of this section describes the relationship between 

the two Hessians of F and the proof essentially amounts to differentiating

the parallel transport at a critical path,and the following lemma will be

needed.
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Lemma (2.1):

Let (U,<j>) be a chart in X, f : U + R a C1 function and 

^ ; u _> tu a C1 vector field. Define the vector field fS on U by 

(fd)(x) = f(x)&(x) V  x e U

Then fd is C1 and for each x e U

n x (fs))(z) - (\f)(!). «Tffrt)a(x)(T*))‘’[r*(a(»))3

+  '<«>• [ < V W x) (t« ) - L  n a ( s ) (T»)>] ( ( T 3 ) ( z ) )  ( i )

W  z e T Xv  X
In particular when x is a zero of f, the Hessian is given by

[d(f^)]x(z) = (Txf)(z)3(x) V/ ze T ^ X  (2)

Proof:

We have <!> : U -»^(U)^E, where E is the Hilbert space model 

of X, and for x e U, z c TU the maps Tx<t>: TxX -► E and TZ(T<)>) :Tz(TU) + E < E  

are linear homeomorphisms. Applying the formula for the Frechet derivative 

of a product in E we get for each x e U and z e T^U the expression 

{Tx(fc>)}(z) ={Tf(x)a(x)(T*)}-1 Lb(f^'1)(<Kx)X(Tx4>)(z)).

+ {T f ( x ^ ( x )(T<|,)}~1 [ ( f « * _1 ) ( * ( * » -  D(T<i>-a . <(._1 ) ( < M x ) ) ( ( T x<t.)(z))^l .

Now this reduces immediately to the required formula (1) once we notice 

that

Tx(f3) = ^Tf(x)e(x)(T(())}"1o [D((T<t>) o (fo) - <f>_1) (<)>(x) j] o Tx 4- (3)

and

V  = i % ( x)(T*)}_1. l'D{(T<t>) o <t»'1)}(<t»(x))j » Tx<(» (4)
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Now suppose x e U is s.t. f(x) = o. Then (1) 

{T (f3)}(z) = (T f)(z).{T (T<t>)>_1[T<t»(a(x))] ( 5 )

As before let

V  - TxU = V
be the projection onto the vertical tangents to the zero section in TU. 

Then
,-1

and

(T<j>)} « T cf)I = id
x It x .X

( 6 )

[d(fS)3 (z) = {uj. Tx(fa)}(z) = (Txf)(z).^(x),

using (5) and (6). Q.E.D.

Theorem (2,3):

Suppose F is a C1 RFDE on a Cp(p > 5) finite dimensional
u?

Riemannian manifold X. Let 0Q c -^(J,X) be a critical path of F. Then

(dCF) (0) (s) = s{(dF)0 (fi)} V ' se j, e T0 /  ?(J,X)(7)
©o 0 ° "

Proof:

The idea of the proof is to use a local argument showing that 

s ► (d£F)0 (8)(s) is a parallel vector field along 0o for each

B e T0 ¿ 2(J,X) which coincides with (dF)0 (B) at s = o.

First of all we split the tangent space T (T o£?(J,X))
°0. 1

in the form

T0 (T^*(J,X)) * Tq ^ 2 ( j ,tX)

r H To i^(J,TX) ® VT0 / 2(J,TX)
0. .  0 ,

( 8 )

where the horizontal and vertical tangent vectors are given by

'"-'2— 2
Je.

and
2,, t 2

H T / 2(J,TX) = (Y c ^ 2(J,T2X) : y (s ) e T (TX^ V  s e J)oD l i °eo (s)

vt0 £  2(j .t x ) ={Y e jq(x.rx): y (s) e to (Tq (s )X) M s e J)
0, 0(0
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We also make the identification

VT /f(J,TX) = T /*(J,X)
Q> 0 9

Therefore the projection of TQ (T JL ̂ (J ,X)) onto the vertical factor 

together with the identification (9) will give us the Hessian at 0Q. 

Indeed by Theorem (2.2),

( 9 )

V 3 e T /*(J,X) (10)
Taking "vertical parts" in (10) and applying the identification in (9) and

(T0 F)(b ) = (T0 Cr)(ß)(o)

also T
°e(o)

(T,
6 ( ° ) X) s T0(O )X’ we see tliat

(dF)0(ß) = (der)0(ß)(o) V  e e Te ./*(J,X) ( I D

We next show that s -> (d£r) (3)(s) is a parallel field by

proving that it is so in a particular coordinate system in X, viz. normal 

coordinates; then because the definition of the Hessian is intrinsic the 

result will hold (on any coordinate system). Fix sQe J, and choose 

normal coordinates (U,c|>) at 0o (sq). Let dim X = n and take the model

E = Rn. Let Vy : U -*• R and 2>i : U - TU i,j,k = 1.... n be the

Christoffel‘s symbols and the standard vector fields associated with the 

chart (U,<j>), where

rij(e0(so)) = 0 i.j.k = l,...,n (12)

(Kobayashi and Nomizu ^2.?!, Milnor !)• Write

iF(o)(s) . 9 , « « » »  a,<e<0> C3)

where 0 , s are allowed to vary in open neighbourhoods about 0Q and sQ 

so that e(s) e U, and the g^ : U -> R are functions. By parallelism of 

the field s £F(0)(s) these satisfy the ODE

" a  gk( e ( s ) ) . V ( e ( s ) )  + S <t»i ( e ( s ) )  r - ^ ( o ( s ) ) g i ( e ( s ) ) . 3 k(os) )  = o
k=l d s k k i , j ,k=l s iJ J

(14)

i I i T T  I , I I { ' M i n i u ;
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the (j,1 : U -*• R being coordinate functions i.e. <{>1 = » <f>

with pi : Rn -*R the projection onto the ith factor.

Since 90 is critical and the ^  are linearly independent,

g.(eo(s)) = o  V  1 < i i n and for all s in a neighbourhood of sq.

Now regarding the left hand side of (13) as a function of two variables

8, s and taking the Hessian at 8 = 8q, Lemma (2.1) gives us:

(d?F) (B)(s) = " (Tef , 9i )(B(S)) - a ^ V * ) )
o i=l 1

V  8 e T0/,(J

for s in a neighbourhood of s .

(14) •=>

|s gk(8(s)) = - " |s ♦i(0(s)) r (6(s)) 9j(9(s))
i > J-l

Denote by £ differentiation wrt 0 while s is kept fixed. Then by
O0

differentiating the evaluation map p : J x/-B(J,X) ■* X 

wrt 8 it is easy to see that

(T0(s)gk)(B(s)) = 9k(e{s))l (B) B e T 0 /,(J,

Is i:iT0(s)9k)(«<s>n = asCle M 0*5»]

= [|0 I s  a - a - S -
where the equality in (18) holds for almost all s in the neighbourhood 

s and for al 8 near 8 ; this is because locally we can write 0 =
0 0 Qt

1 /* o
where t ►* 0fc is a C path in »C^(J,X) and then defining the function

f: L  x J + R Ao o
by f(t,s) = gR (0t(s)) t e I0, s c JQ

(15) 

• X)

(16)

X)(17)

(18)

of
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where IQ is a neighbourhood of o and JQ a neighbourhood of sq, we see 

that the relation

è 2f(t,s) = a 2f(t,s) a.a.s V  t (19)

Ôtî>s bsot

holds by integrating over arbitrary rectangles in IQ * JQ. (19) will then 

imply (18).

Now differentiate (15) cavariantly wrt s to obtain

S = S. i=l
5s [(dCF)0e(e)(s))]

= - f | e . I C i s ^ s »  r i j  (0 ( s >> 9 j ( o ( s ) )]
°i,j.k-1

• 3 i^eo^so ^

s=s

( e ) . V $ < s'»

(by (16) and (18))

- . s ( f0 |s rij(0(s)) 9j(e(s)) +
i>J,k=l

+ ¿ * 1(e ( s ) )  | 0 r ^ ( e ( s ) )  g j ( e ( s ) )  + | s «1(e(s)> r ^ O t s ) )  ^ g j (e(s ) )}

ae

<0W V So »
= 0 because of (12) and the fact that 9j(0Q(so)) = °*

Since s is arbitrary it follows that s ■+ (d£F) (8)(s) is
0 Uo

a parallel vector field along 0Q and, by uniqueness of parallel transport,

relation (11) dictates that

(d?F)0 (f»)(s) = ^ oS{(dF)0 (P)} V  s e J Q.E.D.
Remark:(2.9)

In terms of the notation of Theorem (2.2), our last result
F" P 2(Theorem 2.3) says that for each critical 0 range of (d£ ) H oC ,(J,X),

* 2 .
the fibre at oo of the subbundle i (pQ(TX)} -*• «^(J,X). This observati

will be used in the forthcoming section to give a satisfactory definition for

j tthe index of a critical path oq e «¿^(J,X).

on

T.,1

Tli ▼  x x a  i v i  XVQOX
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§4. RFDE's of Gradient Type: (GRFDE)

This section is intended to contribute towards isolating a 

class of RFDE's for which the classical Morse inequalities are valid in 

the state space <^(J,X).

X is a Cp (p > 5) finite dimensional Riemannian manifold.

We fix a Cp" 4 Riemannian metric g on which coincides with the

pull-back onto the subbundle i{p*(TX)} of the Riemannian metric on the 

base manifold X.; g may betaken to be either of the following two metrics 

g1(0)(B,y) = <e(-r),Y(-r)>0(_r) ds

g2(9)(B.Y) = 1 f°_r <e(s),y(s)>e(s) ds + ±  , ^ ? e(s) ds

for 6 e^(J,X), 0 , y e T0</^(J,X). All results may be taken to hold 

for any of the above metrics unless one of them is explicitly singled out.

A gradient RFDE on X is a 4-tuple (F,0,J,X) where (F,J,X) is 

a (C1) RFDE and « : ,/^(J,X) + R a C 2 function s.t. ?F = grad ® in the 

admissible metric g on o£^(J,X).

Condition (M):

A RFDE (F.J.X) satisfies condition (M) if for each critical 

path 6 c </^(J,X) the restriction (dÇF)01H H0 o£^(J,X) is a

linear homeomorphism. (See Remark (2.3)).
c 2If we denote the set of critical paths of F by C(F)<=: <£. -j (J,X),

condition (M) is a regularity condition on C(F) making it into a submanifold
2

of ^^(J,X) and at the same time expressing "non-degeneracy" in the 

transverse direction to C(F). Indeed we have
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Proposition (2.3):

Let (F,i>,J,X) be a GRFDE with 9 C2. Then C(F) coincides with 

the critical points of 9 in *£- 2(J,X), and if T2 4>: Tgy^2(J,X) x  ̂(J »X)-»- R 

is the Hessian of i at 9 e C(F) (Palais [3?"] §7) then (d?F)g is a
2

symmetric operator on Tg^-jiJ.X) s.t.

(Tl *)(ß.Y) = g(6)((dCF)0(ß),Y) V  ß , Y e T0 ^ 2(J,X).

Proof:

In what follows we choose a local model of the form -yf2(J,H),

where H is some Hilbert space and ^f2(J,H) is furnished with an inner

product which coincides with that of H on the constant paths i.e. think of
ro

it as either <^P>Y> 1 =<\B (-r),Y(-r£>H + F /  ' (s) »"Y' (5)̂ > H ds

br <3,Y^2 = 7  j° < B ( s)»Y(s)>Hds + -p j° <B'(s) ,y'(s)>Hds for B,Y o/f (J »

It is easy to see from the definition of a GRFDE that 

0 c C(F) T0 i = o.

Working locally, the Hessian T2$ at 6 e C(F) is given by the 

second Frechet derivative 

?2,, „ p 2,

H).

t/ 2(J,H) x / ‘(J,H)

(ß.Y)

R

D‘*(0o )(ß)(Y)
O O

and because $ is C it follows that T0 i is a continuous symmetric bilinear 

form on Tg®^f2(J,X). (Dieudonne £ 2 J P.175).

To prove the last assertion of the proposition, we pass to the 

cotangent bundles T X and T ^ 2(J,X). Define the 1-form 

« : «/i(J.X) — * T* ¿2(J.X) by

(o(6) = T04> V 9 e t/ 2(J,X)

; T  ,1 • I
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Then
ie

w = (grad $ )

where * is the dual isomorphism fulfilling the diagram

T(tV*(J,X)) <----- ^ ------ T(T^?f(J.X))

★
tV* (J,X) «----------

( 1 )

with * and T(*) are linear isometries on the fibres. In fact

T0 (*) : To (T^(J.X)) --- > T0* (T^f(J.X)) can be identified with
°0 °0 6

T0 4 j .X) * T0/5(J,X) --- > T0/i(J,X)x T*^5(J,X)

(B>y ) 1------------------ *• (P»Y )

where y (s) = (y (s)) V s e J.

Observe that 0 e C(F) w(0) = o, so that we can define 

the Hessian of to at such a 0 in the spirit of §3; it then follows easily 

from (1) and the above observations that for each 0 e C(F),

(dto)0 = [(d(grad 4> ))0 ] = C(dCF)0]

where * denotes the adjoint of the operator (dCF)0 . Finally, identifying 
2

the Hessian Tn <& with the composition
p? ro pr2T (T/f(J,X))---- 0 ---- > R * R ----------- * R

°0 1
we obtain

(Tl *)(b .y ) = (du»)0 (3)(y ) = g(0)((dSF)p (B),y )

for B, Y e T0 </^(J,X). Q.E.D.



Proposition (2.4):
k .

Suppose dim X = n and (F,i>, J,X) is a C GRFDE satisfying
k

condition (M). Then C(F) is a C. (o < k $ p-3) closed submanifold of 

c/^(J,X) with codimension n, called the critical manifold of F. Further­

more, the correspondence

/J(J,X)5 9|-------- * [He «=■ T0O£^(J,X)

defines a Cp’^ subbundle of : T</^(J,X) — ► ^f^(J.X) orthogonal to 

i{p*(TX)} and tangential to the critical manifold C(F).

Proof:

The zero section (TX) of tt : TX -*• X is a Cp  ̂ submanifold ' 'o o

of TX and

C(F) = F_1 {(TX)q>

Recall that by Theorem (2.3) we have for each 0 e C(F)

(dCF)c (B)(S) = 0t o s i(dF)0(3B V s  e J, V(S c T0^ ( J , X )

so that Condition (M) implies that (dF)0 : T0 /?^(J,X) -*• T0 q̂ jX 

is surjective. Moreover ker (dF)0 splits in T0 ~f^(J,X) because of the 

Hilbert space structure, it therefore follows that F is transversal to (TX)q 

and hence C(F) is a submanifold of <£ ^(J,X) with tangent space(s)

T0C(F) = ker (dF)0 = ker (d£F)0 ^ 0  e C(F).

But by Proposition (2.3) we know that (d£F)0 is self-adjoint in g(0) and 

because of the fact that (dCF)g|H0/^(J,X) is a linear homeomorphism we 

must have

ker (d£F)e = [H0/^(J,X)]a = T0C(F) V  e e C(F).

The statement about the differentiability of the subbundle 

0 &i0 £  i(J,X):f is a di rect consequence of the differentiability

of the Riemannian metric together with that of parallel transport 

(Theorem (2.2) (iii)). Q.E.D.



The above proposition exhibits a high degree of degeneracy for 

the critical paths C(F); and it also suggests that: (a) if we are to develop 

Morse inequalities for the function 0 , then these will have to involve 

estimates for the number of components of C(F) rather than the individual 

critical paths i.e. adopting the viewpoint of R. Bott (Bott H 4  ,

Eells f 12 ] ), (b) since C(F) is infinite-dimensional for r > o, <J> never 

satisfies condition (C) of Palais and Smale (Palais and Smale £ 4 °  ] ,

Palais [ 3 °! ] ).

However if X is finite-dimensional then, by counting components of C(F), 

one might be able to drop condition (C) altogether. The components of 

C(F) are called critical manifolds of $ , and condition (M) says that 

these are non-degenerate in the sense of Bott (Eells f/2]).

The following result was first proved in [_ 4  ] for compact 

non-degenerate critical manifolds.

Proposition (2.5):

Let (F,$, J,X) be a GRFDE satisfying condition (M). For each 

6 e C(F) define the index of 0 , X(9), to be the dimension of the maximal 

subspace of H0 “j(J,X) on which (d£;F)Q |HQ^'^ (or T ^ 4 > ^  xH0^i) is 

negative definite.

Then $ and the function

X : C(F) ---- * Z*°

e i-------- *■ x(e)

are both constant on each critical manifold in C(F).

Proof:

We prove first that <t>|C(F) is locally constant on C(F). By 

Proposition (2.4) it is sufficient to show that TQ 6 e C(F), vanishes on 

the fibres [H t^(J,X)] tangent to C(F); indeed if B c pi r£^(J,xy] then 

(TqOMB) = g(6) (£F(0).B) = O by orthogonality.

Thus $ is constant on components of C(F).



To show that the index map C(F) -* Z>0 is locally constant 

we use the notation of Theorem (2.2). Fix 0Q c C(F) and a sufficiently 

small neighbourhood V of 0Q in C(F) so that pQ(V) is contained within 

a normal chart in X around 0Q(o). Let H be the real Hilbert space 

T0 , .X, then for each 0 c V we have isometries h0 ,.: H T0 ^ X  given
o' •

by parallel transport along geodesics in X. Also by choice of the
P 2 2

Riemannian metric on oL^(J.X) each map i0 : Tq (0)X T0 »¿^(J.X)

is an isometric embedding.

Now define for each 0 e V a continuous linear map 

Ag : H by setting

*0 = b 0 (o )  “ ( dF)0 ° i 0 " h0 (o)

Using the symmetry of the Hessian (c£F)0 (Proposition 2.3) and applying 

Theorem (2.3), it is not hard to see that each A0 is a symmetric linear 

homeomorphism. /. V  8  e V, A0 e GL(H), the group of invertible linear 

operators on H. Therefore we have a continuous map

V ------ ► GL(H)

0 ,------- - %

For any A e GL (H), let d(A) be the dimension of the maximal 

subspace of H on which A is negative definite. Then since the identification 

maps and io are isometries it follows from the definition of X that

X ( 0) = d(A0) \/ 0 e V. By virtue of the continuity of the map© i---*

we need only show that the map

d: G L ( H ) -------► Zi0

A — -  d(A)

is locally constant in the uniform operator topology on GL(H). We proceed 

to do so by choosing A e GL(H) and letting H be the maximal negative 

subspace for A. Define the map p : GL(H)x(E^ -{o}) -* R by
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y(C,v) = < C v , v >  V  C e GL(H)

V  v e Ej| -{0}

where is the inner product on H. Then y is continuous because

the evaluation map and the inner product are. Therefore the set 

Ma = {(B,v ): B e GL(H), v e -{o}, <Bv,v> <  0}

= y \-oo,0)

is open in GL(H)x(EA -{0}). Denote by GL(H) the projection of onto

GL(H). Then MA is open and A e Mj; so 3 e > 0 s .t.

B c GL(H), II B_A|| < e (B,v) e Ma V  v e ea

^  ea - EB =* d(A) 4 d(B) (1 )

With thei above e (depending on A), replace A by -A and B by -B to get

II B-A|| < e —=> d(-A) * d(-B) (2)

If dim H = n, then as A and B are linear homeomorphisms,

d(A) + d(-A) = n = d(B) + d(-B), and (2) gives d(A) » d(B) if ||B-A|| < z . 

Combining this with (1) it follows that || B-A|[<e-^>d(A) = d(B).

This completes the proof of this proposition. Q.E.D.

Having made the necessary preparation, our study of C(F) 

culminates in writing down the Morse inequalities in the state space 

^  ^(J,X) for the g ^  GRFDE (F,t,J,X) i.e. where =^(J,X) is being 

furnished with the metric g-j. The inequalities are intended to point 

out the relationships between the topology of the state space '^^(J,X) 

and the number of critical manifolds of i> with a given index, the latter 

being well-defined by Proposition (2.5).
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We shall borrow our terminology from Palais [ 3 ? ]  and 

Milnor [ 3 5  ]; so fix a field K (e.g. K = Q or R) and for any pair 

of topological spaces (B,A), A i  B, denote by Hk(B,A;K), k = 0,1,2,..., 

the relative singular homology groups with coefficients in K. Say 

(B,A) is admissible if each Hk(B,A;K) is finitely generated and 

3  nQ >- o s.t. Hk(B,A;K) = o V  k i nQ. The k-th Betti number 

Bk(B,A;K) of an admissible pair (B,A) wrt K is the rank of Hk(B,A;K) 

over K, and the Euler characteristic x(B,A;K) is defined by
oo

X(B,A;K) = 2 (-1)mBm(B,A;K) (a finite sum)
m=o

which reduces to a finite sum for admissible pairs. If a e R define 

i> = (9 : 9 e <^2(J,X), $(0) £ a) ; Call a e R a regular value of
3 I
$> if 4>~̂ (a) contains no critical paths of F.

Theorem (2.4):

Let X be a compact n-dimensional Cp(p > 5) Riemannian manifold 

and (F,$,J,X) a g^GRFDE with F of class C2 and satisfying condition (M). 

Suppose a, b e R, a < b, are regular values of $ . Then the pair 

(*b’̂ a^ ^»'issible, anc* ®  ̂ Ta >B3 C(F) is the union of a finite 

number of critical manifolds of F. Indeed, if pm(a,b;i>) is the number 

of critical manifolds of F in $  ̂ [a,b] with index m, then

k k
m(*b.*.iK) « Z (-Dk"m uja.b;*)

m=o m=o

V  k i o; equality holds for k n = dim X i.e.
n ,n-mx ( V V K> = 1 (_1)m=o

I I ? i . i i i t.i  : j i h  \ \ i n:.
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Proof:

Since o¿*(J,X) is endowed with the special metric g1 it is 

easy to see that for each 0 e <^(J,X)

[H0 = 1 6  : 6 e T0 ^ ( J . X ) ,  6(-r) = o)

Thus 6 *— » [He /  i(J,X)] is an integrable subbundle of T ■/'’̂ (J.X)-» ^(J,X);

in fact it is tangent to the fibres of the fibration p_r: ¿  1 (J»X) -*• X

where p is evaluation at -r i.e.

p_r (0) = e(-r) V e e ^ | ( J , X )

The fibres of p are the closed Cp"3 submanifolds p x e X, of

/  ̂ (J,X) and T0 p_r (x) = [H0 X. ̂ (J,X)]^ V 0 s.t. 0 (-r) = x.

- 1 ,

( 1 )

Now <J> is constant in each fibre p_r(x), because if 

0 e P~lr(x) and 3 e [h0 X  ^(J » X t h e n

(T0 *)(3) = 9-|(O) (CF(0),p) = o by orthogonality.

Define a function f : X -*• R by

f(x) = 4>(x) V'x e X
3 • 3where x : 0 — >X is the constant path at x. Then f is C because $ is C , 

by hypothesis;and the mapping X -*• *2f^(J,X) is a Cp ^(Riemannian)

x -*■ x

embedding. Moreover it is easily seen that 4> = f • p_r, and a simple 

calculation yields

C(F) = P:J{C(f)} (2)

where C(f)<^ X is the set of critical points of f in X.

We next show that f is a Morse function on X, i.e. one all of 

whose critical points are non-degenerate (Milnor f 3 5 J ).

I
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Let X o/^(j,X) be the set of constant paths J -* X. Then X is a closed 

Riemannian submanifold of ,/^(J,X) canonically isometric to X. In fact 

X lies orthogonally across the fibration p_r in the following manner

V  = Hx /?(J *X) and 9i (x) |H~ X\ x H~ = <-..>x .

the inner product on TxX. Also from the definition of f it is easily

checked that

grad f = grad 4>|X (3)

where the gradients are taken wrt the Riemannian structures on X and 

^/^(J.X) respectively. Let x c C(f). Then the Hessian [d(grad f^-iT-X i D  

is given by the composition.

Tg(grad f): T~X - Tq (TX) = T^X « T - X --- ^  T-X ,

therefore, differentiating (3) and using the fact that the Hessian of 

grad <J> = £F is the same whether taken wrt the subbundle 0 -*• HQ ^(J,X)
p

or wrt the whole tangent bundle T /^(J,X) (Theorem 2.3) it follows that

[d(gradT)]- = (dcF)x | H- J  J ,X) (4)

Since F satisfies condition (M), (4) implies that f has all critical 

points non-degenerate and hence so has f by isometry. (4) also tells us 

that
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X(x)= dimension of maximal negative subspace of p(grad f)]^-

= index of x wrt f, again by isometry.

Thus for each x e C(f) the leaf • p’J.(x) is a non-degenerate critical

manifold of F with index equal to that of x relative to f, and conversely.

Suppose a,b e R, a < b, are regular values of $ ; then from 

the above considerations a,b are also regular values of f and the latter 

satisfies the Morse inequalities stated in the theorem with $ replaced by 

f. Also for each index m we have um(a>b,4>) = ym(a,b;f); thus the 

required inequalities for $ will fall out of those for f if we show that 

the pair (<f>b><j>a) is homologically the same as (fb,fa) in the coefficient 

field K. We shall prove more than that: viz the homotopy equivalence 

(<I>b,<i>a) a (fb,fa). Consider the embedding of pairs J :(fb «fa) ♦ (4>b»*a)

defined by

To see that the evaluation p_r: ($b ,<I>a) -*• (fb>fa) is a (ieft and right) 

homotopy inverse for j, observe that first p_r°j = id|fb- On the other 

hand we define a homotopy h: J x (4>b ,<j>a) -► ($b>$a) of pairs parameterized 

by J and connecting j° p_r and id|i>b in the following way:

for t e J, 9 c 4>b- Then clearly, h(o,.) = id|<t>b and h(-r,.) = j *’P.r- 

To prove that h is continuous, fix tQ e J and 0q e $b', use compactness

j (x) = x for x E fb

Mto cover h(tQ ,G0)(J) by a finite number of epen sets in X and

choose closed subintervals J s.t. °o^Jk^£1 \  1 -i k $ M,

k
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,uk) = {6 : e e / i ( J , x ) ,  e(Jk) c u k)
in X  J,X). By continuity of the evaluation map

J X + X 3 an open interval JQ <c JM centred at tQ and a neighbourhood

VQ of e0 in /*(J,X) s.t. e(t) e UM V  t e JQ , V  0 e VQ . Then it 

is not hard to see from the definition of h and the choice of the 

that

(t,0) e J0>< {Vq f\ A  =y’h(t »6) e °^l^Jk,Uk̂
k=l k—1

^ ^ 2 , ,  •• ' j ’ *»• '/\ /,2,
k=l

M , M ?
Since O  X  i(Jk»uk) and JQx {Vo f\ H  / 1(Jk>U|<)} are open 

k=l k=l

neighbourhoods of b(tQ >60) >(t0>90) respectively, it follows that h is the 

required homotopy.

Hence 3m( < V V ,K) = 6m(fb ,fa ;K) (sPanier E'H’J chaPter 4 §4) 

and the result follows. Q.E.D.

Corollary (2.4.1):

With the hypotheses of the theorem, we have

em ( W K) * Pm(a’b‘>4’) V m -

Corollary (2.4.2):

With the hypotheses of the theorem, F has only a finite number 

of critical manifolds, and Bm(X;K) <: um V m >. o, where 0m(X;K) is the

m-th Betti number of X and is the number of critical manifolds of F

with index m. Also x(X‘>X) = £ (-1) p , where x(x',K) is the Euler
m=o

characteristic of X in the field K.

R emark (2.5):

A much wider class of gradient RFDE's can be defined by starting 

with a gradient field grad $ on «^(J.X) wrt an admissible Riemannian metric 

(§9) where <t>: <^(J,X) -> R is a given smooth function. We look at all

?«j’i r i i  1 5 ■«» j 1t1 h ;
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CHAPTER 3

Linearization of a RFDE, The Stable and Unstable 

Subbundles

This Chapter is devoted to showing that a C1 RFDE (F,J,X) on 

a Riemannian manifold X can be linearized at each 0 e «¿^(J.X), and to the 

study of the dynamical properties of this linearization which live on the 

tangent bundle T ¡^(J,X). The basic idea here is to use covariant 

differentiation in order to obtain the linearization and then observe that 

the topology on the Sobolev space =^^(J,X) is flexible enough to make the 

theory of compact linear semi-groups applicable.

We fix ideas by taking X a Cp(p ^ 4)(separable) Riemannian 

manifold modelled on a real Hilbert space E, and ( F , J , X )  a Ĉ  RFDE on X.  

- ^ f ( J . X )  is given a Riemannian structure induced from that of X via the 

metric g£ (Chapter 2, §4) viz.

92(0)(B.Y) + 7  * ^ ( s )  ds

V ' i c  /*(J.X), 0, Y e T0/^(J,X). When X is flat, a Hilbert space H, 

the corresponding inner product on 7^(J,H) is taken i.e.

^6 . Y> = 7  J^<e(s),Y (s)>Hds + 7 J ° r<B'(s).Y’ (s)>Hds

V  e.Y E /  ̂ (J,H).

Although all our calculations will be carried out in the 

metric g^, the reader may check that everything in this Chapter still 

works if < ¡ 2 were replaced by the metric g-j of Chapter 2 §4.

Our future discussions will require the following results 

concerning the smoothness properties of the orbits of F. We draw attention 

to the fact that these results (viz. Lemma (3.1), Theorem (3.1) below) are 

evidently independent of the Riemannian structure on X.



Lemma (3.1):

Let e > o and a e J. [-r.e^X)•

i) If a is C1, then the memory'map

[o,e] -- - 6°(J.X)

t ,----------* ^

is C1 and (a^)' = (a‘)t e [°*el

ii) If o' e ^([-r,e}TX), then

[o,e]-----► /,(J,X)

t .------ * at

is and also (â .)' = (<*')̂  E C°»E]-

Proof:

We only give a proof for (ii). The argument for (i) is 

completely analogous. First we show that it is sufficient to prove the 

result in Hilbert (or Banach) space. Since X is separable then by 

McAlpin's embedding theorem (Eells £ / 2."]) we can choose a embedding 

(or even an immersion) i : X ■+ H of X into some Hilbert space H. By 

the hypothesis in (ii) it is clear that (i » a ) 1 e ./^([-r.^.H), so that 

if the result is true in Hilbert space we must have

m'(t, i »a) = m(t, Tied') t z [o,e] (1)

Now i induces a C*3  ̂map i : -./^(J.X) -*• /^(J,H) (an embedding) by 

composition; so it is easy to see that if 0 c </ij(J,X) and (5 z T01/^(J,X) 

then

(Tf)(0)(B)(s) = (Ti) (0(s))(fS(s)) s e J  (2)
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Evaluating each side of (1) at s e J we get

d •*<-
{m‘ (t, i » a)}(s) { 3t ^fnit:,a)l >(s)

{(TT)(m(t,a))(m' (t,a))}(s)

= (Ti)(a(t+s))(m'(t,a)(s)) by (2)) (3)

and {m(t,Ti . a')}(s) = (Ti)(a(t+s))(a'(t+s)) (4)

We then equate the right hand sides of (3) and (4) and use the fact that 

(Ti)(ot(t+s)) is injective to get

m ’(t,a) = m(t,a') t e [o,e] . (5)

Hence without loss of generality assume that X = H, a real 

Hilbert space. Fix s e J, let t e [o,e]. Then since a is C1 , Taylor's 

theorem gives for small enough h e R:

«t+h(s) = a(t+s+h)

a(t+s) + a'(t+s)h + h f  {a'(t+s+uh) - a'(t+s)} du
J o

As the evaluation map is continuous linear, then 

a ( 6 )t+h = at + h-(a ')t + h>R(t»h) 
where R(t,h) e ^ ( J , H )  is given by

R(t,h) = / o i(a )t+uh "(a,)t}du (7)

Now since a' is of class it is easily seen that (t,h) +-> R(t,h)e^(J,H)

is continuous, and R(t,o) = o. Therefore we can apply a converse of 

Taylor's theorem ([ 1 J Chapter 1 §2) to conclude that 

t -+ at e,/^(J,H) is C1 on (o,e) and (cx̂.)' = (cx')t V t £ (o,e). This 

result can then be extended by continuity of [o,e]a t ■* (a')t e ^ ( J , H )  

to include right hand (and left hand) derivatives at t = o (t = e). Q.E.D.
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Condition E-j(k) (1 s k s p-2)

Let 0 e /^(J,X) and choose a chart (U,<t>) at 6(o), 0 < 6 $ r 

and o < e $ 6 so that the local representation = F.C: [o,e)x^([-6,o] ,U) - TX

of F at e is well-defined (Cf. Definition (1.4)), where C is the localizing
II |<

map of Lemma (1.1). Suppose that F” admits an extension to a C map 

[o.c) x C°([-6,o],U) -»■ TX„ (1 s: k $ p-2).

Note that if F satisfies condition E^(l) (k=l), then F is 

locally Lipschitz (Definition 1.4).

The next result exhibits the fact that under condition E-j(k) 

full solutions (and orbits) of F get smoother and smoother as time goes on. 

Theorem (3.1):

Suppose that F satisfies condition E^k) (1 $ k $ p-2), and let 

a6 : [-r,<*>) + X ,  0 e .¿^(J,X), be a full solution of F at 6 . Then 

a0 |[qr,<=°) is Cq+  ̂ for o $ q ^ k, and the orbit t >— * a0 e<£^(J,X) is Cq 

on [qr ,oo) f I i £ - ^ •

P roof:

The proof proceeds by induction on the integer q. Result is

obviously true for q = o. Suppose, by induction, that for some

o v< q < k a0 1 [qr,“>) is Cq+1. Fix t e f(q+l)r,<») and choose a chart

(U,<(>) at a0(tQ), o < 6 $ r and o < e < 6 so that the local representation

F %  : [o ,£) x oC?([-6,o] ,U) TX is extendible to a map 
at "
[o,e) x C°([-4,o],U) -+■ TX, where a0{[to-f, tQ +e)} c: U, tQ- 6>qr.

Applying Lemma (3.1 )(i) to the Cq+  ̂ map a0 |[tQ-6, tQ+e) we see that 

the path ^ C ° (  t"6 *°.l >u)

is Cq+1.
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Now if we look at the proof of Theorem (1.2) (or alternatively, 

the definition of C:,Lemma (1.1)) we get

(“  ) ' ( t )  = F e -  to-  r ,  Ja t • {-o,oj ^  t e [tn .tn + e) O )

As F e admits a Ck extension to [o,e)>< £ ([-6,0] ,U) ,% q+lthen the right hand side of (1) may be viewed as a composition of CM maps, 

and so a®J(t0,tQ + e) is C^+ .̂ By the arbitrariness of tQ , the inductive 

hypothesis is valid for q + l ,  thus proving the first assertion of the 

theorem. The second assertion of the theorem follows immediately from the 

first one and a repeated application of Lemma (3.1)(ii). Q.E.D.

In the notation of §(2.2) recall that the vector field 

EP on ./^(J,X) is a section of the subbundle i{ pQ(T,X)} T^?^(J,X) 

of the tangent bundle ^ : t /^(J,X) -*-/^(J,X). We use the notation and

terminology of Eliasson ([ (7 ] §2); let V signify covariant differentation 

of sections of the Riemannian bundle i{ pQ(TX)} — ► -x. .j(J,X). Thus for 

each 0 e ^^(J,X) we have a continuous linear map V£F(0) :T^(J,X) -*■ H^/^J.X), 

called the 1inearization of S? (or F) at 9 . Note that when X is a linear 

space VS? coincides with the ordinary Frechet derivative, and if 0 is a

critical path Vf;p(0) is the Hessian (d£^) (§2.3).
0

The following lemma is a crucial "bridge-result": allowing us 

to cross over between the linearization of F on TjC ^ J jX) and the classical 

autonomous linear situation.

Lemma (3.2):

For each 9 e/^(J,X), parallel transport defines a (canonical)

Hilbert space isomorphism 9t : T0oi?^(J,X) -*■ J -T0(o)X)< Indeed if
p

dim X < “> , then for each B e T0O£^(J,X)

Ik
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M l) - eTo [ d { ex ° (e(s))>] a-a- S e J
ds ” 3s

where "d " denotes ordinary differentiation of paths on TQ^ X ,  apd 
3?

"D " covariant differentiation of vector fields along 6 (Milnor [35]»
3s
Eliasson [17 ])•

Proof:

Since the identity we want to prove is intrinsic, it suffices 

to check it locally in X. The linear bisection 0t : T0/^(J,X) (J>T0(O)X)

is defined by

6t (6)(s ) = 0T°(e(s)) V ' s e J .

The fact that 0t is an isometry - wrt the inner product ggfs) and its

flat analogue on ^ ? ( J ’T0(o)X) ' is an eaSy consecluence of the definition,

the given identity and the isometric property of parallel transport.

Suppose dim X = n. Let 6 c T^ /  |(0,X), 0 c *x--|(d>x)> and

fix s c J. In local coordinates (U,<(>) at e(s ) in X, write 
0 u

e(s) = l h.(e(s)) b i(e(s)) near sq (2)
i = l

• D3(s ) = i  d h. (e(s) ) i> .  ( e ( s ) )  + r. d_cj,1 ( e ( s ) ) r l?i ( e ( s ) ) h . ( e ( s ) ) ^ k( e ( s ) )
' • ~3s k-1 3s k K i,j,k=l 3s J

a.e. near sQ (3)

where ())i: U -+ R are (Cp) coordinate functions, r^ : U -*■ R the Christoffel 

symbols associated with the Levi-Civita connection on X, and the are 

standard vector fields on U. Using the linearity and the group property of 

parallel transport, it follows from (2) that

a.e. near sq
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If g(sQ) = °» then h-j(6(s0)) = 0 V  1 <: i < n, and by 

comparing (3) and (4) we obtain in this case:

s
M i )  Ias Is=s.

6 t 0  °  ( d i 6 T ° ( B ( s ) ) } |  )

^  s=so

(5)

On the other hand if g e H i.e. a parallel vector field

along e then equation (5) is trivially satisfied.

In order to see that (5) actually holds for all g c T0./^(J,X) 

write each such g in the form

3 = 3-, + 62
where g](sq) = o and g2 e H0 /^(J,X). Thus satisfies (5) and so 

does /=2* hence by linearity of both sides of (5) in g it follows that the 

result is valid li g t T0 <^(J,X). Q.E.D.

The next theorem contains two well-known classical results: 

a Sobolev embedding result and Rellich's lemma. We therefore quote them 

without proof, (Eells [ 12 ] §6, Sobolev [45] , A. Friedman [ ] P.D.E's

Part 1 §11).

Theorem (3.2):

Let H be a real Hilbert space and denote by «/^(J,H) the Hilbert 

space of all paths e c /^(J,H) s.t. e' e </^(J,H), with the inner product

= ^®(s )»*(s ))h dS + f  <©' <s) (s>>Hds<c0 J -r J -r

j ,°r < 0"(s),4."(s)>Hds}

for e, >H). Then the following is true:

i) (Sobolev's embedding theorem): The embedding

.¿2(0,H) c----* £°(J,H)

is continuous linear.

i



ii) Rellich's Lemma. The embedding

is continuous linear. If, further, dim H < <*> then this embedding is 

compact.

Our next result draws upon the above theorem and the existence- 

uniqueness conclusions of Chapter 1, in order to generate a global semi-flow 

on the fibres of T»^(J,X); and then explore some of its basic elementary 

properties.

Theorem (3.3): Assume dim X < °° .
o

Suppose that for each 6 e^(J,X) F satisfies Condition E,,: the 

linearization V£F(0) admits an extension to a continuous (linear) map 

T0 £°(J,X) - T 0(o )X.

Then 1 a semi-flow on T0 /^(J,X) given by a strongly continuous

semi-group {T.} of continuous linear operators on T =^(J,X) having the 
*■ t>o

properties:

i) The map R) 0 x T0^( J, X) — • TQ /^(J,X)

(t,B) •-----*■ Tt(B)

is continuous, and is Cq"1 for t £■ qr, q(integer) > 1.

ii) T. . =T.oT. for t, ,t9 > o, T = id, the identity map on T. /2(j.X).2̂ \ c. o o i

iii) 3  constants M, p > o (depending only on 0 ) s.t.

I m b ) II t .2 * (Meyt + i)J ||b ||t ,2 
z 0^- 1  e l

iv) For each t >, 2r the operator

Tt: Te ^ i ( J *x) 4— 75 is comPact-

\ / t i o  (1)
> 2 ,V  B e T0^ 2 (j ,x ).
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v) For each B e T0/^(J,X) the vector field Tt(B) satisfies the "linear 

retarded covariant FDE":

D_ (Tt(B)(s)}| VÇr(0)(T.(8))(o) t > o ( 2)
i S s=o

Proof: n Q
Let 0 e/^(J,X). Using the isomorphism t  of Lemma (3.2)

A 2
we define a continuous linear map D0F: L  i(J,Te(0)X) T0(o)X

D0F = T0po <= V ? F ( 0 ) o  6 t _1 . Then (D0F,J,T0^ X )  is an autonomous linear

FDE on the Hilbert space T0^ X :  because of condition (E2) it has unique 

solutions (Theorem 1.2). In fact all solutions of D0F are full: to see 

this we use successive approximation on an interval f-r,N] where N > o 

is an arbitrary real number. Let y e ^^(J,T0 ô^X) and choose any 

a0 e t?°([-r,N], T0(q )X) s.t. a°|j = y . Define the sequence 

(an} l_  in t °(F-r.N],T0(o)X) by

/

n=o

an+1(t)

’ y ( ° )

Y(t)

DeF(^)du o $ t N (3)

-r <: t $ o

for n ï o, where D0F is an extension of D0F to Z °(J >T0(O)X)•

Letting || -ll^0 denote the supremum norm, Condition (E^) implies that

3  K >  o s.t.

\(^n (n)| , « K II nil V n  c £°(d,T0(o)x)
I0(o) t ' '

Hence (3) and (4) imply - by an easy induction argument - that

(4)

n+1
t 0

Kntn
nl

a°ll V  o ,< t < N 

n >, o

(5)
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Since = a° + (aj. - a°) + ... + (a" - a"-1), then it follows from

°o ^
the uniform convergence of the series E K t to e , that (a.}

n=o n, n=l

converges (uniformly) on |p,N] to an element of £°(J,T0 ô jX) for each

t e [o,N]j thus we get a solution aY : [-r,N] — ► Te(o)X ^0^ at Y '
<v

As N was arbitrary oc may be considered as a full solution of D0F and we have

V  t i o.II “t ‘ “t l^o
I 1 O m Kt |a - a || e

e°
Now it is easy to see that the solution a of D0F at*Y satisfies 

the inequality

%  * + K
£  -o£  hvi du t £ o

Therefore by Gronwall's lemma (Coddington and Levinsonf 5 ] p. 37 ,

or Petrovski [ 41 ] p.59)

KiL* eKt l|Y|lr y t i o (6)

map Tt : T0 ¿ ‘(J,X) * 

rt

Employing the above terminology we define for each t o a

2, by

T. (6) = V 1 {cJ(ßb

\ ADenote by | 

the metric g2 . and by

paths l (J »T0(O)X) viz

V  ß e T0 /*(J,X)(7)

the Hilbert norm on T0 ^^(J,X) given by

■ || 2  the corresponding norm on the space of

*1

= [7 / > ) l * (0)ds+l (s) I e(o)dsl (8)
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Then by Lemma (3.2) and (7)

l |Tt <e) l T ¿ 2  = I V  { e ) |l ^ 3 e  Tfl « ¿ f y . X J  (9)t i0CA 1 o i
1

Now consider, for ft e T g ^ ^ J . X ) ,  the following:

0

i  « i 2
r

L2 e2Kt ||3| |2 2 (10)
Te l

where we have used (6), Sobolev's embedding theorem and the fact that 
0 2

t is an isometry; L is some constant. Also

_à
Ss

A c e )  / . m 2(s)| ds >i2 " s *  » r

'-t
|0T(f5)'(t+s)|2ds +

-r

ei  I IVKl^ )l2 dsr -t
0 $ t v< r ( 11 )

Now estimating each term on the right hand side of the above equation, a 

simple calculation yields:

••o 6IV<-r
T (fi, . (Y v ̂

e 'ut+s |2ds * K L2 (e2Kt
If

e2K(t-r))||e ||2T^ 2 ( 1 2 )

1

ti-

(Lemma 3.2)

2
•É II3 || 2 ° i t i  r

TÓ I
(13)
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and o

1  i L2 (e2 K t -l) ||6|| 2t ^ 2  0 .< t ,< r (14)
r J-t 2r 6 1

By combining these estimates we get

llTt(e)H2T ^ 2  = 7 j ^ t Ti6)(s)|2 ds + ajx m (s)|2ds (Lemma 3.2)

||Tt(B)|| 2 ^  $ [L2 (1+21  K)e2Kt + 1] ||B||2T^ 2  V t > 0  (15)

2 1If we take /« = 2K and M = L (1+^p K), the given result in (iii) 

follows from (15).
6

From the linearity of D0F and the isomorphism t it is easy to 

see that each is linear and continuous because of (1). The semi-group 

property of the T is a direct consequence of Theorem (1.3).

We prove the joint continuity of the semi-flow 

R*°x T0^ 2(J,X) -*■ T0^ 2(J,X) : (t.B) - Tt(B)

by tne following argument. If B e Tgo£2(J,X), then

l|a0T^ | 2̂ ( r - r . r l , T e(o)X) = || B|| ^  + l | T r ( B ) | | 2^>2

.< (Meur + 2)|| B||2 (16)

2Thus the map 6 '--- *■ a Eo^^([-r,r], T0 q̂ jX) is bounded linear, and by
0

continuity of the memory map (and the isometry x ) the result follows.

The RFDE DQF clearly satisfies Condition E^(k) for any k > o, so by 

Theorem (3.1) the map t -*■ Tt(8) e TQ «¿2(J,X) is 

the proof of (i).

for t > qr.this complete
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To prove the compactness of Tt> t 2r, let V Tg 2(J,X) be the unit 

ball i.e.

V = ( 8 : B e T0 </2(J,X), || 8 || T ^  ^(J,X) * 1}
0 I

0 0 
Now a T^>j[r,“>) is C2 (Theorem 3.1), so for each t » 2r, atT^  e ¿ 2(J>T6(0)X) •

Q
Thus in view of Rellich's lemma and the isometry t it is sufficient to 

show that the set (otT^  : 6 e V} is bounded in the norm of [>^2^J,T6(o)X ^' 

We proceed to do just that. First differentiate the linear FDE

d a ^ t )  = (D^F)(«Jt® )  (17)
cTt

wrt t, to get the following estimates for s t J, t >, 2r:

a2 ( a / ^ s ) ! | D F ( ( a T^)' )| (Lemma 3.1 (i)) 

T0(O)X tts T0(o)Xa ?
L

<

Q

K sup !(a TiBV(t+s+u)|T y (by (4)) 
ueJ 6(o)

0-(B)
¡ 3  B < W u  " C  (J,Te (0)x )

K2 L e Kt lie ||T ¿ 2
'e^ l

(18)

where L > o is a constant defined before, and the last inequality holds

1̂1 2
*  2

0
e isometry t . Thus for all 8 e

W|| 2 . 1
P a 2

A
J -r a~?

t
I

ds
Te ( o ) x

Meyt + 1 + K4L2 eyt (19)



= ( v e F ) ( e ) ( T t ( e ) ) ( o )  t  > o Q . E . D.

Corollary (3.3.1):

Suppose dim X < 00 and F satisfies Condition i^{2). Let

a ; [-r,0“) -*■ X be a full solution of F. Then a'| [2r,“>) is a solution of

the time-dependent covariant RFDE

D (a‘ (t)) = (TP0 0VEF)(at)(a't) t * 2r (1)
cTt

If, in addition, the set

t»2r Sup {" ( ^ F )(«t)(B)l' : 0 e Tat ^ l (J’X)* HI ' 1} 

is bounded (uniformly in t), then 3 constants M', p' > 0 s.t.



Proof:

Because of Condition E.j(2) and Theorem (3.1), the map 

[2r,°°) i t>— *■ at c ^f^(J.X) is C1 with derivative [2r,“>) a t-+ a'te/^(J,TX).

Now observe that a satisfies the equation

a*(t) = (TP0 «SF)(at) (3)

This equation can then be differentiated covariantly wrt t on t2r»°°)- To 

do that remark that if K is the (Levi-Civita) connection map on TX and 

K* is the induced connection map on the subbundle i{pQ (TX)} -+°^-|(J,X) 

of parallel fields (EliassonC/7 ] ) then the diagram

T[i{p*(TX)}] -----------T2po ---------- > T(TX)

* Tpn
i(po(TX)> ------------ ------------ 5- TX

2 P°/ ‘(J.X) ---------------- X

commutes. Thus equation (3) gives for t 2r:
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The given boundedness condition impliesthat 3 a constant 
> o (independent of t.p) s.t.

We prove the required estimate on the time derivative of the orbit by 

transporting along the solution using the point t = 2r as reference point. 

Denote parallel transport along a by aT . Then by (1) it follows that

aT ^ V ( t ) )  = a ' ( 2 r )  + r  [ ( T p o ^ K H a V ] ^  (5
J 2r t j2r

where we have used Lemma (3.2). Therefore because of (4) and the fact
•k

that Tp0 is an isometry on the subbundle i{pQ(TX)} we get from (5)

|| VC^(at ) (3) |I i  p ' | | 8 | | t V/ 8 e T / ’i (J .X)  (4)
ou tt

where
= sup I r(s) I is the supremum Finsler on the

Tat° seJ
t

tangent space T C °(J,X) to C°(J,X).
t

T c o du (6)

Take t ^ 3r. Then it follows easily from (6) that

u

du (7)

An application of Gronwall's lemma to (7) gives

e1 t > 3r (8)

t 2r

By Sobolev's embedding theorem, 3 a constant L > o s.t.

II ( 9 )
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The proof is then completed by an argument similar to the one used in 

the proof of the theorem, viz. using (1), (4), (8) and (9) to obtain

1 T /  ? 
at 1

= C tt J > t(s)l2 ds + 7  J j  £ ? a 't(s>
2dsy

2 1 
L {v' + 1) 2r" T

j/L ey \  t * 3r.

a2r 1
Q.E.D.



Remark (3.1):

The above theorem, as well as the remaining results in this 

Chapter, has largely been motivated by the work of Hale [52] , Shimanov [43] , 

Perello [ 2 3 ]  in the C° context where X is the Eucludian space Rn.

The evolution equation associated with the semi-flow (t,6) Tt(R) 

is specified by the next result as a family of vector fields on the fibres 

of Tl^(J,X) whose integral curves are just the paths t -*■ Tt(R).

For the rest of this Chapter take X to be of finite dimension. 

Theorem (3.4) * i)

For each e e ¿ * ( J , X ) ,  let A9 :0(A9) <=: T0 ¿ ^ ( J . X )  -  T0/^(J,X) 

be the infinitesimal generator of the semi-group (T̂ .) t>Q on T0 X. ^(J,X), 

(Dunford and Schwartz [ J l ]  § VIII. 1 )• Then

i) i)(A9), the domain of A9 , is a dense linear subspace of 

T0 li(J,X); A is a closed linear operator.

ii) </)(A9) = (R : 3 e T0 /^(J,X), s h- M s )
ds is of class

M i )
ds vcF(o)(e)(o) >

s=o

iii) if a € $)(A9), we have

(A°R)(s) . r 1 im 
1 h-»o+

V -  e (s) DB(s)
ds

l .e.

iv) Tt ( i ) ( A 9 ) 5 ) ( A9 ) ,  A9 commutes with T^ on S(A9)

V  B e 0  (A ) 

V U o

where D8(.) denotes the vector field s

0__ Tt ( 3 ) ( . )  =
3 ( . )

rt ( M i l  )
d (.)

M i l
d(.)

Dft(s)
ds
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Proof:

The assertions (i) and (iv) hold as standard results of linear 

semi-group theory (e.g. as in Dunford and Schwartz f 11 ] § V I I I . l  )• So 

we only prove (ii) and (iii).

Let 8 e $>(A ), and denote by a lp/ the solution of D0F 

at 6t ( 8 ) ,  as in the proof of the previous theorem. By definition of A6 we

have

lim
h-"o+

V  - e ( 1 )

where the limit is in the norm on T0 given by the inner product

g2(6). Let s e [-r,o) and think of h > o small enough so that -r < s + h < o. 

Then (1) gives

(A0ß)(s) = lim l {(T.ß)(s) - ß(s)}
h->-o+ n

= V  lim ¿ { a ^ h + s )  - 6t°(B(s ))}] 
o h-K)+ b

e s
To Clim H {0T(6)(h+s) ■ °T(e)(s)}ih-*o+

D8(s)
“cTs

(Lemma 3.2)

Since A08 c T0 ^(J,X), then J as -*■ (A0ß)(s) e TX

is continuous and so (2) still holds for s = o i.e.

DB(s)

s=o

M i l
as (A9B)(o)

1 im 
h+o+

l ia T V )  - 3(0)}

( 2 )

(3)

T V
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lim JL (" (DeF ) (a ^(®) du 
h-*o+ Jo

- (?eF ><“ 0T ® >

= ( ^ F)(0)(8)(o ) (4)

from the definition of D0F. This proves that i)(A0)£{6 :6 e TQ t^2(J,X),

£-L.) is of class ¿ 2 , 6 satisfies (4)}. (5)
d(.) 1

To prove the opposite inclusion, let 8 belong to the set on the right hand 

side of (5). We contend that

Dg(-)
d (.)

1 im
h-*-o+

Th 6 - e

t (B)

( 6 )

For simplicity of notation take a = a 1 '■p' . Then it is easy to see from 

the definition of T^ that (6) is equivalent to the pair of equations

lim ( | aiil+?-L--a (s) - a'(s)|2T xds = o (a) T
h-"o+ J -r n 'e(o)x I

and

1 im 
h->o+

. «" (s) |2 ds = o (b)
-r

We prove (7)(b) by appealing to Lebesgue's dominated convergence theorem 

(Halmos [ ], p. 110); the proof of (7) (a) is similar. From the hypothesis

on f? and Lemma (3.2), (B) e the sPace all paths J -*• T0 q̂ jX

with ^  first derivative. Working over [-r,o) with h > o small enough, 

we get
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lim c' (h+s) - a '(s) = lim
h*o+ h h->-o+

= a" (s)

Choose any e > o. Then

|a''(h+s) - a'(s)| 1 , f
1 h - Hi J

/: a"(u)du

( 8 )

i+s
a"(u)du|

^ (
A + s  2 j
j ict"(u)rdu)

<( |o"(«)|du)

(Holder's
inequality)

V  o < h < e (9)

by using Holder’s inequality. Thus in view of (8) and (9) we can apply 

Lebesgue's dominated convergence theorem to obtain (7)(b). This proves our 

contention. Q.E.D.

Remark (3.2):

We see from the above theorem that the values of the generator 

A9 are independent of the RFDE F, but depend only on the Riemannian 

structure on X, $)(A9) however depends heavily on F and the Riemannian 

structure.

Corollary (3.A.1):

Suppose F satisfies Condition E.(2), and let (at) be the
Z tjfO

orbit of a full solution of F. Then for each t i 3r, a V  e §)(A ^); a^
at

is a geodesic segment (on X) iff a't e ker A .

Proof:

The result follows trivially from the theorem and the fact that 

D_ a't(s)|^ _ = V5F(at)(a't)(o) t > 2r
i s=o

(Corollary 3.3.1). Q.E.D.

t* i

;«f '
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The next step in our study of the semi-flow {T. > on
t£o

T <£*(J,X) is to construct a splitting of T^(J,X) as a (Whitney) direct

sum of two subbundles : the unstable and the stab!e one. Both of these

subbundles are invariant under the semi-flow {T.} . The unstable
1 t£0

subbundle is always finite-dimensional and on it the semi-flow {T.} can
1 t^o

be continued backwards in time to give a genuine flow which is defined 

for all time; within the stable subbundle the semi-flow is "asymptotically 

small“ - in a sense to be specified later.

First of all we strengthen Condition (E2) by supposing - till 

further notice - that F satisfies Condition (E^):

For each 6 e o£^(0,X) let D0F = T0pq 0 ^£^(0) ® 6t "* (i.e. as

in the proof of Theorem 3.3). Denote by L(T0^o)X) the space of all bounded 

linear operators equipped with the operator norm || .|| . Suppose that

V Y e ^ ( J , T 0(o)X)

D0F can be represented as

(D0F)(y) = J % ( s )(y (s )) ds

where E : J ■* L(T0^ X )  is s.t. ^  ||E(s)|^ ds < °° .

2 2The decomposition of T0 ^^(J,X) for each 0 e^^(J.X) is 

achieved by an analysis of the spectrum of the generator A0 viewed as a 

subset of the complex plane C. We are therefore forced to complexify the 

objects we have been working with so far. Following Halmos ( [ 2 5 ]  §77. 

pp. 150-153) we adopt the following terminology: If H is a real Hilbert 

space, denote the complexification Hj. of H by = H ® iH, i = /-T. An 

element in Hj. is symbolized by u + iv , u, v e H; and H is always identified 

with a real vector subspace of Hj. (considered as a vector space over R).

H£ is a complex Hilbert space whose norm |.| £ satisfies



where |.| is the norm on H. If G is another real Hilbert space and 

K : H -» G is a linear map, then its complexification K̂ .: H^ + Gj. is a 

complex linear map extending K and defined by

Kœ( u + i v) = K(u) + i K(v) , u, v e H-

K is bounded iff K̂. is, and then || K|| = ||Kjj.|| .

Using this notation the entities T0^ X ,  ^ i («3,Te )X),

Tq cxf ̂ (J,X), Tt, AC , VÇF(9), DgF , E, Condition E3 are complexified 

to yield the corresponding ones:

(T0(o)^C ’ ^ V J,T0(o)X^C = ^ l ^ J , T̂0(o)X̂ Ĉ  ’ T̂0 "^VJ ’X Ĉ *
Tj , A9c, (VÇF(0)), (DeF)£ , E£(s ) = (E(s))c , Condition (E3)£ ,

€

defined in the obvious way. It is easy to see that Condition E3 implies 

Condition (E3)c, viz. (DgF)^ admits a representation of the form

(D0F)C (Y) = J °  Ec(s)(y (s)) V y  e ^ ( J . ( T e(0)X)c).

where Ej. : J -*■ L((T0 ô jX)t) is square integrable.

Under these conditions we prove the following theorem about the spectrum 

a(A°ç) of A^ which was first proved by Hale (£2T], [20) i*1 the o t ­

ease X = Rn with F autonomous linear and £°(J,Rn) as the state space.

Theorem (3.5) :

Define the map B : C ■+ L((Te(0)X)(;) by 

B(X) = X I - 1° eXs Ec(s) ds

where I: (TQ 0̂ jx)c is the identity operator. Then the resolvent set

o(Aj) = B_1 {GL((Tq (o )X)c )) • where GL((T0(o)x)c) is the 9enera1 linear

group of all linear homeomorphisms of (TQ ô X̂)j. onto itself. °(Aj) is discrete, 

has real parts bounded above, with no accumulation points and consists entirely 

of eigenvalues of A^.



■
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Proof: This is an adaptation of an argument by Hale [ 2.1 J. First 

note that it is a pure formality checking that the complexified 

versions of Theorem (3.3) and Theorem (3.4) hold true. In particular
jp

{TV} is a strongly continuous semi-group of bounded linear operators
z t*o

on (T0 £  “j(J ,X) )j. with generator and ¡D(A^) = i>(A0 ) ffl i $>( A6 ) .  Parallel 

transport is also complexified (being a linear map) in the obvious way and the 

resulting complexification will be denoted - for the sake of simplicity - by 

the same symbol 9x° : (T0(s)X)£ -* (T0(O)X)C- The covariant derivative of 

vector fields along 0 may be treated similarly so that the complexification 

of Lemma (3.2) is valid.

Now let X e C be s.t. B(X) is a linear homeomorphism. We prove 

that X e p (Aj ) by showing that for each n e jjg cif^(J,X)]j. the equation

90.

(XI - A")B = n ( 1 )
0

has a unique solution 0 c V̂ Ajl) which, depends continuously on n wrt

the ,/^-norm on [t q J1 ̂ (J,X)]£. Because of Theorem (3.4), (1) is equivalent

to the covariant ODE (unretarded) problem

X0(s) - = n(s) s e J
( 2 )

DB(s;
ds s=o

[(^F)(0)]£(B)(o )

Note that each solution B of (2) must necessarily have Dg(.) of class «¿f 1.
d (.)

Try a solution of (2) in the form 

B(s) = eXs °x^(v) * f ex(s u) 0T^(n(u)du (3)
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where v e^Tg^0jXj is to be determined so that the right hand side 

of (3) satisfies the second equation of (2). Using the complexified 

version of Lemma (3.2), (3) gives

DBii) = Xexs eTs (v) + Xexs J® e-xu eTs (n (u ))  du _n ( s )

= X3(s) - n(s) s e J (4)

Since F satisfies condition (E3)£ then an easy 

calculation shows that 3 satisfies the second equation of (2) iff

(5)
B(A)(v) = n(o) + J J eX ŝ"u^Et(s)(eT°(n(u))) du ds

Thus taking

v = 0(A)]"1 (n(o) + [° [° eX^s_u^E£(s)(0T°(n(u))) du ds}

" r  5 ( 6)
gives a solution of the problem (2) . To prove uniqueness of

solutions of (1) , it is sufficient to show that when n = o then 

(2) has no non-trivial solutions. Supposing n = o , then by Lemma (3.2)

any solution 3q of (2) must have the form

eo(0 = eXS 9^(v) s c J

for some v e T̂g(0)x]' Since 3Q must satisfy the second equation 

of (2) then B(A)(v) = o ; thus v = o and hence 3Q = o .

Now in (1) it is clear that 3 depends linearly on n ; 

we then have to prove that the map

M i ( j . x)]t -------- ►

n 1------------- - e (7)
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is continuous. We make use of the equations (3), (4) and (6) 

to obtain the following estimates , where || ,|| denotes both 

the operator norm and the norm on [Te / 2(J,X)](j. and | . | stands 

for the norms on the complexified tangent spaces :

/  .0  p \ l / 2  / . o  p v l / 2
Iv| « || [B(X)]_1 II II nil + e2rlReXl^/_rllEcis>ll y  (i_r|n(u)| duy  }

>< II [B M P 1 II K2 II n II
(by Holder's inequality)

( 8)

K-j is some positive constant and

K2 = Ki + e2rlReXl ^||Ec(s)|| 2d s ^ 7 > o .

Since parallel transport is an isometry, then (8) and (3) give a

constant > o s.t.

|3(s)| < k3 II nil V s e J (9)

To estimate the L.H.S. of (4) we use the inequality

(a + b)2 * 2(a2 +b2) a,b e )R (10)

to get

DB(s)
ds

2 ^ 2(|x|2|b (s )|2 + |n(s)|2)

Therefore (9), (11) imply that 3 > o s.t.

II M l  * K4 II n ||

0
Thus the map (7) is bounded linear and X e p(A£) .

( 11)

(12)
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Conversely, suppose X e p(A0) . By virtue of the Open 

Mapping Theorem, B(X) e GL(("I’e.(0)X)c ) if it is a bisection of 

(Te(0)x)c onto itself. So let v e be s.t.

B(X) (v) = o (13)

Define B e [T0 ^(J,X)]t by

6(s) - 9,=(v) V  s e J (14)

Then it is easy to see that £ satisfies the first equation of (2) ; 

also (13) , the definition of B(X) and Condition (E3)( imply that B 

must necessarily satisfy the second equality in (2) . Hence B e D(A^)
0 fi

and AjB = XB . Therefore B must be zero, as X a(Aj.) •

Thus v = o and B(X) is injective. Moreover, by consulting the right 

hand side of (5) it is easy to see that B(X) is surjective if the map

n *-

-  (T0(o)X)t

n ( ° ) + f  j° eX^s-u^E£(s) (0T°(n(u) ) ) du ds

is ; the surjectivity of the latter map will follow as a direct consequence 

of the lemma below (Lemma 3.3) :

Lemma (3.3):

Suppose V is a finite dimensional (complex) Hilbert space 

and K : J x J — ► L(V) a continuous map. If w e V , then 3  a Ĉ  

map n : J -*• V s.t.

n(t) = w - f f K(s,u)(n(u)) du ds
J-r Js

t e J

Proof of Lemma (3.3):

Define the map U : t°(J.V) * ■) by

it .0
I K(s,u)(x(u)) du ds t c J 

-r ^s
(15)

» '
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for each x e t.0(J,V) . Then U is a compact map, for 

observe that for each x e '€.°(J,V) , Ux ed (J .V ) and the map 

U considered as U :'C°(J,V) -*• tl^J.V) is easily seen from (15) 

to be continuous wrt the C1 norm on J,V) viz.

||x|L, = sup (|x(s)| + |x*(s)|} , x eTC^J.V).
S £ J

Therefore by the compactness of the inclusion map 

— „e°(J,V) (Ascoli’s Theorem)

it follows that U :C°(J,V) ■* C°(J»V) is compact. Thus U has a 

fixed point n which satisfies the lemma. The lemma is proved.

Continuation of Proof of Theorem (3.5):

fi 0o(A°) consists entirely of eigenvalues of A£ because

of the following reason: If X e o(Aj.) , then by the finite-dimensionality

of (Te(0)X)e B(X) is not injective ie.

3oj= v e (Te(0)x)(¡; s-t. B(X)(v) = o . Define 3 f o as in (14). 

then 3 e D(Aj) and A^3 = X3 .

Also since A^ is the infinitesinal generator of the
r

strongly continuous semi-group {T!|} , then the setL 1^0

(ReX : X e cr(A®)} is bounded from above (Dunford and Schwartz [/I ]) .

To see that o(A£) is discrete and without accumulation points, observe 

that for a fixed t >, 2r o(T®) = te1* : X e a(A®)} is discrete

without accumulation points except possibly zero because T^ is compact
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(Hi lie and Philips (VJ p.467, Dunford and Schwartz Qll]), and for 

a given p e a(T®) the equation etX = p has countably many solutions 

X e C . This ends the proof of Theorem (3.5). Q.E.D.

We thus finally arrive at the following main result
2

giving the existence of the stable and unstable subbundles of T^-j(J,X): 

Theorem (3.6):(The Stable Bundle Theorem)

Suppose X is finite dimensional and F satisfies Condition 

(Ej) . Then 3  subbundles U , S of Tct^(J.X) over <£^(J,X) with 

the following properties: for each 6 e«£^(J,X) :

i) T0^ ( J , X )  = U0 ® S 0

ii) u is finite-dimensional, s is a closed linear subspace of 
' 6 0

T0«C^(J,X) . Both u0 and s 0 are invariant wrt the semi-flow 

{Tt>t>o and the generator A6 , with U 0 C  D(A0) .

iii) Tt |l)0 : U0'tZ> is a linear homeomorphism V  t>o , and the semi-

group iTtlu0it>o extends to a 1-parameter group { T on u0 

(ie. a flow) defined by

'V
T.!t - f 11"16l<XtK>

t >,0

t <: o
( 2 )

and satisfying

D {T (B)(s)}| = (VEh)(0)(T (B))(o)
3s s=o

-oo < t < 00

V  B e Un

( 3 )
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iv) 3  constants K, y > o (depending on 0 ) s.t.

l|Tt (0) || T ¿2 * K e 'v t  || 31| 2 V  6 e S0 (4)
0 1 T0X 1

V t ^ o

Proof:

Again the situation is amenable to linear semi-group
p

analysis on [T0jq(J,X)]fi in the spirit of Hale [̂ <"1 , 

so we follow him closely.

Cl
Theorem (3.5) says that o(Ac) is the set of zeros of the

function

I ----------<- R

det B(.)
X I---------- *■ det B(X)

Therefore it is not hard to see from the definition of B(X) that there 

are only finitely many X e o(A..) on each vertical line in I ; in 

fact for each x e iR the set (X : X c ( , det B(X) = 0 , ReX = x} 

is bounded. Since o(A^) has real parts bounded above and is discrete 

with no accumulation points, it follows that there are only finitely 

many X e a(Aj) with Re X >, 0 .

Since the zeros of the entire function det B(.) have 

finite multiplicity it follows from the spectral properties of the closed 

operator A^



97

that for each x e a(A^) 3  an integer k(x) > o with the property

that ker (XI - A®)p_1 c. ker (XI -A®)p ^  1 ,< p ,< k(X) ,

ker (XI - A®)k(X) = ker (XI - aJ)"1 \ / m i  k(X) and

C V l (J>X)]fi = ker (XI " Aj)k(X)-e range (XI - A®)k(X) (5)

where range (XI - A^)k(X) is closed ([j4£l Theorem 5.8 - A p.306).

Also ker (XI - A®)k x̂  ̂ is finite dimensional because it is a subspace 

of the finite-dimensional space ker (eXt I - T®)k(x) , t £ 2r ,

(T^ is compact for t > 2r , [?/] Lemma 22.1 p. 112). Since T®

a
commutes with Â . it is easy to see that the splitting (5) is invariant 

wrt T® , t £ o .

Now let {X.}J_i be the set of all X e ct(A^) s.t. Re X >, o . 

Define the finite dimensional subspace U0 and the closed subspace ”s0 

in [T0̂ (O,X)]C by u0 = ker (X.,1 - A°)k(Xl> ® { ker (X2I - A^)k(Xi )

H  range (X,I - A®)k(Xlh

® •••• ® iker (XmI-A)k(Xm)0  range (V l 1-^ 1̂ " 1'1* O  • • •

C\ range (X1I-Aj)kiXl) } (6)

and
^ m
S0 = .rS- ran9e ( M  - A?)k'Xj^ (7)

3 = 1 J

Therefore both U0 and S0 are invariant wrt T® , t >. o , and

t V l ( J »X)] = (8)
<C
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ñ O
Also from (6) U0 cD(Ag) and is invariant under Â. . We now

o
intersect (8) with the real vector space viewed as a

subspace of [T^(J.X)]^ , obtaining

T04(J,X) = U0 ® s0

where

ue = “e n V i (J,x) • se = s 0 o i / i ( J,x) (9)

Since T® is an extension of , it follows that U0 and S 0 are

invariant under Tt , t £ o . Also U0 cD(A°) and A0(U0)c: U0 .

As U0 is finite-dimensional, then A0|UQ is bounded linear and

T .|U0 = etA Û° is therefore a linear homeomorphism giving a group (T.} 
t 9 z teR

as defined. The differential equation (3) is satisfied because if

6 e U0 and t e JR then Tt((3) c Ug c. ©(A0) and therefore (3) must

hold according to Theorem (3.4) (ii).

Finally since T^ is completely reduced by the splitting

(8), then a(T®|S0) = {eXt : X e a(A°) , Re X < o} .
X t (T ̂

But Re X < o => |e | < 1 ; hence the spectral radius of T*|S0

is less than 1 and by Lemma 22.2 of ([ijf] p. 112) it follows that 

3  K , p > o s.t.

I|T®(8) 11 * K e"ut II B|| v  t 5. o (10)

V  e e s0
(10) implies the required estimate (4). Q.E.D.
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CHAPTER 4 

Examples

In Chapter 2 we have shown that a RFDE on a Riemannian manifold 

X can be canonically pulled back into a vector field on the state space 

ç£^(J,X). The present Chapter looks at the situation from a different 

angle, although it still draws heavily on the "vector field" point of 

view. In fact we shall start with vector field(s) on the ground manifold 

X and use the Riemannian structure on X to construct various examples of 

RFDE's on X. Some of these examples will be touched upon sparingly without 

going much deeper beyond the elementary properties, while the rest of the 

examples are investigated in some detail with reference to the general theory 

developed in the previous chapters.

§1. The ODE:

This example is well-known and has been thoroughly discussed in 

the subject of vector field theory or ODE's; we only mention it very briefly 

for the sake of completeness. Let X be a Cp manifold and n : (-K.K) « X ■* TX 

a (time dependent) vector field on X, K >  o. Define the RFDE (F,(-K,K),J,X) 

by

F(t,8) = n(t>, 0(0)) \f t e (-K,K)

\f 6 e /^(J,X)

Then each solution of n is a solution of F and conversely. The initial 

state of the system in this case is essentially the "present" 0(o), and with 

suitable smoothness conditions on the vector field n solutions can be defined 

on the whole of the line R for any initial data, ( See Lang £32.1] , 

Coddington and Levinson £” 5 J).
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52. Delayed Development

Let X be a smooth Riemannian manifold, and let pQ1 (x) =

{0 : 0 e^(J,X), 6(o) = x) . Denote by £)x : p Q1(x) — *■ ^ i ( J >Txx)>

x e X, Cartan's development i.e.

§>x(e)(s) = I 0T°(0'(u))du s e J , 6 e  p ^ x )

(Kobayashi and Nomizu £ 2? ] , Eell s-Elworthy [f / 5 3)

Define F : e^(J,X) -*■ TX by

F(0) = 5>0(o) (9)(-r) V 8 £ /5(J,X)

Then by the smoothness of the development and the evaluation map, it follows 

that F is a smooth RFDE on X. It is also easy to check that no critical path 

of F is a non-trivia! geodesic. j

§3. The Differential Delay Equation (with Several Constant delays) (DDE)

Let X be a Cp Riemannian manifold modelled on a real Hilbert

space, with p > 5. Take N + 1 real numbers o = dQ < d̂  < d^< .. < d^ = r

and N + 1 vector fields (o.}N on X. Define the RFDE F by
1 i=o

N
F ( e )  = i e T ° d i n 7 ( e ( - d i ) ) > V/ e e f ( J . x )  (1)
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F is said to be a differential delay equation (DDE) with several constant

delays (d-}N . Note that if d. * o V l  < i i N or if 5 o '/l i i .< N,
1 i=o

then F reduces to Example §1 of an ODE. In the general case when the n.j 

are continuous and F is locally Lipschitz, F has unique local solutions 

by virtue of Theorem (1.2). If X is complete and each ni is furthermore 

bounded on X (wrt the Riemannian Finsler on TX), then each maximal solution 

of F is full; this follows from the fact that in this case F is bounded and 

so the conditions of Theorem (1.5) are satisfied. In particular if X is 

compact, then the ni are bounded if they are continuous and so all solutions



We further specialize F to be a single delay equation of the

form

F(0) = 0T°d [(grad f)(0(-d)f] 0 e^(J,X) (2)

where f: X -+■ R is C1 and o i d i r. Then there are no non-trivial periodic 

solutions of (2) with least period equal to the delay d. To see this, let 

a: £-rjco) x be such a solution and define the function Z : Ri0 -*• R by

Z(t) = f(a(t-d)) t £ o (3)

Z'(t) = <(grad f)(oi(t-d)), a ‘(t-d)>

= <^(grad f)(a(t-d)), a'(t£>

= <^(grad f)(a(t-d)), [(grad f)(a(t-d)£>

= |(grad f)(a(t-d))|^ £ o (a(t-d) = a(t))

V t > o. Thus Z is a monotone function which is clearly periodic with 

period d because of (3). Therefore we must have Z'(t) = o which contradicts 

the assumption that « is a non-constant solution.

§4. Integro-Differential Equations:

The Levin-Nohel Equation:

This equation was first studied in the one-dimensional case.

X = R, by J.J.Levin and J.Nohel ([34"]).

More generally, let X be a C^(p £ 4) complete Riemannian 

manifold, a: [o,r] + R a C 2 function and n : X + TX a continuous vector

field on X.
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Define the RFDE (F,J,X) by

F(0) = f a(-s) 0 t°  (n(e(s))} ds 9 e ^9t °  i n ( e ( s ) ) J  ds 0 £ ^ [ ( J , x ) ( i )

Suppose that a satisfies the hypotheses

a(r) = o

a'(t) ¿ o  V  t e [o,r]

( 2 )

(3)

a"(t) £ 0  V t  e [o,r] and ”3 tQ e [o,r] s.t. a"(t0 ) > o (4)

Assume that F is locally Lipschitz and n is bounded in the Riemannian 

Finsler on X. Therefore under these hypotheses we have 

Theorem (4.1):

Levin-Nohel equation (1) is full. Moreover let n be a gradient field and 

a: [-r,°°) + X a solution of F in (1). Then 

either (i) a is not periodic

or (ii) a is constant on [o,“>) with a(o) a critical point of n and 

a(o) a constant critical path for F.

Proof:

Since n is bounded, it follows from (1) that F is also bounded 

and so by completeness of X all maximal solutions of F are full (Theorem 1.5).

To prove the second assertion of the theorem suppose that 

n = grad f where f : X -*• R is a function. Let a : £-r,°°) + X be a
full solution of F and define the function V : Ri0 -*■ R by

With the above assumptions, each maximal solution of the



where t stands for parallel transport along a . For simplicity of notation 

we call

K(t,v) = |J* tl [n(a(w))]dw|^tj t S- o (6)

t-r < v $ t

Differentiating (5) wrt t and using (6) we get

V'(t) = <n(a(t)),a'(t^a(t) + i a'(r) K(t,t-r) - J j  a"(t-v)K(t,v)dv 

- <n(a(t)), j  ̂ a'(t-v){ J ̂  [n(a(w))Jdw} d £ > (t) (7)

As a is a solution of F, then 
~t

a'(t) = J  a(t-v) [n(a(v))]dv t > o

f  a ’(t-u){ f t* [n(a(s))Jds] du
J t-r J u

(8)

(8)'

using integration by parts and the fact that a(r) = o. Thus (7) and (8)'

give

V'(t) = i a'(r)K(t,t-r) - \ Ç  a"(t-
J t-r (t-v)K(t,v)dv

-f o \/ t >

( 9 )  

( 9 )  '

because a satisfies (3) and (4), and K is non-negative. 

Thus V is non-increasing and in particular
■X)

V(t) < V(o) = -i j°̂  a ' (-v ) | j  ̂  t° [n(a(w))]dw|^(o) dv

a'(-v){ f  |n(a(w))|^w j dw} dv (Httlder's inequality)
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where 0 = a|J is the initial path of a . Now n = grad f, so
o 1

(ID<Jl(a(s)),a‘(s)̂ > = ^  f(a(s))

and

V(t) = f (ot(t)) - f(«(o)) - l C  a'(t-v)| f  ij Qgrad f) (a(w) )]dw l L t)dv (12)
J t-r J v

Now suppose that a is periodic on [-r,°°) with period p; 

then it is easy to check that

a' (t+p-v) | j * V +P[(grad f)(a(w))]dw|*(t+p) dv

a'(t-u) | f  T^f(grad f)(a(w')0dw'|Lt) 
t-r J u

du (13)

Therefore

V(t+p) = V(t) V t 5 o (14)

But V is non-increasing, so (14) implies that V must be constant on 

[o,") i.e. V 1(t) = o V t > o. Since both terms on the right hand side

V  t 5 o

of (9) are non-positive, we must have 

( a"(t-v)K(t,v)dv = oJ t-r
Now a" £ o and is strictly positive on some sub-interval of [p>rl> hence 

(15) implies that for each t, "3 > > 0 s‘̂ ' K(t,v) = 0

V  v e (t-6-j, t-^). Therefore by (6),

[n(cx(w))}dw = o V  v e (t-6^, t-62)

(15)

[n(a(v))j = o \/ v e (t-61, t-62)
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Consequently

n(a(t)) = o

because t was arbitrary. Thus (8) gives a'(t) = o V t i o. 
i.e. a(t) = Qq(o)V t > o with n(6Q(o)) = o and 

F (6^(0)) = 0 (by (!))• Q -E‘D-

The following conjecture - if true - may give an estimate 

on the time derivative of the orbits of solutions of the RFDE (1). 

Conjecture:

Suppose X is compact and n is a Ĉ  vector field on X. Let 

a : ['-r,<*>) + x be a solution of F. Then "3 constants M', p' > o s.t.

i M ‘ a

V i  r " y  i

ê 1 E V  t (16)

Idea of Proof:

Use the method of proof of Corollary (3.3.1). Note also

that because
ft t

a'(t) = / a(t-v) [n(a(v))]dv t >* o (17)

and the parallel transport is of class in t, it follows that

a' is on [o,“). Therefore by Lemma (3.1) [r,°°)5 t c,/^(J,X) is

Ĉ  and

St  ( « ' ( * ) )  = ( TP0* ^ F) ( a t ) ( o ' t )

as in the proof of Corollary (3.3.1).

But

CF(9)(s) = j a(-u) °T^[n(e(u))]

t >. r (18)

du (19)
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Denote by VXn(x): TxX the covariant derivative of n at x wrt the 

Riemannian connection on TX. Then for each 3 e Tg=2?.j(J,X)

( 2 0 )

Incidentially, (20) implies that F satisfies Condition (E3) of Chapter 3 

and hence all the relevant results there apply to F e.g. Theorem (3.4), 

the conclusion of Corollary (3.4.1), Theorem (3.5), Theorem (3.6). 

Moreover the map

is bounded. Therefore the conjecture will follow by the proof of Corollary 

(3.3.1).

§5. Retarded Parobolic Functional Differential Equations: 

i) The General Problem

Let X be a smooth Riemannian manifold of finite dimension,

(with or) without boundary. Suppose

E

X

is a finite-dimensional smooth vector bundle over X with a smooth connection.

Y 1
X 9 x — *• ||v n(x)|| e R is continuous ( n is C ) and so by compactnessX 9 x

of X the set

U  sup {||VF.F(c u )(b )II : B e  T_ ^?(J.X), sup |B(s)U ^

Then we have a smooth vector bundle »¿^(J.E) -*■ X over X whose fibre at x is 

the Banach space *z?^(J,Ex). Construct the linear map bundle L(»^(J,E) ,E) ■+ 

whose fibres are

|L( ^^(J,E),E)]x = L(^^(J,Ex),Ex), the space of all continuous



A section of the latter bundlelinear maps (FDE's) ^^(J,Ex) -*• Ex> 

is a map

* » »  —  FX . ;

where Fx is an autonomous linear RFDE on the fibre Ex of E. Given such 

a section F, we let A : r(E) be an elliptic operator on the space

T(E) of smooth sections of E (Eells [ M ~J) and consider the differential 

equation

u(t,x)
at = A (Fx(ut(.,x))} xe X, t o (a)

u(s,x) = 0(s,x) s e J, x e X (b)

where a solution of (1) is a map.

u: [-r,») x X + E s.t. for each t e [j-r,«>)

u(t,.) e r(E), for each x e X u(.,x) e ([■•”•") »Ex)

and ut(.,x) e /^(J,Ex), t ^ o, is defined by

u.(.,x)(s) = u(t+s,x) V  s e J

0: J x X ■> E is a given initial condition s.t.

0(.,X) E y¿^(J,Ex) for each x e X, and 0(s,.) e T(E) for each s e J.

Alternatively the differential equation (1) - referred to 

as a Retarded Parabolic FDE, RPFDE - may be viewed as a linear autonomous 

RFDE on the Frechet space of sections r(E):

diT( t) 
dt F(u-t)

( 2 )

where

F: /^(D,r(E)) — ► r(E) is defined by 

F = A»F , u(t)(x) = u(t,x), *0(s)(x) = 6(s,x) 

for x e X, t e £-r,«>), s e J. Observe that F is never continuous but is 

a closed map.
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When X has a boundary BX a homogeneous boundary condition

u(t,x) = o  V’t e [j-r,*>), V x  c 9 X (3)
may be attached to the initial value problem (1).. >

A solution to the general problem (1) is so far unknown; but 

in.the special case when E is a trivial line bundle X x R and A is a second 

order elliptic operator the problem can be solved satisfactorily with 

fairly mild conditions on F. This fact follows as a corollary of the 

discussion in the next example, 

ii) The Retarded Heat Equation (RHE)

(E3) of Chapter 3. Let a : C’̂ X.R) be the Laplacian of X

Give X the canonical measure dx associated with its Riemannian structure,

Here X is a compact smooth Riemannian manifold of dimension

m >, 1. Let F: ^ ^ ( J , R n) + Rn be a linear RFDE on Rn which admits an 

extension to a continuous map o^^(J,Rn) -*■ Rn i.e. F satisfies Condition

operating on the Frechet space of smooth real functions on X. X is 

without boundary and we are given a map e : J x X ■+• Rn which is of class
O ^

j?, in the first (time) variable and is C in the second (space) variable.

We seek a solution

u: [-r,<») x X -*■ Rn of the retarded heat equation.

(a)

(4)
u(s,x) 0(s,x) s e J, x e X (b)

and the space -^(X,R) is furnished with a Hilbert space structure through 

the inner product

(5)

for <|>,<|» c -i. ?(X,R) (Ref: Eells [ 14 ] ) .
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It is known that we can choose an orthonormal system

{<f>.}°° in ,£2(X,R) and real numbers {X.}°° c  R^0 s.t.
1 i='o i=°

A + X.j = o  V i >,o

The X.-'s are ordered increasingly i.e. X.. £ Xi+1 , i = 0,1,2,...,

each <(>i is C°° and the system is complete in ¿?2(X,R).

( 6 )

We attempt to find a unique solution of the RHE (4) by using 

the classical Fourier method which essentially separates the time and 

space variables in (4), thus reducing the original problem to the 

eigenvalue problem (6) coupled with a retarded linear FOE on Rn which 

can then be treated by the techniques of Chapter 3.

By completeness of the <(>̂ 's we can write

oo

6(s,x) = Z e.(s) ^(x) V s e J (7)
i=o

where the convergence - at the moment - is Ji in x, and

0 • (s) = { 0(s,x)ij),(x) dx V  s e J (8)
1 'X

To study the uniform convergence of the series (7) in both 

s and x, we view the left hand side of (7) as a map X ix + 0(.,x) e / 2(J,Rn) 

and consider
oo

e(.,x) = E e . ^ x )  x e X (9)
i=o

Assume without loss of generality that X̂  > o , i = 1,2,..., 

and let k > o be any integer. Then by working on each coordinate of Rn 

and using the symmetry of the Laplacian we get



e . ( s )  = (-i)k /  e ( s , x )  Ak <t»i ( x ) d x  i * 1

x . k x1

= (-1) I Ak0(s,x) <(>• (x)dx s e J (10)

x . k ' x i i  11
k kwhere A 0(s,x) means, for each s c J, the value of A 6(s,.) at x.

If J & s -*■ Ak0(s,x) e Rn is ,/2 , then by the smoothness of 0 in x and

the compactness of X H constants K-j (©^^(O) k) y o s.t.

J° |Ak0(s,x)|2ds < 1^(0,k), J° | |s Ak0(s,x)|2ds < K2(0,k) (11)

V  x e X, where Rn is given its standard Hilbert space structure with

Euclidean norm l.l . Now using the fact that f  |((>. (x) 12dx =land
•'X 1

Hdlder's inequality, (10) and (11) give for each integer k > o:

i9i l l2 = ( F / ° r | 0 i (s) | 2dS + ?  i ° r | 6i , ( s ) l 2 d s ) " < K3(6,k) (12)V
i > 1

where K3(0,k) = (Kj(0,k) + ^(O.k))^ depends on 0 , k, but independent 

of i = 1,2,... . We now need the following lemma concerning the series 

(9) and its space derivatives.

Lemma (4.1):
OO

i) 3 an integer p > 0 s.t. for each k > p the series E <j>.(x)
i =1 - U r -

X/1

converges to an element of R uniformly and absolutely wrt x e X.

i
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ii) For each integer k :> o, 2 Xi 0i<l>i(x) converges to an element
i=l

1/

of X  2(J,Rn) uniformly and absolutely wrt x e X. 

Also Áke ( - , x )  = ( - i ) k Z x f  e i d>i (x ) V x e X
k ^ 1

(13)

Proof of Lemma (4.1):

If q > o is an integer, denote by ^^(X.P.) the space of all 

functions <¡> : X -* R s.t. <f> has square integrable j-th derivAtive for
o

o í j <: 2q. Give / 2q(X,R) the norm

1*11 .2
¿ 2q

q C . 9 1 i
Z |AJ d>(x) I dxí
j=o /X J

( 1 4 )

Then by Sobolev's embedding theorem (Fells [ / 2. ] )

the inclusion / 2q(X,R) c--- ^t°(X,R) is continuous for 2q > |  = \ dim X;

thus if q > m/4 3 a constant C > o s.t.

ll*llco * C 1*11 2
^2q

V 4> c ./2q(X*R) (15)

In particular for the eigen functions 4̂  we have

i^U « c q
z

- j = 0

f  |Aj < h ( x ) | 2 dx l  = C( Z xf) ( 1 6 )
n  1 J j=o 1

V  q > m/4 and for all i = 1 , 2, ...

Now since the X^'s are monotone increasing to there is no 

loss of generality in assuming that X^ z 1 V i .  By a Corollary of 

Ikehara's theorem we have a constant K > 0 s.t. N(X^ < T) • K Tm//2 as T ■> 00 

where N(x^ < T) is the number of eigenvalues X̂  < T (S.Minakshisundaram,

A. Pleijel [ ■] ). Taking T = Xi+1, we get
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m/ 2 as i + » i.e. the limit

liin (i-1)2 = K2
i-x» m

Ai

(17)

exists. Hence the series

z - (18)
i=l A,

converges for q'̂ . m. Using (16) and comparing with the series (18) it
°o , .

is easy to see that the series E ^i'x' converges uniformly and
i=l Ak

i
absolutely for x e X provided that k > -jp . This proves (i) of the lemma

To prove (ii) it suffices to observe that as (12) holds for 

any (large) integer k, then by fixing k‘> we get

||>.k e(<.(x)|| .< xfk K3(6,ktk') |*f(»)|

i K3(6,k+k'). |<t>i(x)[

kTnerefore the uniform convergence of the series E A. 0.^.(x), for
i =1 1 11oo

arbitrary k > o, follows from that of the series t (j>.(x). The

proof of the lemma is completed through term by term differentiations 

of the series (9).
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We now resume our study of the RHE (4), by letting 

Tt : t/^(J,Rn) ^  , t > o, be the semi-flow of the RFDE -F. Then for 

each i, {T. .} is the semi-flow of -X.F because -X.F has unique
V  t*> 1 1

solutions by virtue of Condition (E^) and the map

[o,“> ) s t *-

J 9 s -  V s>

(19)

is the solution of -X..F at 0Q e c/2(J,Rn).

We next construct an appropriate state space for our 

RHE (4), as follows. For each integer k > o define ^ ^ ( X . R 11) to be the 

Banach space of all functions (j> : X -*■ Rn with square integrable j-th 

derivatives, o < j £ 2k, and with norm

J 1 (X,Rn) 
2k

k
{ E 
j=0

Aj<D|| )
/ 2(X,Rn)

= { e r iAj<t»(X)
j=o yx

( 20)

<f>(x)rdx}
i

Then the Frechet space (X,Rn) is the inverse limit of the decreasing 

sequence

.... ^ | ( k +l)(X*Rn) ^ 2 k < X>Rn> ^  ^i(k-l/X *Rn^  • • • ^ ( X>R")

of Hilbert spaces (with increasing norms). Thus the sequence

4 k ( x*Rn))>“ is a decreasing sequence of Banach (Hilbert) spaces 
k=o

which forms an inverse limit system with continuous inclusions

^2(k+l)(X,R ^  ^  i (v,»‘̂ 2 k ^  »Rn)) k =o,l,2,.. denote its inverse

limit by

/  ?(J, £"(X,Rn)) =lim ^ ( J , U ? ? k(X,Rn))
I -rk '

( 21 )



,/ ̂ (J, £ ” (X,Rn)) shall be our state space, it is a Frechet space,

viz a locally convex complete metrizable topological vector space (which

is not Banachable^lorvaVth [27 jj*

Let 0 = £ 0.<t>. (as before) belong t0t2?(J, G (X,Rn))
i = o 1 1

and try a formal solution of (4) by setting

u(t,x) = £ Tx t(Qi)(o)<Mx
i=l il 1 1

u(s,x) = 6(s)(x)

I x e X, t e R (a)

s e J, x e X (b) I

( 22 )

The question of convergence of the series (22)(a) is basic and 

shall be dealt with by constructing - via Theorem (3.6) - a splitting of 

the state space 2^(J, £” (X,Rn)) in the Freshet category as a direct sum 

of two closed subspaces which are both invariant under the heat flow. On 

the one subspace the series (22)(a) will converge for t £ o to a forward 

solution of (4), while on the other subspace it converges for t ,< o to a 

backward solution of (4).

Indeed 2^(J,Rn) splits as a direct sum

t/2(J,Rn) = 'tte'S (23)
where the unstable subspace Ui s finite-dimensional,the stable subspace 

'S’ is closed, T fc( Ti) cl(,

T, .(£) c  £  v \  i o, V  i = o,l,2.... . (T, J U )  is
i* l il t>o

a group of linear homeomorphisms and 3 constants 

K, y > o (independent of i = 0,1 ,2,...) s.t.
Mo  ||
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Define the linear subspaces T  , »^2(J, i? (X ,Rn)) by

~5r = {6 : 0 e-/2(J,'£°°(X,Rn)), 0 = Z 0.^ , 9. cS  V  1 i o} (25)
i=c
CO

$, = (0 : 0 e/?(J,'C00(X,Rn))', 0 = z 0.<(i. , 0. e ^  Vi > o]
1 i=l 1 1 1

Because of the direct sum in (23) and the orthonormality of

the <f>.'s it is easy to obtain the algebraic direct sum

(26)

i i ( J , ^ ” (x,Rn )) = e 'Jr (27)

To see that (27) is also a topological sum use the continuity of the 

projections (3̂  : X  2(J,Rn) — * “tt. p5 : ,Rn) -*• 'S to prove that the

induced projections ^  (X,Rn)) -*■ $> , p^ : yf2(J, 6 (X,Rn))

are also continuous, remembering that the space t/’̂ (J, ^ (X,Rn)) is generated

by the increasing sequence of norms:

’ll O O
■̂ 1 (J> ̂ 2\f)

z {||Aj0(s)(.;
-r j=o

J. nil2

(X,Rn)

+ II &  AJ0(s)(.)||2 }ds|
“9 „n, J

r. ||AJ,o||

J=0 ¿2(J,X2)J

‘I i
k = 1,2....

A^«0 stands for the map J 5 s »— > A'’[9(s)(.)} e C°°(X,Rn).

If 6 e V  , define the map Ht(0) e ^ 2(J,/2(X,Rn))

for t >. o by

Ht(0)(.)(x) = Zr T, t(0J*l(x) t > o, x e X 
i=o i

By (24) we have for each i >. o

l|Tx t(6i)|| ^ Ke ||01|| < K ||01U

1 ^ 2(J,Rn ) ^ ( J . R n)

(29)

(30)

V  t > o
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so that by comparison with the absolutely uniformly convergent series
CO
Z e ^ t x )  it follows that (29) is also absolutely and uniformly

1=0
convergent for x e X. Also because of the estimate

3s V 8( )<s>l lF<V,<8t»l t > 0 
s near o

X^t+s'
(31)

if t > o and s e [-e,oJ for sufficiently small e > o we see from
CO

Lemma (4.1 )(ii) that the series E Tx.t(ei)(s)4>i(x) can be differentiated
i =o i

term by term wrt s e £-e,o}. To check that u(t,x) = H^.(9)(o)(x) is indeed 

a forward solution of the RHE at 9 consider the following

A(F(ut(-,x))} Z p(Tx t(0i ^ A*i(x)
i=o i

(Continuity of F 
and Lemma 4.1)

CO

=  Z -X.F(TX t(9.))<D.(x)

= Z X  Tx t(9i)(0)
1-0 ° V  1

d>i (x)

=  a H (9)(s)(x)|
as j s=o

a H (9)(o)(x) =
a t  x

^u(t.x)
a t

t >  0 (32)

From (29), clearly Hq (9) = 9 and so u is the required solution of the 

RHE for t > o. It is also clear from (29) and the invariance of 3* under 

T, t > o, that is invariant under the forward heat semi flow {H.}
V  * t*>
Observe that x Ht(9)(.)(x) is C°° because of (30) and Lemma (4.1 )(ii).

'I » . ■ ’ 4 4 1
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Furthermore the equation (4) has unique solutions with orbits

in ,/2(J, e“ (X,Rn)); for let u° : [-r,«)x X - Rn be also a 

(4) at 6 s.t. u° c / 2(J, £”(X,Rn)) V  t > o. Expand

solution of

CO
U° ( . , X )  = s fi(t)+1(x) 
L 1=0

(33)

where

f1(t) = f  u°(.,x)<f>i(x)dx i=o,l,2..... (34)

f . (o) = 0. 1=0,1,2....
l' ' i

(35)

Using (34) and the smoothness of x + u°(. ,x) it is easy to see that for 

each integer h > o  3  K(t,h)> o s.t.

I|f,(t)||- ^ K(t,h)
FP

1,2,....

1 ¿?(J.Rn) x.'
(36) implies that the series (33) and all its term by term space 

derivatives converge uniformly and absolutely for x e X. Moreover for 

any integer h > o, and for S' c [-e,o] , e small:

fi(t)(s)| = \  I f  £  U°(t+s,x) Ah(J>̂ (x)dx|
° J X

= Iff |[ Ah+1 {F(u°t+S(. ,x))} 4»f(x) dx|

(36)

C(t.h)

* C(t,h)
X.h1

= sup 
xcX

sc[-e,o]

f  l|Ah+1 {F(u°(.,x))}||2dx
/ X

I i ! 4 - - 1 i ■ ; . \
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The estimate (37) together with Lemma (4.1)(i) permit differentiation
OO

of the series Z f,(t)(s)<J>-(x) term by term wrt s e [-e,o].
1-1 1

Then a simple calculation starting with

<>u°(s,x)
?Ts

s=o

A{F(u°(. ,x)} t > o

gives

£- ^  fiCtJis) | ♦,(*) = - Z XiF(fi(t)Hi(x) (39)
1 =0 s=o

= - X.F(f.(t)) t > o (40)

s=o

By uniqueness of solutions of -X^F, we must have

fi(fc) = TXit(0i) V t > o (41)

and u° = u.

(H.) is clearly a semi-group of linear operators on the subspace ^ . 
t tso

is invariant under composition with the Laplacian in the sense that 

for each 0 e~V , ¿« 0 e y and in fact

H ^ A ^ O )  = A'' <■ Ht(0) t i o ,  0 e V  (42)

j = 1.2.....

To discuss the continuity and smoothness properties of solutions 

of (4) on the closed subspace^r we consider the semi-flow 

H : R50 x ~Ç —. Y

(t.0) i------ - Ht(0)

• A  M t ) ( s )
• ^s



Fix 0 rewrite (29) in the form
oo y i

u(t,x) = Z a 1 (Xit)4>i (x)
1=0

t 5s. 0

x e X

(43)

Ht(0)(.)(x)=ut(.,x)= s 
z L i =o

ei
a ,.t < M x) (44)

0i
where a 1 : £-r,«>) -*• Rn is the solution of -F at 0 -̂ We look at the

smoothness properties of (43), (44) in t by viewing them as maps

Ri0  -3 t(-^u(t,.) t ^ ut = Ht(0) e^^(J. ^ 2k^X,Rl1^

for every integer k > o. We need the following lemma.

Lemma (4.2):

Let q » 1 be an integer. Then constants K^, K^, p > o 

independent of t, i s.t.

o°i(Xit)| <: K X? ||0i|| \/ t >, (q-!-)r (45)
dtH U

ei (qill<- \ t tr - -U(Xit-qr)
K e ||0 -1|q 11 l11,.»

t » gr 
X
1

(46)

for each i = 1 ,2 ,...

Proof of Lemma (4,2):

Use induction on q. Suppose that both (45) and (46) are valid 

for some q. Then if t >,
* 1

we have
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by Lemma (3.1), where? : £°(J,Rn) -*■ Rn is a continuous linear extension 

of F. Hence

| ^  , \ V >| .< l?ll I I .
„ .q+1 ^ . -ViiX.t-qr) (inductive

i e H 0iIj,» hypotheses)

.< V, xf ||e,|| . V i * %  V
since X ^t-qr > X ^t-qr j  o. S im ilarly  i f  t  ^ (q+l)r ,l I a

then

e ,  ( q + i )  e -  (q)
| ( a \ it (s)| = |F((a )x .t+s>l

* l I H U o  Kq e

s e J

-pfl^t+sj-qr}
II0 ill.

Kq+1 e
-p{Xjt-(q+l )r}

ii0iii,. V s e J -

Thus (45) and (46) both hold for q + 1 .  The Lemma is easily seen to be 

true for q = 1, and hence true generally •

Using the lemma we see that for each k > o

dq Gi
" H  « W  *i I L  „ndt JP1 (X,R ) 

2k

>< Kq A  H0 i lU  ( Xf j)€ J=o

k 2 j *
l
j=o$ \  A  ( xi') i n i ^ V/ t * (g-l)r (47)

some K > o.q



By the convergence of the series Z xV ( £ X. ) ||0̂ || ^
i=l j=o

it follows from (43) that the map

r(q-1 )r,°°) 9 t H -  u(t,.) e “¿2k^X,Rn  ̂ is CqV
for each integer k > o. Thus ) > ti— *■ u(t,.) c £  (X,R )

A 1

is Cq. Also by Lemma (3.1), the map

[ ^ , ~ ) *  t r-> ut = Ht(0) c V  f ^ O . r i M " ) )

is Cq-1
'1

Fix t 5- o and consider the estimate

2 .  „2 k 2j • 2 „2 2
||Ht(0)I c s< K" £ F Xi = K IIOII

1=0 J=0

\/ 0 , k = 1, 2.....  This estimate is easy to prove using the

definitions and the inequality (30). Therefore Ĥ i is continuous

linear. Note that the compactness of the maps H. for t > 2r is not very
>1

interesting because^ is a Montel space^Horvarth C 2 7  3 )• 0n the other 

hand, denote by (.,<j>0) the map fi^(J,^)-»0 <—*• (0 >4>0) = 0oe:̂ l ̂ ’

then, if t 2r , H admits an extension to a unique linear map

Ht: V  s-t- Ht' (••'f’o K )  is compact, where is the closure of'ST in

•^ (J .^ 'jlJ X .R 11)) wrt t *le norm for each k > o. To see this,

extend by virtue of (48) to a uniquely determined continuous linear map



H7 : • We approximate H.
L K ■—

operator topology by compact operators

(30) 5  an integer N > o s.t. •

llTX.tll " El
\f i >. N

NDefine the operator : "C-+ ^  J-.k —

N NH"(9) = I
1 i=l Tx.t<V+11

(49)

by

Each Tx t is compact (for i 1) because t £ 2r (Theorem 3.3 iv); thus
i *1

is compact. Now if 9 , then

<<»> - («■♦„)♦» • H?<e>l l,

= 1 llTx t(0i)li
i=N+l l 1 -/2 

1

k 2j 
* X.
J=o

.< e2 II 0||2
-/2(J,^22k'

(50)

Since e > o is arbitrarily chosen, (50) gives the compactness of

Ht  - (• .<i>0 )4’0 fo r  t  1 2r .
*1

The subspace*^ is stable wrt the semi-flow {H.} in the
1 t>o

sense that for each 0 e "$■ , lim H.(e) = eo4>0 , where (j>Q is the
t-K) 1

constant harmonic function <t>0(x) = ( f% 1 dx)  ̂ V x e X. Indeed, for

each k > o we have
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l|Ht(e) - eo4,o |
-ViX,t

S K e 1 ||0 V' t £ o (51)

where k, p > o are as in (30). Therefore the closed subspace

A  = (0o o 0o C ^  > ^  y

is an attractor for the semi-flow { H.)
z tuo

A  is infinite-dimensional.

One can obtain solutions °f the RUE on the subspace<6 by 

looking at the following cases: 

i). The Hyperbolic Case:

Let A be the infinitesimal generator of the semi-flow { T^}

of -F. Assume that the complexified generator A£ has no eigenvalues on 

the imaginary axis in C. co
Suppose that 0 = £ 0 .<J>̂ e $  i.e.

i=o

Q.j i i o. Referring to the proof of Theorem (3.6), we have a

spl itting

t>o

U 5 (J.Rn)]c = *** ® ? -tAf |-U
where Â .|X£ : Q  -> is bounded linear and each e for

t > o has spectral radius < 1 because all the eigenvalues of Aj.|Ti have 

strictly positive real parts. Therefore constants K ,p > o s.t.

,-tA|lt n * ? 0 -Pt t i  o (52)

l * -* fr »
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Define the backward semi-flow {B.} on & by
1 t$o

B.(0) = Z
\.tA|U

1=0
-00 < t < 0 (53)

The uniform convergence of the series (53) and its term by term derivatives 

are studied in the same manner as we did for the forward semi-flow {Ĥ .} ^

taking into account the basic estimate (52). By a similar calculation to 

the one used in obtaining (32), we get

JL Bt(0)(s)(x)| = M F ( B t(0)(.)(x))> t < o (54)
as s=o

i.e. (B (0)} generates a backward solution of the RHE starting at 
t t<o

0 e 8  .

As before each Bt : t i  o is a continuous linear map,

and term by term differentiations of (53) wrt t (together with Lemma 4.1) 

imply that the map (-” ,o] > t +  (0) c is C .

Since IE is finite-dimensional, then for each t < o, Bt is the

uniform limit of a sequence of operators of finite rank; hence Bt is 

compact V t < o wrt the norms g o 7 k = 0,1 ,2 , .  . ..’2/ ,

Using (52) we obtain as before lim B.(0) = 0O<J>O
t-*-oo

for each 0 e&, and the finite-dimensional repelling subspace

& ■ ( V o  : ®
tco

for the backward semi-flow {B.>
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ii) The Delayed Case:

Here we specialize F by taking it to be a delay equation

of the form
N

F(y ) = Z L . ( Y( - d . ) )  V y t  ^ i ( J , R n) (55)
j=l J J

with finite delays o < d^< dg ... < = r; each L^: Rn is a

linear mpp. Thus (4) becomes the delayed heat equation (DHE):

N
A{Lj(u(t-dj ,x))} x e X 1  (56)

u(s,x) = 0(s)(x) s t J , x e X  J
A forward solution of (56) can be defined for 0 e S  again 

by the same formula (29). The main idea here is that - because of the 

delay- the series (29) is made to converge for each fixed t > o. This 

is attained through 

Lemma (4.3):

Let {T } be the semi-flow of -F in (55), and p > o be 
1 t>o

any integer. Then 3  a constant M > o (independent of t, i) s.t.

l|Tx .t (0i)H ^ <K( V >  H0ill V  o < t < pd1
¿2
1

where

K(X ) = {M fl + X d, E || L . || 1 + L  t M ( I 11 L -1| ) }
j=l J xf J=1 J i

i = 1,2....

(57)

2li (58)
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Proof:

Starting from the equation .t+ i-
V (9i)(s) =

0,(o) - X. i f  Ai|_.(e.(u-d.))du ost+l-S t$d.
1 1 j=l J 0 J 1 j Ai 1

seJ
(59)

ei(t + I T > -r$t + $ o, seJ
Ai oi:t<d1

it is easy to see that

!TX . t (e 1><s >l < .E, IILj I H  118,1 s J
1 J=l « Oit̂ a-i

|f c  Tx,t<9i><s>| «( ; i J ,  ll1#  ll8iH

(60)

SeJ (61)

^  H "  “ V 0
for all s e J, o .< t i d^. Therefore 73 a constant M > o s.t.

I I TX t ( 6 i ) II S K(X ) ||e ||
< ' t\

o $ t < d. (62)

where K(X^) is given by (58). Thus the lemma holds for p = 1; for arbitrary 

p (57) follows by an easy induction argument which makes use of (62). Q.E.D.

In this way the semi-flow {H^} for the DHE (56) is defined 

on the whole of the state space .¿^(J, £°°(X,Rn )). Each Cf°(X,Rn))

is a continuous linear map leaving the closed subspaces'? , (8 invariant.

If furthermore we are in the hyperbolic situation (i) above, then 

Ht |<8:® ^  is a linear homeomorphism for t i o; indeed Ht|vB is injective 

and has a continuous inverse (H. |$ )"'* given by
°o ^ -X .tA

(Ht|(8)'1(9) = 2  e 1 (01)<O. 0 e 6.
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As in the ordinary case (Theorem 3.6), the semi-group {H. |<S) extends
L tjiO

naturally to a 1-parameter group {H.|8) which solves the DHE (56) on
1 teR

the whole of R.

By checking on the subspace ®  , similar arguments to the ones 

before - but exploiting the estimate (57) - give the following smoothness 

properties of the solution u of the DHE (56): for any 6 e°^(J,£ (X,Rn)) 

and any integer q > 1 the map ,“ ) * t -*■ u(t,.) e C (X,R ) is Cq ,

and the map

I f
*1

n n - * u t  = Ht(0) e ^ ( J ,  e ” (X,Rn)) is cq_1.

Remarks

1. The case d̂  = o is not covered by the above analysis and Lemma (4.3) 

fails to give any information on the existence of a solution of (56) on 

the subspace $  for t > o. If d-j = o we do not know whether a (unique) 

solution of (56) exists for t t o and with initial path 9 t ®  .

2. The hyperbolic situation (i) is largely typical (i.e. "generic" in 

some sense) among the class of all RHE's, because the underlying assumption 

on F is known to be generic (Oliva [3?] )• The usual heat equation

3j£(t^x) _ Au(t>x) ,joes not represent generic behaviour - even among

the non-retarded ones; but instead it shows the totally stable case:

= to) , V =  ¿*(j,e"(x,Rn)).

Replace A by a second order elliptic self adjoint operator on X .3.
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CHAPTER 5

Generalizations and Suggestions for 

Further Research

Here we make some suggestions and conjectures which 

may be of some significance in the future. The treatment shall 

be sketchy in most cases.

We start by assuming in this Chapter that all RFDE's 

admit unique local solutions which depend continuously on initial 

data.

§ 1. Smooth Dependence on Initial data:

Let (F,J,X) be a C1 RFDE on a Banach manifold X . 

Define its semi-flow St:<£^(J,X) t >, o by

St(0) = a® , G e/ ^ J . X )  (1)

A
where a is the solution through 0 .

Conjecture (5.1):

:o£?(J,X) <  -> is of class C^ for each t. 

Sketch of Proof:

By localization, it is sufficient to consider the case 

when X = E , a real Banach space. Then the conjecture will hold 

because of the following Lemma which is proved via the Implicit 

Function Theorem (Lang £53 "\).

Lemma (5.1):

Let 6q e ¿C ̂ (J,E) and F :  [o,j<) x/*(J,E) - E 

a C1 (time-dependent) RFDE . Then 3 c > o , a neighbourhood



130

V of 0Q in o£2(J,E) and a unique C° map <f> : [o,e] x V s.t.

^  = F(t,*(t-,0)) a.a. t e £o,e]

V  0 e V (12)

d>(o,e) = e V  e e  v

Moreover 4> (t ,.) : V -*e£2(J,E) is for each t e (o,eJ.

Proof:

Use the implicit function theorem.

Assume without loss of generality that 0Q = o .

Let I = [o,K] . Denote by G^2 C- C°(I,^(J,E)) the set of all
1 o

continuous maps y : [o,K]-- »-«¿^(J.E) s.t.

Y(t)(s)
t + S £ 0

o £ t + s ^ e

Then G^2 is a Banach space with the norm

11 y I L 0#I /2, = sup II Y(t) Wjz
C  ( ^ l )  t c I ^ 1

Take a neighbourhood U of 0q = o in jC 2(J,E) and define

Gy = {Y : y e C  U}

Define the map g : (o,K) x U x Gy / 2([l-r,Kj,E) by



, .... U Y (t)(°) - aF(at,y(t))
g(a,0,Y)(t) = l3t

|^y(o)(t) - d 6(t)

t e I = (o,K)

( 3 )
a.a. t e J

for a e [o,K) , 6 e U , y e Gy . Then g is C1 and g(o,0 ,o) = o .

Also if 6 e G^2 > then

{D3g(o,0o,o)}(6)(t) = U t 6(t)(o) a.a. t e  [c

) d 5(o)(t) a.a. t c J
(_cTt

(4)

where D3 denotes Frechet differentiation wrt the third variable y.

It is easy to see that D3g(o,0Q ,o) : G,2 ^ 2([-r,k],E)

° 1

is a continuous linear injection. To prove that it is actually a linear 

homeomorphism, it is sufficient to show that we can invert it continuously
o

on a dense set in £  ((j-r,Kj,E) . Consider the linear subspace 

fa 1
v = in : n eC'([-r,K] , E) , n(o) = o }

2 P"°f ([-r.K]. E) . It is not hard to see that V is dense in 

[-r.K] , E) wrt the norm

K o 1/2

J ?
(t)r dt n e/*([-r.K]. E) ,

»If « f | * I I ■ 9 i 4 • • - f *



1 3 2 .

by looking at the picture

E

where the dotted curve n is in J. <L{ [-r,K] ,E) and p e V is an
o ^

Ji - approximation of n for any given c > o .

The inverse of D_g(o,0 ,o) on the subspace V # is given »5 0
as follows: Let n e V and define a e«£^([-r,K], E) by 

ft
a(t) = I n(u) du V  t e £-r,K]

Jo

Define 6 ct°(I „¿'[(J.E)) by

6 ( t ) = a .̂ , t  c C°.K]

Then 6 e G - and D3g(o,e ,o)(6) = n . Also for each t e l ,

n



2 T „0
ll«(t)IL2 r

u -r
1 J |a (t+s)|.^ds + -pj |a'(t+s)|^ ds

,o rt+s

• * Ll
| rj (u) | du ds +

* J !
|n(t+s)p ds

.< M
!/2

for some constant M > o .

.* II «11

o _
Thus D3g(o,0o>o) : G 2 -*■ J. ([-r,K], E) is a linear

!
homeomorphism, so by the implicit function theorem e > o , a 

neighbourhood V of 0Q in ,/^(J,E) and a unique map

h : [o,c) x V --- ► Gu s.t.

g(a,e, h(a,0)) = o V  a e [o,e], ^  9 e V (5)

The map h is unique among the continuous ones which satisfy (5) 

for small enough e and V . Now define the continuous map 

<i> : [o,e] x V — ► U by

<|> (t,0) = h(c,0)(t/e) t e [o,e] , 0 e V (6)

It follows immediately from (5), (6) that

M y i ( o )
at = f (t, <?>(t,o)) t e [o , e]  , 0 e V
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Also

d h(e,0) (o) (t) = d9(t) a.a. t e J
3t ~3t

gives

<(>(o,e) = e V  e e v (7)

Since the semi-flow (t,0)V— *- a® gives a continuous 

map satisfying (5), it follows that

<{>(t,0) = a® t e [o,e], 0 c V

Hence 0 v--- * at is C because <{>(t,.) is .

Remarks:

1. We feel that the differentiability of F :/^(J,X) TX 

is sufficient to guarantee that the maps Ŝ. :Ji ^(J,X) are C .

This may probably be done by a modification of the above lemma to bypass 

the assumption concerning continuous dependence on initial paths. This 

may then yield a new and short proof of the basic existence,uniqueness

and smooth dependence on initial data in the Cauchy problem for differentiable 

RFDE's (See Graves X. 20 Robbing ^ 2  .

2. If dim X < oo an implicit function argument can also be 

applied to prove the existence and smoothness of local stable and unstable 

manifolds through a hyperbolic equilibrium path of a RFDE

F :j£^(J,X) TX . We shall not give details of this argument here.
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The following conjecture is a corollary of continuous

dependence:

Proposition (5.2):

Suppose X is compact and has Euler characteristic 

%(X) f o . Then for each t i o  , 3 xQe X s.t.

St(Xo)(°) = xQ , where "x0 : J X is the constant path through xQ .

Proof:

Consider the continuous map

X ----------- * X

StfT)(o)
x I—  ---------St(x)(o)

This is hotnotopic to the identity id^ : X on X because 

S (x)(o) = x and t>— *■ S.(x)(o) is continuous. Hence the Lefschetz

number of St(r)(o) is equal to ’ X(X) and is therefore non-zero,

by hypothesis. Therefore by Lefschetz fixed point theorem (£4-i*3)» 

the map St(7)(o) has a fixed point for each t i.e.

3  xq e X s.t. St(xQ)(o) = x0 . Q.E.D.

The above result proposes to give a criterion for the 

existence of solutions which loop back upon themselves after any finite

time:
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The next proposition is "dual" to the last one in the 

sense that it says that when X is finite dimensional, then each 

point of X is attainable by the semi-flow at any future time.

Proposition (5.3):

Suppose dim X < °° . Then for every t >, o and each 

x e X , 3  0 e^(J,X) s.t. St(0)(o) = x .

Proof:

Suppose dim X = n , and look at the continuous map

¿l(J.X)
St(.)(o)

X

e v st(e)(o)

We claim that this map is surjective. Suppose not, then 

3 x e X s.t. S.(.)(o) induces a map Qs. (.) (o)l of

the n-th homology groups

H„(X>----------Hn(X - x0) ^-----------* Hn(X)

[St(.)(o)]+

Now in the punctured manifold X - xQ , n-dimensional cycles retract 

onto lower dimensional parts of X , so we must have Hn(X - xQ) = o ;
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hence |j>t(.)(o)] = o .

S i n c e i s  homotopically equivalent to X , then

H U?(J,X)} = H (X) . Also the map S (,)(o) is homotopic ton I n t
the evaluation pQ :^^(J,X) X and (pQ)jf = id^ : Hn(X)'6zr> . 

Thus

[St(.)(°)] = id+ , a contradiction.

This proves the proposition. Q.E.D.

§2. Some General Properties of the non-linear Semi-flow:

Use the notation of the last section to denote by

{S.} the semi-flow of an autonomous C" RFDE (F.J.X) .
1 t>o

The generator B of {S*} is a vector field
t;<o

B : D(B) c. «¿‘j(J.X)---* T^(J,X) defined by

B(e) - - S (8) I
<“  i t=0

whenever the right hand side exists (See Theorem (3.4 ) ) .

The conjecture below generalizes Theorem (3.4) of the linear case:

Conjecture (5.4):

With the above notation,



1

i) D(B) = {e:e e¿íj(J,X) , o' e/i(J.TX) , F(e) = e/(o)} ,

o
and is dense in¿^(J,X) .

ii) B(e) = e / V 6 e D(B) , and B(e)(o) = F(0) 

for all e e D(B) .

i i i) St{D(B)}£. D(B) V t ^ o . For each e e D(B) ,

(O.e) ------- - 0(B)
t I------- >- St(6)

is the unique solution of vector field B starting at 9 . Also

B(st(6)) = (T0St)(B(9)) V 0 e D(B)
V  t > o

iv) B has closed graph.

Proof:

Appeal to general properties of non-linear semi-groups 

as in Chernoff - Marsden (Properties of «»-dimensional Hamiltonian 

systems [<> 3)

Remarks:

1. We do not know whether the semi-flow {St)t>0 extends to a 

group of bijectiotis on a dense subset of ^^(J,X) , so that the 

RFDE

= F(ctt) t>o , a0 = 

can be solved backwards on this dense set.

9
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2. It seems plausible that the tangent semi-flow {TSt}t>o on 

o
Tĉ -j(J»X) corresponds to a RFDE on TX ; if so, then we can 

say something about the compactness of the linear maps

Tg$t • TqX-j(J »X) +• ^gy^i(J»X) for each 9 e^^(J,X) .

Can D(B) have a manifold structure - in a natural way - so that 

B is C°° and TB is the generator of {TŜ .}t>Q ?

§3. g^ - Gradient RFDE's

In connection with the discussion in Chapter 2, recall 

that </^(J,X) can be given the metric

g2(9)(3,Y) 7  f < 3 ( s ) ,  Y(s)>0(s)
Dy (s )n  
ds ''e(s)ds

2
for B,y e Tg/^(J,X). It is an open question whether the Morse 

inequalities can be developed for a g^- GRFDE .

§4. Stochastic Retarded Integral Equations:

We have already seen that the deterministic techniques - 

particularly those involving parallel transport - fail to yield
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any information if we are working with C.°(J,X) as state space. 

On the other hand a stochastic versionof parallel transport along 

continuous paths is made available to us through the work of Ito 

( ^ , and one may use this idea in looking for stochastic

analogues of the major results of Chapters 2 and 3. The RFDE is 

replaced by a stochastic integral equation and the Cauchy problem 

may be examined in the spirit of Eells - Elworthy . An

interesting problem here is to prove a stochastic parallel of the 

stable-bundle Theorem (Theorem 3.6 ) of Chapter 3.
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