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Abstract 

The  search  for  novel  and  relevant  cancer  therapeutics  is  continuous  and  ongoing.  Cancer

adaptations, resulting in therapeutic treatment failures, fuel this continuous necessity for new drugs

to novel targets. Recently, researchers have started to investigate the effect of venoms and venom

components  on  different  types  of  cancer,  investigating  their  mechanisms  of  action.  Receptor

tyrosine kinases (RTKs) comprise a family of highly conserved and functionally important druggable

targets for cancer therapy. This research exploits the novelty of complex venom mixtures to affect

phosphorylation of the epidermal growth factor receptor (EGFR) and related RTK family members,

dually identifying new activities and unexplored avenues for future cancer and venom research.  Six

whole venoms from diverse species taxa, were evaluated for their ability to illicit changes in the

phosphorylated expression of a panel of 49 commonly expressed RTKs. The triple negative breast

cancer cell  line  MDA-MB-468 was treated with optimised venom doses,  pre-determined by  SDS

PAGE and Western blot analysis. The phosphorylated expression levels of 49 RTKs in response to the

venoms were assessed with the use of Human Phospho-RTK Arrays and analysed using ImageLab

5.2.1 analysis software (BioRad).  Inhibition of  EGFR phosphorylation occurred with treatment of

venom  from  Acanthoscurria  geniculata  (Theraphosidae), Heterometrus  swammerdami

(Scorpionidae),  Crotalus durissus vegrandis  (Crotalidae) and Naja naja (Elapidae).  Western green

mamba  Dendroaspis viridis  venom  increased EGFR phosphorylation. Eph, HGFR and HER were the

most affected receptor families by venoms.  Whilst the importance of these changes in terms of

effect  on  MDA-MB-468  cells’  long-term  viability  and  functionality  are  still  unclear,  the  findings

present exciting opportunities for further investigation as potential drug targets in cancer and as

tools to understand better how these pathways interact.
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1. Introduction 

Venom systems present in a diverse range of animals, contain venom components known to

target a range of biological pathways and tissue types accessible by the bloodstream  (Fry  et al.,

2009; Estevao-Costa et al., 2018).  For example, snake venom produces neurotoxic, haemotoxic and

cytotoxic effects in humans and prey animals  (Casewell  et al., 2014).  To date, six FDA approved

drugs have been derived from venoms (not including follow ups), with these currently providing

treatment options for diabetes, chronic pain, hypertension and coagulation (Robinson et al., 2017).

Beyond  this,  many  more  drugs  derived  from  venoms  are  in  development  or  in  clinical  trials

(Mohamed Abd El-Aziz  et  al.,  2019)  and  it  is  clear  that  there  is  potential  for  many  more such

discoveries.  Currently  very  little  is  known  about  venom  effects  on  receptor  tyrosine  kinase

phosphorylation.

Venom peptides are highly selective and potent  (Pennington, Czerwinski and Norton, 2017),

thus offering a potential advantage over small molecule inhibitors leading to potentially fewer side

effects  (Craik  et al., 2013).  In recent years cancer researchers have turned to venoms to look for

drug leads following the need to overcome side effects and resistance in standard and targeted

therapies (Thangam et al., 2012; Ma, Mahadevappa and Kwok, 2017). Disintegrins are an example of

abundant proteins in snake venom which acts as a potent inhibitors of platelet aggregation and cell

adhesion  (Arruda Macedo, Fox and de Souza Castro, 2015). This has also been shown to have an

effect  on  cancer  cells  (Chakrabarty  and  Chanda,  2015).   Haemotoxic  and  cytotoxic  venom

components have also been shown to degrade tumour tissue  (Tasoulis and Isbister, 2017) and to
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have the potential to show clinically useful anti-metastatic and antiangiogenic properties (Kerkkamp

et al., 2018).  Here for example, a range of scorpion venoms have been shown to affect Erk1/2 and

STAT3 pathways and to cause DNA damage in  colorectal  and breast  cancer  lines  in culture  (Al-

Asmari,  Riyasdeen and Islam, 2018).  Evidence for  venoms affecting phosphorylation of  receptor

tyrosine kinases are limited to  Naja atra  cardiotoxin III  blocking EGFR (Tsai  et al., 2016),  insulin

signalling within Heloderma and Conus venoms (Ahorukomeye et al., 2019), neurotrophins (Katzir et

al., 2003).  

Here  we  have  investigated  the  effect  of  a  diverse  range  of  venoms  from  spiders,  snakes  and

scorpions on the activity of receptor tyrosine kinases from the Epidermal Growth Factor Receptor

(EGFR) family and related families. The EGFR family of tyrosine kinase receptors are key regulators of

cell growth, transformation and other cellular processes in some breast cancer subtypes (Jacot et al.,

2015).  The EGFR family consists of EGFR (HER1,ErbB1), HER2(ErbB2), HER3(ErbB3) and HER4(ErbB4),

with EGFR and HER2 considered to be relevant and attractive clinical targets in breast cancer drug

discovery  (Hsu  and  Hung,  2016).  Existing  anti-EGFR  and  HER2  therapies  include  monoclonal

antibodies such as Trastuzumab, which targets the extracellular domain of HER2, or small molecule

tyrosine kinase inhibitors such as Lapatinib which inhibits receptor phosphorylation by targeting the

intracellular ATP binding site of both HER2 and EGFR (Zhang et al., 2007; Rusnak and Gilmer, 2011).

These treatments are however limited as Trastuzumab does not properly infiltrate solid tumours

(Zhang et al., 2007) and Lapatinib has toxicity issues  (Rana and Sridhar, 2012). Resistance has also

been reported with Lapatinib and other small molecule inhibitors  (Escriva-de-Romaní et al., 2018).

Our assays  have utilised the triple  negative breast  cancer  cell  line  MDA-MB-468,  an oestrogen-

independent cell line originating from a pleural effusion that usually expresses more than 106  EGF

receptors per cell (Zhang, Fidler and Price, 1991; Modjtahedi, Styles and Dean, 1993).  
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These  analyses  indicate  that  whole  venoms  have  an  effect  on  phosphorylation  of  EGFR  family

members  and related receptor tyrosine kinase which have the potential to block cancer  related

pathways and thus could contain useful tools to understand these pathways better.  

2. Materials and Methods

2.1 Venom extraction 

Venoms from the Brazilian whiteknee tarantula (Acanthoscurria geniculata), the Uracoan rattlesnake

(Crotalus  durissus  vegrandis),  the  Western  green  mamba  (Dendroaspis  viridis), the  giant  forest

scorpion (Heterometrus  swammerdami),  the Indian cobra  (Naja naja)  and the African Black  Tail

Scorpion  (Parabuthus  liosoma) were  supplied  by  Venomtech  Ltd.   They  were  collected  using

Venomtech's optimised methodology to maintain maximum venom yield and quality. Snakes were

'milked' using a voluntary bite protocol, whilst invertebrates were milked using anaesthesia and mild

electrical stimulation. Following extraction, the protein concentration of the whole venoms were

determined by measuring absorbance at 280nm using a DS11 spectrophotometer (DeNovix, USA)

blanked against HPLC grade H2O. Venoms were then freeze dried or frozen at -20oC until required. 

2.2 Mammalian cell culture

MDA-MB-468 (ATCC, USA) were cultured in 25cm3 culture flasks and Dulbecco’s modified Eagle’s

medium  (DMEM)  (Gibco,  UK).  The  DMEM  media  was  supplemented  with  L-Glutamine  (1%),

penicillin-streptomycin (1%) and Foetal Calf Serum (10%). Cells were incubated at 37°C, 95% air and

5% CO2.  This cell line was authenticated using STR profiling in March 2018 (100% match to the MDA-

MB-468 profile on the Cellosaurus database, ref CVCL_0419) and the work reported here was carried

out in the same year.  Cell growth was maintained using standard sub-culturing procedures. 
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2.3 Venom assay and cell lysis

MDA-MB-468 cells were plated out in six well plates and grown to 90% confluency before being

treated with a 1:50- 1:1 000 000 serial dilution of each whole venom in DMEM media. Cells were

incubated with venom for two hours at 37oC, 5% CO2. The media containing the venom was then

replaced with fresh media and EGF was added to a final concentration of 1x10 -7M to all wells except

the negative control. After 5 mins cells were washed with 2mM EGTA/PBS pH 7.4 and lysed using a

RIPA buffer cocktail containing protease inhibitor cocktail, phosphatase inhibitor cocktail and EDTA.

Cell lysates were then transferred to micro centrifuge tubes and centrifuged at 13000 rpm, 4 oC for

10 mins. Once cell debris had pelleted, the supernatant was collected and mixed with 5x reducing

sample buffer, heated to 100oC and stored at -20oC.

2.4 SDS PAGE and Western Blotting 

20µl of each cell lysate were analysed on 9% and 12%, 0.75 mm polyacrylamide gels electrophoresed

using a mini protein tetra cell (BioRad) and a Tris/Glycine/SDS buffer (0.025M Tris, 0.192M glycine,

0.1% SDS, pH8.3) at 70V until samples entered the gel and then at 170V till the dye front reached the

end of the gel. Gels were then either stained for one hour using Coomassie blue dye or transferred

to nitrocellulose via semi-dry blotting using an Invitrogen semi-dry western blotter for 45-60 minutes

at 15V. 

For Western blotting, the nitrocellulose membranes were incubated for one hour in blocking buffer

(5%  w/v  Marvel  non-fat  milk  powder  solution  in  phosphate-buffered  saline  (PBS)  0.1%  v/v

Polyoxyethylenersorbitan monolaurate (Tween20)). Membranes were then washed 3 times for 10

min in PBS Tween20 and incubated overnight using a mouse monoclonal PY20 antibody (Sigma, UK)

at  1.5µg/ml.  Anti-β  actin  antibody  (mouse,  monoclonal  AC-15  clone.  Sigma)  was  used  at  a

concentration of  3.5µg/ml as a loading control.  After washing with PBS blots were incubated in

rabbit anti-mouse-HRP antibody 1/20,000 for 1h. Blots were washed again using PBS and Enhanced
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Chemiluminescence (ECL) reagents were mixed in equal volumes and applied directly onto the blots.

ECL signals were developed using a Chemidoc (BioRad,UK).

2.5 Human Phospho-RTK Array 

MDA-MB-468  cells  were  grown in  25cm2 flasks  until  90% confluent.  Cells  were  treated with  A.

geniculata, C. vegrandis, D. viridis, H. swammerdami, N. naja or P. liosoma venoms for two hours at

dilutions  of  1:100,  1:1000,  1:10  000,  1:50,  1:10  000,  1:150  respectively.  Cell  lysates  were  then

collected as  described above and analysed according  to  the manufacturer’s  instructions using  a

Human Phospho-RTK Array Kit (R&D Systems). 

Kinome array images were analysed using the ImageLab 5.2.1 analysis software (BioRad, UK). Lanes

and pairs of dots were identified, allowing for the production of a pixel intensity from each duplicate

pair of receptor dots. A template showing the RTK location on the blot is located in Appendix A,

Table A.1). A fold change in intensity was created by dividing the intensity of each venom treated

receptor by the intensity generated from the positive control of each receptor (No venom, +EGF).

Changes in receptor phosphorylation were then displayed graphically as a fold-change in intensity,

relative to the positive control receptor intensity levels. RTK’s displaying a two fold change were

considered to be affected by the venom treatment.

3 Results and Discussion 
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3.1 Changes in receptor phosphorylation and expression profiles in response to whole venom 

The following optimised concentrations of venom were used (see Appendix B, Figure B.1) for these

experiments  1/10,000  dilution  (0.025mg/ml)  of  N.naja venom,  1/150  dilution  (1.5mg/ml)  of

P.liosoma venom,  1/50  dilution  (2mg/ml)  of  H.swammerdami venom,  1/10,000  dilution

(0.025mg/ml)  of  D.viridis venom, 1/1,000  dilution  (0.065mg/ml)  of  C.durissus  vegrandis venom,

1/100 dilution (2.5mg/ml) of A.geniculata venom.

Changes in the phosphorylation and/or expression of 49 members of the receptor tyrosine kinase

(RTK) family, were analysed in response to two hour incubation with venom. The arrays assess the

changes in the expression/phosphorylation of representative members from most of the diverse

sub-families of RTKs. Two-fold changes in receptor expression/phosphorylation in response to the

venom were considered biologically interesting and both increases and decreases were observed

(Appendix C, Table C.1).  

The majority of the tested RTKs decrease in response to C.durissus vegrandis venom (See Table D.1.,

Appendix D).   It  is possible that  C.durissus vegrandis  does indeed have a pan kinome effect but

further investigation would be required to confirm this.  Even though protein levels in the Coomassie

gel did not show a reduction from cytotoxicity, the comprehensive reduction in RTK signal could be

due to proteolytic cleavage of the cell surface receptors but this is below the level detectable on the

Coomassie gel.   It is well  known that Viperidae venoms contain more proteases than the other

species tested. The majority of RTK’s were also reduced in response to treatment with  P.liosoma

venom. However upon further follow up investigations with Coomassie gel analysis of the treated

cell lysates produced for the kinome arrays, it was determined that the selected dose of P.liosoma

venom appeared to have caused a large degree of cytotoxicity (Appendix E, Figure E.1).  Due to these

high  levels  of  observed  cytotoxicity,  all  changes  in  the  expression/phosphorylation  of  the  RTKs

treated with this venom were deemed inconclusive and subsequently disregarded.  There is still the
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possibility  that  P.liosoma venom may have  an effect  on  some of  the 49 members  of  the  RTKs

provided on the array membranes at an appropriately selected sub-lethal dose, but this cannot be

confirmed from these results. 

The consistent protein level in all  other lysates supports the changes detected, further in-depth

discussion of some of the observed changes in RTK sub-family members and the implications of

these changes to cancer therapy will be further discussed.

Figures 1-3 display changes in phosphorylation of the RTKs in response to the venoms.  Two-fold

threshold in phosphorylation/expression limits were set to triage effects compared to 1x10 -7M EGF

stimulated cell receptor levels. All receptor changes were displayed in a table for ease, with those

over threshold highlighted (Appendix D, Table D.1).

The majority of the changes in phosphorylation levels were detected in the Ephrin and Epidermal

growth Factor Receptor gene families. Although there are no previously published reports linking

venoms to the Ephrin pathways, there is previous evidence of Chinese cobra cardiotoxin III  from

Naja atra venom reducing EGFR signalling (Tsai et al., 2016).

3.2 All venoms tested affected ephrin receptors

Eph  receptors  and  their  binding  ligands,  ephrins,  constitute  the  largest  sub-family  of  receptor

tyrosine kinases. Eph receptors play a fundamental role in cell signalling pathways involved in animal

development  (Castaño,  2008).  Binding  of  ephrins,  to  Eph  receptors  results  in  the  bi-directional

stimulation of  the eph/ephrin  signalling  axis.  Over-expression of  ephrins  and eph receptors  can

result in tumorigenesis, promoting tumour growth, survival, angiogenesis and metastasis (Surawska,

2004; Pasquale,  2010).  Eph receptors can act as both suppressors and promotors of tumours in

different contexts (Genander and Frisen, 2010).  Many of the family members are clinically relevant
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and tractable targets for intervention in human breast cancer (Brantley-Sieders et al., 2011; Kaenel,

Mosimann and Andres, 2012).  Receptors of this subfamily are attractive targets for antiangiogenic

therapy  (Mosch  et  al.,  2010).   This  family’s  signalling  activities  in  cancer  appear to  be complex

(Pasquale, 2010) and therefore since some of the venoms target members of this subfamily, they

could be used to understand these pathways further. 
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Figure 1: Kinome array analysis of MDA-MB-468 cells treated with A.geniculata and C.durissus vegrandis venom. 
Graphs display the fold-changes in combined receptor expression/phosphorylation in response to treatment with each 
venom compared to levels in venom untreated cells
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Figure 2: Kinome array analysis of MDA-MB-468 cells treated with D.viridis and H.swammerdami venom. 

Graphs display the fold-changes in combined receptor expression/phosphorylation in response to treatment with each

venom compared to levels in venom untreated cells
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Figure 3: Kinome array analysis of MDA-MB-468 cells treated with N.naja venom.

Graphs display the fold-changes in combined receptor expression/phosphorylation in response to treatment with each

venom compared to levels in venom untreated cells

EphA1 over-expression has been identified in gastric cancer (Yuan, 2008), prostate cancer and a sub-

set of colon, liver, lung, melanoma and mammary carcinomas (Robinson, 1996; Kao, 2003; Herath,

2006).  EphA2 receptor over-expression has been identified in oesophageal,  gastric,  prostate and

breast  cancer  (Easty  et  al.,  1999;  Miyazaki  et  al.,  2003;  Zelinski  et  al.,  2001;  Yuan  et  al.,  2009;

Nakamura et al., 2005; Xu et al., 2005; Gokmen-Polar et al., 2011; Petty et al., 2012, Huang et al.,

2014,  Tsouko  et  al.,  2015)  as  well  as  lung cancer,  where high EphA2 levels  predicts  metastatic

outcome (Kinch, 2003). EphA3 mutations are the most commonly occurring Eph receptor change,

identified  in  lung,  hepatocellular,  colorectal,  glioblastoma  and  melanoma  (Bae  et  al.,  2009;

Balakrishnan, 2007).  These mutations appear to confer impaired kinase function, suggesting that

EphA3 may function as a kinase-dependent tumour suppressor, which is disrupted by somatic cancer

cell  mutations (Lisabeth  et al.,  2012).  High levels  of EphA4 expression have been linked to poor

patient survival in gastric cancers (Miyazaki et al., 2013), promotes cell proliferation and migration of

human  glioma  cells  (Fukai  et  al.,  2008),  promotes  cell  growth  in  human  pancreatic  ductal

adenocarcinoma  (Iiizumi,  et  al.,  2006)  and  increased  levels  of  metastasis  in  colorectal  cancer

(Oshima et al., 2008). EphA5 receptor has been shown to be downregulated in breast cancer (Fu et

al., 2010) and EphA6, whilst shown to be downregulated in colorectal and kidney cancer (Hafner et

al., 2004), has been shown to be upregulated in breast cancer (Zhou et al., 2018). Higher expression

of EphA7 is detected in breast and glioblastoma cancers (Brantley-Sieders, 2011; Wang et al., 2008)

and a reduced expression level in colorectal and prostate cancer (Wang  et al., 2005; Guan  et al.,
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2009). EphA10 receptor has been shown to be upregulated in breast cancer including triple negative

types, prostate and colorectal cancer (Nagano, 2014a and 2014b; Li, 2017).

Reductions  in  EphA2  occurred  in  response  to  N.naja venom  (Figure  3),  EphA6  in  response  to

A.geniculata (Figure 1a) and  D.viridis  (Figure 2a) venoms, and EphA7 in response to  A.geniculata

venom. Over-expressions of EphA1 and A2 have been identified in a variety of cancers, including

breast cancer, making N.naja venom attractive for further investigation. Whilst EphA4 receptor does

not appear to be commonly upregulated in breast cancer, its upregulation in gastric, pancreatic,

colorectal and glioma cancers are indicative of metastasis and poor patient prognosis. A.geniculata

and D.viridis  venoms would however be interesting to follow up for  down-regulation of  EphA6,

which has been shown to be over-expressed in breast cancer, where it is indicative of poor patient

prognosis  (Zhou  et  al.,  2018).  Similarly  A.geniculata  venom  shows  potential  for  containing

interesting targeting molecules for EphA7 receptor, which has also been shown to be overexpressed

in breast cancer and glioblastoma (Brantley-Sieders, 2011; Wang, 2008). The search for novel targets

for triple negative breast cancer makes EphA10 a viable target for novel targeted therapies, several

venoms were close to threshold and related species might contain useful molecules.

Loss of EphB1 receptor tyrosine kinase has been linked to the progression of aggressive cancer types

including acute  myeloid  leukaemia (Kampen  et  al.,  2015),  gastric,  colorectal  and ovarian cancer

(Sheng  et  al.,  2007;  Wang  et  al.,  2013)  and  renal  cell  carcinoma  (Zhou  et  al.,  2014).  Both

upregulations and downregulations in the expression of EphB2 have been linked to the progression

of cancer. EphB2 has been shown to be over-expressed in highly aggressive breast cancer types,

where it has been shown to regulate multiple functions including autophagy, apoptosis and invasion

(Chukkapalli et al., 2014) and to result in poor survival in patients with ovarian cancers that present

with high levels of EphB2 (Wu et al., 2006). Whilst reduced EphB2 expression has been linked to liver

metastasis in colorectal cancer (Oshima et al., 2008). Like EphB2, EphB3 has been found to be both
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upregulated and downregulated in the progression of cancer. EphB3 has been shown to be both up

and downregulated in non-small cell lung cancers (Li et al., 2012; Ji et al., 2011). Over-expression of

EphB3 has been linked to the suppression of colon cancer tumour growth (Chiu  et al., 2009) and

alternatively has been linked to stimulation of  cell  migration and metastasis  in papillary  thyroid

cancer (Li  et al., 2017). EphB4 receptor increases and decreases have both been linked to breast

cancer  progression  (Xiao  et  al.,  2012).  EphB4  has  been  shown  to  supress  breast  cancer

tumorigenicity through an Abl/crk pathway (Noren  et al., 2006) and to acts as a survival factor in

breast cancers (Kumar  et al.,  2006).  The extracellular domain of EphB4 has also been shown to

induce angiogenic responses in endothelial cells and its expression on the surface of breast cancer

cells  has been shown to promote angiogenesis  by activating EphB2 reverse signalling,  increasing

tumour growth (Noren et al., 2004; Noren et al., 2007). EphB4 has been shown to be expressed in

other cancers, with its upregulation shown in colon cancer (Stephenson, et al., 2001), bladder cancer

(Xia et al., 2006) and ovarian cancer (Kumar et al., 2007). Finally, the expression levels of EphB6 in

cancer cells has been linked to their progression and development, with losses in EphB6 expression

often indicative of a more aggressive cancer type. Downregulations in EphB6 receptor have been

seen in breast cancer cells, where it has been found to interact with c-Cbl to function as a tumour

suppressor and to prevent tumour cell invasiveness (Fox & Kandpal, 2009; Truitt et al., 2010; Fox &

Kandpal,  2006;  Fox  &  Kandpal,  2004).  EphB6  expression  has  been  shown  to  partially  supress

epithelial-to-mesenchymal transition in triple negative breast  cancer cells  and to reduce tumour

drug-resistance to DNA-damaging drugs, resulting in better chances for recurrence-free survival in

patients with higher EphB6 expressing tumours (Toosi et al., 2018). Silencing or mutations of EphB6

expression  in  early  stage  non-small  cell  lung  cancer  has  been  found to  be  associated  with  the

development of distant metastases and a more aggressive cancer type. It is thought, like with breast

cancer,  that  EphB6  confers  tumour  suppression  in  NSCLCs  (Yu  et  al.,  2010;  Bulk  et  al.,  2012).

Reduced gene expression of EphB6 in neuroblastoma, melanoma and prostate cancer are indicative

of  poor  patient  prognosis,  amongst  other  cancer  types  (Tang  et  al.,  2000;  Tang  et  al.,  2004;
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Mohamed et al., 2015). Alternatively, EphB6 receptor over-expression in colorectal cancer has been

linked to the promotion of tumour cell proliferation, migration and invasion (Xu et al., 2016).

EphB type receptors EphB4 and B6 were reduced following  A.geniculata  venom treatment (Figure

1a). Greater than 2-fold increases in EphB1 and B3 were observed in response to treatment with

H.swammerdami venom (Figure 2b). Losses of EphB1 receptor have been shown in literature to be

indicative of highly aggressive cancer types and poor patient prognosis.  H.swammerdami venom is

likely to contain possible therapeutic tools for this target. Treatment with this venom resulted in a 2-

fold  increase  in  EphB1  combined  expression/phosphorylation  levels,  which  could  be  useful  for

restoring EphB1 expression levels in cancers where, EphB1 acts as a tumour suppressor and had

been downregulated. Both up and downregulations in EphB2 expression levels have been observed

in cancer.  Dosing with  H.swammerdami  venom resulted in a greater than 2-fold increase in the

combined  expression/phosphorylation of  EphB3.  A  component  from this  could  have  potentially

interesting implications for the treatment of cancers where EphB3 is a known tumour suppressor

and has been downregulated in expression to circumvent this, such as has been shown to be the

case in colon cancer tumours (Chiu et al., 2009). Both EphB4 and EphB6 receptors were reduced in

response to treatment with A.geniculata venom (Figure 1a). Whilst both receptors have been shown

to be up and downregulated in cancer types, EphB4 upregulations are more commonly implicated in

poor cancer prognosis, whilst EphB6 downregulations are more indicative of poor patient outcome.

Treatment  with  both  these  venoms  resulted  in  downregulations  in  both  receptors

expression/phosphorylation levels. These changes could prove beneficial for the treatment of ErbB4

over-expressing  cancers,  including  breast,  bladder,  ovarian  and  colon  cancer.  Whilst  EphB6

downregulations are less likely to be useful in a therapeutic capacity for the treatment of cancer, as

loss of EphB6 expression appears more common in tumorigenesis, there are cases of cancer that do

appear to express over-expression of EphB6, such as colorectal cancer.  Currently in clinical trials are
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cancer drugs that target the kinase activity of  EphA2 and EphB4 but there is still a lot to learn about

this receptor network (Buckens et al., 2020). 

3.3 Effects of venoms on EGFR family member phosphorylation levels

Some, but not all, of the investigated venoms reduced detectable phosphorylation above threshold

in EGFR family members. Interestingly, from the changes observed in the EGFR family members,

there  appears  to  be  both  selective  and  multiple  targeting  of  like-receptor  types.  Selectivity  is

interesting from complex mixtures and hints at a single active component.

No significant reductions were seen in EGFR expression/phosphorylation in response to venom using

the kinome arrays. However due to the over-expression of EGFR in the MDA-MB-468 cells used as a

model for these experiments,  it  was considered possible that changes may be occurring but are

undetectable due to saturation of the EGFR antibody binding capacity of the blots (see the EGFR dots

in Appendix C, Figure C.1). Follow up Western blot analysis was undertaken on lysates previously

produced for kinome array analysis to determine if changes to EGFR expression or phosphorylation

could  be  observed  using  an  alternative/less  sensitive  method  (Figure  4a).  Anti-β  actin  analysis

confirmed that all samples were loaded with a similar amount of total protein, with the exception of

the P.liosoma treated cell lysate, previously shown in Coomassie gel analysis to be lacking protein

due to toxicity (see Appendix E, Figure E.1). Western blot analysis of EGFR phosphorylation (pY) and

expression  levels  (EGFR)  showed  that  there  were  detectable  differences  in  phosphorylation  in

response  to  the  different  venoms,  previously  undiscernible  in  kinome  arrays  because  of

oversaturation  (Appendix  C,  Figure  C.1).  Thus  the  differences  are  likely  due  to  the  degree  of

sensitivity of the two analyses. Kinome arrays are highly sensitive to low levels of receptors or small

changes in their expression level. MDA-MB-468 cells express EGFR at such a high level that there is a

very strong probability that even in low levels (like with the  P.liosoma lysate) there was enough

receptor present to saturate the preloaded antibody available on the blot for binding.
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Figures  4b  and  4c  display  the  percentage  phosphorylation  and  percentage  receptor  expression

respectively  and  reveal  that  reductions  in  EGFR  receptor  phosphorylation  levels  of  nearly  70%

occurred in response to treatment with both  A.geniculata and  N.naja venom. A combination of

changes in  the overall  expression and phosphorylation level  of  EGFR  were seen in  response  to

treatment with  C.durissus vegrandis  venom, with calculated reduction in expression of  60% and

reductions  in  the  detectible  phosphorylation  levels  of  nearly  95%.  EGFR  expression  and

phosphorylation levels post-dosing with H.swammerdami venom revealed that there appears to be

EGFR breakdown in response to treatment. A detectable phosphorylated band of around 75k Da was

observed when looking at phosphorylation levels  of EGFR on the Western blot (Figure 4a),  with

reductions in detectible EGFR phosphorylation of 75% also observed. Overall EGFR expression levels 

Figure 4: Western Blot analysis of EGFR phosphorylation and expression levels in MDA-MB-468 cells post whole venom

treatment.

Lysates produced for kinome array analysis were analysed via western blot to determine changes in expression (EGFR) and

phosphorylation (pY). Anti-β actin was used as a loading control to validate any observable changes. All pY and EGFR bands

were normalised against actin bands before % phosphorylation was calculated relative to the +ve control band for each

blot.
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1: A.geniculata, 2: C.durissus vegrandis, 3: D.viridis, 4: H.swammerdami, 5: P.liosoma, 6: N.naja, 7: +EGF only (+ve Control),

8: -Venom, -EGF ( -ve Control)

are also considerably lower compared to the untreated EGFR expression level controls, with around

55% reductions in total EGFR protein. There appears to be a slight EGFR expression reduction of 15%

in response to D.viridis treatment, however despite this, treatment with this venom still appears to

have resulted in nearly a 30% increase in EGFR phosphorylation levels. 

Reductions  in  EGFR  expression  or  phosphorylation  in  response  to  treatment  with  four  of  the

selected venoms, including two distinctly  diverse snake species, one scorpion and a theraphosid

venom warrants further investigation. EGFR over-expression and signalling have been shown to be

important  in  the  development,  progression  and  metastasis  of  a  large  number  of  cancer  types

including triple-negative breast cancer (Foley et al., 2010; Ueno et al., 2011; Davis, 2014; Park, 2014;

Nakai, 2016; Ali, 2017; Liang, 2017), colorectal cancer (Koustas, 2017; Zhao et al., 2017; Huang et al.,

2017;  Huang  et  al.,  2018)  and  lung cancer  (Liu  et  al.,  2017;  Nukaga  et  al.,  2017;  Singh,  2018)

amongst many others. EGFR is now well established as a target for treatment in a wide variety of

cancers,  with  high-level  EGFR  in  primary  tumours  correlating  with  highly  aggressive  basal-like

phenotypes  and  poor  patient  prognosis.  Due  to  its  over-expression  in  many  cancer  types,  the

inhibition of EGFR phosphorylation has been shown to be a successful strategy in the fight against

cancer  (Ono and Kuwano, 2006). However, development of resistance to current cancer therapies

through  further  EGFR  mutation  or  EGFR-pathway  circumvention  is  a  common  occurrence

(Pietrantonio et al., 2017; Lim, 2018; Liu, 2018; Yu, 2018), often linked to patient relapse. Reduction

in EGFR expression and phosphorylation levels seen in response to C.durissus vegrandis, N.naja as

well as scorpion H.swammerdami and theraphosid A.geniculata venoms could open up a large pool

of   venom-derived biological  molecules,  from a  large diverse  population of  species,  which may
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possess novel mechanisms and binding sites for the targeted suppression of EGFR and treatment of

EGFR-expressing cancers where prior treatment has failed due to therapy resistance.

HER2 over-expression has been shown to be linked to the induction and progression of a variety of

cancer types including, prostate (Day  et al.,  2017),  colon and colorectal  (Takegawa  et al.,  2017;

Pirpour Tazehkand et al., 2018; Siena et al., 2018), gastric and oesophageal (Gerson et al., 2017; Wu

et al., 2017),  ovarian (Luo  et al., 2018) and predominantly occurring in the HER2+ breast cancer

subtypes  (Baselga  et  al.,  2017:  Loibl  &  Gianni,  2017;  Pondé,  2018).  A  two-fold  reduction  was

observed  in  HER2  phosphorylation  in  response  to  treatment  with  N.naja (Figure  3)  and

H.swammerdami (Figure 2) venoms.  Whilst  prognosis  for patients presenting with HER2-positive

breast cancers has greatly improved thanks to advances in targeted therapies, resistance through

HER3  up-regulation  is  a  common  problem.  Oncogenic  HER3  mutations  have  emerged  as  new

therapeutic targets for the treatment of breast, ovarian, lung, prostate and other cancer subtypes

(Jaiswal et al., 2013; Schardt et al., 2017). Targeting of HER3 has also been shown to sensitise head

and neck squamous cell carcinomas by increasing tumour sensitivities to Cetuximab, reducing HER3

activity and preventing HER2/HER3 dimerisation occurrence (Wang  et al.,  2017). HER3 has been

shown to play fundamental roles in cancer, both independently and in conjunction with other RTKs

to circumvent therapeutic suppression, making it, like other ErbB receptor kinases a key target for

therapeutic development.  Reductions in combined HER3 phosphorylation/expression levels  were

observed in response to A.geniculata (Figure 1a) and N.naja (Figure 3), suggesting that these venoms

could contain  useful  components  for  the treatment  of  HER3 over-expressing  cancers.  Activating

mutations in HER3 have been identified in both HER2+ and ER+ breast cancer types, with HER2 and

HER3 co-expression in breast cancer commonly observed (Mishra, 2018; Mishra, 2018). Studies have

shown upregulation in HER3 expression by HER2 as a mechanism involved in therapy-resistance

(Yang, 2017; Li, 2018; Lyu, 2018).  Treatment with N.naja venoms resulted in the suppression of both

HER2 and HER3, suggesting the propensity for these venoms to contain useful components effective
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against  HER2/HER3  co-expressing  cancers  and  HER2+  breast  cancer  subtypes  which  have

upregulated HER3 overcoming therapeutic suppression.

H.swammerdami venom produced a two-fold increase in HER4 phosphorylation. Given that both up-

regulations  and  down-regulations  in  HER4  expression  and  signalling  have  been  linked  to  the

development and progression of  cancer.  The observed increase in expression of  HER4 following

treatment with H.swammerdami venom could have useful implications in for finding compounds to

restore normal receptor levels.  Cancers known to down-regulate HER 4 expression include renal

(Thomasson et al., 2004), papillary carcinoma (Kato et al., 2004) high-grade gliomas (Andersson et

al., 2004) and breast cancer (Wang  et al., 2016).  HER4 expression levels have been shown to be

both  down-  and  up-regulated  in  triple-negative  and  non-triple-negative  breast  cancer  types

respectively (Ansarin et al., 2018).

Pan-HER treatments, targeting EGFR, HER2 and HER3 simultaneously have been developed in recent

years  in  an  attempt  to  overcome  the  development  of  resistance  to  antibody-based  therapies

through  target  circumventing  (Iida  et  al.,  2016) and  small  molecules  tyrosine  kinase  inhibitors

(Geuna  et al., 2012; Solca  et al.,  2012; Mancheril,  Aubrey Waddell  & Solimando, 2014). Aptamer

based therapies that also target the three receptors in breast  cancer  are also being used in an

attempt to eliminated the problem of resistance development and therapy failure (Yu et al., 2018).

Treatment with  N.naja  venom displayed this same Pan-HER targeting ability, causing reductions in

the combined phosphorylation/expression levels  of  EGFR, HER2 and HER3.   A.geniculata venom,

whilst not targeting all HER receptors showed dual targeting of EGFR and HER3.

Whilst  all  other tested venoms resulted in a change in at least  one of  the ErbB receptor family

members,  D.viridis venom had no detectible effects on the members of this receptor sub-family,
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thus  the  effects  observed  are  likely  to  be  specific  responses  to  the  venoms.  HER3  and  HER4

receptors  have  been  detected  at  the  neuromuscular  junction  and  in  association  with  nicotinic

acetylcholine  receptors  (Zhu  et  al.,  1995),  a  known  venom  target,  thus  this  may  explain  the

evolutionary targeting of venom components to these receptors.

Other effects of whole venoms on receptor tyrosine kinases

FGFR1  phosphorylation  level  was  dramatically  downregulated  in  cells  dosed  with A.geniculata

venom, with a lesser effect seen on FGFR2 (Figure 1).  The amplification of FGFR1 is linked to 21% of

lung adenocarcinomas (Dutt et al.,  2011),  as well  as being observed in prostate (Devilard  et al.,

2006), ovarian (Cole et al., 2010), lung (Jiang et al., 2015; Heist et al., 2012) and oral squamous cell

carcinomas (Freier  et al., 2007). FGFR1 upregulation has been found to occur in 10% of cases in

oestrogen-dependent breast cancer (Gru & Allred, 2012), where it is linked to the promotion of cell

proliferation. Gene amplification of FGFR1 has been shown to occur in breast cancer (Turner et al.,

2010). 12% of endometrial cancers have been identified as positive for FGFR2 gene mutations (Dutt

et al., 2008) as well as cases of lung squamous cell and cervical cancers (Liang et al., 2013). FGFR2

gene amplifications or missense mutations are more commonly occurring than FGFR1 mutations in

cancer, with amplifications found in 10% of gastric cancers (Katoh & Katoh, 2009) and 2% of breast

cancers (Heiskanen  et al.,  2001; Bai  et al.,  2010).  Even though the cells were dosed with whole

venom it  suggests  further  study  is  warranted  on  the  components  responsible  for  the  effect  of

Theraphosidae venoms on FGF receptors.  Other effects produced by  A.geniculata  venom include

reductions in TrkA, TrkC, Tie2 and HGFR.

Neurotrophin receptor signalling through tropomyosin receptors kinases (Trk) A, B and C has been

linked to the development of certain types of cancer. Whilst rare in most cancers, Trk fusions with

other  proteins  are  well-established  oncogenic-driver  events  in  papillary  thyroid  carcinoma,

glioblastomas and secretory breast carcinomas. As well as Trk fusions, amplifications and alternative

splicing events have been described as drivers in cancer pathogenesis (Lange and Lo, 2018). Trk A
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over-expression has been linked to enhanced growth and metastatic propensity of breast cancer

cells (Lagadec et al., 2009; Demont et al., 2012), with downregulation of Trk A expression by small

interference RNAs (siRNAs) shown to abolish metastatic potential and increase chemosensitivity in

them (Zhang, 2015). In neuroblastoma tumours, variable expression of Trk B in conjunction with

brain-derived neurotrophic factor (BDNF) are indicative of poor patient prognosis, whilst high-level

expression of Trk A and Trk C are associated with a good prognosis (Lucarelli et al., 1997; Yamashiro

et al., 1997; Sugimoto et al., 2001; Thiele & McKee, 2009; Tanaka et al., 2014). Trk B over-expression

has also been identified in highly aggressive metastatic human pancreatic cancers (Sclabas  et al.,

2005).  Crosstalk  between  EGFR  and  Trk  B  has  been  shown  to  enhance  cell  migration  and

proliferation in ovarian cancer cells  (Qiu  et al.,  2006),  whilst  Trk B has been found to be a key

regulator of PI3K and JAK/STAT signalling pathway activated metastasis and epithelial-mesenchymal

transition in breast cancer cells (Kim et al., 2015). TrkB forms a complex with EGFR and Sortilin in

exosomes and Sortilin is also deregulated in cancer (Wilson et al., 2016).  

Neurotrophin effects were expected from N. naja venom as NGF has been identified in this species

(Hogue-Angeletti et al., 1976) and other cobras Naja kaouthia (Katzir et al., 2003) and Naja atra (Lu

et al., 2017). The published sequence of Naja naja venom NGF from only differs in two amino acids

at the C terminal from the other two Aspartate (D) instead of from Glutamate (E) at position 103 and

Threonine from Lysine at position 114 (Appendix F, Figure F.1). Although unlikely, these mutations

may have an effect on trk phosphorylation especially if mutations in these RTK’s are present in the

MDA-MB-468 cells, but this requires further investigation. 

Dendroaspis  viridis venom  has  a  dramatic  effect  on  the  insulin  receptor,  increasing  total

phosphorylation 4.5 fold from control. Diverse venoms from Cone snails (Conus spp.) have utilised

insulin signalling in prey capture (Ahorukomeye et al., 2019) and famously a glucagon like peptide

has been clinically  utilised  from  Heloderma suspectum  (Yap  & Misuan,  2019).  Therefore,  this  is
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possibly a newly discovered mechanism in the mamba  Dendroaspis  viridis which warrants further

investigation.

Dendroaspis viridis venom also had a dramatic effect on RET (REarranged during Transfection) proto-

oncogene (c RET). Gain-of-function mutations and upregulation in the expression of c-RET receptor

tyrosine kinase have been linked to the development of several cancer types. C-Ret expression is

often observed in oestrogen receptor positive (ER+) breast cancer subtypes, where RET expression is

induced by  oestrogens and RET signalling  enhances oestrogen-driven proliferation of  the breast

cancer cells. RET expression has been detected in primary breast cancer samples, with higher RET

expression levels identified in ER+ tumours (Boulay et al., 2008; Morandi et al., 2011). RET mutations

in the form of chromosomal rearrangements (inversion of balanced-translocation) involving the RET

catalytic  domain and leading to  the creation of  fusion RET/PTC oncogenes have been linked to

papillary thyroid carcinoma (PTC) development (Mologni, 2011). Gain-of-function mutations in RET

have also been linked to the development of medullary thyroid carcinoma (MTC) (Hedayati et al.,

2016,  Carlomagno,  2012;  Phay  and  Shah,  2010).  Both  small  molecule  (Andreucci,  2016)  and

antibody-drug conjugate (Nguyen et al., 2015) therapies have been developed as potential therapies

for the treatment of RET over-expressing breast cancer, with treatments proving effective against

these  RET  over-expressing  cancers.  However,  despite  the  evidence  for  RET  as  an  oncogene

promoting cancer development in thyroid cancer and pheochromocytoma, RET has been identified

to potentially have a tumour suppressive role in colon cancer. RET methylation was found in 27% of

colon adenomas and 63% of  colorectal  cancers,  where these aberrant  methylation events were

found to correlate  with  decreased RET expression.  Subsequent  restoration of  RET expression in

these instances was found to result in apoptosis of colorectal cancer cells (Luo  et al., 2013). The

other major effect of D.viridis venom was the increase in hepatocyte growth factor receptor (HGF R/

c-MET). C-MET receptor tyrosine kinase has been identified as a key player in many cancers including

breast  (Yan  et  al.,  2015),  lung  (Zucali  et  al.,  2008),  melanoma  (Cheng  et  al.,  2017),  myeloma,

(Moschetta et al., 2013) adrenocortical carcinoma (Phan et al., 2015), pancreatic cancer (Brandes et
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al., 2015) and gastric cancer (Ha  et al., 2013), with its over-expression indicative of poor patient

prognosis and highly invasive tumour types (Cazet et al., 2010; Goetsch et al., 2013; Ho-Yen et al.,

2014; Ho-Yen et al., 2015; Yan et al., 2015; Zhang et al., 2018). Within breast cancer subtypes high

levels of c-MET protein in hormone-receptor (HR)+ breast cancers and phosphor-c-MET in HER2+

breast cancers were indicative of worse relapse-free survival and overall survival rates in patients.

High  levels  of  c-MET  and  phosphor-c-MET  were  identified  in  all  breast  cancer  types  are  were

indicative of poor patient prognosis (Raghav et al., 2012), with c-MET over-expressions also having

been identified in triple-negative breast cancer cell lines, MDA-MB-468, HCC-1395, and MDA-MB-

231, where it has been linked to EGFR-therapy resistance (Sohn et al., 2014). Thus even though the

c-MET is over expressed in this cell line, it is not fully phosphorylated as further phosphorylation was

stimulated  by  D.viridis  venom.  A.geniculata and  N.naja venoms  are  expected  to  contain  useful

signalling molecules due to the down regulation detected. 

Greater than two-fold reductions in the expression/phosphorylation were observed in Tie-2 receptor

in  response  to  all  venoms,  apart  from  D.viridis,  (Figure  2)  with  the  greatest  specific  reduction

observed with H.swammerdami (Figure 2b) venom. Interestingly, no changes were observed in Tie-1

receptor in response to treatment with any of the 5 selected venoms. Given Tie-1 is  an orphan

receptor  and depends on dimerisation with Tie-2 to promote its  activation (Savant  et al.,  2015;

Mueller & Kontos, 2016), it is possible that its expression and activity levels were unaffected by

treatment with the venoms as there were no compatible binding molecules. Tie-2 mutation and

upregulation  has  been  linked  to  the  development  and  progression  of  cancer,  with  increased

expressions promoting the onset of angiogenesis in tumour microenvironments. Decreases in the

expression or  activation of  this  receptors  in response to venoms,  may prove beneficial  in over-

expressing tumour types, by delaying the triggering of angiogenesis. The lack of reduction in Tie-1

receptor expression/activity may also be beneficial, as Tie-1 is thought to play a role as a tumour
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suppressor in Tie-2 over-expressing cancers  cells,  by reducing Tie-2 signalling  activity upon their

dimerisation together (Singh et al., 2012).

Proto-oncogene tyrosine-protein kinase (Mer) receptor is overexpressed in many human cancers,

including various leukaemias and numerous solid tumours,  including breast cancer (Linger  et al.,

2010). Mer upregulation has been linked to increased cancer cell aggression, where like Axl, it has

been  found  over-expressed  in  metastatic  breast  cancer  cells,  relative  to  non-metastatic  breast

cancer cells (Tavazoie et al., 2008; Linger et al., 2010). Frequent over-expression of Mer receptor has

been found to occur in human non-small  cell  lung cancer (NSCLC),  where it  has been shown to

attribute to erlotinib small molecule resistance, in EGFR mutated cancer types (Xie  et al., 2015). A

study by Linger et al.,(2013), evaluating 88 human NSCLC tumours found that Mer and Axl receptor

tyrosine kinases were over-expressed in 69% and 93% of the tumours tested respectively, when

compared to the levels of these receptors in normal surrounding lung tissue. The study also found

that Mer and Axl were frequently over-expressed and activated in NSCLC cell lines. They showed that

inhibition  of  Axl  and  Mer  receptor  activities  promoted  apoptosis,  prevented  proliferation  and

enhanced the chemosensitivity of the cells (Linger et al., 2013). A similar study in astrocytoma found

that inhibition of these receptors resulted in increased apoptosis and chemosensitivity (Keating et

al., 2010). The two arachnid venoms tested in this study both reduced Mer phosphorylation levels

and thus could contain useful components for cancer research.

4 Conclusion

This study provides the first kinome scale investigation of the effects of venoms on cancer cells in-

vitro. The preliminary evidence identifies many previously unknown effects of venoms on receptor

tyrosine  kinases  and  demonstrates  the  effects  reported  from  other  venoms  on  RTK’s  maybe

widespread throughout venomous taxa. Further work is required on fractionated venoms to identify

the active components responsible for these effects, to understand their evolutionary origin and
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therapeutic potential. It is clear through evolution that there is no selection pressure for venoms to

affect cancer cells, however through this research we may uncover a greater understanding of the

signalling pathways of venom components and their potential for therapeutic utility. 
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Appendix A

Coordinate
Receptor
Family

RTK/
Control Coordinate

Receptor
Family RTK/Control

A1, A2 Reference Spots ------------  D1, D2 Tie Tie-2

A23, A24 Reference Spots ------------  D3, D4 NGF R Trk A

B1, B2 EGF R EGF R  D5, D6 NGF R Trk B

B3, B4 EGF R ErbB2  D7, D8 NGF R Trk C

B5, B6 EGF R ErbB3  D9, D10 VEGF R VEGF R1

B7, B8 EGF R ErbB4  D11, D12 VEGF R VEGF R2

B9, B10 FGF R FGF R1  D13, D14 VEGF R VEGF R3

B11, B12 FGF R FGF R2a  D15, D16 MuSK MuSK

B13, B14 FGF R FGF R3  D17, D18 Eph R Eph A1

B15, B16 FGF R FGF R4  D19, D20 Eph R Eph A2

B17, B18 Insulin R Insulin R  D21, D22 Eph R Eph A3

B19, B20 Insulin R IGF-IR  D23, D24 Eph R Eph A4

B21, B22 Axl Axl  E1, E2 Eph R Eph A6

B23, B24 Axl Dtk  E3, E4 Eph R Eph A7

C1, C2 Axl Mer  E5, E6 Eph R Eph B1

C3, C4 HGF R HGF R  E7, E8 Eph R Eph B2

C5, C6 HGF R MSP R  E9, E10 Eph R Eph B4

C7, C8 PDGF R PDGF Rα  E11, E12 Eph R Eph B6

C9, C10 PDGF R PDGF Rβ  E13, E14 Insulin R ALK
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C11, C12 PDGF R SCF R  E15, E16 ------------ DDR1

C13, C14 PDGF R Flt-3  E17, E18 ------------ DDR2

C15, C16 PDGF R M-CSF R  E19, E20 Eph R Eph A5

C17, C18 Ret c-RET  E21, E22 Eph R Eph A10

C19, C20 ROR ROR1  F1, F2 Reference Spots ------------

C21, C22 ROR ROR2  F5, F6 Eph R EphB3

C23, C24 Tie Tie-1  F7, F8 ------------ RYK

F23, F24 Control (-) PBS

Table A.1 Human p-RTKs.

The table displays a list of each RTK probed for on the kinome array membranes, the sub-family of RTKs they belong to, and

their relevant coordinate location on each blot. 

Appendix  B  -  Venom

The following SDS PAGE gels (Appendix B figure B.1) were used to optimise the concentrations of

venom used to treat the cells in the kinome blots and Western blots of EGFR. The gels show the

effect of the venoms on the whole proteome and which concentration the venoms become toxic to

the cells reducing the protein available. 
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Figure B1: Coomassie Gel Analysis of Venom Toxicities

A. MDA-MB-468 cell  lysates from cells  treated with a serial  dilution of whole  A.geniculata venom lanes  1-5  (1:1/50,
2:1/100, 3:1/1000, 4:1/10,000, 5:1/100,000, respectively). B. MDA-MB-468 lysates from cells treated with a serial dilution
of whole  D.viridis venom lanes  1-6  (1:1/50,  2:1/100,  3:1/1000,  4:1/10,000,  5:1/100,000,  6:1/1,000,000 respectively).  C.
MDA-MB-468 lysates from cells treated with a serial  dilution of whole  N.naja venom  1-6  (1:1/50,  2:1/100,  3:1/1000,
4:1/10,000,  5:1/100,000,  6:1/1,000,000 respectively).  D. MDA-MB-468 lysates from cells treated with a serial dilution of
whole C.durissus vegrandis venom 1-6 (1:1/50, 2:1/100, 3:1/1000, 4:1/10,000, 5:1/100,000, 6:1/1,000,000 respectively). E.
Displays  the  Coomassie  gel  analyses  of  MDA-MB-468  lysates  from  cells  treated  with  a  serial  dilution  of  whole
H.swammerdami venom  1-6  (1:1/50,  2:1/100,  3:1/1000,  4:1/10,000,  5:1/100,000,  6:1/1,000,000 respectively). F.  MDA-
MB-468 lysates from cells treated with a serial dilution of whole P.liosoma venom lanes 1-6  (1:1/50, 2:1/100, 3:1/1000,
4:1/10,000, 5:1/100,000, 6:1/1,000,000 respectively).  All positive controls were produced from MDA-MB-468 cells treated
with 1x10-7M EGF (No venom, +EGF). All negative controls were produced from untreated MDA-MB-468 cells (No venom, -
EGF). 
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Figure C.1: Kinome array analyses of MDA-MB-468 cells treated with whole venoms
The kinome arrays show changes in the expression and activity of 47 receptor tyrosine kinases in MDA-MB-468 cells in
response  to the application of  the six venoms of  interest.  All  cells  were treated with the venoms for  two hours  and
subsequently stimulated with 1x10-7M EGF for  five minutes except for  the positive and negative controls  A.  Receptor
expression and activity levels in untreated MDA-MB-468 cells which have not been stimulated with 1x10-7M EGF (Negative
control). B. Receptor expression and activity levels in untreated MDA-MB-468 cells which have been stimulated with 1x10-
7M EGF for five minutes (positive control). C. Receptor expression and activity levels of MDA-MB-468 cells which have been
treated with a 1/10,000 dilution (0.025mg/ml) of N.naja venom. D. Receptor expression and activity levels of MDA-MB-468
cells which have been treated with a 1/150 dilution (1.5mg/ml) of  P.liosoma venom. E. Receptor expression and activity
levels of MDA-MB-468 cells which have been treated with a 1/50 dilution (2mg/ml) of H.swammerdami venom. F. receptor
expression and activity levels of MDA-MB-468 cells which have been treated with a 1/10,000 dilution (0.025mg/ml) of
D.viridis venom. G. Receptor expression and activity levels of MDA-MB-468 cells which have been treated with a 1/1,000
dilution (0.065mg/ml) of C.durissus  vegrandis  venom.  H  Receptor expression and activity levels of  MDA-MB-468 cells
which have been treated with a 1/100 dilution (2.5mg/ml) of A.geniculata venom.

Appendix D

A. gen C.dve D.vir H.swa N.naj

EGFR X X X X X
HER2 X √ X √ √
HER3 √ √ X X √
HER4 X √ X √ X
FGF R1 √ √ X X √
FGF R2 alpha √ √ X X X
FGF R3 X √ X X X
FGF R4 X √ X X X
Insulin R X X √ X X
IGF-I R X √ X X X
Axl X √ X X X
Dtk √ X X X √
Mer √ √ √ √ X
HGF R √ √ √ X √
MSP R X √ X X √
PDGF R alpha X √ X X X
PDGF R beta X √ X X X
SCF R X √ X X X
Flt-3 X √ X X X
M-CSF R X √ X √ X
c-RET X √ √ X X
ROR1 X √ X X √
ROR2 X √ X X X
Tie-1 X X X X X
Tie-2 √ √ X √ √
Trk A √ √ X X √
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Trk B X √ X X √
Trk C √ √ X X X
VEGF R1 X √ X X X
VEGF R2 X √ X X X
VEGF R3 X √ X X X
MuSK X √ X X X
Eph A1 X √ X X X
Eph A2 X √ X X √
Eph A3 X √ X X X
Eph A4 X √ X X X
Eph A5 X √ X X X
Eph A6 √ √ √ X X
Eph A7 √ √ X X X
Eph A10 X √ X X X
Eph B1 X √ X √ X
Eph B3 X √ X √ X
Eph B2 X √ X X X
Eph B4 √ √ X X X
Eph B6 √ √ X X X
ALK X √ X X X
DDR1 X √ X X X
DDR2 √ √ X X X
RYK √ √ X X X

Table D.1: Changes in RTK expression/phosphorylation state in response to treatment with whole venoms. 
The table displays 2-fold or greater reductions or increases in the combined phosphorylation/expression profile of each of 
49 receptor tyrosine kinases in response to 5 whole venom treatments. Greater than 2-fold upregulations in green, greater 
than 2-fold downregulation in red.
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Figure E.1: Coomassie gel analysis of total protein in MDA-MB-468 cell lysates after 2hr treatment with venoms. 
The Coomassie gel analysis of venom-treated MDA-MB-468 cell lysates shows that all cell lysates appear to have consistent
levels of total protein, with the exception of the lysate produced from MDA-MB-468 cells treated with P.liosoma venom for
two hrs. This lack of total protein can be attributed to cytotoxic at the dose of this venom selected for cell treatment.

Appendix F

Figure F.1 Alignment of cobra Nerve Growth Factors (NGF).  Although other neurotrophins are present in elapid snakes

this alignment focuses on those of the same size across the species relevant to this manuscript.
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