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ABSTRACT
The binary fraction of a stellar population can have pronounced effects on its properties, and
in particular the number counts of different massive star types, and the relative subtype rates
of the supernovae which end their lives. Here we use binary population synthesis models with
a binary fraction that varies with initial mass to test the effects on resolved stellar pops and
supernovae, and ask whether these can constrain the poorly-known binary fraction in different
mass and metallicity regimes. We show that Wolf-Rayet star subtype ratios are valuable binary
diagnostics, but require large samples to distinguish by models. Uncertainties in which stellar
models would be spectroscopically classified as Wolf-Rayet stars are explored. The ratio
of thermonuclear, stripped envelope and other core-collapse supernovae may prove a more
accessible test and upcoming surveys will be sufficient to constrain both the high mass and
low mass binary fraction in the z < 1 galaxy population.
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1 INTRODUCTION

Stellar population synthesis models provide a framework through
which observational data of stellar clusters, galaxies and galaxy
populations can be interpreted (Tinsley & Gunn 1976). Identifying
the properties of the observed population relies on matching the data
to predictions determined by the age, mass, metallicity and other
properties of the best-fitting model. Those predictions are sensitive
to the assumed evolution of individual stars included in the synthesis
model, which in turn depends on assumptions including the fraction
of stars affected by binary evolution pathways.

While the majority of stellar population and spectral
synthesis models currently in use neglect the role of stel-
lar multiplicity (e.g. Bruzual & Charlot 2003; Maraston 2005;
Le Borgne et al. 2004), there is an increasing recognition that
its effects are important, particularly when interpreting young
and distant stellar populations, or in determining the rates
of transient objects (e.g. Vrancken et al. 1991; Tutukov et al.
1992; De Donder & Vanbeveren 1998; Vanbeveren et al. 1998;
Zhang et al. 2013; Stanway et al. 2014; Eldridge & Stanway 2016;
Eldridge et al. 2019; Stanway et al. 2016; Wilkins et al. 2016;
Ma et al. 2016; Steidel et al. 2016, 2018; Chrimes et al. 2020;
Götberg et al. 2020; Zapartas et al. 2020). The fraction of mas-
sive stars affected by a binary companion during their evolution
is clearly substantial, and cannot be entirely neglected (Sana et al.
2012, 2013). Nonetheless, implementing binary evolution pathways
is both technically challenging and involves introducing additional
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assumptions for the binary fraction, and the distribution of ini-
tial binary parameters in the population, as well as the initial mass
function (IMF). Constraints on these parameters have improved sig-
nificantly in recent years (Moe & Di Stefano 2017; Moe et al. 2019;
Traven et al. 2020), but remain poor at low metallicities and outside
the local Universe.

In Stanway & Eldridge (2019) we began a programme to ex-
plore the impact of these uncertainties on stellar population predic-
tions, by varying the initial mass function parameters assumed by the
Binary Population and Spectral Synthesis (BPASS, Eldridge et al.
2017, hereafter E17) model framework, while keeping the binary
parameters fixed. In Stanway et al. (2020, hereafter S20) we instead
explored the impact of stellar binary population parameter uncer-
tainties on the integrated light of stellar populations for a fixed IMF.
In that work we considered both observational uncertainties on the
binary parameters in the current v2.2 of BPASS, which are based on
the analysis of Moe & Di Stefano (2017, hereafter MS17), and an
extended grid of models in which the binary fraction as a function
of mass is varied by an arbitrary amount.

In parallel, recent work by Dorn-Wallenstein & Levesque
(2018, 2020) has explored the effect of both binary fraction and
rotation on predictions for resolved stellar populations, using a cus-
tom set of models in which stars of all masses are assumed to share
a common binary fraction. They identified the ratio of certain mas-
sive stellar types, and in particular the ratio of stripped-envelope,
strong-wind, helium-atmosphere Wolf-Rayet (WR) stars to red su-
pergiant (RSG) stars, as being sensitive to the binary fraction (and
indeed rotational mixing) assumed.

Here we explore the impact of a mass-dependent binary frac-
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tion on both stellar type ratios and supernova type ratios using a
grid of models with a wide range of possible initial mass-dependent
binary fractions and metallicities. We explore whether binary frac-
tions might be recovered from observations of resolved stellar popu-
lations in the local Universe, or of bright transients at cosmological
distances. We also explore the impact on these interpretations of re-
cent proposals that the minimum luminosity of WR stars identified
spectroscopically may show a strong metallicity dependence.

The structure of this paper is as follows: In section 2 we intro-
duce the model grid used here and discuss the alternate definitions of
WR stars. In section 3.1 we present the predictions of our models for
continuously star forming populations as a function of metallicity. In
section 3.2 we consider the binary fraction influence on supernova
rates and the ratio between supernova types, assuming appropriate
redshift histories for both star formation and its metallicity distribu-
tion. We evaluate the impact of WR definition and of binary fraction
on these predictions, and consider whether upcoming projects will
enable binary fraction to be evaluated observationally in future, in
section 4. Finally, we summarise our main conclusions in section 5.

2 METHOD

2.1 Standard Models

All models presented here are based on the Binary Popula-
tion and Spectral Synthesis (BPASS) stellar population synthe-
sis models (Eldridge & Stanway 2009, 2012; Stanway et al. 2016;
Eldridge et al. 2017), specifically their v2.2.1 implementation
(Stanway & Eldridge 2018). This framework generates an evolv-
ing simple (i.e. coeval) stellar population in which the initial stellar
masses are distributed according to a broken power law, and the
binary fraction, initial period distribution and initial mass ratio dis-
tribution of stars are based on the distributions determined by MS17.
These were initially determined empirically for stars in five mass
ranges and four initial period bins, and are interpolated onto the
BPASS mass and period grid. Here we keep the initial mass func-
tion, initial period distribution and mass ratio distributions fixed in
line with the BPASS v2.2 default, but vary the binary fraction with
the logarithm of the mass of the primary star.

As in S20, where the unresolved stellar populations derived
from the same models are discussed, we define two sets of variant
models. In set 1, the high mass binary star fraction (above 20 M�)
is fixed at unity and the low mass binary fraction is permitted to
vary from about 40 per cent at Solar mass up to unity. In set 2, the
Solar mass binary star fraction is held fixed at about 40 per cent, but
the high mass binary fraction is permitted to vary from its current
estimate (near unity) down to 40 per cent. These sets of varying
binary fractions are defined in Fig. 1 and discussed in detail in S20.

We note that this approach differs from and is complemen-
tary to that of Dorn-Wallenstein & Levesque (2018, 2020) in which
stars of all masses are deemed to share a common binary fraction,
in conflict with the observed distributions in the local Universe.
Since those papers addressed the relative numbers of massive stars,
derived from a relatively narrow range of initial masses in young
populations, their assumption of a constant binary fraction over that
mass range is likely reasonable. However we expect the dependence
on initial mass to affect any comparison with populations arising
from lower mass stars - for example in the ratios of different su-
pernova types as a function of metallicity or age, or their cosmic
evolution (as discussed in section 3.2).

The models presented here do not vary the distribution of initial

binary separation and mass ratio due to computational constraints,
but focus on the total binary fraction as a function of primary star
mass. The effects of varying these parameters independently was
explored for unresolved stellar populations by S20, and it is clear
that the current observational constraints on separation and mass
ratio permit a large range of possible models. In the context of the
work on resolved populations in this paper, the key question to be
addressed is whether binary interactions alter the evolution of a
system, thus changing its stellar type or supernova type at death. A
system is more likely to interact if the stars begin their life in a close
binary or if the mass ratio between primary and companion is near
unity. Thus an increase in the total binary fraction has a similar effect
to biasing the initial period distribution towards shorter periods, or
to biasing the mass ratio towards twin systems. The default BPASS
prescription for these is fixed based on observational constraints
derived as a function of stellar mass by Moe & Di Stefano (2017),
and for massive stars already include a bias towards twin systems
and short periods. Thus varying the overall binary fraction captures
the majority of the behaviour for massive stars. For lower mass (e.g.
Solar-type) stars, the distributions are broader and the observational
constraints weaker, and so models in set 1 will be degenerate with
models with larger mean separations or smaller mass ratios.

For each variant binary fraction versus mass distribution
function, we calculate time-evolving stellar number counts for
populations with an initial total stellar mass of 106 M� at 13
metallicities and 42 age steps, spaced logarithmically such that
log(age/years)=6.0 + i × ∆(age) (i = 0 − 41) and the increment
∆(age)=0.1. For each of these age steps, we assign each stellar
model a type by luminosity, temperature and surface composition.

Similarly we assign a type to each supernova identified based
on the state of its progenitor at the end of its evolution. These clas-
sifications are described in Eldridge et al. (2017). Briefly, a star is
considered to undergo a core-collapse supernova if it has undergone
core carbon burning and has a CO-core mass > 1.38 M� at the end
of its life. Its type is then determined by the chemical composition
of the surface layers which will be ejected, and the remnant (if any)
determined from the core mass after accounting for the supernova
energy injection. The survival or disruption of the binary is de-
termined probabilistically, given an assumed kick distribution. For
stars with insufficient mass to undergo core collapse, the end state
is deemed to be a white dwarf with the mass of the progenitor star’s
helium core at the end of its life. Binary systems which survive to
this point can show an increase in the white dwarf mass through
mass transfer from a companion, or a merger of double white dwarfs
through angular momentum loss due to gravitational wave radiation.
Where either of these pathways result in a white dwarf with a total
mass exceeding the Chandrasekhar limit, a thermonuclear, type Ia
supernova is deemed to occur. The rates and delay time distributions
of such explosive transients, as modelled in BPASS, are discussed
in detail in Eldridge et al. (2019) and are shown to be consistent
with observational constraints.

2.2 Wolf-Rayet definition

In the standard models described above, we have used the WR
definitions laid out in E17 in which stars are identified as WR
based primarily on their surface compositions. Stars are assumed
to be identifiable as strong wind-driving, Wolf Rayet stars, rather
than lower mass helium stars, if they have a luminosity exceeding
log(L/L�)> 4.9.

Recent work (Shenar et al. 2020) has argued on both observa-
tional and theoretical grounds that this simple constraint is insuffi-
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Figure 1. Multiple fractions tested in an experimental grid to examine
possible observable signatures for binary populations. Each line indicates a
model binary fraction distribution which either raises the binary fraction at
low stellar mass (set 1, dashed lines) or lowers it at high mass (set 2, solid
lines). Data points are drawn from MS17 and the thick red line indicates the
fiducial model applied in BPASS v2.2.

cient. Instead, the luminosity constraint above which a star shows
the spectral features classically identified as a Wolf-Rayet may be
metallicity dependent, scaling as LWR

spec ∝ Z−1. Stars below this
threshold would show a blue, stripped star spectrum, but produce
narrow line emission, rather than the strongly line-broadened emis-
sion associated with classical Wolf-Rayets.

To evaluate the impact of this proposal on the predicted number
counts of stars by type, we recalculate the classification of stars in
our models based on the relationship:

log10

(
LWR

spec

)
= 4.9 − log10(Z/0.014).

Only stars above this luminosity threshold are classified as WR.
These models are shown on figures with dotted lines, where appro-
priate. We do not expect this change to affect supernova rates, since
these are determined by the structure and composition of the pro-
genitor star, which is only weakly related to its stellar classification
(e.g. Eldridge et al. 2018).

3 RESULTS

3.1 Trends with Metallicity

3.1.1 Resolved stellar populations

The metallicity of stars affects their wind strengths, radii, surface
gravity and hence probability of undergoing binary interactions
while on the main sequence or giant branch. Such interactions can
lead to surface hydrogen stripping, rejuvenation and other processes
which will change the classification of the stellar model. As a result,
we expect (and observe) the ratio of different stellar types to depend
on both binary fraction and metallicity.

We calculate trends in stellar type number counts with metal-
licity for star forming stellar populations. In each case we assume
that the composite stellar population (CSP) has been forming stars
at a constant rate of 1 M� yr−1 for 100 Myr, such that the num-
ber counts of most stellar types have stabilised, with the rate of
stellar birth balanced by the rate of stellar death for massive stars.
The long-lived low mass stellar population will continue to build
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Figure 2. Wolf Rayet (WN + WC + WNH) to O star (O + Of, log(L/L�)>4.9)
ratio, as a function of metallicity and a range of binary fractions. Mod-
els are as colour coded in Fig 1. Solid lines indicate a WR defini-
tion cut at log(L/L�)>4.9, dotted lines are for a metallicity-dependent
luminosity limit as discussed in section 2.2. Data points are from the
references labelled (Maeder & Meynet 1994; Monreal-Ibero et al. 2017;
Bibby & Crowther 2012; Crowther et al. 2007; Hadfield & Crowther 2007;
Miralles-Caballero et al. 2016). Filled symbols for Miralles-Caballero et al.
(2016) indicate corrected values as discussed in Section 4.1.

up to much later ages, so we focus on the relatively massive stars
which may be resolvable as individual stars beyond our immediate
environs, and in particular on the Wolf-Rayet (WR) population of
stripped-atmosphere stars.

In Fig. 2 we show the dependence of the WR to O-star ratio in
such a population on metallicity and binary fraction. Unsurprisingly
this ratio shows effectively no sensitivity to the binary fraction at low
masses, with the models in set 1 indistinguishable at Solar metallic-
ity. By contrast, the ratio is moderately dependent on the high mass
binary fraction for our standard WR definition. Number count ratios
yielded by the revised Shenar et al. (2020) definition for WR stars
show less dependence on binary fraction, but a stronger metallicity
dependence than those using a uniform luminosity definition.

For context, we also show a compilation of observa-
tional data points reported for this ratio (Maeder & Meynet
1994; Bibby & Crowther 2012; Miralles-Caballero et al. 2016;
Hadfield & Crowther 2007; Crowther et al. 2007). In each case we
use the values reported by the original authors without modification.
Where authors give metallicity in the form of 12+log(O/H) we as-
sume Z = 0.020 corresponds to 12+log(O/H)=8.93 as appropriate
for BPASS stellar evolution models (Xiao et al. 2018; Eldridge et al.
2017). We note that this observational dataset is likely highly in-
complete due to the difficulty of resolving large samples of massive
stars, determining their metallicity and classifying them reliably,
and we discuss this further in Section 4.1. As a result of these
uncertainties, the observational data show a large scatter and it is
difficult to draw firm conclusions from the data. Nonetheless the
models demonstrate that precision on the WR fraction significantly
better than one per cent is needed to distinguish between binary
fraction models at metallicities near Solar, where the ratio ranges
from 0.078 at a massive star binary fraction of unity to 0.058 at a
fraction of 40 per cent.

A similar dependence on metallicity in seen in the Wolf-Rayet

MNRAS 000, 1–10 (2020)
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Figure 3. Wolf Rayet WN to WC ratio as a function of metallic-
ity for binary fractions as colour coded in Fig 1. Dotted lines show
the results for the revised WR definition. Data points are drawn
from the literature (Rosslowe & Crowther 2015; Neugent & Massey 2019;
Bibby & Crowther 2012; Monreal-Ibero et al. 2017; Crowther et al. 2007;
Hadfield & Crowther 2007).

subtype ratios shown in Fig 3. The fraction of carbon-rich WC stars
in the population (relative to nitrogen-rich WN stars and partially
stripped WNH stars) declines sharply with either decreasing metal-
licity or increasing binary fraction when a uniform luminosity cut
for WR stars is used. Introducing a metallicity dependence to the
WR luminosity threshold has the effect of strongly reducing the
dependence on both metallicity and binary fraction in this ratio.
For comparison we show number counts for Galactic and Magel-
lanic WR stars spanning a range of metallicities including the recent
compillation from Rosslowe & Crowther (2015). While the uncer-
tainties on these measurements are still very large they also appear
to disfavour the revised Shenar et al. (2020) WR star definition.

Another observation that has been suggested as a sen-
sitive probe of massive star populations (e.g. Maeder et al.
1980; Neugent & Massey 2019; Massey et al. 2016;
Dorn-Wallenstein & Levesque 2018) is the WR to red super-
giant (RSG, defined in our models as K or M type stars with
log(L/L�)>4.9) ratio. We show the metallicty dependence of
this ratio in our models in figure 4. Interestingly, and unlike
the previous two ratios considered, this quantity is only mildly
dependent on metallicity when using our standard WR definition,
but very strongly dependent on massive star binary fraction (as
also noted by Dorn-Wallenstein & Levesque 2018). This is a useful
trait: the precise metallicity of stellar populations is often difficult
to determine, particularly for more distant objects. Given the
Shenar et al. (2020) WR definition, the binary sensitivity remains
but the ratio is now also metallicity dependent. Since the ratio
is close to 1:1, small differences in the population ratio can be
determined with relative ease - although the low number of objects
in both classes still presents a problem. For comparison, we plot
the ratio for M33 from Massey et al. (2016) iand estimates for the
SMC and LMC for which RSG data is drawn from Massey & Olsen
(2003) and WR numbers from Neugent et al. (2018). As demon-
strated by Dorn-Wallenstein & Levesque (2018), this line ratio
is also dependent on the age of a simple stellar population, and
so comparisons of Fig. 4 to data are not recommended for small
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as a function of metallicity for binary fractions as colour coded in Fig 1.
Dotted lines show the ratio for the revised WR luminosity limit. Data points
are drawn from the literature (Massey & Olsen 2003; Massey et al. 2016;
Neugent et al. 2018).
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Figure 5. SN type II to SN type Ib/c ratio as a function of metallicity for bi-
nary fractions as colour coded in Fig 1. Metallicity differences or uncertain-
ties swamp binary fraction ones. For comparison, we show a compilation of
data from the literature with representative uncertainties (Prieto et al. 2008;
Boissier & Prantzos 2009; Kelly & Kirshner 2012; Xiao & Eldridge 2015;
Graur et al. 2017; Kuncarayakti et al. 2018).

starbursts or single-aged stellar clusters, but are likely to be robust
in the larger populations such as galaxies which have been forming
stars at a constant or slowly varying rate over 108 year timescales,
such as M33.

3.1.2 Relative rates of supernovae

While resolved stellar number counts such as those discussed above
are promising binary fraction diagnostics, an alternative diagnostic
can be derived from the manner in which these stars end their lives
(e.g. Eldridge et al. 2008). Stars which have been stripped or gained
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mass through binary interactions may produce explosions which are
classified differently, shifting between hydrogen-rich (type II) and
hydrogen-poor (type I) classes. Amongst these transients, the ratio of
stripped-envelope to hydrogen-rich core-collapse supernovae shows
promise as a diagnostic of binary fraction. As Fig. 5 demonstrates,
this ratio declines with decreasing metallicity, tracking the fraction
of stripped envelope massive stars in the population. As before, we
overplot these models with a representative sample of observational
data, showing both the vast range of estimates in the literature, and
the large uncertainties on current measurements.

3.2 Cosmic Evolution

The probes discussed above are sensitive to the massive star binary
properties but relatively insensitive to the binary fraction amongst
intermediate mass and Solar-type stars. To probe these, we need to
identify sources or transients with low mass progenitors, and take
into account the longer evolutionary lifetime of these stars. Hence
we need to account for both a star formation and metallicity history
over gigayear timescales. This is challenging for any one galaxy,
but plausible on a volume-averaged scale where extensive work has
gone in to determining both the star formation rate (SFR) density
evolution (Madau & Dickinson 2014) and the global metallicity
evolution (Langer & Norman 2006)1. In this context we consider the
cosmic evolution of supernova rates, considering both core collapse
events (with massive progenitors) and thermonuclear detonations
(with lower mass progenitors).

We adopt the same cosmic evolution prescription for SFR and
Z as Eldridge et al. (2019) to calculate the star formation rate density
distributed between different metallicities as a function of redshift.
Using delay time distributions and event rates from our models, we
calculate the resultant cosmic evolution of supernova rate per unit
volume for each variant binary fraction distribution2. The results are
shown in Fig. 6. The upper panel gives the evolution in the mean
volumetric rate of each supernova type between z = 0 and z = 6. In
the lower panels, the evolution in the ratio of different types is shown
out to z = 2 and compared to a compilation of observational data
as described below. We note that the lines indicating Long Gamma
Ray Bursts (LGRBs) include only the chemically homogeneous
evolution pathway which dominates at the lowest metallicities, and
neglects pathways which operate at higher metallicity (these may
be included in later BPASS releases, see Chrimes et al. 2020).

To constrain the observed ratio of thermonuclear type Ia
rates to core collapse supernova rates, SN Ia (Okumura et al. 2014;
Cappellaro et al. 2015; Rodney et al. 2014; Melinder et al. 2012;
Graur et al. 2014; Perrett et al. 2012) and CCSN (Taylor et al. 2014;
Melinder et al. 2012; Bazin et al. 2009; Petrushevska et al. 2016,
and data compiled therein) volumetric rate data have been sorted
into ∆z = 0.2 bins, and where one or more rate estimates for both
types exist in the same redshift bin, their ratio is taken. For the
stripped envelope supernova fraction we show the local rate ratio
estimated from the LOSS survey (Shivvers et al. 2017) for galaxies
at z < 0.05.

At low redshifts, a binary fraction close to unity is preferred

1 While other metallicity distribution estimates exist in the literature, the
metallicity distribution of high redshift star formation remains very uncer-
tain, and we retain this prescription for comparison with earlier work. As
Tang et al. (2020) explored, this prescription allows the correct recovery of
local transient rates.
2 We assume ΩM = 0.286, ΩΛ = 0.714, h = 0.696.

for resolved studies of high mass stars, with some indication that a
high binary fraction is also preferred for Solar-type stars at very low
metallicity (Moe & Di Stefano 2017; Moe et al. 2019). In each case,
however, the observational uncertainties on current survey data are
too large to distinguish between binary fractions with any degree of
reliability, or to evaluate the redshift evolution of these rates.

As Fig. 6 demonstrates, the stripped envelope fraction amongst
core collapse supernovae evolves linearly with redshift, reflecting
the slow evolution in the metallicity of the underlying stellar popula-
tion. By contrast, the fraction of thermonuclear type Ia SNe relative
to core collapse events remains near constant out to z ∼ 0.7 before
declining sharply. This results primarily from the much longer delay
times distribution of the type Ia events. These require the evolution
of relatively low mass stars into white dwarfs, which then grow
through binary interactions until the Chandrasekhar mass limit is
reached.

4 DISCUSSION

As we have demonstrated, both the types of massive stars and their
eventual supernovae are sensitive to the presence of binary evolution
pathways in the population. So are we approaching the point where
resolved studies of massive stars may directly constrain the binary
fraction of their underlying populations?

4.1 Observations of stellar type ratios

The models presented in section 3.1 are broadly consistent with the
compilation of observational data shown, in terms of order of mag-
nitude in number count ratios and underlying trends with metallicity.
However Figures 2-4 also demonstrate that there are large variations
in observational estimates of stellar type ratios. They also clearly in-
dicate the very small number of measurements for which estimates
of metallicity and massive star number count ratios are available.
Nonetheless, in certain ratios, and in particular the WR/RSG ratio,
the uncertainties quoted on the data are already sufficiently small
to interpret as binary fraction measurements Given these factors,
it is important to assess the robustness and appropriateness of the
samples against which we are comparing.

In their recent comprehensive survey of resolved massive stars
in M31 and M33 Massey et al. (2016) estimated that they were
almost complete for Wolf-Rayet stars but were incomplete for RSGs
in M31 and had identified only a few percent of the O stars present
in the galaxies. In many of the observational samples reported, the
completeness is still lower.

The O star population is difficult to quantify due to confusion
in star forming regions and the typical brightness of individual
stars. As a result, the number of O stars is often inferred from the
ionizing photon flux inferred in a population, while the number
and type of the Wolf-Rayet stars is inferred from fitting of mass-
scaled templates to diagnostic spectral features3. As a result, dusty
stars may be undercounted, as may the hottest stars which radiate
primarily in the ultraviolet. It is also an inconvenient fact that known
Wolf-Rayet stars have luminosities that scatter over two orders of
magnitude (Crowther & Hadfield 2006) and so determining whether
any individual ionized region has been irradiated by one star or many

3 This approach is taken by all the data shown on Fig. 2, with individual
WR stars only resolved in the very closest objects such as in parts of the
LMC and SMC, and O star numbers always derived indirectly.
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and type ratios, as a function of binary fraction model, assuming the redshift
evolution prescriptions for SFR and Z adopted in Eldridge et al. (2019).
Overplotted points show the current state of observational constraints, com-
piled as described in section 3.2.

is challenging (see e.g. Rosslowe & Crowther 2015). This leads to
a large scatter in the WR/O star number ratios reported, ranging
from those which rely on clear identification of individual stars
(incomplete) to those based entirely on inference from unresolved
populations (heavily model and metallicity dependent). To illustrate
the scale of these effects, in Fig 2 we show two sets of points for
the data of Miralles-Caballero et al. (2016): open circles indicate
the values given by the original authors as inferred from fitting
unresolved stellar populations, filled circles indicate values using
the original WR numbers but modifying the inferred O star count to
account for the generally lower ionizing flux to O star number ratio
in the BPASS models. As the figure demonstrates, this increases
the number of O stars inferred and brings this estimate closer into
line with other estimates at similar metallicity. Nonetheless ratios
inferred from this data set remain high compared to other data.

Each data set presents its own challenges to interpret. In several
cases, no uncertainty is given on the published number ratios, and
where possible this is inferred to give error bars on Fig. 2 from Pois-
son number count uncertainties on the inferred population. These
have decreased with publication date as the number of detected
sources per galaxy has risen. However Poisson uncertainties do not
account for systematic uncertainties in the underlying models used
to infer the numbers, which can easily be of order a few tenths of a
dex and thus span the model parameter space here. A fully consis-
tent comparison between models and data would require the model
completeness and calibration calculations to be undertaken using
BPASS or a comparable code which incorporates binary evolution
pathways.

Where Wolf-Rayet stars are identified, either individually or
through spectral fitting, they are typically classified into WC or
WN types by the strength of carbon features in the spectrum. Thus
many of the uncertainties which affect the data in Fig. 2 also af-
fect Fig. 3, with the added challenge that subdividing the small
Wolf-Rayet population adds to the Poisson uncertainties. Again, it
is not always clear whether systematic modelling uncertainties are
incorporated in the reported error bars for these data, and is likely
that the true uncertainty on most of the data encompasses the full
span of the models. In this context, it is interesting to note that
above a metallicity of about half Solar, the data appear to favour
models with low fractions of massive binaries, which are incon-
sistant with those observed in the local Universe (Sana et al. 2012,
2014; Moe & Di Stefano 2017). This may indicate that the number
of WN stars in local galaxies is being underestimated using current
template fitting techniques.

In comparison to the ratios discussed above, data for the
WR/RSG ratio shown in Fig. 4 is very sparse in the literature:
while RSG and WR populations have been studied separately in
local group galaxies, it is rarely possible to evaluate whether the
same regions have been surveyed in each case, the metallicity of the
region being considered and the relative levels of completeness in
the samples. In the figure, we have shown estimates for the SMC and
LMC for which RSG data is drawn from Massey & Olsen (2003)
and WR numbers from Neugent et al. (2018). While these works
originate from the same team, they are derived from very different
imaging surveys, with different spatial coverage. As a result the ra-
tio can be compromised by the inclusion or omission of bright star
forming regions, or particularly young regions in one survey which
may be omitted from the other, or conversely by a more extended,
more mature stellar population. The third data point on Fig. 4 is that
for M33 in which Massey et al. (2016) identified and spectroscopi-
cally confirmed 211 resolved WR stars and 220 RSGs and estimated
that the survey was near complete for WR stars, and may also be
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complete for RSGs. This data point (at ∼0.5 Solar metallicity) is en-
tirely consistent with the high binary fractions inferred for massive
stars elsewhere in the local Universe. Unfortunately, the metallicity
of this system is rather uncertain, with the 1σ error range admit-
ting models with binary fractions of about 70 per cent or higher at
30 M� . This point resulted from a substantial, multi-year campaign,
but demonstrates the potential for constraints on the stellar binary
fraction from large nearby galaxies.

In short, where data based on counting of individual stars is
available (primarily in the SMC, LMC and perhaps M33), the data
may be used with caution. Where number counts are inferred from
unresolved populations, stellar population model dependence and
completeness must be carefully considered.

4.2 Constraints from star number counts

The extant observational data cannot distinguish between WR defi-
nitions in either the WR/O or the WR/RSG ratio, but hints that the
revised luminosity limit suggested by Shenar et al. (2020) cannot
reproduce the trend in WC/WN ratio with luminosity, for which our
original log(L/L�)=4.9 luminosity limit, independent of metallic-
ity, provides a good match. If there is indeed a strong metallicity
dependence in the luminosity limit for Wolf-Rayet spectroscopic
identification, then the apparent discrepancy between the data and
these predictions would suggest that the mass-loss rates, and espe-
cially their scaling with metallicity, in the BPASS stellar evolution
models need to be revised. This question will be revisited in future
work, since there is growing evidence that the mass-loss rates for
WR stars and RSGs may need to be revised generally (e.g. Yoon
2015, 2017; Beasor et al. 2020; Neugent et al. 2020).

Setting aside the definition question, and focussing on our
standard fixed-luminosity selection, the WR-to-O star ratio ranges
from almost 8 per cent at a massive star binary fraction of unity to 6
per cent at a fraction of 40 per cent. As a result, distinguishing these
populations at any reasonable degree of confidence would require
an observed Wolf-Rayet population well over ten thousand objects
- far more than the total number of currently known WR stars in the
Milky Way and its satellites. Thus it is unlikely that this ratio will
be determined to sufficient precision in any given galaxy to act as a
strong constraint on the binary population.

Since binary processes are, at least in part, responsible for strip-
ping the envelopes of stars which might otherwise evolve into WR
stars, the WR/RSG ratio shows promise for evaluating the binary
fraction in local galaxies in the near future. As Massey et al. (2016)
demonstrated, this ratio can be determined in large nearby galaxies
with a high degree of precision, given sufficient observational time
and effort. The ratio is relatively insensitive to metallicity, mitigat-
ing an often-substantial degeneracy in the fitting of any data, and
shows a strong sensitivity to the binary fraction in massive stars.

4.3 Future prospects for star count observations

Given the model-dependence of indirectly-inferred number counts,
there is a clear preference for sensitive observations of resolved
stars that allow counting of sources down to a luminosity limit of
at least log(L/L�)=4.9. In this context, it is worth considering what
observations future instrumentation may enable in this area.

Science cases for the upcoming class of Extremely Large Tele-
scopes (ELTs) include the detailed study of resolved stellar popu-
lations beyond the local group. The MICADO instrument on the

European ELT4, for example, would expect to resolve and detect
stars down to the horizontal branch at the distance of the Centaurus
group (∼4.6 Mpc) in five hours of integration, and so should pro-
duce complete catalogues for red supergiants (Greggio et al. 2012).
The fields of view expected for ELT instruments are expected to be
less than a square arcminute (in some cases, significantly less) and
while this is suitable for mapping distant galaxies, will require large
mosaics to map Local Group objects.

However, like many of the planned ELT instruments, MICADO
is optimised to operate in the near-infrared, where adaptive optics
can be most effectively deployed. As a result, it is unlikely to provide
any information on Wolf-Rayet and other luminous blue supergiant
stars, for which near-ultraviolet imaging is preferred. Optical spec-
troscopy provides an alternate method for identifying Wolf-Rayet
stars, as described as above, but the first-light spectrograph on the
ELT is not expected to be sufficiently blue-sensitive.

In the nearer term, resolved stellar populations may also be
accessible to the James Webb Space Telescope (JWST) and an early
release science programme in this area has been approved in Cycle
0 (Weisz et al. 2017). As is the case for the ELTs, JWST is a near-
infrared optimised observatory with a small field of view. It will
reach comparable sensitivities to the ELTs due to lying above the
atmosphere, but suffers from a larger point spread function. As a
result, confusion is likely to be an issue for observations at signifi-
cant distances, while large mosaics will be necessary to map nearby
galaxies. An optimal application for JWST may be study of individ-
ual star forming regions or complexes, for which the metallicity, age
and binary fraction can be determined simultaneously, in contrast
to the constant star formation case considered here.

The effort to identify and map Wolf-Rayet stars, however, is
unlikely to benefit significantly from either JWST or the ELTs due to
their near-infrared optimisation. For these, the current and ongoing
effort to identify these sources from integral field spectroscopy
and optical photometry is unlikely to be improved upon before the
construction of a blue-sensitive, large aperture observatory such
as the proposed LUVOIR 5. Continuing this work, with a goal
of highly complete spectroscopic follow-up, wherever possible of
individually resolved sources, is essential if constraints on the binary
fraction are to be obtained from stellar type number count ratios.

It should also be noted that while these instruments are not
optimised for mapping the large angular scales subtended by Local
Group galaxies, analysis of the resolved stellar populations in more
compact and distant objects may allow average ratios may be derived
for larger samples of galaxies as a function of metallicity which will
shed light on these populations. As with any observation, it will
be crucial to map different stellar populations, fit any spectra and
determine metallicities self-consistently and for stars drawn from
the same spatial regions, before comparison can be made to model
predictions such as those presented here.

4.4 Constraints from supernova observations

All the number count ratios involving WR stars are, however, rela-
tively insensitive to the binary fraction in low mass binary stars in
the population, as might be expected. The strongest diagnostic of
low mass binaries studied here is the ratio of SN Ia to core-collapse
supernovae. As Fig. 6 demonstrates, distinguishing between high
mass star binary fractions requires precision on the SN Ia or SN Ibc

4 EELT, https://www.eso.org/sci/facilities/eelt/
5 https://asd.gsfc.nasa.gov/luvoir/
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fraction of about 1 per cent at z = 0 and becomes progressively
more difficult at higher redshifts. A similar precision is needed
to constrain binary fraction as a function of metallicity, as seen
in 5 in which the data uncertainties are dominated by corrections
for completeness in calibration or follow up. Since stripped enve-
lope supernovae are often harder to classify from lightcurves than
hydrogen-rich SN II, many of the estimates shown are likely to be
lower limits.

While demanding, the required precision promises to be emi-
nently achievable with the upcoming Legacy Survey of Space and
Time (LSST) at the Vera Rubin Observatory. LSST will carry out a
deep, high cadence survey of the transient sky, expecting to find of
order 105 type Ia supernovae per year, and a comparable number of
core collapse events (LSST Science Collaboration et al. 2009, see
chapter 11). The majority of these will lie in the range z = 0.2 − 1,
an interval over which the ratio of event type is expected to change
significantly - as Fig. 6 shows. Given the expected rate of events,
if all could be accurately typed, measurements would be possible
of the supernova type ratios in ten redshift bins at about 1 per cent
precision - sufficient to distinguish between high and low binary
fractions at both ends of the mass function. With lower numbers,
of only about 1000 SNe per ∆z = 0.1 bin, the number of measured
SNe Ia is expected to be 200, SNe Ibc about 240 and SN II about
560 giving 7 per cent uncertainty, 6 per cent uncertainty and 4 per
cent uncertainty respectively on measured rates from simple Poisson
statistic arguments - these then need to be corrected for observa-
tional biases. With 10,000 SNe per bin, the Poisson uncertainties
drop to 2, 2 and 1 per cent, sufficient to identify the binary fraction
to within ±1 model on our current grid. This will be true for CCSN
out to z = 0.5 in 1 year (Lien & Fields 2009). Higher redshifts may
be accessible through wider redshift bins, while extended data as
the survey continues will enable narrower bins to be used, probing
more details such as the metallicity history of the galaxy evolution.

We note that this assumes redshift uncertainties are smaller
than the bin size. At this redshift range, this should be possible in
the majority of host galaxies through photometric redshift deter-
mination. It also assumes that supernovae can be accurately typed
by their lightcurves in the absence of large-scale spectroscopy (ex-
pected to be true, LSST Science Collaboration et al. 2009).

We have also assumed that the same binary fraction applies
at all metallicities, and that the same distribution of period and
mass ratio applies at all binary fractions. These are more difficult to
quantify or justify as assumptions and further studies with a more
extensive suite of models will be required to evaluate the extent to
which the joint posterior probability distribution of these parameters
can be determined. Intriguingly, the wide area and deep limits of the
LSST data will enable lensed supernovae to be observed at much
higher redshifts. Rydberg et al. (2020) estimated that up to 120
lensed supernovae at z ∼ 5− 7 could be detected by the LSST Wide
Deep Fast survey, with more sources at intermediate redshift. While
the precision in any type ratio derived from this higher redshift
population would necessarily be large, it will provide an important
test of the metallicity distribution assumed for high redshift star
formation in this model.

In very local examples, identified in LSST or other survey
data on well studied local galaxies, it might be possible to deter-
mine both the supernova type ratio and WR/RSG ratio, at least for
large galaxies. A simultaneous analysis of the SN type ratios and
WR/RSG ratios for the same sample of galaxies would be a pow-
erful diagnostic tool. This combination yields a diagnostic grid in
binary fraction vs metallicity for Z > 0.002. Again a precision of
about 1 per cent is required to distinguish between models in SN

type ratio, while a lower precision (about 10 per cent) is sufficient
in the harder-to-measure stellar type ratio, and this is still likely to
be challenging for the current and next generation of facilities.

5 CONCLUSIONS

Analysis of the type statistics of massive stars has the potential to
constrain the fraction of binary stars in stellar populations. However
the degree of precision required is significantly higher than that
obtained by current surveys.

Adopting the metallicity dependence suggested by
Shenar et al. (2020) for the minimum luminosity of classical
Wolf-Rayet stars significantly changes both the metallicity and
binary fraction dependence of Wolf-Rayet number type ratios. Both
the WR/O and WR/RSG ratios become more strongly metallicity
dependent, while the WC/WN ratio becomes less so, in mild
conflict with recent observational evidence. More data on these
line ratios (drawn from large, complete sample of resolved stars, or
potentially from the integrated light of well-aged stellar clusters)
are needed before the new WR definition is adopted. We note that
Shenar et al. do not argue that stripped helium stars at luminosities
between log(L/L�)=4.9 and their metallicity dependent limit do
not exist or do not affect their surroundings, but rather than they
would not show the characteristic spectral features indicative of
strong stellar winds.

The synergy between the capabilities of upcoming telescopes
in the fields of resolved stellar populations (e.g. JWST, ELTs) and
supernova rates (e.g. LSST) has the capacity to constrain the bi-
nary fraction as a function of metallicity and even redshift. LSST’s
vast dataset will likely allow both the high and low mass binary
fractions to be determined to a high degree of precision, with some
constraints on its metallicity evolution if the cosmic evolution of
supernova type ratios can be measured with sufficient precision.
This relies on reliable typing of supernovae, either photometrically
or spectroscopically.

We have focussed here on the effect of varying the total binary
fraction at a given mass. Since stars in wide binaries (log(initial
period/days)>4) are unlikely to interact in a Hubble time, and are
treated as single stars in BPASS, this variation is degenerate with
fixing the binary fraction, but instead biasing its period distribution
towards closer binaries. Distinguishing between these scenarios is
likely to be far harder, in the absence of spectroscopic period deter-
minations for large numbers of distant stellar populations - beyond
the capabilities of even planned telescopes. Constraining the period
and mass ratio distributions based on very local stars is likely to
remain necessary for some time to come.
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DATA AVAILABILITY

The model data reported here is tabulated in the appendix and will
be made available via the BPASS websites - bpass.auckland.ac.uk
or warwick.ac.uk/bpass.
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Table A1. Parameters of the binary fraction functions used in this work.

Set Model A fbin(1 M�) fbin(30 M�)

1 0 0.399 0.442 1.000
1 0.354 0.504 1.000
2 0.310 0.566 1.000
3 0.266 0.628 1.000
4 0.222 0.690 1.000
5 0.177 0.752 1.000
6 0.133 0.814 1.000
7 0.089 0.876 1.000
8 0.044 0.938 1.000
9 0.000 1.000 1.000

2 0 0.399 0.380 0.969
1 0.354 0.380 0.903
2 0.310 0.380 0.838
3 0.266 0.380 0.772
4 0.222 0.380 0.707
5 0.177 0.380 0.641
6 0.133 0.380 0.576
7 0.089 0.380 0.510
8 0.044 0.380 0.445
9 0.000 0.380 0.380

APPENDIX A: BINARY FRACTION DISTRIBUTIONS

The binary fraction, fbin, in these models is defined as a function of
mass by a parameterisation:

fbin(Mi) = min([1.0, A × log10(Mi) + fbin(1 M�)]),

where Mi is the initial mass of the primary or single star in Solar
masses and A is a constant selected to produce the two model sets
shown in Fig. 1. Values of A, and fbin(1 M�) used here are given in
Table A1, together with resultant values for fbin(30 M�).

We also provide numerical values for the set 2 (massive star
binary fraction) models in Figs. 2-5 in Tables A2, A3 and A4.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Table A2. Predicted number count ratios for model set 2, assuming 100 Myr of constant star formation at 1 M� yr−1. Metallicities shown are
Z = 0.001, 0.002, 0.003, 0.004.

log(LWR/L�) > 4.9) log(LWR/L�) > 4.9 − log(Z/0.014)
Z=0.001 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)

0 0.01266 0.11228 1.43995 0.03382 0.00164 0.28243 0.18695
1 0.01224 0.11546 1.29543 0.03280 0.00166 0.28277 0.17594
2 0.01169 0.11815 1.15310 0.03155 0.00166 0.28657 0.16394
3 0.01105 0.11958 1.01833 0.03023 0.00163 0.29347 0.14988
4 0.01037 0.12002 0.89345 0.02882 0.00157 0.29675 0.13533
5 0.00966 0.12050 0.77981 0.02740 0.00151 0.30030 0.12208
6 0.00892 0.12109 0.67602 0.02598 0.00145 0.30432 0.10998
7 0.00815 0.12182 0.58083 0.02456 0.00139 0.30889 0.09887
8 0.00736 0.12274 0.49322 0.02315 0.00132 0.31416 0.08866
9 0.00652 0.12393 0.41233 0.02173 0.00125 0.32028 0.07922

Z=0.002 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)
0 0.01864 0.13597 1.08192 0.06036 0.00463 0.40966 0.26868
1 0.01799 0.14053 0.98022 0.05866 0.00465 0.41291 0.25310
2 0.01719 0.14480 0.87988 0.05653 0.00458 0.42117 0.23461
3 0.01628 0.14693 0.78440 0.05407 0.00445 0.42333 0.21418
4 0.01531 0.14763 0.69455 0.05131 0.00426 0.42072 0.19321
5 0.01429 0.14843 0.61190 0.04855 0.00406 0.41772 0.17390
6 0.01325 0.14940 0.53565 0.04582 0.00386 0.41430 0.15609
7 0.01216 0.15058 0.46509 0.04310 0.00365 0.41038 0.13961
8 0.01104 0.15204 0.39961 0.04040 0.00343 0.40584 0.12432
9 0.00987 0.15393 0.33867 0.03771 0.00321 0.40052 0.11008

Z=0.003 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)
0 0.02438 0.14922 0.86775 0.07949 0.00811 0.44829 0.28864
1 0.02355 0.15502 0.79020 0.07714 0.00809 0.45552 0.27141
2 0.02259 0.16060 0.71524 0.07483 0.00799 0.46316 0.25302
3 0.02151 0.16417 0.64310 0.07235 0.00779 0.46516 0.23301
4 0.02034 0.16640 0.57426 0.06947 0.00752 0.46320 0.21242
5 0.01912 0.16898 0.51053 0.06660 0.00724 0.46098 0.19334
6 0.01785 0.17205 0.45137 0.06374 0.00695 0.45849 0.17564
7 0.01654 0.17575 0.39632 0.06090 0.00664 0.45568 0.15916
8 0.01518 0.18030 0.34496 0.05807 0.00633 0.45250 0.14378
9 0.01376 0.18602 0.29693 0.05526 0.00600 0.44886 0.12941

Z=0.004 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)
0 0.03303 0.15739 0.90329 0.10990 0.01375 0.41644 0.37612
1 0.03186 0.16385 0.82659 0.10621 0.01359 0.42544 0.35266
2 0.03055 0.16982 0.75235 0.10268 0.01333 0.43343 0.32817
3 0.02910 0.17422 0.68042 0.09918 0.01293 0.43804 0.30227
4 0.02754 0.17744 0.61143 0.09544 0.01244 0.43963 0.27607
5 0.02593 0.18119 0.54711 0.09174 0.01192 0.44137 0.25163
6 0.02426 0.18561 0.48701 0.08809 0.01140 0.44335 0.22880
7 0.02253 0.19091 0.43074 0.08448 0.01085 0.44560 0.20742
8 0.02075 0.19739 0.37793 0.08091 0.01029 0.44819 0.18736
9 0.01891 0.20548 0.32828 0.07738 0.00970 0.45119 0.16849
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Table A3. Predicted number count ratios for model set 2, assuming 100 Myr of constant star formation at 1 M� yr−1. Metallicities shown are
Z = 0.006, 0.008, 0.010, 0.014.

log(LWR/L�) > 4.9) log(LWR/L�) > 4.9 − log(Z/0.014)
Z=0.006 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)

0 0.03669 0.20763 0.88075 0.12237 0.02168 0.41032 0.52048
1 0.03557 0.21617 0.81000 0.11805 0.02135 0.42072 0.48619
2 0.03431 0.22466 0.74195 0.11457 0.02091 0.43080 0.45206
3 0.03292 0.23188 0.67612 0.11144 0.02033 0.43852 0.41748
4 0.03144 0.23865 0.61362 0.10834 0.01967 0.44492 0.38395
5 0.02991 0.24643 0.55526 0.10531 0.01899 0.45205 0.35262
6 0.02832 0.25547 0.50063 0.10234 0.01829 0.46006 0.32330
7 0.02668 0.26612 0.44939 0.09943 0.01756 0.46912 0.29581
8 0.02499 0.27885 0.40124 0.09657 0.01681 0.47945 0.26996
9 0.02323 0.29431 0.35590 0.09377 0.01603 0.49135 0.24563

Z=0.008 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)
0 0.04444 0.27950 0.92304 0.19284 0.03173 0.44081 0.65904
1 0.04315 0.29024 0.85337 0.18438 0.03112 0.45337 0.61538
2 0.04173 0.30130 0.78627 0.17626 0.03039 0.46619 0.57256
3 0.04013 0.31117 0.72033 0.16831 0.02948 0.47728 0.52912
4 0.03839 0.32033 0.65668 0.16039 0.02844 0.48702 0.48645
5 0.03659 0.33085 0.59693 0.15262 0.02736 0.49800 0.44638
6 0.03473 0.34307 0.54074 0.14500 0.02625 0.51048 0.40871
7 0.03280 0.35745 0.48781 0.13752 0.02510 0.52480 0.37322
8 0.03082 0.37459 0.43786 0.13018 0.02391 0.54139 0.33972
9 0.02876 0.39539 0.39065 0.12296 0.02268 0.56084 0.30806

Z=0.010 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)
0 0.05348 0.35872 0.93747 0.26018 0.04450 0.46473 0.78008
1 0.05186 0.37154 0.87110 0.24813 0.04340 0.47869 0.72893
2 0.05013 0.38456 0.80718 0.23651 0.04218 0.49273 0.67920
3 0.04820 0.39654 0.74393 0.22487 0.04077 0.50542 0.62917
4 0.04617 0.40834 0.68310 0.21309 0.03925 0.51756 0.58074
5 0.04408 0.42179 0.62578 0.20146 0.03769 0.53125 0.53509
6 0.04194 0.43727 0.57167 0.18997 0.03609 0.54679 0.49200
7 0.03975 0.45529 0.52051 0.17862 0.03446 0.56460 0.45126
8 0.03750 0.47651 0.47207 0.16741 0.03278 0.58520 0.41268
9 0.03519 0.50188 0.42613 0.15634 0.03106 0.60930 0.37610

Z=0.014 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)
0 0.06676 0.54251 1.14112 0.51089 0.06676 0.54251 1.14112
1 0.06496 0.55593 1.06599 0.48315 0.06496 0.55593 1.06599
2 0.06306 0.56858 0.99468 0.45631 0.06306 0.56858 0.99468
3 0.06090 0.58021 0.92296 0.42848 0.06090 0.58021 0.92296
4 0.05849 0.59279 0.85184 0.40073 0.05849 0.59279 0.85184
5 0.05601 0.60703 0.78450 0.37379 0.05601 0.60703 0.78450
6 0.05348 0.62330 0.72068 0.34763 0.05348 0.62330 0.72068
7 0.05088 0.64205 0.66011 0.32222 0.05088 0.64205 0.66011
8 0.04822 0.66390 0.60254 0.29752 0.04822 0.66390 0.60254
9 0.04549 0.68968 0.54775 0.27350 0.04549 0.68968 0.54775
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Table A4. Predicted number count ratios for model set 2, assuming 100 Myr of constant star formation at 1 M� yr−1. Metallicities shown are
Z = 0.020, 0.030, 0.040. In this range, the new WR definition does not affect the number type ratios.

log(LWR/L�) > 4.9) log(LWR/L�) > 4.9 − log(Z/0.014)
Z=0.020 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)

0 0.07766 0.51162 1.25668 0.52002 0.07766 0.51162 1.25668
1 0.07611 0.52435 1.17784 0.49206 0.07611 0.52435 1.17784
2 0.07445 0.53831 1.10341 0.46675 0.07445 0.53831 1.10341
3 0.07243 0.55282 1.02803 0.44228 0.07243 0.55282 1.02803
4 0.07019 0.56797 0.95421 0.41868 0.07019 0.56797 0.95421
5 0.06788 0.58500 0.88430 0.39578 0.06788 0.58500 0.88430
6 0.06550 0.60426 0.81802 0.37356 0.06550 0.60426 0.81802
7 0.06304 0.62624 0.75509 0.35199 0.06304 0.62624 0.75509
8 0.06049 0.65154 0.69526 0.33104 0.06049 0.65154 0.69526
9 0.05787 0.68099 0.63832 0.31068 0.05787 0.68099 0.63832

Z=0.030 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)
0 0.11031 0.59539 1.46330 0.55540 0.11031 0.59539 1.46330
1 0.10820 0.60631 1.37930 0.51366 0.10820 0.60631 1.37930
2 0.10598 0.61799 1.30148 0.47414 0.10598 0.61799 1.30148
3 0.10322 0.63105 1.22140 0.43595 0.10322 0.63105 1.22140
4 0.10013 0.64481 1.14176 0.39916 0.10013 0.64481 1.14176
5 0.09697 0.66007 1.06603 0.36375 0.09697 0.66007 1.06603
6 0.09374 0.67707 0.99395 0.32961 0.09374 0.67707 0.99395
7 0.09043 0.69615 0.92527 0.29670 0.09043 0.69615 0.92527
8 0.08704 0.71770 0.85974 0.26494 0.08704 0.71770 0.85974
9 0.08356 0.74224 0.79716 0.23427 0.08356 0.74224 0.79716

Z=0.040 Model N(WR/O) N(WC/WN) N(WR/RSG) N(SNIbc/SNII) N(WR/O) N(WC/WN) N(WR/RSG)
0 0.15025 0.55661 1.84268 0.65091 0.15025 0.55661 1.84268
1 0.14754 0.56365 1.73927 0.60591 0.14754 0.56365 1.73927
2 0.14457 0.57226 1.64298 0.56132 0.14457 0.57226 1.64298
3 0.14084 0.58234 1.54363 0.51676 0.14084 0.58234 1.54363
4 0.13666 0.59323 1.44449 0.47317 0.13666 0.59323 1.44449
5 0.13238 0.60525 1.35024 0.43103 0.13238 0.60525 1.35024
6 0.12801 0.61857 1.26054 0.39030 0.12801 0.61857 1.26054
7 0.12355 0.63340 1.17507 0.35088 0.12355 0.63340 1.17507
8 0.11899 0.65003 1.09354 0.31273 0.11899 0.65003 1.09354
9 0.11433 0.66879 1.01569 0.27578 0.11433 0.66879 1.01569
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