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Abstract
We analytically determine Jacobi fields and parallel transports and compute geodesic regression in Kendall’s shape space.
Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and thereby reduce the
computational expense by several orders of magnitude over common, nonlinear constrained approaches. The methodology is
demonstrated by performing a longitudinal statistical analysis of epidemiological shape data. As an example application, we
have chosen 3D shapes of knee bones, reconstructed from image data of theOsteoarthritis Initiative. Comparing subject groups
with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of
femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data alone.

Keywords Longitudinal modeling · Shape trajectory ·Riemannian metric · Principal geodesic analysis ·Geodesic regression ·
Parallel transport · Jacobi fields

1 Introduction

In recent years, there has been an increasing interest in
statistical analysis of geometric shapes. Such analyses are
especially often performed in the field of morphometry, but
mostly for static forms. A frequently encountered situation,
however, is that instead of a set of discrete shapes, series of
shapes are given, often together with co-varying parameters.
For example, longitudinal imaging studies track biological
shape changes over time within and across individuals to
gain insight into dynamical processes such as aging or dis-
ease progression. Statistical modeling and analysis of shapes
is of critical importance for a better understanding of such
temporal shape data.
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The main challenge is that shape variability is inherently
nonlinear and high-dimensional, so that classical statistical
approaches are not always appropriate. One way to address
this is linearization. The quality of the resulting statistical
model, however, then depends strongly on the validity of the
linearity assumption, i.e., that the observed data points lie
to a good approximation in a flat Euclidean subspace. Since
the natural variability in populations often leads to a large
spread in shape space and the observed data may lie in highly
curved regions (see [10]), linearity often cannot be assumed
in practical applications.

In the context of longitudinal studies, an important
task is to estimate continuous trajectories from sparse and
potentially noisy samples. For smooth individual biological
changes, subject-specific spatiotemporal regression models
are adequate. They also provide a way to describe the data at
unobserved times (i.e., shape changes between observation
times and—within certain limits—also at future times) and
to compare trends across subjects in the presence of unbal-
anced data (e.g., due to drop-outs). One approach in use is to
approximate the observed temporal shape data by geodesics
in shape space and, based on these, to estimate overall trends
within groups. Geodesic models are attractive as they feature
a compact representation (similar to the slope and intercept
term in linear regression) and therefore allow for computa-
tionally efficient inference.
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The intrinsic theory of least squares and geodesic regres-
sion in shape spaces has been introduced in [7]. For the
derivation of the corresponding Euler–Lagrange equations
for some important manifolds, we refer to [21]. An extension
to intrinsic Riemannian polynomials has been considered in
[9]. Earlier related results in the framework of large defor-
mation diffeomorphic metric mapping (LDDMM) can be
found in [25] and [26]. In [3], authors present a kernel-based
generalization of geodesic regression, to manifold-valued
longitudinal parameters. For an overview of statistical anal-
ysis on Riemannian manifolds see [10] and [24].

An additional challenge in the analysis of shape trajec-
tories is to distinguish between morphological differences
due to (i) temporal shape evolutions of a single individ-
ual and (ii) the geometric variability in a population of an
object class under study. To obtain a statistically signifi-
cant localization of structural changes at the population level
(group-wise statistics), the subject-specific trajectories need
to be transferred in a standard reference frame. Among the
different techniques proposed for normalizing longitudinal
deformations [5,27], constructions based on parallel trans-
port provide the most natural approach and have shown
superior sensitivity and stability in the context of diffeomor-
phic registration [16]. Note also that, for general trajectories,
the simple transport of each shape is not suitable because the
distances between the shapes are not preserved. However, if
the shapes belong to the same geodesic, this problem does
not arise, which is another advantage of geodesic regression.

As parallel transport in curved shape spaces is rarely given
in closed form, in general it has to be approximated numer-
ically, e.g., employing Schild’s ladder [16] for fanning [19].
For shapes in 2D, Kendall’s shape space is isomorphic to
the projective space, which is a symmetric space, so that the
essential geometric quantities are well known (cf. [11] and
[7]). However, for three and more dimensions, because of
less restrictive structure, many questions remain open. Uti-
lizing closed form expressions of the pre-shape sphere, we
reduce parallel transport to the solution of a homogeneous
first-order differential equation that allows for highly effi-
cient computations. Moreover, we reduce the important case
of parallel transport along a geodesic path to the solution of
a low-dimensional equation that only depends on the dimen-
sion of the ambient space and not on the spatial resolution of
the discrete representation.

The paper is organized as follows. In Sect. 2, after a
short overview of Kendall’s shape space, we provide a com-
putationally efficient approach (via the so-called Sylvester
equation) for the canonical decomposition of tangent vectors
into horizontal and vertical components, which is essential
for the geometry and analysis of shapes and trajectories.
Moreover, we determine parallel transport and Jacobi fields,
which will be employed for geodesic regression. Parallel
transport is essential for statistical normalization, alignment

of trajectories and also computation of Jacobi fields. The
latter describes the variability of trajectories thatwill bemod-
eled as best-fitting geodesics in Sect. 3, wherewe also present
our algorithm for the computation of geodesic regression. In
Sect. 4, we apply this algorithm to yield longitudinal statis-
tical analysis of femur data from an epidemiological study
dealing with osteoarthritis and discuss the numerical results.

2 Geodesic Analysis in Shape Space

A pre-shape is a k-ad of landmarks (i.e., particular points)
in Rm after removing translations and similarity transforma-
tions. A shape is a pre-shape with rotations removed. For
a comprehensive introduction to Kendall’s shape space and
details on the subjects of this section, we refer to [14]. For the
relevant tools from Riemannian geometry, we refer to [8].

2.1 Shape Space

In the following, we present a brief overview of Kendall’s
shape space, provide a computationally efficient method to
determine horizontal and vertical components of tangent vec-
tors of the pre-shape space, and also prove the corresponding
equivariance under rotations.

Let x ∈ M(m, k), where M(m, k) denotes the space
of real m × k matrices. Denoting the columns of x by xi

and their Euclidean mean by x̄ , in order to remove trans-
lations, we replace xi by xi − x̄ . The result Rk

m :={x ∈
M(m, k) : ∑k

i=1 xi = 0}, identified with M(m, k − 1),
will be endowed with its canonical scalar product given by
〈x, y〉 = trace(xyt ). Denoting the Frobenius norm by ‖ · ‖,
we call the sphere Sk

m :={x ∈ R
k
m : ‖x‖ = 1} pre-shape

space and endow it with the spherical Procrustes metric
d(x, y):= arccos(〈x, y〉). Now, the left action of SOm on Sk

m
given by (R, x) �→ Rx defines an equivalence relation given
by x ∼ y if and only if y = Rx for some R ∈ SOm .Kendall’s
shape space is defined as Σk

m = Sk
m/∼. Provided that k ≥

m+1, the dimension ofΣk
m ism(k−1)− 1

2m(m−1)−1.Now,
denoting the canonical projection of∼ by π , the induced dis-
tance between any two shapes π(x) and π(y) is given by

dΣ(x, y):= min
R∈SOm

d(x, Ry) = arccos
m∑

i=1

λi

where λ1 ≥ · · · ≥ λm−1 ≥|λm | denote the pseudo-singular
values of yxt . Denoting D j :={x ∈ Sk

m : rank(x) ≤ j},
it turns out that Σk

m,m :=Σk
m \ π(Dm−2) inherits a differen-

tial structure that is compatible with its quotient topology.
Following [14], we refer to π(Dm−2) as the singular part of
Σk

m . In particular, Σk
m is a strata of manifolds with varying

dimensions and Σk
m,m is open and dense in Σk

m . Away from
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the singular part, the quotient map π is a Riemannian sub-
mersion with respect to the metric induced by the ambient
Euclidean space. Moreover, for k ≥ 3, the shape space Σk

1
(resp. Σk

2 ) is isometric to the sphere (resp. projective space).

We call x, y ∈ Sk
m well positioned, and write x

ω∼ y, if and
only if yxt is symmetric and d(x, y) = dΣ(x, y). For each
x, y ∈ Sk

m , there exists an optimal rotation R ∈ SOm such

that x
ω∼ Ry. Note that R does not need to be unique. Let U

denote a neighborhood in Sk
m with radius smaller then π/4

(the diameter of Σk
m is π/2) such that

λm−1 + λm > 0 for all x, y ∈ U.

For x, y ∈ U the optimal rotation R is unique and the function

Sk
m � y �→ ω(x, y):=Ry

is well-defined.
We recall that, for a Riemannian submersion f : M → N

and y ∈ N , f −1(y) is a submanifold of M . For any x ∈ M ,
denoting the kernel of dx f byVerx , the tangent space Tx M to
M at x admits an orthogonal decomposition Tx M = Horx ⊕
Verx where Horx and the Verx are the so-called horizontal
and vertical subspaces. Due to [14], the vertical space at
x ∈ Sk

m is given by

Verx = {Ax : A + At = 0},

and the horizontal space is given by

Horx = {u ∈ M(m, k − 1) : uxt = xut and 〈x, u〉 = 0}.

We denote the vector space of m × m skew-symmetric real
matrices by Skewm . Thus Verx = Skewm · x . Furthermore,
a smooth curve is called horizontal if and only if its tangent
field is horizontal. Geodesics in the shape space are equiva-
lence classes of horizontal geodesics. Now, let exp and log
denote the exponential and logarithm map of the pre-shape

space. For x
ω∼ y the geodesic from x to y given by

Φ(t, x, y):= expx (t logx y) = sin((1 − t)ϕ)

sin ϕ
x + sin(tϕ)

sin ϕ
y

(1)

with ϕ = arccos(〈x, y〉), 0 ≤ t ≤ 1, is horizontal. Hence Φ

realizes theminimizing geodesic fromπ(x) toπ(y). The fol-
lowing result concerns determination and SOm-equivariance
for horizontal and vertical projection.

Lemma 1 Fix x ∈ Sk
m and w ∈ TxSk

m. Let verx resp. horx

denote the restriction of vertical resp. horizontal projection
to TxSk

m.

(a) verx (w) = Ax if and only if A solves the Sylvester equa-
tion

Axxt + xxt A = wxt − xwt . (2)

Moreover, the above equation has a unique skew-
symmetric solution if rank(x) ≥ m − 1.

(b) Fix R ∈ SOm. Then verRx (Rw) = Rverx (w) and
horRx (Rw) = Rhorx (w).

Proof For (a), let verx (w) = Ax , i.e., w = u + Ax with uxt

symmetric and A ∈ Skewm . A straightforward computation
eliminating uxt implies that (2) holds. To prove the converse,
let j := rank(x). Suppose without loss of generality that j >

1 and write x = (x1
0

)
with

rank(x1) = j, w =
(

w1

w0

)

,

wherew1 is j ×k. We observe that both equations A1x1xt
1 +

x1xt
1A1 = w1xt

1 − x1wt
1 and at x1xt

1 = −w0xt
1 are uniquely

solvable, since x1xt
1 is invertible. Furthermore, the solution

of the first equation is skew-symmetric, since its right-hand
side is skew-symmetric. It follows that

A =
(

A1 a
−at A0

)

with A0 ∈ Skewm− j arbitrary is skew-symmetric and solves
the Sylvester equation (2)which also implies that (w−Ax)xt

is symmetric. Hence Ax is the vertical component of w. If
rank(x) = m − 1, then A0 = 0. If x has full rank, then
A = A1.

For (b) note that 〈Rw, Rx〉 = 〈w, x〉 = 0, i.e., w ∈ Tx S
implies Rw ∈ TRx S. Now, verRx (Rw) = B Rx where B is
the solution of B Rxxt Rt + Rxxt Rt B = R(wxt − xwt )Rt .
Hence B = R ARt , which implies that verRx (Rw) =
R.verx (w) and horRx (Rw) = Rhorx (w). 
�

Henceforth the superscript v (resp. h) denotes the vertical
(resp. horizontal) component, i.e., for any w ∈ R

k
m we have

the orthogonal decomposition w = 〈w, x〉x + wh + wv .
Due to the explicit computation above, (R.w)v = R.wv

and (R.w)h = R.wh , i.e., horizontal and vertical projec-
tions are SOm-equivariant. Note that this property holds even
if π(x) belongs to the singular part of the shape space. As
appropriate for our applications and for brevity, unless other-
wise specified, we restrict our data to the open and dense set
S:={x ∈ Sk

m : rank(x) ≥ m−1} onwhichπ is a Riemannian
submersion; thus, the geometry of the shape space is mainly
described by its horizontal lift in the pre-shape space. In par-
ticular, for x ∈ S the Sylvester equation (2) has a unique
solution determining horizontal and vertical projections and
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the restriction of dxπ to Horx is an isometry of Euclidean
vector spaces Horx and Tπ(x)Σ

k
m,m . Denoting the covariant

derivatives in the pre-shape and shape space by ∇ resp. ∇̃,
for horizontal vector fields X and Y we have

(∇̃dπ XdπY ) ◦ π = dπ(∇X Y ).

In the following [ · , · ] denotes the Lie bracket in R
k
m ,

i.e., [U , V ] = DV (U ) − DU (V ) (D Euclidean). For the
Euclidean derivative of a vector field W along a curve γ in
R

k
m we use D

dt and also for simplicity of notation a dot, i.e.,

∇γ̇ W = Ẇ − 〈Ẇ , γ 〉γ if ‖γ ‖ = 1, and D2W
dt2

= Ẅ , etc. We

set1

Logx y:= logx ω(x, y), Expx u:= expx uh, u ∈ TxSk
m .

For the computation of the Fréchet mean (cf. [11] and [24])
π(q̄) of the shapes π(q1), · · · , π(qN ) with qi ∈ U, i.e.,

q̄:= argminx G(x), G(x):=
N∑

i=1

d2
Σ(x, qi ), (3)

we apply Newton’s method to Karcher’s equation
∑N

i=1 Logx qi = 0 as follows. We search for the unique zero
q̄ of the function f defined by

f (x) =
N∑

i=1

Logx qi , x ∈ U,

and set

xk+1 = Expxk
(−(dxk f )−1 f (xk)).

A suitable initial value is the normalized Euclidean mean

x0 = 1

‖∑N
i=1 qi‖

N∑

i=1

qi .

The total variance of q = (q1, · · · , qN ) reads

var(q) = 1

N
G(q̄) = 1

N

N∑

i=1

‖Logq̄qi‖2.

1 Note that the Riemannian exponential map of the shape space denoted
by ẽxp satisfies π(expx u) = ẽxpπ(x)(dxπ(u)) = ẽxpπ(x)(dxπ(uh)).

2.2 Parallel Transport

Next, we derive formulas for parallel transport in the shape
space and its relation to parallel transport in the pre-shape
space.2

We call a vector field W along a horizontal curve γ hor-
izontally parallel (for brevity h-parallel) if and only if W is
horizontal and dπW is parallel along π ◦γ . In the following,
we derive the differential equation for the h-parallelism of W
and a corresponding constructive approach using a Sylvester
equation in certain cases.

Proposition 1 Let γ : [0, τ ] → S be a smooth horizontal
curve with initial velocity v, u a horizontal vector at x :=γ (0)
and W a vector field along γ with W (0) = u.

(a) The vector field W is h-parallel transport of u along γ if
and only if Ẇ = Aγ − 〈W , γ̇ 〉γ where A is the unique
solution of

Aγ γ t + γ γ t A = γ̇ W t − W γ̇ t . (4)

(b) Suppose that γ is a unit-speed geodesic. Then Eq. (4)
reduces to

Ȧγ γ t + γ γ t Ȧ + 3(Aγ̇ γ t + γ γ̇ t A) = 0. (5)

(c) Let Cv denote the orthogonal projection of u on Skewm ·
v, i.e., Cvvt + vvt C = uvt − vut . Suppose that C γ̇

is horizontal. If γ is a unit-speed geodesic, then the h-
parallel transport of u is given by

W = U + (〈u, v〉 + C)(γ̇ − v) (6)

where U denotes the Euclidean parallel extension of u
along γ , i.e., U (t) = u f.a. t . If y = γ (ϕ) with ϕ =
d(x, y), then the h-parallel transport Wy of u along γ

to y reads

Wy = U − 2
〈u, y〉 + C sin(ϕ)

‖x + y‖2 (x + y) (7)

Proof (a) dπW is parallel along π ◦ γ if and only if
dπ(∇γ̇ W ) = 0, i.e., infinitesimal variation of W must be
vertical. Hence ∇γ̇ W = (∇γ̇ W )v , which due to Lemma 1
equals Aγ with Aγ γ t + γ γ t A = (∇γ̇ W )γ t − γ (∇γ̇ W )t =
Ẇγ t − γ Ẇ t . Moreover, SOm-equivariance of vertical pro-
jection implies the well-definedness, i.e., if dπW is parallel,
then dπ(Rw) is parallel for all R ∈ SOm . Note that exis-
tence and uniqueness of the solution for (4) with W (0) = u
is immediate from the existence and uniqueness of parallel

2 Essentially part a) of Proposition 1was recently also obtained byKim,
Dryden and Le [15].
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transport and vertical projection. Now, W is horizontal if and
only if ḟ = 0 where f :=‖Wγ t − γ W t‖2 + 〈W , γ 〉2, since
f (0) = 0. If Eq. (4) holds, then

Ẇγ t − γ Ẇ t = (∇γ̇ W )γ t − γ (∇γ̇ W )t

= Aγ γ t + γ γ t A = γ̇ W t − W γ̇ t

and

〈Ẇ , γ 〉 + 〈W , γ̇ 〉 = 〈Aγ − 〈W , γ̇ 〉γ, γ 〉 + 〈W , γ̇ 〉
= 〈Aγ, γ 〉 = 0.

The last equation follows from the fact that A is skew-
symmetric and γ γ t is symmetric; hence, their product is
trace-free. Now, we arrive at f = 0, i.e., W remains horizon-
tal. To prove the converse, note that if W is horizontal, then f
and therefore ḟ vanishes. Hence Ẇγ t −γ Ẇ t = γ̇ W t −W γ̇ t

and 〈W , γ̇ 〉 + 〈Ẇ , γ 〉 = 0 and the Sylvester equation
for the vertical component of Ẇ reads Aγ γ t + γ γ t A =
γ̇ W t − W γ̇ t . Thus (4) follows.

(b) Note that Wγ t and γ̇ γ t are symmetric and γ̈ +γ = 0.
Thus W γ̈ t = −Wγ t is also symmetric. Now, (4) implies

Ȧγ γ t + γ γ t Ȧ + 2(Aγ̇ γ t + γ γ̇ t A)

= γ̈ W t − W γ̈ t + γ̇ Ẇ t − Ẇ γ̇ t

= γ̇ (Aγ − 〈W , γ̇ 〉γ )t − (Aγ − 〈W , γ̇ 〉γ )γ̇ t

= −(Aγ γ̇ t + γ̇ γ t A).

(c) Obviously W given by (6) satisfies the initial condition
W (0) = u. Moreover, it satisfies Ẇ = −Cγ − 〈W , γ̇ 〉γ ,
i.e., (5) holds with A(t) = −C . To prove (7), insert v =
1
ϕ
logx y = y−x cos(ϕ)

sin(ϕ)
and γ̇ = −1

ϕ
logy x into (6). 
�

Note that, due to skew-symmetry ofγ γ t (∇γ̇ W )γ t , the differ-
ential equation for the h-parallel transport can also be written
as

(∇γ̇ W )γ tγ γ t + γ γ t (∇γ̇ W )γ t = (γ̇ W t − W γ̇ t )γ γ t . (8)

Hence, a vector field along a curve in π(S) is parallel if and
only if it has a horizontal lift satisfying the above equation.

Remark 1 We mention two cases such that (6) and (7) apply.
First, W coincides with the spherical parallel transport of u
if and only if uvt = vut or, equivalently, C = 0. Secondly,
for planar shapes. To see this, let χi and ηi denote the rows
of a shape χ and η a horizontal vector at χ . Fix μ ∈ R

and let C :=μ

(
0 1

−1 0

)

. Then Cηχ t = μ

(
η2χ

t
1 η2χ

t
2

−η1χ
t
1 −η1χ

t
2

)

is symmetric since 〈η, χ〉 = 0. Hence, C γ̇ is horizontal for
arbitrary C ∈ Skew2.

2.3 Jacobi Fields

Next, we derive the differential equation for Jacobi fields
and provide a constructive approach to its solution utilizing
parallel transport.

We recall that a smooth horizontal curve γ in S is
a geodesic if and only if π ◦ γ is a geodesic in π(S).
Hence, for a horizontal geodesic γ , any geodesic variation
of π ◦ γ in the latter space reads π ◦ Γ with Γ a variation
of γ through horizontal geodesic. Thus the variation field
d
ds (π ◦ Γ (s, · ))|s=0 = dπ( d

ds Γ (s, · )|s=0) is a Jacobi field
of the shape space. Recall that a vector field J along γ is
called normal if and only if 〈J , γ̇ 〉 = 0 and the tangential
component of any Jacobi field is just given by (a + bt)γ̇ (t)
with a, b ∈ R, which is obviously horizontal. Thus the chal-
lenge is to find those normal vector fields that project to a
Jacobi field in the shape space.

Theorem 1 Let J be a normal vector field along γ and denote

K =
(
DJ v

dt

)v

+ 2

(
DJ h

dt

)v

.

(a) dπ(J ) is a Jacobi field if and only if

(
D2 J

dt2
+ J

)h

= 2

(
DK

dt

)h

(9)

(
D2 J

dt2
+ J

)v

=
(
DK

dt

)v

(10)

(b) A normal Jacobi field J S of the pre-shape sphere projects

to a Jacobi field if and only if
(DK

dt

)h = 0.

Proof (a) Obviously, solutions of the equations are, due
to SOm-equivariance of horizontal and vertical projection,
invariant under SOm action. Let Y and Z be vector fields on
Sk

m . Following [22], theA and T -tensor fields are defined as

TY Z = (∇Y v Zv)h + (∇Y v Zh)v,

AY Z = (∇Y h Y v)h + (∇Y h Zh)v.

Due to [23, Theorem 2], dπ(J ) is a Jacobi field if and only
if

(
D2 J

dt2
− R(J , X , X)

)h

= 2AX K ,

(
D2 J

dt2
− R(J , X , X)

)v

=
(
DK

dt

)v

+ TK X ,
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where X = γ̇ , D
dt stands for ∇X and the vector field K is

given by

K (J ) =
(
DJ v

dt

)v

− TJ v X + 2AX J h .

Note that as J is normal, its covariant and Euclidean deriva-
tive coincide. In our setting, the fibers are totally geodesic,

hence T ≡ 0. Therefore K =
(
DJ v

dt

)v + 2
(
DJ h

dt

)v

. More-

over, we may suppose ‖X‖ = 1. Thus R(J , X , X) = −J
and we arrive at (9) and (10).
(b) It follows immediately from D2 J S

dt2
+ J S = 0. 
�

In the following, we give a geometric construction for
normal Jacobi fields which will be employed for geodesic
regression. For ξ ∈ Tx S, we set verx,v(ξ) := Ax , where A
denotes the solution (cf. Lemma 1) of the Sylvester equation

Axxt + xxt A = vξ t − ξvt .

In the sequel x = γ (0), v = γ̇ (0), ξ1, ξ2 ∈ Horx , 〈ξ1, v〉 =
〈ξ2, v〉 = 0 and i = 1, 2.

Theorem 2 Suppose that γ has unit speed v. Let J be the
solution of the differential equations (9), (10) with J v(0) =
Cx, J h(0) = ξ1 and DJ h

dt (0) = ξ2. Then J v = Cγ and the
following hold.
(a) Let Zi and Y1 denote the parallel extensions of ξi resp.
Ax = verx,v(ξ1) along γ . Then

J h(t) = (cos(t)Z1(t) − sin(t)(Y1(t) + Z2(t)))
h .

(b) Suppose that m = 2. Let wi denote the orthogonal pro-
jection of ξi tangent to Skew2 · v and ui its orthogonal
complement. Then

J h = cos(t)U1(t) + cos(2t)W1(t) + sin(t)U2(t)

+ 1

2
sin(2t)W2(t),

where Wi and Ui are parallel extensions of wi and ui .

Proof Wemaywrite γ (t) = cos(t)x +sin(t)v with ‖v‖ = 1,
〈x, v〉 = 0 and vxt = xvt . The variation

Γ (s, t) = exp(sC)γ (t)

is a variation of γ through horizontal geodesics since Γ̇ Γ t

is symmetric, and defines a vertical Jacobi field J v =
dΓ
ds (0, .) = Cγ with J (0) = Cx .
(a) As any Jacobi field is a linear combination of parallel

vector fields, and those vector fields conserve orthogonality
and length, we may assume ‖ξi‖ = 1. Furthermore, due to
〈ξi , v〉 = 0 and 〈Ax, v〉 = 0, Zi (t) = ξ and Y (t) = Ax .

Now, let V denote the h-parallel transport of v along the
geodesic α given by α(s) = cos(s)x + sin(s)ξ1. Due to (5),
we haveV ′(0) = Ax . Now, consider the variations of γ given
by

Γ1(s, t) = cos(t)α(s) + sin(t)V (s)

and

Γ2(s, t) = cos(t)x + sin(t)(cos(s)v + sin(s)ξ2).

A straightforward computation shows that Γ̇iΓi is symmet-
ric, i.e., Γi is a variation of γ through horizontal geodesics.
Hence dπ Ji is a Jacobi field, where Ji = dΓi

ds (0, .). There-

fore, dπ(J1 + J2) is a Jacobi field. Moreover, dΓ2
ds (0, 0) = 0

and D
dt

dΓ2
ds (0, 0) = D

ds
dΓ2
dt (0, 0) = ξ2. Hence the solu-

tion with J h(0) = 0 and DJ h

dt (0) = ξ2 is given by J h
2 ,

where J2(t) = sin(t)Z2(t) = dΓ2
ds (0, t). It follows that

the solution with J h(0) = 0 and DJ h

dt (0) = Ax is given

by (t �→ sin(t)Y1(t))h . Furthermore, dΓ1
ds (0, 0) = ξ1 and

D
dt

dΓ2
ds (0, 0) = D

ds
dΓ2
dt (0, 0) = Ax . The fact that the space

of horizontal vector fields along γ is linear, completes the
proof.

(b) Let Q =
(

0 1
−1 0

)

. Then ξi enjoys the orthogonal

decomposition ξi = ui + wi , where wi = Biv, uiv
t = vut

i
and Bivvt + vvt Bi = ξiv

t − vξ t
i . Moreover, A = μQ and

Bi = λi Q for some μ, λi ∈ R. A straightforward compu-
tation shows Qxxt + xxt Q = Q = Qvvt + vvt Q (note
that ‖x‖ = ‖v‖ = 1). Hence A = −B1. Now, the vec-
tor wi is horizontal (cf. Remark 1) and normal. Hence the
vector ui = ξi − wi is also horizontal and normal. There-
fore its parallel extension is given by Ui (t) = ui . Using
uiv

t = vut
i , we arrive at Uiγ

t = γU t
i , i.e., U h

i = Ui .
Moreover, utilizing the fact that Q2 is minus indentity, we
have W h

i = Wi − W v
i = Biv − 〈Biv, Qγ 〉Qγ = λi (Qv −

〈Qv, Qγ 〉Qγ ) = cos(t)Bi γ̇ = cos(t)Wi . Similarly, for the
constant vector field B1x , we have (B1x)h = − sin(t)W1.
Implying in the expression of J h from part a), we arrive at
the desired formula. 
�

We recall that for m = 2, the shape space is isometric
to the complex projective space endowed with its standard
(Fubini–Study) metric. The given formula for J h in this case
is well-known (cf. [7] and [12]).

3 Geodesic Regression

In the following,we employ the results of the previous section
to derive an efficient and robust approach for finding the
relation between an independent scalar variable, i.e., time,
and a dependent shape-valued random variable.
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Regression analysis is a fundamental tool for the spa-
tiotemporal modeling of longitudinal observations. Given
scalars t1 < t2 < · · · < tN and distinct pre-shapes
q1, · · · , qN , the goal of geodesic regression is to find a
geodesic curve in shape space that best fits the data in a least
squares sense. In particular for a horizontal geodesic γ from
x to y with v = γ̇ (0), we define the misfit between the data
and the geodesic as a sum of squared distances with respect
to dΣ , i.e.,

F(γ ):=
N∑

i=1

d2
Σ(qi , γ (ti )). (11)

We can assume that t1 = 0 and tN = 1. While the authors
of [7] and [21] identify geodesics by their initial point and
velocity—and hence they consider F(x, v)—we use for the
identification their endpoints, i.e., we consider

F(x, y) =
N∑

i=1

d2
Σ(qi , γ (ti )) =

N∑

i=1

d2
Σ(qi , Φ(ti , x, y)).

The reason is that geodesic computations in terms of the
function Φ defined in Eq. (1), the so-called slerp (spherical
linear interpolation), are more efficient. Model estimation is
then formulated as the least squares problem

(x∗, y∗) = argmin(x,y) F(x, y), x
ω∼ y.

In the absence of an analytic solution, the regression prob-
lem has to be solved numerically. To this end, we employ a
Riemannian trust-regions solver [6] with a Hessian approx-
imation based on finite differences and use (q1, ω(q1, qN ))

as initial guess. Having in mind that (cf. [24] and [12])

∇ρy(x) = −2Logx y = −2(logx y)h (12)

where ρy(x):=d2
Σ(x, y), the gradient of the cost function F

can be computed using Jacobi fields, since they express the
derivatives of the exponential map and therefore those of Φ.
Now, for fixed q and t , let∇x f denote the gradient of f with
respect to x where f (x, y) := ρq ◦ Φ(t, x, y). Then for any
u ∈ Horx , dxExpx tv · u = J (t) where dπ J is the horizontal
Jacobi field along γ with J (0) = u and J (1) = 0.

In the following,� and⊥ denote tangent resp. orthogonal
components of vectors. Now, let α denote the unit speed hor-
izontal geodesic from y to x , i.e., α(s) = cos(s)y + sin(s)v
with v = logy x , s ∈ [0, ϕ] and ϕ = ‖v‖. Denoting the
horizontal component of the parallel extension of u along
γ by U , and J̃ (s) = sin s

sin ϕ
(U⊥)h , due to Theorem 2, dπ J̃

is a Jacobi field with J̃ (0) = 0 and 1
sin ϕ

˙̃J (0) = (U⊥)h .
Reparametrization only changes the tangent component of
the Jacobi field. Moreover, horizontal projection does not

depend on the parametrization. Due to the fact that t �→
Φ(t, x, y) parametrizes the reverse geodesic by arc length
(‖Φ̇(0, x, y)‖ = ϕ), we arrive at J (t) = J̃ ((1− t)ϕ). Hence

J (t) = sin((1 − t)ϕ)

sin ϕ
(U⊥)h + (1 − t)U�.

Let Px denote the h-parallel transport to x along γ . In view
of (12), − 1

2 Pγ (t)∇x f (x, y) is the adjoint of the mapping
u �→ J (t). As the latter is self-adjoint it follows that

∇x f (x, y) = −2Px

(
sin((1 − t)ϕ)

sin ϕ
(W ⊥)h + (1 − t)W �

)

,

where W = Logγ (t)q. To get the gradient of f with respect
to y, we simply replace 1 − t by t (another advantage of
employing the parametrization (1)) and arrive at

∇x F(x, y) = −2Px

N∑

i=1

(
sin((1 − ti )ϕ)

sin ϕ
(W ⊥

i )h + (1 − ti )W �
i

)

∇y F(x, y) = −2Py

N∑

i=1

(
sin(tiϕ)

sin ϕ
(W ⊥

i )h + ti W �
i

)

,

where Wi = Logγ (t)qi .
Now, our procedure for geodesic regression can be sum-

marized as presented in Algorithm 1.

Algorithm 1 Geodesic regression in shape space
Require: Pre-shapes q1, · · · , qN and time instances t1 · · · , tN
Ensure: Minimizer (x∗, y∗)
Initialize: (x0, y0) ← (q1, ω(q1, qN ))

Define cost function F and its gradient grad F
Create the problem structure P:
P.mani f old ← Sphere(m, k)

P.cost ← @(x, y)F(x, ω(x, y))

P.grad ← @(x, y)grad F(x, ω(x, y))

Minimize: (x∗, y∗, cost) ← Solver(P, x0, y0)

4 Application to Epidemiological Data

In this section, we analyze the morphological variability in
longitudinal data of human distal femora in order to quantify
shape changes that are associatedwith femoral osteoarthritis.

4.1 Data Description

We apply the derived scheme to the analysis of group differ-
ences in longitudinal femur shapes of subjects with incident
and developing osteoarthritis (OA) versus normal controls.
An overview of OA-related dysmorphisms is shown in Fig. 1.
The dataset is derived from the Osteoarthritis Initiative
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Fig. 1 Healthy (left) and
osteoarthritic (right) distal
femur with delineated
pathological changes in shape

(OAI), which is a longitudinal study of knee osteoarthri-
tis maintaining (among others) clinical evaluation data and
radiological images from 4,796 men and women of age 45–
79. The data are available for public access at http://www.
oai.ucsf.edu/. From the OAI database, we determined three
groups of shapes trajectories: HH (healthy, i.e., no OA), HD
(healthy to diseased, i.e., onset and progression to severe
OA), and DD (diseased, i.e., OA at baseline) according to
the Kellgren–Lawrence score [13] of grade 0 for all visits,
an increase of at least 3 grades over the course of the study,
and grade 3 or 4 for all visits, respectively. We extracted sur-
faces of the distal femora from the respective 3D weDESS
MR images (0.37×0.37 mmmatrix, 0.7 mm slice thickness)
using a state-of-the-art automatic segmentation approach [2].
For each group, we collected 22 trajectories (all available
data for group DDminus a record that exhibited inconsisten-
cies, and the same number for groups HD and HH, randomly
selected), each ofwhich comprises shapes of all acquiredMR
images, i.e., at baseline, the 12-, 24-, 36-, 48- and 72-month
visits. In a supervised postprocess, the quality of segmenta-
tions as well as the correspondence of the resulting meshes
(8,988 vertices) were ensured.

4.2 Geodesic Modeling of Femoral Trajectories

Weapply the geodesic regression approach detailed in Sect. 3
to the femoral shape trajectories described above and rep-
resented in Kendall’s shape space. Due to the expressions
derived for the parallel transport and Jacobi fields, we can
fully leverage the geometry using Riemannian optimization
procedures (cf. [1]). In particular, for the intrinsic treatment
of the optimization problem underlying the geodesic regres-
sion we use the open-source Matlab toolbox manopt [6]. In
our experiments, we observed a superlinear convergence of
the intrinsic trust-region solver formost of the shape trajecto-
ries. Solving the high-dimensional (54k degrees of freedom)
regression problem on a laptop computer with Intel Core i7-
7500U (2 × 2.70GHz) CPU took about 0.3s on average. In
contrast, the generic Matlab routine for nonlinear regression
(viz. fitnlm) required about 25s to determine a solution, thus
being two orders of magnitude slower.

Fig. 2 Principal components for femoral shape trajectories of subjects
with no (HH), progressing (HD), and severe (DD) osteoarthritis (left)
and their qualitatively estimated shape trajectories via geodesic regres-
sion (right). Note that points on the left show the observed shapes, while
those on the right show the corresponding points on the fitted geodesic

The resulting estimated geodesics along with the original
trajectories are visualized in Fig. 2. The geodesic represen-
tation provides a less cluttered visualization of the trajectory
population making it easier to identify trends within as well
as across groups. For 2-dimensional visualization, we per-
form dimension reduction for the trajectories X1, · · · , Xk

with X j = (x j
1 , · · · , x j

n ), i.e., we apply tangent PCA to

(x j
i )

j=1,··· ,k
i=1,··· ,n at the mean of all baseline shapes in HH. In the

remainder, the latter is referred to as reference shape Ref.
Next wewould like to answer the question of howwell the

observed data is replicated by the estimated geodesic trends.
A common approach to test this is to compute the coefficient
of determination, denoted as R2, that is the proportion of the
total variance in the data explained by the model. Following
[7], a generalization to manifolds is defined as

R2 = 1 − unexplained variance

total variance
= 1 − minγ F(γ )

minx G(x)
,

with F(γ ) and G(x) as defined in Eqs. (11) and (3), respec-
tively. As the unexplained variance cannot exceed the total
variance (since the Fréchet mean lies in the search space of
the regression problem) and both variances are nonnegative,
R2 must lie in the interval [0, 1] (with larger values indicat-
ing a higher proportion of the variance being explained by
the model).
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Fig. 3 Group-wise analysis of
femoral geodesic trends:
Magnitude of differences
between the group-average
trends for HH versus HD (left
column), HH versus DD (middle
column), and HD versus DD
(right column) after transport to
common reference shape. Only
significantly different
displacements (p < 0.01) are
shown
(2.0e−4 4.2e−4)
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The coefficients of determination were computed for all
estimated trends amounting to group-wise medians (95%
confidence intervals) of 0.40 (0.33–0.46), 0.55 (0.48–0.63),
and 0.51 (0.40–0.72) for group HH, DD, and HD, respec-
tively. While for all groups the geodesic model is able to
describe a relatively large portion of the shape variability,
there is a clear difference between the control group HH
and the groups DD and HD associated to osteoarthritis. In
particular, pairwise Mann–Whitney U tests confirm that the
differences are highly unlikely due to random chance (with
p-values of < 10−3, and 0.005 for HH versus DD, and HH
versus HD, respectively). These findings indicate that the
OA-related shape variability is better captured by a single
variable (time) than the physiological trends in HH. Based
on the coefficient of determination, we also test for the signif-
icance of the estimated trends employing permutation tests
as suggested in [7]. For each of the trajectories, we performed
1,000 permutations and considered the results as statistically
significant for p-values less than 0.01. In almost all cases
(63 out of 66), the trends were significant, such that we can
expect them to be highly unlikely due to random chance.

4.3 Group-wise Analysis of Longitudinal Trends

In order to performgroup-wise analysis of longitudinal shape
changes, we compare the estimated geodesic trends of the
femoral trajectories. This requires the consistent integration
of intra- and inter-subject variability in order to obtain statis-
tically significant localization of changes at the population
level. In fact, the comparison of longitudinal shape changes is
usually performed after normalizing (i.e., transporting) them
into a common system of coordinates (see [18] and the ref-
erences therein). Such a normalization can be realized by
adapting parallel transport as presented in Algorithm 2. In
particular, for geodesic trends this scheme reduces to parallel
transport of the subject-specific velocity along the baseline-
to-reference shape geodesic. The group-wise longitudinal
progression was modeled as the mean of the transported
velocities. The areas of significant differences between longi-

tudinal changes were investigated by two-sample Hotelling’s
T 2 tests on the vertex-wise displacements corresponding to
the transported velocity-fields. While the displacements dif-
fer significantly (p < 0.01, after Benjamini-Hochberg false
discovery correction) between normal controls and the OA
groups (for 55% and 19% of the vertices for HH versus
HD and HH versus DD, respectively), there are no dif-
ferences in the longitudinal changes in-between both OA
groups. Figure 3 shows a qualitative visualization of the
group tests in terms of the magnitude of the difference
between the group-wise means. Visible are changes along
the ridge of the cartilage plate (characteristic regions for
osteophytic growth, cf. Fig. 1) in comparison with both HH
versus HD as well as HH versus DD, albeit the latter are less
pronounced suggesting a saturation of morphological devel-
opments. Additionally, the changes are more developed on
the medial compartment, which is in line with previous find-
ings [28]. While velocities are constant for subject-specific
geodesics, their parallel transport depends on the path (an
effect called holonomy). To investigate this path dependency,
we repeated the above experiment using different paths for
the HD group. In particular, we chose the shape at the onset
time (transition time to severe OA, viz. Kellgren–Lawrence
score ≥ 3) as the initial point for the transport path. In line
with previous work [17], we found that the results are not
sensitive to the path. More precisely, the results of the group
tests agreed for 99.70% and 100.00% of the vertices for HH
versus HD and HD versus DD, respectively.

Algorithm 2 Transport of shape trajectory
Require: Pre-shapes x1, · · · , xn, Ref
Ensure: Transported pre-shapes y1, · · · , yn

y1 ← Ref
for k = 1, · · · , n − 1 do

vk ← Logxk
xk+1

yk+1 ← Exp(yk , ParT rans(yk , vk))

end for
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5 Concluding Remarks

This work presented characterizations of and computa-
tionally efficient methods for the determination of parallel
transport, Jacobi fields and geodesic regression of data rep-
resented as shapes in Kendall’s space. Furthermore, an
application to longitudinal statistical analysis of epidemio-
logical data (femur data for analysis of knee osteoarthritis)
has been shown. An advantage of modeling trajectories by
geodesics is the following: Amain task in longitudinal analy-
sis is to translate trajectories to start at a reference shape. The
intermediate distances between the shapes of a geodesic are
preserved by parallel transport, which is not the case for gen-
eral transports.Moreover, data inconsistencies areminimized
by considering the best-fitting geodesics, and Jacobi fields
can be employed to analyze the variability of the geodesics,
hence providing a canonical descriptor of trends and differ-
ences for the trajectories.

There are many potential avenues for future work. First,
we would like to use the presented methodology within the
mixed-effect framework (see, e.g., [4]), which provides a
joined analysis of longitudinal and cross-sectional variability.
In particular, group-wise means of the geodesics can be com-
puted with respect to a natural metric in the tangent bundle
(e.g., the Sasaki metric) to determine the group parameters
as described in [20]. Second, an extension of the method to
higher-dimensional longitudinal parameters instead of just
time can be examined, to achieve even more differentiated
results. Third, spline regression poses a natural generaliza-
tion providing more degrees of freedom.

On the application side, based on the results found, it can
be said in summary that the shape trajectories of the healthy
subjects expose significantly different temporal changes than
those found in groups with incident and developing OA. Our
analysis delivered detailed insights into the complexmorpho-
logical changes that fit medical knowledge. It seems possible
tomake a correct assignment to one of the three groups based
on just two measurements. The aim of further investigations
must be to substantiate this statement, by determining with
what reliability a prediction can be made about the onset
of knee osteoarthritis depending on the baseline shape and
trend as well as the sensitivity of the latter with respect to the
number of observations made and the time intervals between
them.
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