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Abstract 

Super-flexible devices based on soft materials have the potential to sustain 

large mechanical deformations, enabling advanced applications such as 

flexible electronics, soft robots, artificial skin, and biomedical transducers. 

Subject to a large compression, materials may undergo different types of 

elastic instabilities such as wrinkles, creases, and folds. Despite recent 

growing interests in turning this usually unwanted phenomenon into useful 

engineering applications (e.g. tactile sensing), this topic remains relatively 

under-researched. Therefore, this thesis focuses on developing the control 

mechanisms of elastic instabilities, and their applications in sensing and 

actuation systems. 

Elastic instabilities induced strain-gated logic sensing technology is 

developed by research into micro structured metal-elastomer tri-layer system. 

The test structures are designed to study the deformation behaviour and to 

exploit the large strain sensing mechanism. The stepwise electrical signals are 

achieved (from ~1010 to ~120 Ω at first switching stage and then to ~50 Ω at 

second switching stage) that survived much higher than usual compressive 

strains of up to 60%. 

On the other hand, elastic instabilities induced topo-optical sensing strategy 

is created by patterning microstructure arrays within the tri-layer system. 

Two unwanted phenomena (creases/folds and oxygen quenching effect) are 

turned into a responsive and programmable 'fold to glitter' function through 



 

 
 

II 

micro engineering, which can light up areas of an object or material by 

creating microscopic creases/folds within its surface. The signal-Noise-Ratio 

(SNR) contrast in optical pattern generation is improved by 6 folds due to the 

oxygen quenching effect. The numerical analysis by ABAQUS provides the 

fundamental theory on the mechanism of generating targeted folding through 

simulating the in-plane and out-of-plane strain energy localization. Different 

luminescent optical patterns are demonstrated under in-plane uniaxial or 

equi-biaxial compression.  

Apart from the surface deformation, the bulk deformation of heterogeneous 

layered structures of soft functional hydrogel is also developed to generate 

the controllable and reconfigurable 3D morphing device. The initial 

configurations with various shapes (“S”, “W” and “C”) are demonstrated due 

to the swelling ratio mismatch. The developed sensing and actuation 

technologies provide opportunities for future applications in flexible 

electronics, tuneable optics, soft robotics and bio-medical systems. 
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Chapter 1 

Introduction  

Next generation wearable devices and “point-of-care” medical technologies 

require future sensor and actuator devices to be soft and flexible. This has 

huge benefits, such as improved end-user comfort, mechanical compatibility 

with deformable surfaces and structures, skin and other human soft tissues. 

Super-flexible (e.g. compressive strain above 10%) electronics, sensors and 

actuators based on soft substrates, where devices are subject to various 

deformations have grown into one of the more interesting technologies for 

next generation applications [1]–[11]. Compared to rigid devices, super-flexible 

sensor and actuator devices are designed to be much softer and more flexible, 

able to sustain large strain stretching, bending, twisting and compressing [1], 

[7], [20], [21], [23], [24], [25]–[28], which are not easily achieved by rigid wafer based 

materials.  

When subjected to external stimuli, soft materials can undergo surface and 

bulk deformations, such as wrinkling, creasing, folding and buckling caused 

by compressive strains [5], [17], [34], [76], [81], [82], [115], [120], [121], [132], [156], [163], [211], [216]. 

One of the desirable developments is to make such stimuli-responsive 

deformation process controllable and programmable, at least for specific 

configurations [12]–[16].  
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1.1    Research Problem  

Most to-date relevant technologies are focusing on stretching, bending and 

twisting behaviour of soft devices [20], [21], [23], [24]. One relatively less-

developed area is related to compressible device technologies, where 

interesting scientific phenomena and theories of elastic instabilities induced 

on the soft surfaces are getting more attention. It is important to notice that 

the phenomena of elastic instabilities (e.g. wrinkles, creases, folds and cracks) 

exist widely in nature, and are usually unwanted in engineering applications. 

Such importance has been recognized by the increasing research carried out 

to understand the mathematical and physical science behind these changes  

[17], [34], [76], [81], [82], [120], [121], [132], [156], [163], [216]. To exploit and utilize such 

otherwise unwanted phenomena for innovative sensing and actuation 

solutions remain relatively underdeveloped with many unaddressed 

challenges. 

Therefore, this thesis researches into advanced device design, fabrication and 

characterisation technologies to help furthering the scientific understanding 

of elastic instabilities in complicated multi-soft-layer structures, and to 

develop the engineering solutions for controllable and re-configurable 

sensing and actuation systems. 

1.2    Aims and Objectives  

This project aims to design, fabricate and exploit new sensing and actuation 

mechanisms (e.g. flexible strain-gated logic sensing technology, flexible topo-
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optical sensing technology and advanced 3D morphing actuation technology) 

from stimuli-responsive soft materials subject to large strain mechanical 

deformations by inducing elastic instabilities, at millimetre/micrometre scale, 

happening on the surface and in the bulk. The micro-structured surfaces of 

multi-layer elastomer system enabled by various designs (e.g. multiple finger 

electrodes, single line and square (multi-line) lattice microarrays) and soft 

lithography based micro-fabrication techniques on flexible substrates have 

been introduced.  

Main objectives of this project include: 

1. Investigate the mechanism of targeted elastic instabilities (controllable 

and reversible) generation on soft surfaces of multi-layer elastomer 

systems via test structures. 

2. Develop design and micro-fabrication techniques for multi-layer 

sensing structures on different length-scale based on the elastic 

instability. 

3. Develop the understanding of competing surface instability growth 

induced strain-gated stepwise resistance switching transducers based 

on micro-structured multi-layer metal-elastomer systems. 

4. Research and validate the novel topo-optical sensing mechanism from 

instability induced Mechano-responsive Luminescence (MRL) on 

micro-structured multi-layer fluorophore-elastomer systems. 

5. Achieve Ultra-high contrast dynamic optical pattern generation by 

selectively oxygen-quenching of thin phosphorescent Iridium-III 
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complex optical indicator layer. 

6. Print and pattern soft functional hydrogel morphing structure to 

develop the heterogeneous layered structures of hydrogel to generate 

reconfigurable 3D morphing device.  

 

The overall objective of this project is shown in Fig. 1.1. 

 

 

 

 

 

 

Figure 1.1 Diagram of the proposed research objectives of this project. 

1.3    Outline of thesis 

This thesis is divided into seven chapters. Chapter 1 is the introduction 

chapter, which summarizes the main objectives of this project and how the 

project is inspired with its contributions to novel sensing and actuation 

mechanism. Following the introduction, Chapter 2 is the literature review 

chapter that starts with the basic concepts in material science, followed by 
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the origins and the state of arts of the elastic instabilities phenomenon. The 

up-to-date flexible sensors and transducers have been discussed as well in 

this chapter. The experimental skills and technologies used in this work are 

described in Chapter 3, which briefly summarizes the in-lab techniques for 

the fabrication methods (e.g. photolithography, soft lithography, self-

assembly monolayer (SAM), spin coating, surface casting, micro-pattern 

transformation, etc.) and related characterization approaches (e.g. Optical 

Microscopy (OM), Atom Force Microscopy (AFM), Laser Scanning Confocal 

Microscopy (LSCM), Scanning Electron Microscopy (SEM), etc.). 

Furthermore, the numerical simulation is provided as well to help 

understand the specific surface morphology. In Chapter 4, elastic instabilities 

induced flexible strain gated logic transducers are employed to help achieve a 

large sensing range with stepwise output signals, by controlling the surface 

deformation of an array of strain transducers. In Chapter 5, elastic 

instabilities induced flexible topo-optical transducers are achieved through 

developing targeted folding and employing the functional luminescence 

composites on the surface of elastic multi-layer systems in response to high 

compressive strains. Such strategy is guided by the pre-defined lattice pattern 

generation, instead of by rearrangement of the molecular compounds. The 

designed microstructure arrays are used to guide the local energy 

concentration, controlling the threshold strain and optical pattern 

morphology. In Chapter 6, a unique way of heterogeneous layered structures 

of soft functional materials has been established by reconfigurable swelling 

and de-swelling behaviour to achieve the controllable 3D morphing 
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transducers. A prototype of controllable 3D morphing transducers by 

functional different composites of hydrogel is achieved. Chapter 7 presents an 

overall summary of the project and suggestions for future work. 
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Chapter 2 

Literature Review  

The literature review covers the background and theories of this project. It 

reviews the basic concepts in material science, the theories behind large 

strain surface deformation induced elastic instabilities within the multi-layer 

systems, and bulk deformation due to swelling and de-swelling from stimuli-

responsive hydrogel materials. It also includes a review of the latest 

developments in super-flexible electronics and transducers, where the soft 

substrate can sustain stretching, compressing and twisting, with the 

deformation strains significantly larger than the typical fracture strains of the 

metal, semiconductor.  

Such surface and bulk deformation responding to stimuli can encourage 

novel sensing and actuation systems for super flexible transducers which will 

be extensively developed and discussed in the next few chapters.  

2.1    Elasticity  

Elasticity is the property of a material in which the material returns back to 

its original position (i.e. shape and size) under external stimuli such as force 

or load. Different with plasticity in which the material undergoes permanent 

deformation under force or load. When the external stimuli are applied on a 

body within the elastic limit, the body deforms, if it recovers back to its 
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original status on the removal of the load, the body is called elastic body. 

Elastic limit is defined as the value of stress within which the material 

recovers back to its initial stage. If the applied value exceeds the elastic limit, 

then the material will not completely return to its original form. Substances 

that display a high degree of elasticity are termed as “elastic.” [38], [39]. 

2.1.1    Stress, Strain and Young’s Modulus  

Stress (σ) is defined as the ratio of force (F) to the cross-sectional area (A), 

which given by σ=F/A0, with unit of Pa, where A0 is the original cross-

sectional area. Strain is the ratio of total deformation to the initial status in 

which the forces are being applied, given by ε=(L-L0)/L0, where L0 means the 

original status of the sample. Young’s Modulus (E) is defined as the ratio of 

tensile or compressive stress to the corresponding strain within the elastic 

limit. Young’s Modulus is also known as modulus of elastic, with the formula 

given by E = σ/ε, where σ is the tensile or compressive stress and ε is the 

tensile or compressive strain. The values of Young’s Modulus determine the 

stiffness of materials. The large Young’s Modulus indicates that the material 

deforms less when it is compressed or stretched [38], [39].  

2.1.2    Elastic materials  

Different with rigid materials such as marble, rock, which do not deform 

easily due to their tightly bonded molecules that are hard to move past each 

other. Elastic materials are materials with high elasticity made of long 

molecules, which able to be bended or stretched several times than their 
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initial lengths and return back to original shapes and dimensions when 

releasing the force. In their relaxed states, the structures of elastic materials 

are disorganised and loosely cross-linked. When applying the force, the 

structures become distorted and the chains align with each other, allowing 

the materials to stretch. When releasing the force, the cross-links between 

chains pull the materials back to their original shapes [38], [39]. 

The causes of elasticity vary depending on the types of materials. Polymers, 

including rubber, may display elasticity because that polymer chains are 

stretched and then subsequently return to their initial status when removing 

the load. Metals such as copper may exhibit elasticity as atomic lattices 

change size and shape, once the stimuli are removed, they can return to their 

original forms [38], [39]. 

2.1.3    Elastic materials for soft substrate in engineering field  

There are many intrinsic elastic materials such as elastomers [56], [57], [58], 

liquid metals [59], [60], [61], conductive polymers [62], [63], [64], 1D and 2D materials 

[65], [66], [67], which can achieve the flexibility and stretchability (the capacity 

for being stretched) corresponding to the external stimuli (e.g. stretching, 

bending, twisting or compressing), 

Elastic materials – Polydimethylsiloxane (PDMS), Ecoflex, hydrogel, 

Polyethyleneoxide (PEO), and their composites, have been widely used as soft 

substrates [73], [74]. Among them, PDMS is an optically transparent nontoxic 

soft silicon elastomer which is the most widely used material in the 
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microsystem research areas such as microfluidics [32], stretchable electronics 

[6], [33], [35], tunable lenses and mirrors [36], [37], interferometric sensors [40]. A 

key feature of PDMS (e.g. SylgardTM 184) is that the stiffness can be 

controlled from very soft (e.g. a Young’s modulus of 48KPa) to much stiffer 

(e.g. a Young’s modulus of 4MPa) by changing the mixing ratio of PDMS base 

and curing agent. The softness can help to avoid the problems caused by hard 

materials such as the formation of sharp shards on breakage that cannot be 

fabricated in rigid materials (e.g. silicon and glass). Such elastic materials 

based soft devices have started to make significant impact on emerging 

applications such as epidermal electronics [1], flexible circuits [20], artificial 

skins [26], bio-medical electronics [3], [25], [29], presser sensors [30] and soft 

robotics [31].  
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Figure 2.1 (a) Advanced materials including polymers, hydrogels and structural 
designs commonly used in flexible electronics include waves/wrinkles, islands-
bridge [9] (b) Young’s Modulus range for different materials [9]. 

Fig. 2.1 gives the summarization of the state-of-the-art advances in both 

materials and structures levels which covers a wide range of the flexible 

electronics topics, with the comparison of Young’s Modulus among different 

materials [9]. 

2.2    Elastic instabilities 

Elastic instabilities have been discovered a long time ago and are commonly 

observed within nature and our daily life [83]–[85]. Soft materials including 

polymeric gels, elastomers and biological tissues can easily go through large 

deformation and generate various morphological stabilities due to their 

intrinsic features of low elastic moduli and high sensitivity to external stimuli. 

Because of the capabilities of large and reversible deformations for soft and 

elastic materials, various types of instabilities can be generated such as 

wrinkling, creasing, buckling, period-doubling, folding [86]-[91], [162], depending 

on the elastic and geometric properties of the materials and the loading 

conditions. There are various ways to induce the instabilities onto the soft 

materials, such as the thermal variation [111], [112], PH value [95], [113], competing 

growth and swelling of the films [81], [114]–[117], electrical stimulation [118]–[119], 

pre-stretched substrates relaxation [33], [120]–[122] and mechanical compression 

[86], [123], [162].  
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From the engineering point of view, such elastic instabilities are recognized 

as undesirable and may pose a limit due to the crack and fracture caused to   

the constructions, and are often considered to be a nuisance that should be 

avoided [92]–[95]. However, with the development in engineering field, the 

controlling and harnessing such morphological elastic instabilities to specific 

usages have become popular to a number of academic disciplines, which can 

be potentially used to a broad range of engineering systems as shown in Fig 

2.2. For example, some significant applications such as biological systems [81], 

[96], [97], [98], flexible electronics [6], [24], [33], [35], [99], [100], [101], material behaviour 

measurement [6], [86], [102], [103], [104], sensors and actuators [105], wettability [106], 

[107], [108] and optical characterization [80], [109], [110]. 

 

 

 

 

 

 

 

 

 

Figure 2.2 The multiscale overview of surface instabilities in natural and 
engineering systems [251], [252], [253], [254].  
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This thesis studies the elastic instabilities of wrinkles, creases and folds by 

mechanical compression of pre-stretched multi-layer elastomer systems (e.g. 

a bi-layer or a tri-layer system). The following sections introduce the different 

types of instabilities.  

2.2.1    Wrinkle in bilayer systems 

When a bilayer system with a stiff thin film on a thick soft substrate is 

compressed over a critical strain, elastic instabilities of wrinkles are formed  

[51]. The critical strain of wrinkle indicates the change from initially flat status 

into unstable deformation [175] for the energy comparison between plane 

surface and wrinkled status. Fig. 2.3 shows the schematic view of wrinkle 

instability formed on a bilayer system. Wrinkles form periodically in a finite 

space. When under the uniaxial compression, the parallel wrinkles can be 

generated which perpendicular to the compressive direction [261]. While under 

the biaxial compression, much more intricate modes of wrinkles can be 

formed such as herringbone, checkerboard and hexagonal [112], [124], [262], [263]. 

 

 

 

Figure 2.3 The schematic view of wrinkle instability formed on a bilayer system. 
The stiff film layer (thickness h) attached to a soft substrate over critical 
compression, with generated wrinkle wavelength of λ and amplitude of A. 
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The onset of wrinkles can be predicted via the classical linear perturbation 

analysis [88], [125]–[128], as wrinkles have infinitesimal strain deviating from the 

smooth state and the cross-sections of wrinkles form smooth undulation. The 

linear perturbation analysis formulates an incremental boundary value 

problem with the flat state as a reference, and the onset of wrinkle 

corresponds to the existence of a non-trivial solution to the incremental 

boundary value problem, which is an eigenvalue problem [88], [125]–[128]. The 

wrinkle wavelength is given by 𝜆 = 2𝜋ℎ(𝐸*"/3𝐸*#-
$ %⁄ , to balance the energy 

mismatch between the bending energy of the film and the stretching energy 

of the substrate, where 𝐸* = 𝐸 (1 − 𝑣')⁄ 	is the plane strain modulus [95], with E 

and 𝑣 as the young’s modulus and poisson’s ratio, respectively. The onset 

critical strain of wrinkle is given via 𝜀! = 0.25(3𝐸*#/𝐸*"-
' %⁄ . Although surface 

wrinkles generate on soft elastic materials with a rigid skin, without such 

rigid skin layer, soft elastic materials are stable, at small strain to form 

homogeneous deformations while when applied a large compression strain, 

the surface is predicted to form a new instability [126] such as crease.  

2.2.2    Crease in bilayer systems 

Creasing instability is a localized and surface self-contacting phenomenon 

with a sharp tip, which has been commonly seen in everyday contexts such as 

baby’s arm [130], a bending Liang fen (a starch gel) [255] or on the surface of 

bread dough rising in a bowl [22] as shown in Fig. 2.4. Such creasing 

instability can be observed on the surface of soft elastomers, hydrogels or gels 
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under mechanical compression and it plays a crucial role in many natural and 

engineering systems [5], [75], [79], [81], [163].  

 

 

 

 

Figure 2.4 Creases patterns on (a) baby’s arm [130] (b) a bending Liang fen [255] and 
(c) rising bread dough [22].  

Biot [125]–[127] firstly theoretically predicted that the homogenous Neo-

Hookean half space would become unstable to the formation of sinusoidal 

waves under a critical compressive strain of 0.46. For many soft materials, 

the mechanical behaviour can be captured by linear elastic constitutive 

models only in a small strain range (<10%), while in the large deformation 

range, such linear elastic constitutive models cannot fully capture the 

mechanical behaviour. For the large deformation range, the hyper-elastic 

constitutive models (e.g. Neo-Hookean material model) can be used for 

predicting the nonlinear stress-strain behaviours of soft materials. Hyper-

elastic material is the special class of material that tends to respond 

elastically when under large strains. It shows both a nonlinear material 

behavior as well as large shape changes. The Neo-Hookean material model 

has been widely used to study the instability behaviours of hyper-elastic 

materials [17]–[19] similar to PDMS.  

(a) (b) (c) 
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While, Biot’s prediction was challenged by Gent and Cho [255], where the 

critical strain for the formation of crease was experimentally found to at the 

compression strain of 0.35 ± 0.07 in plane surface [255]. Later, Hohlfeld and 

Mahadevan [130] had numerically simulated and proven that a critical strain 

for creasing at 0.354, which highly agreed with the experimental observation 

by Gent and Cho [255]. 

When a stress-free thin film attached on a pre-stretched substrate under 

mechanical in-plane compression, at small compressive strain, wrinkles 

preceded by creases [129]–[130] which form via a linear perturbation. Beyond 

the critical compression strain, the free surface forms sharp self-contacting 

characteristic that refers to creases. Fig. 2.5a shows the schematic view of 

creasing instability generated on elastic plain surface under mechanical in-

plane compression. The creasing instability is a kind of bifurcation that 

distinct from wrinkles, formed by nucleation and growth. The compression 

strain is given by 𝜀 = 1-(L0/L), Where L0 and L represent original length and 

released length [81], [117], [120], [121], [131]–[135]. Fig. 2.5b shows the experimental 

observation of creases at strain of 0.51 [120].  

 

 

 

 

 



 

 

17 
 
 

 

 

 

 

 

 

Figure 2.5 (a) The schematic view of creases instability generated on elastic plain 
surface under mechanical in-plane compression from L0 to L (b) experiment 
observed as a cross-sectional view of formed creases [120] (c) bifurcation diagram for 
supercritical crease [216].   

Creases might look similar with cracks due to their singular features. While 

the difference is significant, the fatigue and catastrophic failure will be 

induced when cycling open and close of cracks. However, because of the 

elastic property of creases, which makes it promising to cycle and repeat 

between flat and creased status without being damage. In order to well-

defined and control the surface creasing, Ryan C. Hayward and co-workers 

[216] established a robust way of controlling the hysteretic property of surface 

creasing by compressing a pre-strain soft bilayer structure, which shading a 

light in using of such type of instability.  

Fig. 2.5c shows a supercritical bifurcation diagram [216] with the applied 

strain 𝜀	and the depth of crease d. At the flat status, the horizontal axis d = 0 

𝜀=1-(L0/L) 
Substrate 

L0 
Crease 

L 

(a) 

(b) (c) 

20µm 
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while at the creased states with d > 0. When applied strain over a critical 

value of εC, crease was generated. The depth of crease increases gradually as ε 

increases. When decreased ε, the creases disappeared at the same critical 

strain εC  [216]. Based on the ability to form and disappear of creases, the 

crease-inducing stimuli have been popular in temperature [81], electric fields 

[118], light [82] and control of chemical patterns [82].  

2.2.3    Difference between wrinkle and crease 

Wrinkles behave the sinusoidal as the corrugation while creases form the 

self-contact with a sharp tip. Fig. 2.6 shows the schematic illustrations of 

wrinkles and creases. In the simplest context, both of the wrinkles and 

creases represent a bifurcation from a homogenous compression state. 

Wrinkles bifurcate by a field of strain infinitesimal in amplitude but finite in 

space, wherein the surface of the material undulates sinusoidally but remains 

locally smooth. While creases are localized folds that bifurcate by a field of 

strain finite in amplitude but infinitesimal in space. The wrinkle state is 

extremely unstable, it is highly defect sensitive and once formed is 

dynamically unstable to formation of a crease [120]-[122].   

 

 

 

Figure 2.6 The schematic illustration of wrinkles and creases. 

Creases Wrinkles 
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2.2.4    Fold in bilayer systems 

For the bilayer system with a stiff thin film setting on top of the soft thick 

substrate, the instability of wrinkles can be formed when compressed to a 

critical value. If keep on increasing the compression force, the secondary 

bifurcation will be induced. The secondary bifurcation varies depending on 

the details of the substrate. The fold can be formed when the amplitude of 

wrinkle grows large with a high amplitude aspect ratio for self-contact, period 

multiplication of the wrinkle to set the fold periodicity, and gradually 

generate fold localization [87], [150], [151], [152], [162]. Here, high amplitude aspect 

ratio means the amplitude of the wrinkle is much larger compared to its 

wavelength.  

The localized folds can be controlled by the patterns of the substrate and are 

also observed at different substrates. Fig. 2.7 shows the progression of the 

folds with increase of strains from top to bottom for a viscous fluid or an 

elastic foam [150]. The instability of wrinkle will keep the surface locally 

smooth while the creases and folds will generate the surface to be self-contact 

[87], [150], [162].    
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Figure 2.7 Fold instability (a) Progression of the folds with increase of strains from 
top to bottom when the substrate is a viscous liquid [150] (b) Progression of the folds 
with increase of strains from top to bottom when the substrate is an elastic solid [150]. 

2.2.5    Modulus mismatch in multi-layer systems 

The surface instabilities growth of bilayer system has been well studied [76], 

[115], [120], [121], [156], [216]. While in nature and biological fields, many tissues and 

structures are usually consisted of multilayers with modulus difference 

among each layer. During deformation or development [153], [154], [155], various 

layers of structures may undergo different expanding or shrinking ratios, 

which lead to mismatch strains within different layers. Once apply the 

mechanical stimuli (e.g. compression) over a critical value to a system, the 

initially flat surface deforms and bifurcates into different types of instabilities 

such as wrinkles, creases, folds etc. [128], [159]. Researchers have found that 

through applying the compressive strain, either creases or wrinkles enable to 

form firstly due to the ratio of moduli and thickness of an elastic bi-layer 

system.  

Liquid substrate Elastic substrate 
(a) (b) 
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As a wrinkled bilayer system, when undergo the further compression, 

secondary bifurcations generate. Hutchinson et al. [88] found that at a low 

modulus contrast condition, wrinkles enable to transit into creases. However, 

for their simulations, there are no further studies beyond the point. Later a 

numerical simulation studied by Tallinen and co-workers [157] about how the 

effect of stiffness mismatch between two layers affect the transition status 

from wrinkles to creases or folds upon the growth of the film relative to the 

substrate. Further studied by Kim and co-workers [90], [158] via computational 

simulation regarding with the surface instabilities evolution within the 

bilayer systems at low modulus ratio conduction. In their study, a phase 

diagram of three different post-wrinkling bifurcations was made, where 

wrinkles transited to creases directly, wrinkles formed period doubling before 

transiting to creases, wrinkles generated period doubling, period quadrupling 

and then folding. While it only studied by computational simulation without 

any experimental proof.  

Moreover, Wang, et al. [128], [159] have shown the existence of three different 

post-wrinkle bifurcation modes by both experimentally and numerically, to 

predict the formation and evolution of different kinds of surface instabilities. 

In their study shown in Fig. 2.8, the incompressible neo-Hookean materials 

with shear modulus of µf and µs have been used as film and substrate. The 

mismatch stain between film and substrate is given by 𝜀M= (Lf - Ls)/Lf, where 

Lf and Ls are the original lengths of film and substrate. In Fig. 2.8b, as the 

𝜀M is sufficiently low, the flat film-substrate system has much lower potential 
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energy when compared with any instability. When the 𝜀M enhance to critical 

loadings, the flat surface will bifurcate into various instabilities depending on 

the different modulus ratios [159].  

 

 

 

 

 

 

 

 

 

 

Figure 2.8 (a) The schematic view of inducing the mismatch strain in the film-
substrate structure: (i) The film and substrate is first assumed to be detached from 
each other to form a stress-free state (ii) the detached stress-free substrate is then 
pre-stretched by a ratio of Lf/Ls and adhered to the film (iii) relaxed to length L, and 
(iv) eventually relaxed to length Ls at the current state (b) Phase diagram for 
instability patterns in film-substrate systems [159].   

(b) 

(a) 
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2.2.6    Micro-structured surface for instability engineering 

Patterned surfaces that are responsive to mechanical stimuli can be used for 

designing functional materials with various properties and for controlling the 

patterns generation [5], [75], [170]. Xu and co-workers [5] demonstrated a 

patterned single-pair of Au “finger” electrodes as shown in Fig. 2.9, with a 

thin hard Au layer setting on top of PDMS film. Such device relying on the 

controllable formation of surface creases to bring initially disconnected 

regions of the metal electrodes into self-contact. By applying compression 

strain, the Au layer (Young’s Modulus 70 GPa) forms wrinkles at lower strain 

due to its incompressible to help it absorb the deformation energy to protect 

the Au electrodes. The wrinkle wavelength is given by 𝜆 = 2𝜋ℎ(𝐸*"/3𝐸*#-
$ %⁄  

and the onset critical strain of 𝜀! = 0.25(3𝐸*#/𝐸*"-
' %⁄ . As increasing the 

compression strain, the much softer (Young’s Modulus 0.4 - 4 MPa) substrate 

areas can have greater deformation due to the local amplification of strain by 

the stiff films nearby. Surface creases form in the gap between Au electrodes, 

generating the desired electrode self-contact switching mode. While for their 

studies, how the pattern geometry affects the surface instabilities has not 

been understood yet.  

 

 

 



 

 

24 
 
 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 2.9 (a) Schematic views of Au gold electrode thin layer (b) Optical 
microscope image of a patterned single-pair of Au “finger” electrodes [5] (c) 
Schematic illustration of releasing the pre-stretch tri-layer elastomer system (hard 
Au gold electrodes thin layer-PDMS-VPS), the associated two instabilities are 

Wrinkles on Au 

PDMS 

Au 

(c) 

Creases on PDMS 

Vinylpolysiloxane 

PDMS 

(d) 
Creases 

3D view 

Cross-section view 

PDMS 

Vinylpolysiloxane PDMS 

(b) 

(a) Au gold thin layer 

VPS mounting layer 

PDMS layer 
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sketched as the wrinkled Au thin film over the elastic substrate and (d) the 
generated crease pattern on soft PDMS [5].  

Furthermore, to engineer the required controllable elastic instabilities, 

methods have relied on skin layers mismatch on PDMS substrates [5], [76], [163], 

[170]. Auguste and co-workers [163] studied how the post-wrinkle bifurcations 

within an elastic multi-layer system for surface morphologies control. In their 

studies, they set up a tri-layer system that consists of a mounting layer, 

substrate layer and film layer (can also be called skin layer), to understand 

how the ratio effect of an elastic modulus mismatch (e.g. film to substrate 

modulus ratio, from ~2 to 10) on the pattern formation. Two types of 

secondary bifurcations have been discovered with (1) direct transition from 

wrinkles to creases and (2) wrinkles firstly undergo period doubling and then 

transit to creases. Fig. 2.10 shows a surface transition of wrinkles to creases. 

The loading and unloading of the bilayer with modulus mismatch of 5 (0.4 ± 

0.05 MPa for substrate and 2.1 ± 0.5 MPa for thin film). The surface stays in 

the flat state until wrinkles form at a strain of 0.15. Further increasing the 

compression strain, the amplitude of the self-contacting crease increases, 

while the amplitudes of the neighbouring wrinkle continue to decrease. Upon 

subsequently unloading, the self-contacting depth of the crease diminishes 

while the amplitude of the wrinkle increases. When further releasing of 

compression, the bilayer system returns to a wrinkled state and then 

eventually to a flat state [163].   
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Figure 2.10 Confocal image showing (a) loading and (b) unloading of a bilayer 
system under compression [163].  

Moreover, Ouchi et al [76] has revealed some interesting behaviours in 

systems with the patterned heterogeneous hard layer within a tri-layer 

elastomer system to control the surface deformation. They have used the SU8 

in Fig. 2.11 to characterize the instability modes of heterogeneous layers 

(b) 

(a) 
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consisting of regularly patterned hard film stripes supported on a soft 

substrate, to study how the hard film pattern layer affects the crease 

formation and how it reacts with the surface instability modes on the hard 

patterns.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Schematic illustration of the experimental system: (a) pre-stretched the 
PDMS mounting layer (b) fabricated the PDMS substrate layer and the patterned 
SU8 hard film (c) compressed by releasing the pre-stretched mounting layer [76].  
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Based on the instability of wrinkle, Bae et al. [164] demonstrated some 

interesting applications. In their research, an anti-counterfeiting strategy was 

presented through encrypting microparticles with randomly generated 

wrinkle patterns [164]. The generated heterogeneously wrinkled patterns 

enable to function as unique identifiers that similar to human fingerprints. 

The wrinkling based topographical code could be designed on-demand 

through tuning wrinkling instability [164].  

As shown in Fig. 2.12, different decoding scenarios were demonstrated with 

real world products (passport, ring, watch). Under normal bright field, such 

wrinkling based topographical codes were invisible, while readable only via 

Laser Scanning Confocal Microscope (LSCM) [164]. For their research, they 

provided an experimental platform to study the morphological instabilities of 

wrinkle patterning on 3D microstructures, the generated patterns were vivid, 

but the minutiae extraction from these reflective images still need relatively 

researched and the resulted wrinkling patterns are random and 

uncontrollable.  
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Figure 2.12 Demonstration of the authentication process using artificial 
fingerprints. Decoding using LSCM. Left: Several candidate items requiring the 
artificial fingerprint for anti-counterfeiting purposes. Taggants were attached on the 
surface of a passport, a ring, and a watch, respectively. Middle: Magnified image of 
the taggant region before PDMS coating. Inset represents the same region after 
PDMS coating for protection. Right: Extracted minutia pattern from LSCM image of 
the taggant on each item (scale bars: 50 µm) [164].   

Latest research by Wang et al. [75] has used the centred lattice array patterned 

hard layer surface to guide the local strain energy concentration, in which 

they generated the periodic planar wrinkle 2D patterns and controllable 
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instability growth by pre-designing the Bravais lattice patterns on a bilayer 

system [75]. They have used the oxygen plasma to treat the patterned soft 

PDMS surface to create an additional third thin hardening layer as shown in 

Fig. 2.13a. According to them, by applying the compression to the systems 

with Young’s modulus mismatch of 𝐸*"/𝐸*#≈ 25, wrinkles are expected to 

period doubling then evolve into creases/folds [75]. Fig. 2.13b shows the 

surface modulus measurement obtained by AFM indentation [75], which 

indicates that when under 10s plasma treatment, the plane-strain elastic 

modulus mismatch between the thin film and the substrate is around 𝐸*"/𝐸*#≈ 

25 [75]. Different with the plain surface, where the instabilities of wrinkles, 

creases/folds occur at random locations when under compressive strain. By 

introducing the micrometer scale patterns on the substrate, such instabilities 

are guided by concentrating the local strain energy as shown in Fig. 2.13c, 

which to configure wrinkle pattern at low compression. In Fig. 2.13d, a 

formation of localized wrinkle-to-crease/fold transition was discovered.  

While in their study, they mainly investigated the formation and 

configuration of lateral wrinkle patterns with the dependencies on the 

geometrical variables of in-plane confinements. The studies were mostly 

based on the elastic surface patterned with a different type of lattice array. 

The undertaken experimental observations and simulations in their research 

mostly focused on relatively low compressive strains (i.e. 𝜀 < 0.35), due to the 

mechanics’s nature of wrinkle initiation and relative post-wrinkle 

development [75]. The transition from wrinkling to creasing at high 
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compressive strain values (i.e. 𝜀  > 0.4) described in their study, provided 

indicative data with the schematic drawings and the threshold strains 

captured when the fold occurs, but no systematic studies (experimental or 

theoretical) on the morphologies and the associated developments. The study 

on the controllable formation of targeted crease/fold at higher compression 

(i.e. 𝜀 > 0.4) has not studied further and the strain related fold-in depth has 

not been studied so far. 
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Figure 2.13 (a) Schematic views of PDMS oxygen plasma surface hardening thin 
layer and (b) The modulus mismatch as function of plasma treating duration [75]. (c) 
Schematic illustrations of the transition from wrinkling to creasing [75] with (d) SEM 
image reveals the transition moment from wrinkling to creasing with the captured 
initialization of creases [75].  

2.3   Flexible transducers based on soft substrate  

Conventional transducers used in sensors and actuators are typically 

manufactured by photolithography-based microfabrication technologies on 

rigid substrates (e.g. silicon and glass). Such processes have also been 

extensively developed to produce integrated circuit (IC) microprocessors, 

computer memories since the 1970s [41]. 

Recently there are growing interests in transducers that based on soft 

substrates. Unconventional microfabrication techniques have evolved 

accordingly. For example, the easily accessible soft lithography as shown in 

Fig. 2.14, first introduced by Whitesides et al [42], [43], are now commonly 

used. Such soft lithography uses an elastomeric stamp, which transfers the 

pattern to the substrate with flexible organic molecules and materials. It 

(c) (d) 

30µm 
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provides access to 3D structures, forms well defined and controllable surface 

and tolerate plenty of materials 

 

 

 

 

 

 

 

Figure 2.14 Soft lithography process, master pattern (orange colour) can be SU-8, 
photoresist, silicon and glass. 

2.3.1   Flexible strain tolerated interconnects transducers 

Wearable electronics devices that monitor various status of human skin can 

be important in tracking overall health. Conventional electronics are used to 

mount on skin through mechanical clamps, adhesive tapes, mediated via 

conductive gels or based from ultrathin-body silicon-on-wafer substrates. 

These are barely fitted for real practical applications due to their difficulty in 

building long-lived and robust electrical contacts with skin for reaching 

reliable signals without feeling uncomfortable [44], [45]. In order to produce the 
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comfortably wear, scientists have achieved small scaled integrated flexible 

electronic devices with higher mechanical deformability and structure density 

skin-like electronics [1], [46], [47], [48]. Fig. 2.15 shows a flexible electronic device 

that can attach on human skin, for measuring the skin thermal conductivity 

at depths up to 6 mm, localized skin heating and cooling [4]. The rapid 

developing technique has been primarily potentials within applications such 

as medical treatment [25]–[26], biological signal sensing and biomolecule 

analysis [27]–[28], health monitoring [1], [3], [46], [47], [49], soft robotics and 

augmented reality [31], [50].  

 

 

 

 

 

Figure 2.15 Experiment on human skin of a skin-like electronics with (a) relaxed 
and (b) stretched human skin demonstrating flexibility and conformity [4].   

Such flexible electronics are mainly focused on bending, twisting and 

stretching [21], [24], [33], [52]–[55]. Among the stretchable electronics, the island–

bridge [1], [70], [71], [72], [77] with highly mechanical deformable interconnects 

design has been widely used. By connecting the functional components at the 

islands via a conductive bridge under given stretching strain, the 

(a) (b) 
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interconnects with low effective stiffness deformed to provide the 

stretchability, which by enhancing the total length of the interconnects. While 

the rigid devices with high effective stiffness undergo paltry deformation 

(usually less than 1% strain), to ensure mechanical integrity of the functional 

materials [77]. 

 

 

 

 

 

 

 

 

Figure 2.16 (a) Schematic illustrating of geometric parameters for a serpentine 
interconnect under top and cross section view [77] (b) Distribution of maximum 
principal strain in the entire system of the metal layer of the interconnect and the 
substrate, respectively, under 40% stretching [77]. 

Serpentine interconnections shape as shown in Fig. 2.16a, consisting of two 

half-circles connected through the arcs or straight lines, with the length l2, 

spacing l1, length/spacing ratio α (α=l2/l1) and the width W [77], enable to 

(a) 

(b) 
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significantly improve the stretchability of the device with more than 100% [1], 

[77], [165], [167]–[169]. In Fig. 2.16b, when applying the stretching strain (e.g. 40%) 

to the interconnect/substrate system, the local strain at interconnect part is 

much lower (maximum 0.25%) compared with the stretching strain in the 

substrate (maximum 66%), which shows an effective strain isolation and high 

system stretchability. The reason behind is that the interconnect is mostly 

straight along the vertical direction and is much stiffer than the soft silicone 

elastomer substrate, the strain transferred to the interconnect is small. 

Moreover, the strain concentration effect is mainly induced near the 

interconnect/substrate interface to absorb the strain energy when under the 

external stimuli, while the strain at other regions is even [77].  

Further studied by John A. Rogers and co-workers [77], the mechanical 

behaviour of interconnect/substrate system can be affected by key materials 

and geometric parameters. The study of system elastic-stretchability was 

carried out under two different strategies: prestrain and without prestrain as 

shown in Fig. 2.17a-d. Overall, the prestrain strategy increases the 

stretchability over the case without the prestrain, by a factor of 2.3 to 3.5 [77]. 

As shown in Fig. 2.17a and Fig. 2.17b, for curves with or without the 

prestrain, the elastic stretchability is less sensitive to the substrate thickness 

(with the case when the substrate is much thicker than the interconnect) 

while it is sensitive to the metal thickness, especially when tmetal decreases 

from 4 to 0.3 µm, the stretchability displays a rapid increase. This increase in 

the elastic stretchability is because of the different buckling modes for thin 
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and relatively thick metal layers [77]. For curves with or without the prestrain, 

the elastic stretchability increases as the Young’s modulus of substrate 

decreases which shown in Fig. 2.17c. Fig. 2.17d indicates that the elastic 

stretchability is also effected by length/spacing ratio α, when α is smaller 

than 1, the stretchability increase with α. While when α reaches to 1, the curve 

seems to be saturated. The reason behind is that as the length l2 increases 

from zero, the straight segment bends within the substrate surface to yield 

additional ability for stretching. However, as l2/l1 >1 (l2 exceeds l1), the 

straight segment part will become quite rigid and cannot be bent to provide 

additional stretchability [77]. This effect is illustrated in Fig. 2.17e, showing 

that the significant bending (in-plane rotation) of the straight segment for α 

is 0.5, while almost no bending for α is 2 and 3 [77].   
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Figure 2.17 (a) Influence of geometric parameters for substrate thickness with and 
without prestrain [77]  (b) Influence of geometric parameters for metal thickness on 
the elastic stretchability of serpentine interconnects with and without prestrain [77]. 
(c) Influence of material parameters for substrate modulus on the elastic 
stretchability of serpentine interconnects with and without prestrain [77] (d) 
Influence of geometric parameters for the length/spacing ratio with and without 
prestrain [77] (e) FEA results on deformations of serpentine interconnects under 

𝜀!""# = 20%, for four different aspect ratios. The colour represents the distribution 

of the maximum principal strain [77].  

(e) 
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In general, the stretchability of the interconnect/substrate system is mainly 

determined by the layout of the device and the geometric parameters (e.g. 

width, length, thickness). The controllable deformation can be achieved at 

this structure level, which can be attributed to the particular designed devices 

within the limits of the fracture strain for the composite materials, which 

enable to undergo the certain levels of deformation and can be used for the 

development of future stretchable devices [77].  

2.3.2    Flexible optical transducers 

One of the latest trends in developing next generation micro-devices is the 

flexible optical sensors and transducers, which holds great promises in strain 

and pressure sensing [2], optical imaging [69], wearable devices [11], [21], [24], [223], 

[224], electronic skin [225]-[227], anticounterfeiting [228], biological and healthcare 

applications [220]-[222]. More recent work incorporating them with soft/flexible 

materials and structures to maximize the light and colour changing effects 

with greater mechanical deformation [140], [171]. By utilising soft/flexible 

materials, latest efforts have explored the flexible optical technology with 

extra controllability and on-demand colour changing such as triboelectric–

photonic [229], [230], piezo-electroluminescent [231], piezo-photonics [232]-[234], 

mechano-responsive-luminescent (MRL) and mechanochromism (MC) [68]-

[69], [171], [172], [203], [235], [256], [257].  

There are several ways to achieve the optical signal and modulate the 

luminescent colour or intensity by altering the external stimuli (e.g. 
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mechanical, electrical). Wavelength-converter materials with mechanically 

stimulated light switching or colour changing properties such as Mechano-

Responsive Luminescent (MRL), Mechanoluminescence (ML), 

Mechanochromism (MC), or electrically induced luminescent switching (EL), 

have been researched since the discovery of this phenomenon  [79], [136], [137], 

[138], [139], [171], [182], [191], [260]. Among them, MRL, a tunable and switchable 

luminescence (or chromism), are used to describe a reversible change in 

photophysical properties such as luminescence colour, intensity, pattern or 

lifetime in response to mechanical stimulus, e.g. expansion, compression, 

bending and twisting [171], [172], [236]. Such terms of MRL have attracted 

considerable interests for their potentials in sensing/micro-device [69], data 

storage [237], flexible display [172], [238], [239], [240], etc. Examples can be found, 

such as using the mechanical force to change the arrangement of luminescent 

molecular which can lead to the optical switching response used for smart 

window or flexible display [171], [172], [239]. Such properties could potentially be 

facilitated for sensing applications integrated with optical detection systems, 

such as photo-diodes, fluorescence microscopes (e.g. laser scanning confocal 

microscope (LSCM), fluorescence lifetime imaging (FLIM)), fluorescence 

scanners and devices with image sensors (e.g. mobile phones, sports smart 

wristbands).  

Fluorescence based flexible optical transducers allow for the effective 

detection of various analytes with a powerful visualization that can work at a 

very wide temperature ranges, they do not require electrical cables and are 
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insensitive to electromagnetic interference when compared with electrical 

sensors. Fluorescence based flexible optical transducers are mainly benefiting 

from the intrinsic advantages of fluorescence techniques such as superb 

sensitivity, rapidity, technical simplicity, real-time and on-site 

responsiveness [242], which are highly used in biological/physiological fields. 

As for many fluorescent compounds (such as crystalline compounds and 

liquid-crystalline compounds), their photoluminescent properties are 

significantly influenced by the molecular arrangements, thus, the 

photophysical properties of such materials can be altered by rearranging of 

the molecular packing through external stimuli [68], [141], [142], [143], [144], [171]. 

Majority of the colour conversion work has been utilizing mechano-

responsive molecular assembly change in phosphorescent organic and 

organometallic molecules in the form of liquid crystals [145], [146], [147], dye 

lasers [148], polymers and nanocrystals [171], [250]. Fig. 2.18 shows the 

mechanism for changing the photoluminescence colour of molecular 

assemblies that respond to mechanical stimuli [68], [166], [171] . Mechanical 

stimuli of shearing in Fig. 2.18a induce the transformation of liquid-

crystalline from the metastable cubic phase to a thermodynamically stable 

columnar phase. The phase transition induces a change in the pyrene 

moieties arrangement, which leads to interference with excimer formation. 

The emission spectrum in Fig. 2.18b shows a shift from cubic phase 

(λmax=579 nm) to shear-induced columnar phase (λmax=496 nm). As a result, 

the photoluminescence colour changes from yellow to blue-green [68], [166], [171], .  
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Figure 2.18 (a) Photoluminescence colour change and schematic illustration of 
molecular assemblies of two phases: cubic phase and shear-induced columnar phase 
[68], [171] (b) The emission spectra in the cubic phase (orange line), in the shear-
induced columnar phase (green line), the gray line is the isotropic phase due to the 
temperature change [166] (c) The thin film of compound on a glass substrate was 
obtained by casting from hexane solution (left), and the text ‘UT’ (right) was formed 
by rubbing the substrate with a glass rod at room temperature. The yellow emitting 
part is in the cubic phase and the blue–green emitting part is in the shear-induced 
columnar phase [68].  

Liquid-crystalline material can be easily coated on the surface of a variety of 

substances (metals, ceramics, plastics and natural macromolecules), while 

keeping their functional nanostructures [68].  Fig. 2.18c shows a thin film of 

the liquid-crystalline material that easily obtained by solution coating on a 

glass substrate, also displays a change in luminescence from yellow to blue-
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green under rubbing. While alternative ways to achieve the MRL/ML colour-

tuning were obtained via mixing the different coloured MRL/ML particles [69], 

changing the dopant concentration [161], [228] or through combination of 

fluorescent dyes physically with existing MRL/ML materials [172]. 

One particular example of MRL is shown in Fig. 2.19, which an 

anticounterfeiting strategy is demonstrated [228]. In their research, a 

stretchable and transparent excitation-power dependent, color-tunable 

luminescent PDMS film (LPF) has been presented. The LPF device was 

fabricated by combining of a PDMS substrate with excitation-power-

dependent, color-tunable quantum dots (CdS/ZnS/ZnS:Mn2+/ZnS). Both of 

the concentration of quantum dots and the power intensity (laser power from 

weak to strong) can control the photoluminescence tuning. As shown in Fig. 

2.19a, without irradiation with a laser, the three heart-shaped patterns are 

almost transparent. While different colours could be observed on the surface 

of patterns when irradiation with a laser, and the colour changes with the 

increase of excitation power [228]. The properties of flexibility and 

stretchability are shown in Fig. 2.19b and Fig. 2.19c, where the device can 

be stretched over 50% and twisted 1800.  

Fig. 2.19d demonstrates the potential application for anticounterfeiting. The 

LPF materials with different concentrations of quantum dots were pasted on 

a banknote and irradiated with daylight or UV flashlight (365 nm). As can be 

seen on the top of Fig. 2.19d, in daylight, the patterns on the banknote are 

almost transparent. When under the UV flashlight shown in the middle of 
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Fig. 2.19d, three different colours are observed. Furthermore, a neutral 

density filter (ND filter) is used to reduce the irradiation power. As shown in 

the bottom of Fig. 2.19d, when under a relatively lower energy, the colour of 

the pattern has a slight change [228].  
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Figure 2.19 Fabrication of luminescent PDMS film grafted CdS/ZnS:Mn2+/ZnS 
quantum dots and the mechanical and photoluminescence properties as 
anticounterfeiting materials (a) Schematic illustration and photographs of 
luminescent PDMS film (LPF) irradiated by a laser with different powers (b) 
Photographs showing the stretchable and (c) twisting properties of LPF (d) 
Photographs of LPF material in daylight and under a UV flashlight (365 nm). The 
LPF material is almost transparent in daylight. The power of UV light was 
attenuated by an ND filter and the as-observed colour of LPF is changed depending 

on the different excitation intensities, to provide the anticounterfeiting effect [228]. 

Furthermore, elastomeric based smart composite materials responding to 

mechanical stretching can be employed as well, to create tuneable and 

switchable optical transmittance, angle-independent structural colour, as 

well as MRL/ML and MC patterns [235], [238], [239], [240]. For example, a series of 

mechanically induced wrinkles are presented by ShuYang et al [238]-[240], 

which hold promise for applications of smart window and dynamic display. 

Angle-independent structural color and reversible transparency can be 

switched by dynamically and precisely controlling the applied prestrain. For 

instance, ShuYang et al [239] developed a composite film, the film contains a 

thin layer of quasi-amorphous array of silica nanoparticles (NPs), which 

embedded in bulk elastomeric PDMS as shown in Fig. 2.20. The structure 

was highly transparent (>90%, in visible light range) in the initial state (0% 

strain). When under mechanical stretching, the transmittance was 

dramatically decreased to 30%. As displayed in Fig. 2.20a, by stretching the 

silica NP/PDMS film device, the transparent property switching from 

transparency to opacity. The strain-transmittance diagram in Fig. 2.20b 

shows that when the void formation at 20%-80%, the transmittance 
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decreased significantly, suggesting that the transparency change is mainly 

based on the void formation. Meanwhile, the size of the silica NPs affects the 

transparency as well but the overall trends are the similar. Therefore, the void 

formation has been proposed where the changes in the optical properties 

could be attributed to the microstructural change. The hidden letters in Fig. 

2.20c-d can be visualized under large strain stretching due to the change in 

transmittance, which has seen significant progress in optical applications, 

such as smart windows with tuneable transparency [239].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 (a) Photographs of a silica/PDMS film consists of nanoparticles with 
diameter of 258 nm at different stretching strains [239] (b) Transmittance and strain 

(c) 

(d) 
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curve at wavelengths of 500 and 700 nm, respectively [239] (c) Schematic illustration 
of the void formation around the silica particles when stretched. The arrows indicate 
PDMS ligaments [239] (d) Optical images showing reversible revealing and hiding of 
the letters patterned within the silica nanoparticle/PDMS film under mechanical 
stretching and releasing [239].  

Moreover, elastomeric materials subject to mechanical stimuli can undergo 

surface morphological change (e.g. wrinkles and cracks) for creating the 

optical feature [80], and structural colour with dynamic luminescent patterns 

[247]. Inspired by skin colour morphing schemes in marine creatures, Zeng et 

al [79] reported an interesting approach to realize mechanochromic devices by 

introducing strain-dependent cracks and folds, where light transparent skin 

cracks were used to produce analogous optical signals. For the luminescent 

mechanochromism in Fig. 2.21a, a stiff ultraviolet shielding film layer is 

adhered to a soft PDMS substrate that contains a fluorophore layer and a 

reflector layer. When applying mechanical stretching, distributed cracks 

generate in the ultraviolet-shielding layer, the crack size is related to the 

applied tensile strain. These cracks act as ‘gates’ to adjust the exposure region 

of the fluorophore and the concomitant ultraviolet-excited fluorescent 

intensity. The bottom reflector layer can increase the fluorophore 

luminescence through reflection, leading to a significant improvement of the 

strain-responsive luminescent performance. Only 5% stretching strain is 

enough to change the device visibility from a nonluminous state to an 

apparently eye-detectable luminescent state. As shown in Fig. 2.21b and Fig. 

2.21c, by applying different stretching strains, various luminescence 

intensity have been achieved via inducing cracks and folds, creating dynamic 
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optical pattern changes [79]. In their research, the fluorescent intensity 

depends on the size of cracks, while such cracks are uncontrollable and only 

the in-plane 2D patterns are achieved.  

 

 

 

 

 

 

 

 

 

 

Figure 2.21 (a) Design scheme of the reversible luminescent mechanochromism [79] 
(b) optical microscope images showing the distribution and size of the longitudinal 
cracks upon strain in the luminescent mechanochromism. The insets are digital 
photos of this device experiencing corresponding strains under ultraviolet light 

(𝜆=365 nm, white arrow indicating stretch direction) [79] (c) Fluorescent spectra of 

(b) (c) 
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the luminescent mechanochromism as a function of strain (excitation wavelength of 

ultraviolet 𝜆 =365 nm) [79].  

More recently, the mechanics knowledge on controllably generating elastic 

instability morphologies and their evolutions e.g. wrinkles, period-doubling, 

folds and creases, has been extended both theoretically and experimentally [5], 

[160], [162], [163], [173], [212], even to form 3D structures [202], [248]. Such micro-scale, 

reversible mechanoresponsive surface morphology change has enabled a 

range of engineering applications such as tuneable surface wetting [170], 

flexible electronics [5], [78], tuneable optics [79], [80] and switchable surface 

chemic patterns [81], [82].   

2.3.3    Flexible Shape-morphing transducers 

Hydrogel can be synthesized into transparent, elastic solid, stretchable, ionic 

conductive and shape-morphing soft materials, which has gained increasing 

attention [11], [174], [182], [185], [188], [190], [258]. Morphing soft materials which exhibit 

great changes in dimensions responding to different range of external 

stimulations [74], [114], [192], [193] (e.g. electrical, thermal, mechanical and 

chemical) have promising applications in various fields, such as biomedical 

devices [194], biomimetic systems [195], and soft robotics [196]. Hu and co-

workers [197] firstly achieved the bilayer bending morphing structure where a 

responsive hydrogel has been bonded to a nonresponsive gel layer. After that, 

through bending of hydrogel bilayers, Gracias et al. [198] have demonstrated 

3D shapes such as cylinders, spherical capsules, and helices. Yang and co-

workers [199] fabricated the snowman like bilayers which forms spherical 
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capsules. Dickey and Velev [200] achieved reversible patterning of bending via 

“ionoprinting” of physical cross-links. Furthermore, through using trilayers 

of responsive hydrogels sandwiched within two patterned stiff layers, 

researchers [201], [202] have produced the complex and miniature origami 

structures. 

Inspired by the sources of natural, pinecones and bean pods [204], [205] display 

smart deformations with the releasing of the seeds under desiccation, in 

which scientists have realized that one of the desirable developments is to 

make the self-shaping process controllable, programmable and reversible, at 

least for specific configurations to achieve well-defined complex 3D shapes.  
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Figure 2.22 a)–g) Preparation of patterned hydrogels and the swelling induced 
deformations. The composite gel strip was prepared by two-step photo 
polymerization (a–c). Red: high-swelling gel, blue: non-swelling gel. The as-
prepared composite gel strip formed a roll after free swelling in water (d). In 
contrast, a programmable configuration can be obtained via a pre-swelling step to 
direct the buckling direction of localized domains (e–g). h)–j) Experimental (h) and 
computed (i) results of bi-stable configurations of patterned gel with two domes and 
their relative total elastic energy (j). The colour scale in (i) indicates the in-plane 
areal strain [12].  

Wang et al. [12] have demonstrated programmable, multiple 3D shape control 

strategythrough planar (flat) patterned, homogeneous swell-able hydrogels. 

As shown in Fig. 2.22, “Pre-designed” complex deformations were 

demonstrated by the periodically patterned hydrogel blocks made from 

multi-step lithographically. The pre-swelling step can be applied to guide the 

shape transformations of identical patterned hydrogel. The shape morphing 

was generated due to elastic mismatch between non-swelling substrate and 

swelling gel blocks [12], [13], [206], [207]. Holed “swelling masks” were employed to 

control the swelling directions to re-configure the deformation patterns [12]. 
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Thin, uniform heterogeneous bio-content deposition was achieved previously 

by droplet microfluidics utilizing smart surface wettability control (e.g. 

switchable hydrophobic/philic patterns) [14], [208], [209]. More recently, inspired 

by natural bio-structures, using droplet microfluidics to control the formation 

of encoded multifunctional as heterogeneous hydrogel building blocks have 

been exploited to form complex hydrogel architectures [15], [16], [204], [209]. 

Relying on such development in smart hydrogel patterning and the morphing 

technology, in chapter 6 of this thesis, the initial work of design, fabrication 

and characterization of well-defined controllable morphing technology has 

been demonstrated by patterning and controlling the variform of hydrogel 

droplets onto hydrophobically patterned surface, which to achieve the 

advanced and complex 3D morphing structures.  

2.4    Chapter Summary 

This chapter introduced the background and theories of basic materials and 

mechanical properties, elastic instabilities (e.g. wrinkles, creases, folds) 

within multi-layer elastomer systems and soft materials based super-flexible 

transducers. The following chapters introduce the design and 

microfabrication techniques that provide the “smart” soft structures where 

sensing and actuation transducers will be based on.  
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Chapter 3 

Experimental Methods 

Chapter 3 describes the experimental details behind this project, including 

fabrication process for micro-structured surfaces (e.g. patterned integrated 

Au electrodes and patterned micro-hole arrays) and related characterization 

approaches. Also briefly summarizes the key equipment functionality and 

operational mechanism used in this project such as the Laser Scanning 

Confocal Microscope (LSCM), Atom force microscopy (AFM).   

3.1     Fabrication for Strain-Gated Logic Transducer  

3.1.1   Lithography fabrication of patterned Au on silicon 

The gold layer was patterned with a lift-off process on the silicon substrates. 

Firstly, MEGAPOSITTM SPRTM 220-7 positive photoresist was spin coated 

on silicon wafers. The photoresist then patterned through photolithography 

process (Karl-SussTM MA8 mark aligner). An anti-stiction SAM layer 

Perfluoro-decyl-trichloro-silane (FDTS) was then deposited using a 

MemsStar AURIXTM system. Au layers with thicknesses ranging between ~16 

nm and ~100 nm were then deposited on top of FDTS treated (to reduce Au 

adhesion to Si) patterned photoresist via sputtering. The lift-off process was 

performed by soaking the sample in acetone solvent before cleaning with 

isopropyl alcohol (IPA) and absolute ethanol. 
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3.1.2   Dual-SAM transfer method 

The gold layer was transferred to the bi-layer system through a thiol based 

dual-SAM (self-assembly monolayer) assisted metal transfer process. Before 

the SAM treatment, the silicon wafer was cleaned through absolute ethanol 

for 1 min at glass petri dish followed by drying via N2. The MPTMS (3-

Mercaptopropyl-trimethoxysilane) has been widely used for the transfer of 

Au films to PDMS [181], [183], [184], [186], [187], [189], [264]. The patterned Au electrodes 

on FDTS-silicon were then treated with MPTMS as an SAM adhesive to 

promote adhesion between Au and PDMS, by soaking in 20 mM (9.5 ul 

MPTMS +2.5 ml absolute ethanol) MPTMS for 3 hours, to help facilitate 

transfer to the bi-layer elastomer flexible substrate. The samples were then 

washed in absolute ethanol to remove excessive thiol on Au (only SAM is 

exposed) before N2 drying and ready for Au transfer process. 

3.1.3   Pre-stretched PDMS-VPS bilayer fabrication  

The PDMS-VPS bi-layer elastomer is shown in Fig. 3.1a that consists of a 

strip of thick and stiff mounting layer (3 mm thick, 9 mm wide and 30 mm 

long) made of Vinylpolysiloxane (VPS, Elite Double 22, Zhermack, A-silicone 

duplicating material, ~0.35 MPa, mixing ratio base with catalyst of 1:1) in Fig. 

3.1b. The bi-layer structure was prefabricated before being fixed in a 

mechanical vice and pre-stretched from 5 mm to 30 mm length. The reasons 

for choosing VPS as the mounting substrate are due to its properties of fast 

curing at room temperature and easily vary elastic modulus. A softer 
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unstressed thin polydimethylsiloxane (PDMS, SylgardTM 184, ~125 µm thick, 

30:1 for elastomer base and cross-linker, Young’s Modulus of 0.12 ± 0.02 

MPa) film layer was then attached on the VPS stiff layer under tensile stress 

(due to its pre-stretching).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 (a) Image of the pre-stretched PDMS-VPS bilayer elastomer structure (b) 
The bottles of VPS elite double 22 elastomer contains free, uncrosslinked polymer 
chains. 
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3.2     Fabrication for Topo-Optical Transducer  

3.2.1   Micro-engineering of patterned template 

The structural patterned templates of SU-8 pillars were fabricated through 

photolithographic procedure. Single-line and square (multi-line) lattice 

arrays of SU-8 pillars were lithographically patterned on silicon substrates to 

create the stamp template. Silicon wafer was rinsed with Acetone and 

Isopropyl Alcohol (IPA) about 10 seconds to clean up the surface. Firstly, 1, 1, 

1, 3, 3, 3 - Hexamethylsilazane (ACROS ORGANICS) was spin-coated (30 

seconds, 1000rpm) onto the silicon wafer to promote adhesion. A thin layer 

of SU-8 (2025, Micro Chem) was then spin-coated on silicon wafer at desired 

rotary speed, then wafer was placed on hot plate for soft bake at 95°C for 5 

min, before being exposed to UV light under a mask aligner (EVG 620). The 

exposure energy was linked with the designed SU-8 thickness. Post-

exposure-bake (PEB) was then performed (65°C for 1 min, then ramped to 

95°C for 5 min). After being developed in an EC (ethylene lactate based) 

solution for 5 min, the patterned SU-8 templates were cleaned by Isopropyl 

Alcohol and DI (de-ionized) water. It was baked for another 15 minutes at 

200°C before stamp-transfer. 

3.2.2   Fabrication of patterned multi-layer elastomeric substrate  

The stiff mounting substrate of Vinylpolysiloxane (VPS, Elite Double 22, 

Zhermack, A-silicone duplicating material, ~0.35 MPa) was cut into 

rectangular strip (9 mm wide, 30 mm long and 3 mm thick) and mounted on 
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a mechanical vice, pre-stretched to 300-600% strain under uniaxial tension. 

The thin soft polydimethylsiloxane (PDMS, Sylgard 184, base-to-crosslinker 

weight ratio=30:1, Young’s modulus of 0.12 ± 0.02 MPa, thickness of ~125 

µm) was spin-coated on the fabricated SU-8 pillars, followed by 60 min soft 

bake at 70°C. An adhesion PDMS layer was then spin-coated (30:1) onto the 

soft-baked PDMS to bond it to the mounting VPS layer. The structures were 

cured at 70°C for 8h and then ready for dry peel off. An oxygen plasma 

treatment (100w, Henniker HPT-100, working power of 100 watt, 

oxygen/nitrogen ratio ~0.2) of 10 second was applied to create an additional 

third thin hard skin layer (shear modulus of Gf ≈ 1.8 MPa, thickness of 100 

nm,) on top of the lattice patterned PDMS surface. Fig. 3.2 shows the 

Illustration of fabrication process.   

 

 

 

 

 

Figure 3.2 The Illustration of fabrication process of structural surface by spin-
coating a thin PDMS precursor layer on a lithographically made template.  
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3.2.3   Solution casting of optical indicator layer 

After the plasma treatment, optical indicator solutions (1.3 mM) were 

prepared by dissolving the fluorophore dye (powder) into the absolute 

ethanol and chloroform, chloroform is used to avoid the crystallization. Two 

different fluorescent solutions of Fluorescein O-acrylate (Sigma-Aldrich, FoA) 

and Iridium-III (Ir-III) have been used.  

Table 3.1 Table summarizes two different optical solutions of fluorescein O-acrylate 
(FoA) and Iridium-III (Ir-III).  

Fluorescein O-acrylate (FoA) Iridium-III (Ir-III) 

lex lemission Molecular 

formula 

Molecular 

weight 

lex lemission Molecular 

formula 

Molecular 

weight 

478nm 515nm C23H14O6 386.4 

(g/mol) 

407nm 580nm C72H81N6Ir 1220.6 

(g/mol) 

 

Table 3.1 summarizes two different optical solutions. Fluorescein O-acrylate 

(FoA) is a fluorescent monomer with high quantum efficiency in aqueous 

media. The excitation and emission wavelength of FoA are within the range 

of visible light with lex = 478 nm, lemission= 515 nm. Different monomers (e.g. 

acrylic acid, styrene and acrylamide) can be copolymerized with FoA, which 

facilitates the inclusion of the fluorescein with macromolecules. The 

molecular formula of FoA is C23H14O6 with its molecular weight of 386.4 

g/mol. The Iridium-III (Ir-III) complex is a functional material that emits 
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orange-red coloured light (excitation lex = 407 nm, lemission= 580 nm) when 

excited by UV or purple light, either in hypoxia conditioned solutions or 

polymer matrix. The emission of which is quenched by the presence of 

oxygen. The molecular formula of Ir-III is C72H81N6Ir with its molecular 

weight of 1220.6 g/mol. A droplet (8-10 µl) of fluorescent solution was then 

casted on the plasma treated surface. The solution droplet then spread and 

dried at room temperature with around 20s to form an optical indicator layer.  

3.3   Numerical Simulation 

The commercial simulation package – ABAQUS has been used to simulate 

surface folding on the multi-layer under uniaxial compression. The 

incompressible Neo-Hookean material model was used for all elastic 

materials in this analysis. Both the plasma-treated PDMS film and the un-

treated PDMS substrate used in this experiment are hyper-elastic materials. 

Therefore, Neo-Hookean material model is adopted in the simulations. The 

input material properties are shown in Table 3.2. Where G1 is defined as 

Shear modulus of plasma-treated rigid film, G2 is Shear modulus of soft 

PDMS substrate, ν1 is Poisson’s ratio of plasma-treated rigid film and ν2 is 

Poisson’s ratio of soft PDMS substrate. Structural symmetry was assumed 

when the fold is simulated. The pseudo-dynamic method incorporated in 

ABAQUS was adopted. The geometrical inputs have been magnified by 1000 

times due to the limitation of mesh size in ABAQUS. An element type CAX8H 

was used for mesh.  
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Table 3.2 The input material properties for FEA.  

G1 ν1 G2 ν2 

2.5 MPa 0.5 0.1 MPa 0.5 

3.4    Characterization Methods  

Characterization 1: Strain-Gated Logic Transducer: Mechanical properties 

were characterized by using a self-designed mechanical vice to measure the 

strain related physical properties. For capturing and measuring the first 

visual site of designed structure and how it behaviour with strain change, an 

upright optical microscope (Nikon LV-100, brightfield reflection mode) and 

ImageJ 1.50i/Java 1.6.0_24 software were used. Scanning electron 

microscopy (SEM, MIRA3, TESCAN) was used to observe the surface 

structures. Atom force microscopy (AFM, D3100, Veeco) and Bruker® GTK 

interferometer provided a range of in-plane surface morphology change. The 

AFM is a surface scanning technique that widely used for topography studies. 

It uses a cantilever with a very sharp tip (made of silicon or silicon nitride) to 

scan over a sample surface. When the tip is operated to approach the surface, 

due to the close-range, attractive force between the tip and surface that result 

the cantilever to deflect towards the surface. The AFM has different operation 

modes such as non-contact mode, contact mode and tapping mode. Manual 

probe station was used to measure the electrical signal.  
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Characterization 2: Topo-Optical Transducer: Upon releasing the pre-

stretched VPS mounting substrates, the plasma treated PDMS thin layer 

experienced uniaxial compression. Incremental deformation in a unit 

nominal strain of ≈0.004 was applied to the sample during the compression 

(progressing) or tension (withdrawing/recovery) by a fixed amount at regular 

intervals in room temperature. An upright optical microscope (Nikon LV-100) 

was used for observation under reflective white light mode. An atom force 

microscopy (AFM, D3100, Veeco) was used to profile the surface morphology 

changes. The surface modulus was measured by AFM indentation [75]. AFM 

indentation is one of the AFM modes that operate through pushing a tough, 

sharpened indenter tip with a well-defined shape against the sample surface. 

It enables to extract sample hardness and elastic modulus via analyzing force-

displacement curves. A common limitation is that the penetration depth 

should not exceed 10% of the coating’s thickness to avoid affecting the 

underlying substrate. For films of 1 µm, this corresponds to a maximum 

indentation of 100 nm. Furthermore, in order to avoid the surface roughness 

effect on the measurement, it should be less than 20% of the depth of 

indentation. The AFM indentation method has been used for elastic modulus 

characterization of interfaces and thin layers [265].    

Fluorescence images were performed by using Nikon A1R Laser Scanning 

Confocal Microscopy (LSCM) system as shown in Fig. 3.3, with the ability to 

scan samples vertically at different scan steps. For the Fluorescein O-acrylate 

(FoA) images, the scanner selection was set to be Galvano, with laser 
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excitation wavelength of 488 nm and emission wavelength of 540 nm. For 

the Iridium-III images, the scanner selection was set to be Galvano, with 

laser excitation wavelength of 406.6 nm and emission wavelength of 595 nm.  

 

 

 

 

 

 

 

Figure 3.3 Photo of Laser Scanning Confocal Microscopy (LSCM) been used in this 
project. 

Both of the 3D scan and single line scan have been used to characterize the 

optical signal and the surface morphology change. Before the actual scan, a 

scan range shown in Fig. 3.4a was defined with the top of the scan being the 

position above the optical layer interface and the bottom being the position 

over the folding interface. By setting the scan step (such as 0.1 µm) through 

the entire scan range, all of the scanned layers were combined and a 3D 

reconstruction was generated.  

Laser Scanning Confocal 
Microscopy 
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The 3D scan in Fig. 3.4b is the area layer-by-layer scan for a 3D structure 

view, which gives the top in Fig. 3.4c, cross-section in Fig. 3.4d and side 

cross-section view in Fig. 3.4e. While single line scan gives a “cross-section” 

scan. An example of single line scan is shown in Fig. 3.4f, single line scan 

looks similar with the cross-section view of 3D scan, while for line scan, the 

scan speed is much faster than 3D scan. In this thesis, single line scan has 

been used for fold-in depth measurement, repeatable and recovery test. The 

captured fluorophore images were subsequently analyzed by the MATLAB to 

get its light intensity data and imaging (surf, shading interp). 
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Figure 3.4 (a) Example of the LSCM software interface showing the confocal scan 
setup (top and bottom) (b) LSCM 3D scan with (c) top view (d) cress-section view 
and (e) side cross-section view (f) An example of LSCM single line scan. 
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Chapter 4 

Flexible, Strain Gated Logic Transducer 
Arrays Enabled by Initializing Surface 
Instability on Elastic Bilayers  

Based on the methods introduced in section 3.1 regarding patterned 

integrated Au thin hard film layer, this chapter describes the detailed 

research about strain gated logic transducers. Test structures were employed 

to help achieve a large sensing range with stepwise output signals, by 

controlling the surface deformation of an array of strain transducers, which 

has enabled widespread downstream applications.  

This chapter discusses arrayed and interconnected multiple finger electrodes 

switching mechanism with the controllable competing elastic instability 

growth on super-flexible substrates. By designing and micro-engineering 

interconnect multi-finger Au test structures on PDMS-VPS elastomer system, 

which to provide a stepwise resistance-strain response sensing mechanism. 

This research also experimentally studied instabilities (patterned stiff and 

soft regions) on heterogeneous surfaces under large compression strains (up 

to 60%) which could help the development in related theoretical studies. 

The characterisation techniques used in this study can be divided into two 

aspects: surface morphology characterisation and electrical testing. The 
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common challenge in the study of the compression process is Possion ratio 

caused effect, which break the electrodes. Therefore, the layout optimizations 

of a general model and the different test structure designs have been 

discussed as well.  

4.1    Introduction 

Among the developed flexible electronics, a versatile set of approaches 

exploits the sensing and actuation of planar compression strain achieved by 

triggering the elastic instabilities with placing pre-strain in an elastomer 

mounting substrate [212]–[214]. Recent research on elastic substrates complying 

with local features such as metal interconnects and integrated transducers 

has shown great potential to withstand high strain deformation during 

bending, compressing and stretching [7], [9], [215]. Such structured elastic 

surfaces under compressions and stretching can undergo various 

deformations such as wrinkling, creasing, folding and buckling, which 

generates interests in engineering applications in sensing and actuation [10], 

[75]–[76], [121], [163], [170], [214], [216], [217], [218], [259]. Among them, the developed metal-

elastomer strain gated transducers have utilized mechanically gated super-

flexible electrical switches to provide sensing mechanisms for wearable 

electronics [5], [78], [218], [219]. Controllably and reversibly generating creasing 

and other instability patterns on the surfaces of soft materials by temperature 

[81], mechanical [120], electrical [211] and electrochemical [212] stimulation have 

attracted considerable interest in developing them into sensing and actuation 

applications. 
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Traditional devices are commonly used as “hard” sensors that attached to 

stiff materials such as metals, concretes and high modulus plastics for 

monitoring the structure health or quantifying specimen deformational. 

Compared to single metallic foils, semiconductor devices can exhibit much 

higher sensitivity due to piezoresistive effects where the resistivity changes 

rapidly with strain due to the dependence of the bandgap on inter-atomic 

spacing, but the sensing ranges mostly are within 1 %. Polymer based 

integrated strain sensor can be readily laminated on and form conformal 

contact to the human skin, with only modest mechanical constraints on 

natural motions. Strains measured in this mode on the wrist are up to 10%. 

Another type - Silicon based integrated sensor can achieve a higher sensing 

strain up to 20% in Fig. 4.1. While in order to achieve a large surface strain 

sensor, researchers [5], [219] have looked into the sensing range up to 60% with 

the paired electrode device by inducing the elastic instabilities.  

According to Xu and co-workers [5], a flexible large surface strain sensor by 

using mechanically gated electrical switches onto the Au-elastomer device 

has been demonstrated. Based on the controllable formation of surface 

creases to bring initially disconnected regions of the metal electrode into self-

contact, which to produce the electrical signal. When the compression strain 

surpasses threshold values, the measured resistance displayed a significant 

step change from open (~1013 Ω) to close (~102 Ω) after the self-contact of the 

electrodes. The switching threshold strains can be controlled by geometry 

design (e.g. Au electrode width Wf, Length Lf, and gap value Lg) as well as 
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material and structural properties [5], and other research in surface 

instabilities has shown the deformation mode can also be controlled via such 

designs [76]. Moreover, the latest study into surface instabilities on such 

heterogeneous surfaces with patterned regions of different materials (e.g. stiff 

metal electrodes and soft elastomers) opens the possibilities for research into 

advanced surface morphing and more complex application devices [76].   

 

 

 

 

 

 

 

Figure 4.1 Vision map of the sensing range comparing with the existing sensing 
structures, the provided sensing range (pattern area) for EILS is between 20% to 
60%, and it should be possible to extend this to 0-100% through modifying the 
structural design [219].  

4.2    Research development  

The single pair of finger electrode (strain-resistance) related structure could 

be employed for super-flexible substrate strain sensing. While such single 
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pair of electrode has not studied how the pattern geometries affect the 

surface instabilities. In addition, each device performs as a digital sensor with 

“ON/OFF” logic, therefore only measuring a single critical strain value [5]. 

For future development of transducer arrays applied to a larger area under 

compression, it is important to develop electrode interconnect technologies 

that should ultimately enable row-column addressing. And for more complex 

competing instabilities growth, test structures are needed to study the 

deformation behaviour and to exploit the sensing mechanism of structural 

electrodes. In order to increase the number of critical strain values that the 

transducers can deliver without increasing the pad count, and to understand 

the relationship between electrode geometries and compression strain ratios. 

The integrated multi-finger Au geometry test structures have been designed.  

The ultimate target is to enable a multi-switching mechanism where the 

strain value can be determined by measuring the resistance of the test 

structures. The growing and co-existence of wrinkles and creases on multiple 

electrodes with different dimensions are observed under lateral strains 

ranging between 0 and 0.6. In contrast to the previously reported single 

switching test structures [5], multiple resistance values were generated at 

different switching strains on an individual device. This has been 

demonstrated by using the arrayed and interconnected multiple finger 

electrode test structure with different distances between the electrodes (the 

gaps are aligned along the compression axis).  
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Based on the more complex integrated multi-finger Au geometry, its design, 

characterization, which required for optimization of elastic instability growth 

and interconnect have become more complex for multi-finger sensors, this 

will lead to some potential challenges such as possion effect, Au-elastomer 

bilayer geometry effect (Au width, length, gap etc.) and the comparison of the 

competing elastic instability growth under theoretical and experimental 

values. 

4.3    Results and discussion 

4.3.1   Test structures design and fabrication   

The designed and fabricated transducer arrays and interconnects are shown 

in Fig. 4.2. The test structures are designed through “KLayout” software. 

Each of the paired Au finger electrodes was interconnected by two different 

configurations. Fig. 4.2a shows SEM image (Tescan® Mira3) of the bulk 

interconnect configuration linking 4 pairs of finger electrode transducers 

(labelled F1 to F4) with 2 contact electrodes (labelled E). Fig. 4.2b shows the 

serpentine interconnect configuration that helped to protect the Au 

electrodes from damage caused by perpendicular direction stretching due to 

Poisson effect. Fig. 4.2c shows a SEM cross-sectional view of Au layer with a 

thickness of 74 nm. 
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Figure 4.2 SEM scan of layouts showing the multi-switching high-strain sensing 
transducers with Au on silicon carrier before transferred onto the PDMS-VPS 
elastomer system with (a) 4 pairs of finger transducers “F” interconnected with two 
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bulk contact electrodes “E” (b) 4 pairs of finger transducers interconnected with 
contact electrodes by serpentine structures (c) Cross-section view showing Au 
thickness.  

One main focus is on the relationship between geometry design parameters 

such as electrode widths Wf, finger electrodes lengths Lf, the gap between the 

finger electrodes Lg and 2D (top view) deformation for the Au electrodes and 

gaps in-between at different substrate compression strains εsub.  

Table 4.1 Table of all initial designed values for each parameter. 

 

Table. 4.1 summarizes the designed values of each parameter. The original 

lengths of finger electrodes (Lf = Lf0 in Fig. 4.2) range from 225 µm to 265 

µm and 500 µm to 525 µm, with electrode widths Wf either 20 µm or 50 µm 

(The width of electrode Wf is to protect the Au electrode from bulking 

delamination). Both of the Lf and Wf are related to the calculated finger 

resistance (Rfinger=RsLf/Wf, where Rs is the sheet resistance). The gap 

between the finger electrodes Lg (related to the switching strain) ranged 

Au 
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between 5 µm and 95 µm. The probe pads were all 500 µm × 500 µm 

(original length Le = Le0 = 500 µm) in size, used for probe station to get the 

electrical signal. The strains are defined as: εAu-x = (Lf0-Lf)/Lf0, εAu-y = (Wf0-

Wf)/Wf0, εGap-x = (Lg0-Lg)/Lg0, with the key dimensions such as finger 

electrode width Wf, Length Lf, and gap value Lg, where the Lf0, Wf0 and Lg0 

are the initial values before the mechanical compression.  

Since the photolithographically patterned Au electrodes have been deposited 

onto the pure silicon wafer, the next is to transfer the Au electrodes from 

silicon wafer to soft PDMS-VPS substrate. The bonding between the metal 

and the soft substrate is important. If the mettle patterns (such as Au) bond 

weakly to the substrate such as PDMS, it will be easily damaged or 

delaminated via external stimuli. Therefore, it is significant to increase the 

adhesion between the Au and PDMS.  

In this thesis, a thiol based dual-SAM (self-assembly monolayer) assisted 

metal transfer process has been used. As shown in Fig. 4.3a, the Au surface 

is treated by the thiol of MPTMS that acts as a molecular adhesive to promote 

the adhesion between Au and PDMS. The liquid deposition method is 

selected because it provides the strongest adhesion between Au and PDMS 

[181]. Fig. 4.3b-d shows the schematic illustrations of dual-SAM (self-

assembly monolayer) assisted metal transfer approach.  

 

 



 

 

74 
 
 

 

 

 

 

 

 

   

  

 

  

 

 

 

 

Figure 4.3 (a) Schematic of chemical modification by using MPTMS to promote the 
adhesion of thin Au film to PDMS (b) Schematic images illustrating the patterned 
Au and dual SAM Au transfer process: Lift-off + lithographically patterned multi-
switching Au strain transducer array on silicon substrate ready for transfer (c) Au 
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patterns transferred from silicon to PDMS-VPS substrate by dual-SAM (self-
assembly monolayer) assisted metal transfer process (d) Illustration of Au fabricated 
and transferred to PDMS-VPS bilayer through a dry peel-off method. 

The Au-on-Silicon samples with MPTMS-SAM adhesive were then flipped 

and pressed (load of 5 g/cm2) against PDMS surface of the pre-stretched 

PDMS-VPS substrate for 5 minutes, before being peeled off to complete the 

Au PDMS-VPS transducer device fabrication as shown in Fig. 4.4a and 4.4b. 

Fig. 4.4c displays the SEM cross-sectional view, showing transferred Au 

sitting on the bilayer structures (total thickness around 110 µm) and Fig. 

4.4d shows a demonstration of flexibility by bending the device.  
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Figure 4.4 (a) Photo of the entire device (left) tensioned in the mechanical vice 
with a microscopic top view (right) of patterned multi-switching Au strain 
transducer array on PDMS-VPS bilayer substrate and (b) Nikon optical microscope 
view (c) SEM cross-sectional view of Au siting onto PDMS (d) Finger bending shows 
the flexibility. 

While this SAM transfer process is not successful at initial stage, with some 

failing examples as shown in Fig. 4.5a and Fig. 4.5b, reasons behind are 

that the concentration of MPTMS (5-25 mM), thiol treatment time (20-540 

min), methods of deposition (e.g. liquid deposition, vapour deposition, spin 

deposition), thiol types (e.g. MPTMS, 11-mercaptoundecanoic acid, bis (2-

methacryloyl) oxyethyl) and different loads and loading times can all affect 

the Au transfer rate [5], [181], [219]. The adhesion was examined by using a tape 

adhesion test [181]. 

The yield of the transfer technology is investigated for different loads and 

various loading times. It can be observed in Fig. 4.5c, with a low load below 

5 g/cm2, the metal film cannot be transferred at all, but a successful transfer 

can be made with a load of 5 g/cm2 and loading times longer than 5 min. 

With a higher load (>5 g/cm2), the results suggest that it is more likely to lead 

to a passive pattern, where undesired patterns are transferred with 

mechanical fracture. It is thought that this might due to the total load energy 

applied on the metal thin film, which destroys the homogeneity of film and 

the patterned part stays on the silicon wafer as a result of a local surface 

energy concentration due to the feature sizes [5], [219].  

  



 

 

77 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 mm 15 mm 
1.5 mm 

(a) 

(c) 

(b) 

500 µm 



 

 

78 
 
 

Figure 4.5 (a) Photos showing the unsuccessful transfer samples (b) optical 
microscope observation of unsuccessful transfer samples (c) the transfer technique 
optimization diagram for the loads and loading time, three type of results are show 

as Type I ( X ),Type III (☆) and Type II - desired pattern transferred (0) [219]. 

4.3.2   Surface morphology characterization  

The uniaxial (x-direction) substrate compression was provided by releasing 

the pre-stretched PDMS-VPS mounting layer through slowly turning the 

screw thread (~1.25 mm/turn, 5s) of the mechanical vice from L0 to L as 

shown in Fig. 4.6. Different releasing rates (5s, 100s, 1000s) have been 

studied with increasing average strain rates over the range of 1.7 × 10-5 – 3.4 

×	10-3 s-1, a decrease in εsub by 0.1 is observed. The observation suggests that 

the viscoelastic relaxation of the soft PDMS layer used here is important, at 

least at the faster loading/unloading rates studied.  

When releasing the pre-stretched PDMS-VPS mounting layer by a fixed 

amount at regular intervals, the differences have been observed for both Au 

finger electrode and PDMS along the x and y direction. As illustrated in Fig. 

4.6a, wrinkles on Au finger electrodes started to develop at low strain, and 

eventually both wrinkles on Au and creases on PDMS after substrate strain 

εsub = (L0-L)/L0 went beyond threshold. Fig. 4.6a and 4.6b show that the 

reversible wrinkling process on Au has reduced finger length from Lf0 to Lf, 

resulting a local strain change εAu-x = (Lf0-Lf)/Lf0. Meanwhile as discussed, 

the gap area in-between (softer PDMS surface) will have its local strain 

amplified due to surrounding stiffer film patterns with εGap-x = (Lg0-Lg)/Lg0. 
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Figure 4.6 (a) 3D Schematics showing the Au wrinkling and PDMS creasing 
deformation process under uniaxial substrate compression, pair finger electrodes 
were brought into self-contacted due to PDMS creasing, with wrinkling set on Au 
finger electrodes (b) Top view optical microscopic image showing local strain 
changes on Au due to wrinkling, and PDMS gap area due to creasing. 

Fig. 4.7a shows the Au wrinkling 3D profiles obtained by Atomic Force 

Microscopy (AFM BrukerTM 3100) scan with which progressively grew under 

different substrate strains to ascertain the surface morphology profiler 

change during the x-direction compression. Based on the critical wrinkling 

(b) εsub=0 

Au Lg0 Au (Lf0) 

εsub=0.031 

εAu-x εGap-x 

ε
Gap-x

=(L
g0

-L
g
)/L

g0
 

ε
Au-x

=(L
f0

-L
f
)/L

f0
 

(a) 
L0  

L  

ε
sub

=(L
0
-L)/L

0
 

Wrinkles 

Wrinkles 



 

 

80 
 
 

strain of 𝜀! = 0.25 :%(
)#
()$
;
' %⁄

from linear stability analysis. The expected 

theoretical εw = 6.7×10-4 calculated based on the elastic plane-strain moduli 

of Ef = 7×1010 Pa and 74 nm gold film of Es = 4×105 Pa.  

In reality, the wrinkles started to form at a substrate strain εsub = 9×10-3. This 

indicates and confirms that the local strains on stiff Au electrodes 

significantly lagged behind those of the substrate and soft PDMS gap areas, 

which is welcomed as a helpful technique to protect metal films under large 

compression strains. The wrinkles on Au continuously grew under further x-

direction compression, covering the majority of the Au electrodes at the 

substrate strain of 0.12. The wrinkle wavelength at substrate strain εsub = 0.12 

was theoretically calculated to be 17 µm according to	𝜆 = 2𝜋ℎ(𝐸*"/3𝐸*#-
$ %⁄ , 

which closely agreed with the actual measured value of 18 µm. Table. 4.2 

summarizes the corresponding values between theoretical and experimental.   

Table 4.2 Comparison of theoretical and measured values for the critical wrinkling 
strain and its amplitude.  

Critical wrinkling strain (εw) Amplitude of wrinkling (λ0) 

Measured value Calculated value Measured value Calculated value 

9×10-3 6.7×10-4 18 µm 17 µm 

 

Further compression leads to a reduction in wavelength which in agreement 

with previous findings in [5], [219]. The progressive wrinkling over this range of 
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strain presumably reflects the influence of the gold film boundaries, as the in-

plane dimensions of the electrodes are only several times larger than the 

wrinkle wavelength. Fig. 4.7b shows the cross-section wrinkling profile of 

the Au finger electrodes sustaining various substrate strains (e.g. 0.009, 

0.031, 0.12, 0.34). The cross-section lines were taken from the 3D profile 

shown in Fig 4.7a.  

 

 

 

 

 

 

 

 

 

 

 

 

(b) ε=0.009 

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

B

A

 B

0 100 𝜇m 

4 𝜇m 

-4 𝜇m 

0 20 40 60 80 100
-10

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

K

J

 K

ε=0.031 

0 

4 𝜇m 

-4 𝜇m 

100 𝜇m 

0 20 40 60 80 100
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

Y 
Ax

is 
Tit

le

X Axis Title

 G

ε=0.12 

0 

4 𝜇m 

-4 𝜇m 

100 𝜇m 

ε=0.34 

0 20 40 60 80 100
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

Y 
Ax

is 
Tit

le

X Axis Title

 D

0 

4 𝜇m 

-4 𝜇m 

100 𝜇m 

εsub=0.014 εsub=0.022 

εsub=0.048 εsub=0.12 εsub=0.29 εsub=0.34 

εsub=0.009 εsub=0.031 

(a) 



 

 

82 
 
 

Figure 4.7 (a) BrukerTM AFM scan 3D surface profile view of the wrinkle 
development on Au electrodes at various substrate strains for a device with Wf = 25 
µm, Lg = 50 µm and Lf = 225 µm (b) Cross-section wrinkling profiles for the Au 
finger electrodes sustaining various substrate strains. These cross-section lines were 
taken from (a). 

To further understand this local strain difference between Au and PDMS 

areas against the substrate strain, characterization experiments were 

designed and conducted by using Nikon® LV-100 optical microscope. Study 

focused on local strains of each Au finger electrodes of εAu-x = (Lf0-Lf)/Lf0, as 

well as PDMS gap area of εGap-x = (Lg0-Lg)/Lg0 between the paired finger 

electrodes. The lengths data Lf0, Lf, Lg0 and Lg were all measured by the 

Nikon system from top view. The relationships between εAu-x, εGap-x and εsub 

were comparatively studied against other key geometry design parameters of 

the Au electrodes such as Lf, Lg, finger width Wf and locations in the 

transducer array (E, F1 to F4). 

For measuring the 2D electrode geometry deformation, ImageJ 1.50i/Java 

1.6.0_24 software was used on photos taken by an upright optical microscope 

(Nikon® Eclipse LV100, with a brightfield reflection mode). To quantitatively 

study the Au electrode deformation, compression strains were calculated 

before and during the formation of crease between electrodes by measuring 

the length change. Fig. 4.8a shows the relationship between the Au local 

strains against the substrate strains. The εAu-x always lagged behind the εsub, 

which is indicated by the dash line. The reason behind is that the greater 

stiffness of the Au electrode induces the disproportion concentrated of the 
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compression compared with the soft PDMS layer (Young’s Modulus of Au is 

far large that the PDMS). Therefore, when under the same in-plain substrate 

compression strain εsub, the deformation for Au and PDMS is not uniform 

which display a strain lag. The strain gap was observed to be constantly 

~0.03, until εsub = 0.45 where this gap increased to around 0.05 when large 

creases started to appear on PDMS surfaces which absorbed more strain 

energy. This has confirmed previous assumption that the local strains on stiff 

Au electrodes significantly lagged behind those of the substrate. Together 

with the reversible wrinkling mechanism, most Au electrodes remain intact 

where no degradation or delamination of the electrodes is observed after > 10 

cycles of repeated compression. Essential to determine the switching strain 

values that brings Au finger pair electrodes into self-contact. A slight 

hysteresis of around 0.025 in εsub is observed between loading and unloading 

cycles. This may because of the viscoelastic nature of the substrate, or the 

influence of surface adhesion. Fig. 4.8b to 4.8d show detailed comparative 

study results of the PDMS gap strain εGap-x versus the substrate strain εsub. 

When εGap-x = 1 at Lg = 0, it was an indication that the PDMS area in the gap 

was completely folded into the crease from the top view, as illustrated in Fig. 

4.6a. The corresponding value of εsub at this point is close to the switching 

strain.  
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Figure 4.8 Local strain change comparisons: (a) Au electrodes strain vs. substrate 
strain comparing F1 to F4, and contact pads E1 (b) The PDMS gap strain vs. 
substrate strain comparing between electrodes with varied Lg0 and Lf0 (c-d) Finger 
electrode widths Wf   effect on the PDMS gap strain vs. substrate strain for F2 and F3 
electrodes (e-f) Finger electrode gap Lg effect on the PDMS gap strain vs. substrate 
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strain for F2 and F3 electrodes, all dashed lines in figures indicate substrate strain 
value as a reference. 

Fig. 4.8b shows the results comparison between different finger electrodes 

(F1 to F4) on the same transducer array where Wf = 35 µm, initial Lf0 ranges 

from 225 µm to 250 µm, and Lg0 from 10 µm to 55 µm respectively. All εGap-x 

are far greater than the εsub (indicated by dash line) due to the expected strain 

amplification effect. It can be observed for pair electrode F1 with smallest Lg0, 

the self-contact strain is around εsub = 0.08, significantly lower than typical 

creasing strains of around 50% on plain PDMS surfaces [5], [121]. As Lg 

gradually increased, it required much higher substrate strains to bring F2 and 

F3 pair electrodes into self-contact, at εsub = 0.2 and εsub = 0.5 respectively. 

For F4 electrodes, it is understandable that the large Lg0 made it impossible 

for the pair of electrodes to reach each other before the 0.6 substrate strain 

limit in Fig. 4.8b, due to insufficient self-contact depth (estimated to around 

19 µm) before reaching the limit. Since the natural wavelength of crease is 

~3.5 times of substrate thickness of 110 µm in this case, multiple creases may 

occur at larger distances, which prevents the electrodes from achieving 

contacts even at higher strains.  

Furthermore, finger electrode width Wf (25 µm, 35 µm and 50 µm) effect on 

gap strain εGap-x has been compared as well, which shows in Fig. 4.8c and 

4.8d. The initial gap distance Lg0 for F2 electrodes in Fig. 4.8c was kept at 

15 µm while Lg0 for F3 was kept at 25 µm. The electrode lengths Lf0 are 250 

µm and 245 µm, respectively. It was clearly observed in both cases that 



 

 

86 
 
 

electrodes with narrow Wf (25 µm) had much lower εsub of 0.1 and 0.4, 

respectively, when electrode pair made self-contact. This suggests a wider Au 

electrode may require more energy to be pulled into the creasing created in 

the PDMS gap area, since the electrode prefers small wrinkling. Fig. 4.8e 

and 4.8f show the finger electrode gap Lg effect on gap strain εGap-x. The 

finger electrode width Wf for F2 and F3 electrodes were kept at 35 µm. The 

gap values for F2 electrode various from 15 µm to 25 µm, and 30 µm to 40 

µm for F3 electrode. It is understandable that in both cases, the shorter Lg 

could have lower εsub for the self-contact of paired electrode.  

To have a better understanding of how the finger electrodes been contacted 

due to the elastic instability of creasing, Fig 4.9 shows the Au finger 

electrodes (sequential microscopic images, bright area) and the PDMS gap, 

before and after the contact caused by instability of creasing. The substrate 

strains change from 0.38 (Fig. 4.9 - image 1) to 0.52 (contact point, Fig. 4.9 

- image 5), 0.55 (Fig. 4.9 - image 6).  

 

 

 

 

 

 



 

 

87 
 
 

 

 

 

 

 

 

 

 

Figure 4.9 Sequential microscopic images showing the Au finger electrodes (bright 
area) and the PDMS gap, before and after the contact caused by creasing. The 
substrate strains change from 0.38 (image 1) to 0.52 (contact point, image 5), 0.55 
(image 6). 

4.3.3   Electrical characterization  

Based on the above deformation study, multi-step or “stepwise” electrical 

resistance change corresponding to different levels of εsub has been 

demonstrated. Generally, 2-point electrical measurements are normally used 

for resistance measurements and I-V curve generation. While when the 

resistance being measured is relatively low, or the contact resistance or the 
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resistance of probes is relatively high, 4-point measurement is more accurate 

because it avoids the errors caused by wire resistance which reduces the 

effect of test lead resistance. In this thesis, the resistance was currently 

measured by 2-point measurement, the reasons behind are that in our case, 

the wire resistance can be ignore due to our large measured resistance. 

Meanwhile, currently the probes are too sharp and because of the very thin 

film layer (74 nm thick for Au layer and 110 µm thick for PDMS layer), it is 

easily to damage the Au electrodes by contacting with four probes.  

The Everbeing EB8 manual probe station (with EB-05 probes) connected to a 

Keithley® 4200 analyzer (I-V mode, -1V to +1V sweep, with 0.2V/step) was 

used to characterize the resistance value change as shown in Fig. 4.10a and 

Fig. 4.10b.  

 

 

 

 

 

 

Figure 4.10 (a) schematic illustration of 2-point resistance measurement 
with (b) photo shows resistance measurement performed using an Everbeing 
EB8 manual probe station. 
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For the designed Lg values (Lf = 510 µm and 520 µm, respectively), according 

to Rfinger=RsLf/Wf, where Rs is the sheet resistance (related to the Au 

thickness), the estimated finger electrode resistance Rfinger would be in the 

region of 50 Ω. The relation between sheet resistance and Au thickness is 

measured by Edinburgh University [266]. It should be noted that due to the 

conductivity of Si substrate, the sheet resistance of Au on Si could not be 

detected properly. Hence, the patterned Au finger electrodes had their 

resistance measured on the PDMS-VPS substrate 

Edinburgh University developed a test structure of suspended Greek cross 

measurement platform to determine the sheet resistance [266]. The arms of 

the test structures are made of polysilicon/silicon nitride (Si3N4). Different 

thicknesses of Au were blanket evaporated onto the platform. The electrical 

isolation between the test structure and the surrounding silicon (Si) substrate 

was ensured by the suspension of the platform. Electrical measurement on 

Au sample was achieved by using a HP4062B semiconductor parametric test 

system, a Solartron 7065 voltmeter and a semiautomatic probe station. The 

extracted average effective resistivity for Au is 5.1×10-8 Ω·m [266], which is 

more than 100% higher than the bulk value of 2.44×10-8 Ω·m [267]. Despite the 

spread in effective resistivity values and the error from the thickness 

measurements, the extracted effective resistivity agrees with values found in 

the literature for thin Au films being 3.0-5.0×10-8 Ω·m [268].  
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The calculated resistance at contacted of each finger electrode from F1 to F4 

will be 100 ohm, 50 ohm, 33.3 ohm and 25 ohm respectively when Rfinger = 50 

ohm. Fig. 4.11 shows the 3D schematic illustrations of Au-PDMS-VPS 

elastomer system under mechanical compression with the corresponding Au 

contacted for each pair of finger electrode. Such integrated structures enable 

a multi-switching sensing mechanism where the strain value can be 

determined by measuring the resistance of the strain sensors.  

 

 

 

 

 

 

 

 

Figure 4.11 3D schematic illustrations of Au-PDMS-VPS elastomer system 
under mechanical compression with the corresponding Au contacted 
sequently for each pair of finger electrode. 

According to I=U/R, in order to avoid the overheating of the Au electrode 

caused by the large current, the sweep voltage was set -1V to +1V with 
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0.2V/step. As shown in Fig. 4.12, the stepwise strain-resistance sensing has 

been achieved by surface elastic instability induced multifinger electrodes 

with different distances between the electrodes. When the first pair 

electrodes were in contact, the original open circuit changes to be a closed 

series circuit, the calculated resistance of would be expected to be ~100 Ω, 

assuming the contact resistance is zero. This will be reduced to 50 Ω when 

the second switching being achieved (The serious circuit becomes a parallel 

circuit).  

Fig 4.12b shows that between 0.45 and 0.52, the first step switching stage 

was achieved, with an average resistance of ~120 Ω which is slightly higher 

than the calculated value (100 Ω), this may due to contact resistance between 

the microelectrodes in the gap or between the large electrode pads and 

probes. The average current at first step switching stage is 4.56 mA. Before 

the second step switching stage, subsequent compression leads to a slight 

decrease in resistance consistent with the reduction in effective electrode 

length as more of the gold surface is pressed into contact. Under further 

compression, the second step switching stage has happened at the substrate 

strain range of 0.54 < εsub < 0.58 by measuring the average resistance to be ~ 

50 Ω with an average current of 14.27 mA. Note that the error bars indicate 

multiple measurements at different current levels that in most cases indicate 

that Joule heating is not influencing the measurement. The probe-Au 

electrode contact resistance was characterized to be ~7.9 Ω with a standard 

deviation of 1.17. The variation of the experimental resistance values may 
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mainly be caused by the contact resistance between the touching Au finger 

electrodes. The corresponding substrate strains at switching were also in 

good agreement with the electrode deformation observations.  

 

 

 

 

 

Figure 4.12 (a) Resistance of the structure as a function of strain. The resistance 
change during the two-stage switching are highlighted in a red ring and detailed in 
(b) Two-stage resistance switching strain sensing: Resistance of the transducer array 
as a function of strain during the two-stage switching period (0.45< εsub <0.52, and 
0.54< εsub <0.6). 

4.3.4   Poisson’s effect caused damage and improved interconnects 

design    

Poisson’s effect is used to describe the expansion of a material in directions 

perpendicular to the loading direction, where Poisson’s effect is measured by 

Poisson’s ratio ν. During the substrate compression process where there is a 

large strain change from 0 to 0.6, it is inevitable that tensile transverse 

strains (y-direction) perpendicular to the compression direction (x-direction) 

with G=E/2(1+ν), which generated by the uniaxial compressive strain change 
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due to the Poisson’s effect (where G is shear modulus, E represents Young’s 

modulus and ν is the Poisson’s ratio).  

In order to understand how x-direction compression affects the y-direction 

tension, the length changes between x and y-axis have been experimentally 

measured as shown in Fig 4.13a. The Poisson’s effect is defined as νp＝｜

ΔY/ΔX｜, where ΔY=YY-YY0 and ΔX=XX-XX0, YY0 and XX0 are the original 

length. Fig 4.13b shows the relation between substrate compression strain 

(0-0.6) and Poisson’s effect.  
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Figure 4.13 (a) Photos show the experimental measurement of length change at x 
and y-axis during x direction compression (b) relation between the substrate 
compression strain and Poisson’s effect.   

As shown in Fig. 4.14a, this non-uniform strain distribution causes the 

unwanted damage (cracks) to some bulk interconnection part of (typical 

fracture strain >> 1%) the transducers when substrate strain went above 0.25. 

In order to prevent such damage, serpentine shaped Au interconnects have 

been designed to “bridge” connect finger electrodes “islands” across the 

serpentine spacing Wg in some devices.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 (a) Consecutive microscopic images at various substrate strains on 
bulk interconnect electrode devices with probing needles (dark coloured) in the view. 
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Circled areas started showing interconnecting areas of F1 and F4 finger electrodes 
being stretched due to Poisson effect (b) Consecutive microscopic images showing 
serpentine shaped structure significantly reduced interconnects stretching from 
Poisson effect up to 33% substrate compression. 

Fig 4.14b shows the effect of y stretching onto the gap serpentine as 

substrate strain increases. It successfully prevented cracking damage for 

substrate strains up until 0.33.  The interconnecting areas of finger electrodes 

F1 and F4 started to sustain certain degrees of damage beyond 0.35, while F2 

and F3 remained intact up to 0.6 substrate strain. Future work will focus on 

optimizing the interconnect designs for better protection.  

4.4    Chapter Summary 

In summary, a new strategy has been established to detect the multiple strain 

values on a soft elastic substrate to study the metal-elastomer deformation 

behaviour of a super-compressible strain transducer array. The concept has 

been presented in which elastomeric substrates with engineered distributions 

of a set of materials and structural characteristics yield stepwise strain 

sensing of in-plane deformations. The relationships between electrode 

geometries and compression strain ratios have been studied, together with 

the growth and co-existence of wrinkles and creases on multi-switching 

electrodes. Multi-steps of electrical resistances were generated at different 

switching strains on an individual device. This has been demonstrated by 

using the arrayed and interconnected “multiple finger” electrode soft 

electronics with different distances between the electrodes, the related 
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technologies and newly developed sensing mechanism could shed a light on 

the future stretchable/epidermal electronics, flexible sensors, health 

monitoring, and wearable device applications.  
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Chapter 5 

A Flexible Topo-Optical Sensing 
Technology with Ultra-high Contrast  

Targeted folding of elastic surface at a pre-defined location controlled by 

patterned micro-hole arrays thin hard layer can be harnessed to develop 

novel sensing mechanism. Switchable high contrast luminescent patterns 

responding to mechanical compression (up to 60%) of the super flexible 

elastomer substrate have been created under photoexcitation and studied in 

this chapter.  

Inspired by the way the outer layer of plants and animals can change colour 

in nature, and the phenomenon of Mechano-Responsive Luminescence (MRL) 

(described in section 2.3.2), this topo-optical strain sensing strategy has been 

demonstrated by employing PDMS based functional luminescence 

composites multi-thin layer structure, where fluorescent pattern signal was 

generated at designed strain values. Line-shaped fluorescent patterns were 

switched ON and OFF by elastic instabilities (e.g. creasing, folding) on micro-

structural soft surfaces during compressive deformation. Furthermore, 

optical pattern contrast can be highly improved by inducing specific 

fluorophore material (Iridium-III complex) to diminish the background 

fluorescent signal. The unique self-contract geometry of folding area 

preserves intensity by mechanically creating a hypoxia zone, whereas the 
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intensity reduces significantly for the rest area of surface due to the oxygen 

quenching of a certain Iridium-III fluorophore material at the open air. This 

study bridges the gap in current mechano-responsive luminescence 

mechanism by utilizing the unwanted oxygen quenching effect of Iridium-III 

(Ir-III) fluorophores to enable a high contrast optical signal on surface. The 

key objectives in this part of my work is to investigate: 

• Controllable formation of targeted creases/folds.  

• Translate this topographical transition into a dedicated sensing signal      

(e.g. optical patterns) in responding to certain compressive strain.  

• The optimisation of contrast by selectively oxygen-quenching of the 

coated Iridium-III complexes fluorophore layer.   

5.1    Introduction 

Developing flexible optical sensors and actuators have hold promises in many 

applications areas, especially mechano-responsive luminescence (MRL) 

based flexible optical sensors as described in section 2.3.2. However, the 

optical performance has been discounted by aggregation caused quenching 

(ACQ) [242], [243], thus limit the further applications for MRL materials. 

Whereas the current advances in Aggregation-induced emission (AIE) have 

achieved emergence characteristics at molecular level to overcome the 

drawbacks of ACQ [244]-[246], novel optical sensing mechanisms remain yet to 

be exploited to enable wider scale-up perspectives. 
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Inspired by epidermal colour changing scheme from nature, researchers have 

been able to amplify signal contrast by generating luminescent molecular 

dominos [171] thus realize multi state optical switching by engineering 

micro/nano-structures on surface [235]. By far, all practiced strategies rely on 

molecular/particle arrangements under mechanical stimuli, which will easily 

result into a noisy and low-resolution signal, which poses challenges in 

triggering controllable signals for scalable applications.  

5.2    Research development 

Different to the majority of current MRL material development as described 

in section 2.3.2, which is mainly focused on liquid crystal for colour-tuning 

[171], mixing the different coloured MRL/ML particles [69], combination of 

fluorescent dyes physically with existing MRL/ML materials [172], or swelling 

based fold-in induced to selectively form some surrounding chemical 

patterns [81]. The surface topology enabled optical sensing in response to large 

compressive strain has not been reported elsewhere.  

Therefore, a different strategy of controllable mechanoluminescent pattern 

generation has been demonstrated, by triggering hypoxia induced 

photoluminescent inside surface-folding elastic instability (creasing) 

generated on multilayer elastomeric substrates under large compressive 

strain (up to 60%). 
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5.3    Results and discussion 

5.3.1   Surface instability growth in multi-layer elastomer systems 

Discussed in section 2.2, a classical bi-layer elastomer system typically 

consists of a soft layer on a stiff mounting layer. For example, PDMS thin film 

(Young’s modulus 48 KPa) and PDMS stiff mounting substrate (Young’s 

modulus 800 KPa) (similar to [103], [120]). While in this project, a tri-layer 

system with Young’s modulus mismatch across different layers has been 

created, with an additional third thin hard-skin layer on top of PDMS film. 

When releasing the plasma treated (10s) pre-stretched tri-layer elastomer 

system (hardskin-PDMS-VPS layers) over a critical value as shown in Fig. 

5.1a, in-plane uniaxial compressive strain	𝜀*+,- =
.%
.
− 1 can be generated. 

The plain elastic surface deforms and undergoes a complex morphology 

change under various compressive strains, yielding an elastic morphological 

development (e.g. instabilities transition from wrinkles to creases/folds) on 

the surface. The formation of surface wrinkles releases in-plane compression 

of the hard layer to release stress. After applying further compression, the 

wrinkles develop bifurcations to randomly generate the creases/deep folds as 

shown in Fig. 5.1b and Fig. 5.1c. The sizes of these creases, e.g. depth and 

width are in the micrometre scale, with lengths varied from micrometres to 

millimetres when substrate strain goes above 52%. 

The stress-strain curve of the multi-layer system largely follows the mounting 

substrate layer with dominant thickness over PDMS (3 mm VPS and 125 µm 
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PDMS). The typical depth of the surface instabilities is very shallow (1 to 18 

µm) when compared with the much thicker and stiffer VPS mounting 

substrate (3 mm thick). Therefore, the generation of surface instabilities does 

not affect the overall stress-strain curve of the whole system. And the stress-

strain curve of standalone PDMS with various mixture ratios has already 

been well researched [269], [270], [271], [272], [273]. 

 

 

 

 

 

 

 

 

 

Figure 5.1 (a) Pre-stretched tri-layer elastomer system (left) with under mechanical 
compression process (right) (b) Schematic illustration of the instability pattern 
evolution transition on a tri-layer elastomer system (hardlayer-PDMS-VPS) under 
mechanical compression with (c) Nikon optical microscope view. 
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5.3.2    Configuration of targeted folding on elastic multilayer  

For the plain surface shown in Fig. 5.1c, creasing/folding morphology 

evolves at random location when applying a uniaxial compression strain 

ε/012 =
3%
3
− 1 . In order to guide a more regular pattern generation for 

controlling the local energy concentration and spatial location of the required 

deep creasing patterns, e.g. parallel lines of deep creases/folds. Lattice single 

and multi-line array patterns have been designed.  

Fig. 5.2a shows the illustration of designed patterns that consist of arrays of 

circular holes with different diameters Φ, distance of D, thickness h and 

width distance W. Fig. 5.2b shows the schematic illustrations of the 

morphological changes on plain and patterned surface. With the designed 

structures, the arrays of circular holes (aligned in y-direction) on PDMS 

surface helps to control surface creasing patterns during uniaxial 

compression, by concentrating the local energy to promote local strain 

concentration. Therefore, the regular surface creases/folds are expected to 

form along the column of holes perpendicular to the compression axis in Fig. 

5.2c, when compared with the plain surface in Fig. 5.2d.   
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Figure 5.2 (a) Illustration of patterned micro single and multi hole array structures 
with different parameters (b) Illustration of a 3D schematic drawings for plain and 
patterned surface (c-d) optical microscopic images showing organized and random 
surface crease/fold patterns induced by mechanical compression on patterned and 
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plain surfaces with designed hole-array (Φ=60µm, D=120 µm, h=12 µm) 
respectively, at different compression strains of 0, 0.27, 0.38 and 0.52. 

Fig. 5.2c and 5.2d show the comparison of morphology evolution between 

plasma treated plain and patterned surface (single array of circular micro-

holes, diameter 	𝛷 = 60	𝜇𝑚, gap	ratio	𝑟 = 4
5
= 2 , hole depth 	ℎ = 12	𝜇𝑚 ) 

observed by Nikon EclipseTM LV100 optical microscope. Wrinkle patterns are 

developed globally for both plain and centre lattice hole patterned surfaces at 

low compressive strains and evolved into visible textures when strain 

increases to	𝜀 = 0.27. A strain energy localization guided by the pre-placed 

pattern can be clearly identified along the micro-holes array. The surface 

presents a post-wrinkling development with mixed morphologies at middle 

compressive strains (i.e.	𝜀 = 0.38). According to Kim and co-workers, surface 

wrinkles will first undergo period doubling, followed by the formation of 

creases under a modulus ratio (Gf/Gsub) between 5.86 and 13.89 [158], [163]. A 

threshold strain (εth) is the compressive strain when the first fold occurs on 

surface, which is experimentally defined at when a large crease connects the 

adjacent holes during in-plane (x-y) pattern development with the fold in 

depth above 2 µm. Here, a compressive strain of ε = 0.52, which is slightly 

higher than εth, is chosen to compare folding conditions at same energy level. 

A few random folds have been observed (pointed by red arrows) in Fig. 5.2d 

on the plain surface, while a single big fold locates at the area that is defined 

by the pre-placed holes on surface (dotted line) in Fig. 5.2c. 
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The in-plane strain energy localization that triggers crease generation is 

guided by the curved geometrical boundary from the hole patterns. To 

investigate such morphological pattern generation with various hole array 

designs, the in-plane (x-y plane) and out-of-plane morphology development 

has been studied at different substrate compressive strains under reflected 

light Nikon optical microscopy (Nikon EclipseTM LV100) shown in Fig. 5.3a. 

To have a more detailed understanding of the surface morphology changes 

when gradually increasing the in-plane uniaxial compressive stain, Bruker 

Atomic Force Microscope (AFM) has also been used. Two regions of stress 

concentration areas have been focused which indicated as region 1 and 2 in 

Fig. 5.3b. The morphology evolution on a surface with a single-line circular 

hole array ( ℎ = 12	𝜇𝑚,𝛷 = 80	𝜇𝑚, 𝑟 = 𝐷/𝛷 = 2 ) at various compressive 

strains of 0, 0.04, 0.14, 0.16, 0.27, 0.38, 0.50, 0.52, 0.55 have been 

characterized. For hole patterned surface (Φ=80 µm and D=160 µm), the 

wrinkling has been found to start at a small compression strain of ε=0.04 at 

region 1. When increasing the compression strain, the small crease firstly 

start to nucleate at ε=0.14 between holes, and continue to growth at ε=0.38, 

until two large creases evolved from apexes of the two adjacent holes and 

connected each other in the midway at a threshold strain εth=0.52. The self-

fold surface keep growth with the increasing of the compressive strain to 

ε=0.55 as shown in Fig. 5.3b and 5.3c.  

The normalized wrinkle amplitude of A/λ0 at region 1 of Fig. 5.3a has been 

plotted as a function of the compression strain shown in Fig. 5.3d, which the 
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bifurcation of wrinkle to crease transition is observed. The critical wrinkling 

strain is found to start at εsub≈0.04. When keep increasing the compression 

strain, the critical strain for wrinkle-crease transition is εsub≈0.14. It can be 

seen that these values are considerably lower in the hole patterned system, 

which highly agreed with the comparison results for nonpatterned and 

Bravais lattice patterned surface [75]. In their research, the critical strain of 

wrinkling and the wrinkle bifurcations for patterned surface were found to be 

smaller when compared with nonpatterned system [75]. The reason behind 

this threshold reduction effect is due to the stress concentration at the edge of 

the hole relative to the nonpatterned system, the compressive stress is 

strongly enhanced at the edge of hole and therefore causes reduction in the 

various thresholds. 
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Figure 5.3 (a) The observation of surface morphology evolution on patterned 
surface at different compression strains by Nikon optical microscopic and (b) AFM 
and Nikon optical microscopic view of hole-patterned (Φ=80 µm and D=160 µm) 
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surface showing the surface evolution growth during uniaxial compression at 
different strains of 0, 0.04, 0.14, 0.16, 0.27, 0.38, 0.50, 0.52 and 0.55 with two 
regions of 1 (near the hole) and region 2 (middle area) (c) the surface morphology 
development plotted which depended on the compression strain at region 2 (d) 
normalized amplitudes changes along with wrinkle to crease transition, represented 
with first order (ο) and second order (Δ).  

Apart from the micro-hole patterned surface, in order to investigate the 

tuneable strain-related response, i.e. characterize the threshold strains eth for 

pattern generation, the hole array designs have been varied with different 

shapes (circle, diamond, triangle and hexagon) and array geometry 

parameters displayed in Fig. 5.4a.  

Fig. 5.4b demonstrated the relationships of pattern generation threshold 

strain vs. surface structure geometry with varied gap ratio	𝐷/𝛷 from 1 to 5, 

the size of the pattern 𝛷 is 40 µm. As expected, in a 1D circular hole array, 

holes closer (smaller D/𝛷 ratio) to each other were connected by large crease 

at significantly lower compression strains. In Fig. 5.4b, the experimental 

results seem larger than the simulation results for 𝛷 = 40	µm , but good 

agreements on the overall trend are obtained for the surface, even for those 

surfaces patterned with different D/Φ. It should be noted that the surface has 

been slightly over-compressed to determine the closure stage for each hole 

under reflective optical microscope, due to the visco-elastic nature of surface 

and the out of plane deformation when the hole closes. Therefore, the 

experimental eth values are likely to be slightly larger than the simulated ones.  
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This trend appears in regardless of patterned shapes after testing varied 

shapes (circles, diamonds, triangles and hexagons) and different 𝐷/𝛷  as 

shown in Fig. 5.4d, Fig 5.4e, Fig 5.4f and Fig 5.4g. It can be observed 

that with a fixed depth h of 12 µm, where a range of εth from 0.38 (diamond 

angle 60, 𝛷 = 20 µm, 4
5
= 1) to 0.6 (diamond angle 90, 𝛷 = 80 µm, 4

5
= 5) can 

be achieved by designing the varied shapes and different 	𝐷/𝛷 . The 

relationship of pattern generation threshold strain vs. depth of lattice pattern 

has been studied as well with varied 𝛷  from 20 to 80 µm. However, as 

indicated in Fig. 5.4c, the εth shows less sensitivity on the depth of lattice 

pattern, which agrees with the formal reported results on configuring the 

wrinkle patterns using Bravais lattice [121].  
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Figure 5.4 (a) Nikon optical microscopic view of designed and fabricated single 
micro-patterned arrays with different shapes (circle, diamond, triangle and 
hexagon), showing the surface evolution growth during uniaxial compression at 

various compression strains (b) Comparison of the simulated eth (threshold strain of 

hole closure) with experimental ones at different D/𝛷 for the surface with a single 
hole array. (c) Summary of threshold strains to achieve targeted folding with 
dependence on the hole depth. (d-g) Large creasing/folding generation threshold 
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strain vs. D/𝛷 for circular, diamond, hexagon and triangle shapeed holes with 𝛷 =

20	𝜇𝑚, 40	𝜇𝑚, 60	𝜇𝑚	and	80	𝜇𝑚. 

5.3.3   Simulation of self-contact depth guided by surface lattice 

pattern 

Following the surface morphology evolution, numerical analysis was 

performed with commercial finite element simulation software–ABAQUS, to 

understand the mechanism of generating targeted folding. Fig. 5.5a shows 

the material properties in ABAQUS FEA. Neo-Hookean material model is 

chosen. The parameter C10 in the table is equal to half of the shear modulus, 

and D1 is set to 0, which corresponds to incompressible materials, i.e. 

Poisson’s ratio = 0.5.  

The single arrays of holes with varied geometrical inputs are considered to 

simulate the in-plane and out-of-plane strain energy localization. By 

comparing the simulation results for 𝐷/𝛷=1 and 𝐷/𝛷 =5 as indicated in Fig. 

5.5b and Fig. 5.5c, which showing that a concentrated in-plane strain 

localisation for 𝐷/𝛷=1 is stronger than that for 𝐷/𝛷=5. The out-of-plane 

(cross-section) simulation results suggest a progressing deformation with the 

closure of hole (initiation of Hc), development of Hc as a folded contact with 

non-contact at the bottom, then finally reaching a fully self-contact stage 

(creasing type).  
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Figure 5.5 (a) Table of key input material properties for FEA parameters (b) Finite 
element (FE) simulation of guided formation of fold on lattice patterned surface and 
assessment of robustness. In-plane and out of plane (i.e. cross-section) strain energy 

analyses for the surfaces with a single micro-hole array (𝛷 = 40	𝜇𝑚) of D/𝛷 =1 and 

(c) D/𝛷 =5, at a nominal compressive strain εcomp of 0.5. 

As described above, the development of self-contact is rapid from an onsite 

Hc at εth, to the Hc that can provide enough contrast. Therefore, the εth as a 

function of D/Φ (Φ = 40 µm) has then been numerically analysed to study the 

threshold of generating optical signal guided by hole pattern. The simulations 

(c) (b) 
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for surface patterned with sharp corners (diamonds, squares, triangles and 

hexagons) are less successful at the moment as the current simulation 

programme doesn't allow the mesh process to progress over the sharp corner. 

Following to the onsite of folding, further transient development of Hc is 

critical in determining the intensity of optical signal. Fig. 5.6a shows the 

nominal self-contact depths (Hc/ℎ) for different 𝐷/𝛷  (𝛷  =40 	𝜇𝑚 ) as a 

function of compressive strain, to understand this geometrical development. 

Excellent alignments are found between the numerical outcomes and 

experimental results for 𝐷/𝛷=1 and 𝐷/𝛷=5, meanwhile a slight mismatch is 

presented for 𝐷/𝛷=2. A region (grey zone) with Hc/ℎ values between 0.15 to 

1.2 located on a strain range of 0.39 – 0.59, is outlined by analysing the 

experimental results where the ideal optical signals can be expected. The 

results from cyclic testing in Fig. 5.6b indicate a good resilience on 

generating target folding with a desired self-contact Hc (Hc of 10	𝜇𝑚 for 𝛷 

=40	𝜇𝑚 and Hc of 18	𝜇𝑚 for 𝛷=80 µm, 𝐷/𝛷=2). 

 

 

 

 

Figure 5.6 (a) Comparison of FE simulation results of Hc with experimental ones 

under a progressive ecomp for the surface with a single micro-hole array (𝛷 = 40	𝜇𝑚) 
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(b) The cyclic testing results with 𝛷 = 80	𝜇𝑚 and 𝛷 = 40	𝜇𝑚 (D/𝛷 =2), to assess the 
robustness of generating self-contact Hc. 

Fig. 5.6b shows the saturation process of this reversible self-contacting 

which represented the self-adaption of the multi-layer system to reach the 

desired Hc for sufficient contrast, as well as the durability for the initial 20 

cycles. While in order to validate the durability of system under high 

compressive strains for more cycles, and to understand how it might sustain 

many repeated load cycles. The testing has been further to 100 cycles, the 

reversible result in Fig. 5.7 reveals a reliable reproducibility of Hc even after 

100 cycles, due to the elastic nature of multi-layer.  

 

 

Figure 5.7 The cyclic testing results (up to 100 cycles) for samples with Φ = 80 µm 

and Φ =40 µm (D/Φ=2). 

While the studies on nucleation and growth of creases/folds in the PDMS 

based elastic multi-layer usually took it as a pure elastic system, there have 

been questions on the possible relaxation/hysteresis on the generation of 

creases/folds during cyclic testing and/or compression-recovery curve, and 

the dependencies on the system settings. Further study on the relaxation of 

folding by tracing Hc over a long time duration, to compare with the 

simulation results in Fig. 5.8a at a nominal compressive strain (εcomp) of 0.5, 

indicates a limited relaxation in Hc, which is in the same trend with the 
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theoretical approximation. Fig. 5.8b indicates that during 

compression/recovery cycle, low hysteresis on is observed. The reason could 

be the elastic nature of the multi-layer system and low surface tension [121], [241] 

after being coated by fluorophore compound.  

 

 

 

 

 

Figure 5.8 (a) Comparison the simulation and experimental results for relaxation 
behaviour under a progressive εcomp =0.5 for the surface with a single micro-hole 
array (Φ=40 µm, D/Φ=5). (b) The hysteresis results for targeted folding depth on 
the surface with a single micro-hole array (Φ=40 µm, D/Φ=1 and D/Φ=5). 

While the self-contacting depth of Hc was normally in micro-scale (a few 

micron metres to tens micro metres), human naked eye and mobile phone 

camera based morphology observation was still possible when the length 

exceeds ~ 10 mm as shown in Fig. 5.9. This could potentially offer some 

inter-mediate scale applications such as signal coding/decoding and security 

bar for hidden code scanning/reading.   
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Figure 5.9 The observation of actuated fold for the surface with a single micro-hole 
array (Φ = 40 µm, D/Φ=2, h=12 µm) at macroscopic level under reflective light.  

5.3.4   2D micro-arrays demonstration 

Based on the understanding gained from studying the 1D microstructure 

patterned hole array, the more complex 2D micro arrays for the guided 

formation of surface morphologies have also been characterized. The surface 

design was extended to the square lattice patterns (such as arrays of circle 

and hexagon) shown in Fig. 5.10a, which obtained by Bruker® GTK. W is 

defined as distance between neighbouring lines (width distance). In order to 
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quantitative characterized the threshold strains of 2D hole array and study 

how W affects the εth, various W/Φ has been measured with the fixed D/Φ 

value. Fig. 5.10b shows that the wider gap between each line array (greater 

W/Φ ratio), the lower threshold strain eth was required. This can be predicted 

as PDMS elastomer is non-compressible [255], the greater number of large 

creases over the same length of compressing surface (smaller W), the less 

surface will be folded into each crease. Therefore, a demonstration figure has 

been displayed in Fig. 5.10c, the results suggest that varied εth at high strain 

range can be achieved by designing D/Φ, W/Φ of the lattice pattern, together 

with more capabilities on 2D designs. 
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Figure 5.10 (a) Bruker® GTK shows the profiling of the fabricated SU-8 pillar array 
templates of circle (left) and hexagon (right) (b) large folding generation threshold 
strain vs. W/Φ for 2D hole array (c) the formation of folding guided by the square 
lattice pattern with different pattern shapes, W/Φ, and D/Φ ratios under Nikon 
optical microscope.  

5.3.5   Realization of Topo-optical sensing (FoA)  

The concept of translating surface topology into optical signal (Topo-optical 

sensing) is initially facilitated through casting and drying a drop of optical 

indicator solution containing 1.3 mM fluorescein o-acrylate (FoA) on the 

plasma treated elastic surface in Fig. 5.11a and Fig. 5.11b, to fulfil the 

(c) 
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photo-luminescence function. The coated thin optical indicator layer is 

measured under laser scanning confocal microscope (LSCM) with a thickness 

of ~600 nm in Fig. 5.11c. The illustration in Fig. 5.11d indicates that, after 

coating with a thin optical indicator layer, fluorophore concentration effect 

can be observed after surface creases generated by uniaxial compression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Schematic images illustrating the droplet casting process with (a) 
Fluorophore drop casted on the multi-layer surface (left) and spread to cover the 

Fluorophore drop casted onto 
plasma treated hydrophilic multi-

layer surface 
Fluorophore spread onto plasma treated 

hydrophilic multi-layer surface 

(a) 

(c) 

Fluorescein o-acrylate optical indicator 
layer 

(b) 

LSCM cross-sectional view PDMS 

Fluorophore materials 
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Vinylpolysiloxane 
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Optical indicator layer on 10s plasma treated surface (d) 

Vinylpolysiloxane 
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surface to generate the optical indicator layer (right) with (b) Cross-sectional view (c) 
LSCM cross-sectional view of formed optical Fluorescein O-acrylate (FOA) indicator 
layer with thickness of ~600nm before compression (d) Cross-section view of the 
multi-layer structure coated with fluorophore (dots). Fluorophore concentration 
effect can be observed after surface creases generated by uniaxial compression. 

Without casting the optical indicator layer, the creasing/folding patterns can 

only be recognized under reflective light, such as example shown in Fig. 5.9. 

While when coating with fluorophore optical layer at the occurrence of 

creases/folds, the in-plane length (L) locally develops into a self-contact out-

plane depth (Hc), lead to an optical signal from the top view because of the 

volumetric accumulation of intensity. 

By assessing the optical properties for the morphologies at 𝜀 = 0.52 for both 

plain and micro-patterned surfaces under Laser Scanning Confocal 

Microscopy (LSCM, Nikon A1R) in Fig. 5.12a and 5.12b, a single line optical 

signal is clearly shown on the location defined by the pre-placed micro-

pattern with an enhanced intensity (side view). It has also been used to 

characterize the 3D (cross-plane) surface deformation, and to understand its 

relationship to the photo-luminescent signal characteristics. In Fig. 5.12a, 

when compressing plain surfaces beyond a certain strain (e.g. e » 0.52), 

brighter luminescent lines were observed when deep creases were generated 

at random locations shown. With the single micro-hole array shown in Fig. 

5.12b, a guided regular green luminescent line pattern formed between two 

adjacent holes where the largest crease with greatest self-contact depth Hc 
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was generated, surrounded by smaller winkles with weaker green 

luminescence, at various substrate strains.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 The generation of targeted surface folding on an elastic multi-layer 
system and translation of topological change on surface into optical sensing signal 
with an indicator layer: Laser Scanning Confocal Microscopy (LSCM) images 
showing top and cross-sectional (for the dashed lines in top view) views of optical 
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signals induced by (a) random folding on the plain surface, and (b) targeted folding 
on a micro-patterned surface, with the digital analysed results for top view optical 
signals in (c). (d) A green ‘opened book’ from 3D LSCM reconstruction to show the 
surface signal with targeted folding. 

5.3.6   Luminescence-optical pattern characterization (FoA) 

A signal-to-noise ratio, defined as 𝑆𝑁𝑅 = 2678	:;<6;=:<>	
?+@#A	

, to quantitatively 

analyse the optical signal, where the peak intensity is collected from the 

signal of folded line and the “noise” represent the average luminescence 

signals originated by background surface (exclude the folding line). In Fig. 

5.12c, a higher SNR is obtained for the patterned surface than that of plain 

surface. With the patterned hole array, surface energy can be guided to form 

a single fold with a deeper self-contact as shown in Fig. 5.12b, rather than a 

distractive energy localization with multiple folds/creases occurring on the 

plain surface. From the LSCM 3D reconstruction image (green ‘opened book’) 

in Fig. 5.12d for the FOA patterned surface, it can be seen that the signal 

noise on background remains considerably high, due to the discontinuous 

fluorescein aggregations caused by the small creases/folds. 

Since the folding depth Hc is related to strain energy localization, further 

LSCM based studies of surface deformation were performed to further 

understand the relationship between the substrate strain and Hc distribution 

along the line patterns as shown in Fig. 5.13. The top-view luminescent 

images in Fig. 5.13a have clearly shown the in-plane 2D luminescent pattern 

development over increased substrate strains (from 0 to 0.55) identical to the 
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creasing/folding pattern observed by Nikon microscope and AFM in Fig. 5.3. 

From top view, when the strain reached 50%, the large creases almost 

connected in the midway. At 52% compressive strain, the large crease 

completely connected hole patterns and form a lateral strip pattern. The FoA 

samples’ cross-sectional view (A-A1) in Fig. 5.13b visualized the cross-plane 

surface deformation, showing the hole-guided single large crease (middle 

point deep folding grew to 18.6 µm at 55% compressive strain) pattern, which 

was perpendicular to the compression direction, surrounded by smaller 

creases. It shows that FoA had more luminescent aggregation at larger 

compression strains related to deeper folding depths. The side cross-section 

view of Fig. 5.13c (B-B1) shows the middle area of crease growth (2.3 µm, 

10.8 µm and 18.6 µm at strain of 0.50, 0.52 and 0.55) when increasing the 

compression strain, which to study the depth distribution along the deep 

crease/fold.  

Beside the large crease/fold, smaller creases in parallel were also observed, 

with average folding depth values below or around 1 µm when strain < 50%. 

This gradually increased to around 2.5 µm as shown the inset of Fig. 5.13b, 

when strain reach to 55%. Based on this mechanism, the optical patterns can 

also be achieved with different organizations as displayed in Fig. 5.13d and 

5.13e.   
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Figure 5.13 Laser Scanning Confocal Microscopy images showing top and cross-
sectional views of (a) the in-plane 2D luminescent pattern development over 
increased substrate strains (from 0 to 0.55) with the 3D view of selective strains (b) 
A-A1 cross section view of strains at 0.43, 0.50, 0.52, 0.55 with folding depth of 1.6 

(e) 
ε=0 ε=0.18 ε=0.29 ε=0.37 ε=0.53 
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µm, 2.3 µm, 10.8 µm and 18.6 µm, with (c) the corresponding B-B1 side cross section 

view at strain of 0.50, 0.52, 0.55 (d) fluorescent optical patterns generation by the 
surface creasing/folding with hexagon organization under uniaxial compression at 
different strain values with (e) square organization.  

5.3.7   Potential applications (FoA)  

Such employed mechanical responsive elastomer multilayer system which to 

generate creases by the folded surfaces, where the photoluminescent occur. 

This has brought potential applications such as super-flexible wireless strain 

sensing. The ON/OFF (or 0/1 output) switching strain has been defined to be 

the value at fluorescent line pattern forming. Fig. 5.14a shows the proposed 

optical switch strain sensing mechanism, which the detected signal is 

processed with the outputting ON/OFF status. Fig. 5.14b displays a 

programmable “two-step” switching mechanism which encoded in this design, 

where a reversible line pattern could be logically switched at two switching 

strains of ε=0.44 and ε=0.52 integrated in the same substrate, which should 

be feasible for applications such as secret codes for anticounterfeiting and 

product identification. This concept can be further developed by re-

configurate it into dynamic 2D ‘spy’ barcode products with hidden 

information only appearing under a dedicated strain as displayed in Fig. 

5.14c. 
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Figure 5.14 (a) The proposed sensing mechanism: optical signal generated by 
fluorophore-PDMS-VPS is detected by the rigid part of the sensor system giving 
ON/OFF digital outputs (b) A programmable two stepwise binary code at two 
different switching strains which integrated in the same substrate (c) A 2D ‘spy’ 

barcode design with a state of ‘OFF’ at e=0 and an ‘ON’ state at e=0.52.        

Since the self-contact depth Hc was normally in the range from a few micron 

metres to tens micro metres. Given by casting a thin optical indicator layer in 

nanometres on the top, the signal has been identified with the assistant from 
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instrument such like quantified by microscope. This brings the potential 

opportunity to be integrability into micro-electronics device, the described 

indirect mechanism also inspired an idea of spy coding of hidden information 

which requires a conditional reader/kit to translate the message as shown in 

Fig. 5.14c, which potentially used as the security bar for hidden code 

scanning/reading.  

Coupled by fluorescent light, the deforming super-flexible elastomer part of 

the sensing system is physically separated from the fixed rigid detector and 

signal processing part during operation. Since there is no metal interconnect 

on the deforming substrate, this development has shown an alternative 

solution to the challenges faced by stretchable/super-flexible sensor 

packaging, where creating electrical connection is challenged by the metal 

fracture and delamination. Providing a rich set of attracting features such as 

high strain sensing, wireless feature, embedding logical function, direct 

visualisation, high integrability and good adaptivity to local curvature, from 

which it will enable new opportunity for designing future flexible/wearable 

and lab on chip devices.  

5.3.8   Selectively Oxygen-quenching induced ultra-high contrast 

(Ir-III) 

The fabrication method is similar to what’s described in section 5.3.5. Whilst 

in this case, instead of coating with FoA, a nanometre thin phosphorescent 

Iridium-III complex was employed as the optical indicator layer to develop a 
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dynamic, high contrast topo-optical pattern generation. The aim is to utilize 

the topological hypoxia zone created by targeted folding, to preserve the 

optical signal on the self-contact region for the Ir-III coating layer. Fig. 5.15 

shows the molecular and the spectrum of Iridium-III complex.  

 

 

 

 

 

Figure 5.15 The Ir-III complex and its excitation and emission spectrum. 

The optical indicator layer was created by coating the Iridium-III solution (Ir-

III, fac-Ir(ppy)3, solvent mixture, 1.3 mM solution diluted in chloroform and 

ethanol). The self-contacting of elastic surface will create a localized hypoxia 

zone by automatically exclude the air. Therefore, photo-luminescent 

preserves only along the deep fold area as shown in Fig. 5.16a. It was 

observed from Fig. 5.16b (top and cross-sectional views) that, by employing 

this Ir-III optical indicator layer, strong photo-luminescent only occurred 

along the deep creasing line, where the self-contact region created localized 

hypoxia zone. Compared to FoA coated devices, the levels of luminescence 

noises from small creases and other surfaces exposed to the oxygen in open 

air were significantly supressed. While the photoluminescence outside of the 

Hypoxia 
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folding area is mostly eliminated by the oxygen quenching effect, leading to a 

topo-optical signal with ultra-high contrast. The 3D-view LSCM images in 

Fig. 5.16c (red micro-“blade” pattern) clearly show the difference between 

luminescent signals generated from large and small creases with FoA and Ir-

III optical indicator layers.  
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Figure 5.16 The generation of topo-optical sensing signal with ultra-high contrast 
(a) schematic illustration of surface folding generating the optical signal with two 
status of hypoxia and normxia (left) with cross-section view (right) (b) Top and 
cross-section views of the self-contact induced fluorescent line patterns generated 
from Ir-III indicator layer (c) A red ‘blade’ type super high-contrast singal from 3D 
LSCM reconstruction to show the optimised signal with minimal surface noise.  

5.3.9   Ultra-high contrast optical pattern characterization (Ir-III)  

The intrinsic optimisation by selectively oxygen-quenching lead to a topo-

optical signal with ultra-high contrast by supressing most “noises” coming 

from non-contacted surface, as shown in Fig. 5.17a. The background 

luminescent signals generated by small texture were mostly quenched in 

comparison with FoA coated sample. Therefore, strain responsive, reversible, 

spatially defined, oxygen quenching photoluminescent pattern generation 

has been achieved.  

 

 

 

 

 

Figure 5.17 Optimisation of Topo-optical luminescence characteristics: (a) The 
analysed results for the top view signal in the selected image in Fig. 5.16b (b) 

(b) (a) 
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Comparison of the nominal line contrast (NLC) for the selected area in Fig. 5.16b 
and Fig. 5.12b. 

A nominal line contrast (NLC) is defined as 𝑁𝐿𝐶 = B678	:;<6;=:<>	
C67;	7D6E7F6	0G	<H6	I:;6	:;<6;=:<>

 , 

to describe the optical signal distribution for the selected area. Fig. 5.17b 

shows that after analysing the NLC data for the selected lines in Fig. 5.16b 

and Fig. 5.12b, an NLC value of 10 is achieved for the Ir-III coated surface, 

which is 5 folds of the NLC (~2) for FoA coated surface.  

This topo-optical relationship has been then scaled (SNR Versus Hc) to 

understand the geometrical influence on the quality of signal. As shown in 

Fig. 5.18a, small SNRs between 0.47±0.04 are captured when the fold first 

occurs at εth with an onsite Hc » 1.1 µm, for both Ir-III and FoA coated 

surfaces. When Hc grows higher than 1.6 µm, a stable SNR plateau (SNR ≥ 2) 

is emerging for FoA coated surface which indicate that the physical 

accumulation along the folding depth reaches a threshold of intensity to 

enable a quality optical feedback. This development of self-contact depth, 

around 500 nm in distance, is very rapid within a strain window of ~ 

0.037±0.017. Given by a nominal strain speed of 0.02 s-1, the sensing signal 

can be instantly captured in microscope within 1 second, which shows how 

fast the fluorescent signal can be response to the mechanical force. On the 

contrary, an increasing trend is obtained for Ir-III coated surface at the same 

threshold when Hc increases, due to the oxygen quenching effect on the 

surface at the open air. When the Hc reaches 13.8 µm, the SNR on Ir-III 

coated surface increase significantly to 12.5, which is 6 folds of that from FoA 
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coated surface. By preserving the peak intensity at self-contact area, the Ir-III 

coated surface achieves higher SNRs when Hc is larger than 1.6 µm.  

 

 

 

 

 

Figure 5.18 (a) The scaling relationships of SNR versus self-contact depth Hc, for 
different optical indicator layers (b) A time lapsing tracking of signal intensities in 

Fig. 5.16b and Fig. 5.12b at ecomp = 0.52. 

The time dependent degradation of photoluminescent signal is assessed by 

tracking the peak and background signals at ecomp =0.55 (Hc ~ 13.8	𝜇𝑚) for up 

to 200 hours. The results displayed in Fig. 5.18b for FoA coated surface 

show a retainment of signal intensity after 200 hours with less than 8% decay 

for both peak and background signals. For Ir-III coated surface, a rapid 

decrease of around 92% intensity is discovered in first 6 hours for the 

background signal, whilst the peak signal maintains stable for the first 70 

hours, then start to fade and finally reach a decrease of 54% in 200 hours.  

The quenching kinetics analysis is analysed in Fig. 5.19, for the Ir-III films 

on PDMS surfaces with varied thicknesses in the open air, where the optical 

(a) (b) 
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signals for all layers are quenched in about 5 hours without compression. 

Under compression, the topology enabled hysteresis results into a high 

optical contrast for about 65 hours, then the peak intensity eventually 

reduces due to the diffusion of oxygen into the elastic solids. The kinetics of 

diffusing oxygen into the self-contact region of PDMS surface is complicated 

as it corresponds to the factors such as temperature, local oxygen 

concentration, humidity, surface porosity, chemical composition, etc.  

 

 

 

 

Figure 5.19 (a) The quenching observation for an Ir-III film of 450 nm (b) 
Quenching kinetics analysis Ir-III films coated on PDMS surface with different 
thickness in the open air.  

Similar to section 5.3.6, the surface morphology change between two adjacent 

micro-holes on 1D hole array samples has been observed from different 

angles (cross-section, side cross-section) and analysed in details. The 3D 

morphology information of the surface at different compressive strains and 

photoluminescence signal of Ir-III complex was analysed by LSCM and 

comparatively studied with FoA. Studying the same area (surface between 2 

holes in 1D hole array 𝛷 = 80	𝜇𝑚, 𝑟 = 𝐷/𝛷 = 2, ℎ = 12	𝜇𝑚 ). Fig. 5.20a 

(a) 
0 min 

120 min 

240 min 
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shows LSCM imaged top views of different nominal strains. Fig. 5.20b and 

5.20c show the cross-sectional and side cross-sectional views at nominal 

strains of 50%, 52% and 55%. Clearly luminescence on non-folding surfaces 

was largely quenched by air ambient, with folded surfaces especially the large 

crease connecting two holes exhibit high luminescence intensity indicating 

localized hypoxia. This means while the photoluminescent light intensity 

large crease increases along with its depth, the signal from small creases were 

largely quenched despite still presented. 

 

 

 

 

 

 

Figure 5.20 Laser Scanning Confocal Microscopy images showing top and cross-
sectional views of (a) the in-plane 2D luminescent pattern development over 
increased substrate strains (from 0 to 0.55) with the 3D view of selective strains (b) 
A-A1 cross section view of strains at 0.50, 0.52, 0.55 with (c) the corresponding B-B1 
side cross section view at strain of 0.50, 0.52, 0.55.  

Cross section view 

(b) 

(a) ε=0.38 ε=0.52 ε=0 ε=0.27 ε=0.43 ε=0.50 ε=0.55 

ε=0.50 

ε=0.52 

ε=0.55 

Side cross section view 
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ε=0.52 
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5.3.10   Demonstration of potential applications (Ir-III)  

To demonstrate the potential of developing this topo-optical sensing 

mechanism into device applications, several conceptual designs (i.e. in-plane 

strain sensor, 2D ‘spy’ barcode, adaptive topo-optical grid, flexible bending 

sensor) have been successfully demonstrated. Fig. 5.21a presented an in-

plane topo-optical sensor to detect large surface strains, by simply 

configuring the pattern parameters (shape, D/Φ, etc) for the pre-placed 

lattice. Similar with Fig. 5.14b, such programmable “two-step” switching 

code could be logically switched between ‘0,0,0’ at ε=0, ‘1,0,1’ at ε=0.44 and 

‘1,1,1’ at ε=0.52, with corresponding optical signals can be visualised by 

reflective optical microscopy and fluorescence microscopy at the same time. 

Fig. 5.21b shows an adaptative topo-optical luminescence grid, which 

contains a tuneable feature on the size of grid under equi-biaxial compression 

to track the cell behaviour in situ. The potential application for adaptive topo-

optical grid could be promising for some biological applications (minutes to 

days), where the oxygen concentration can be controlled at relatively low 

level in bio-media (i.e. aqueous solutions).  
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Figure 5.21 Demonstration of conceptual applications based on Topo-optical 
sensing function: (a) An in plane strain sensor for large deformation with logic 
sensing (b) An adaptive topo-optical grid under equi-biaxial compression for bio-
applications. 

Based on this topo-optical sensing strategy, Fig. 5.22 shows a flexible 

bending sensor developed by combining in-plane pre-compression epre-c to 

detect out-of-the-plane bending degree. After releasing pre-stretching strain 

of substrate (stage I), I deploy the device (combined thickness of ~3.1 mm) on 

the area to detect the bending level. By observing under microscopy, the 

device firstly experiences a selective fold on the lattice patterned surface at 

low degree bending (stage II), then all lattice patterns are folded at high 

degree bending (stage III). A brief phase diagram is created to distinguish the 

two-stage bending sensing for the patterned surface (Φ=80 µm, h=12 µm, 

D/Φ =1 (black line) and 5 (red line), W/Φ=5), where a clear map is obtained 

to determine localized curvature (Kc) with the provided εpre-c when the optical 

signal occurs.  
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Figure 5.22 A flexible bending sensor to detect the bending degree (curvature) of 
joint with (a) schematic illustration of sensing principle (b) phase diagram of 
sensing (c) in situ sensing with generating signal from direct observation under 
reflective microscopy.  

(a) (b) 

(c) Stage I Stage II Stage III 
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5.4    Chapter Summary 

In this chapter, a topo-optical sensing strategy has been proposed by 

constructing an elastomeric multi-layer substrate coated with a nanometre 

thin optical indicator layer, which presents an innovate way of generating the 

optical sensing mechanism. The controllable formation of folding patterns 

has been studied with various geometrical inputs of lattice patterns and the 

results are in good agreement with the predictions from finite element 

analysis. Moreover, an inherited automatic optimisation on optical contrast is 

introduced by oxygen quenching the coated Ir-III based optical indicator 

layer, which lead to an ultra-high contract by significantly reducing the 

background noise. I anticipate this high-contrast topo-optical sensing 

strategy and the demonstrations of conceptual devices will open new 

windows for future applications as flexible/wearable electronics, tunable 

optics and bio-devices. 
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Chapter 6 

Advanced 3D Morphing Transducers By 
Smart Hydrogel Patterning 

Inspired by the reconfigurable shape-morphing devices by selectively 

swelling hydrogel in section 2.3.3, this chapter describes some initial research 

into functional hydrogel fabrication and patterning techniques. This work 

established a unique way of heterogeneous layered structures of soft 

functional materials that has configurable swelling behaviour for advanced 

transducer applications. 

Hydrogel droplets with different composites mixtures were deposited and 

patterned into the same thin layer by a “two-parallel plate” configuration 

used in microfluidics applications. Resulted heterogeneous layered structures 

of hydrogel were created, generating reconfigurable 3D (3-dimensional) 

deformation responding to discrete levels of stimulation inputs, which brings 

the great potential of next generation reconfigurable, stimuli-responsive, 

morphing soft transducers. 

6.1    Introduction 

Biological systems in nature, such as octopus and cuttlefish, can respond to 

the environment change without the help from external devices, due to their 

complex heterogeneous structures [193]-[195], [198], [209]. Inspired by nature, 
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functional devices involving heterogeneous material thin layers can be 

achieved by deposit and pattern hydrogel solutions using the microfluidic 

hydrophobic/hydrophilic surface pattern, combined with two parallel plates 

with millimeter to sub-millimeter gap in-between [12], [15]. Researchers have 

found that in-plane heterogeneities could result in modulated internal 

stresses and three-dimensional (3D) deformations [12], [13], [15]. Moreover, the 

cooperative deformations of 2D periodically patterned shapes morphing 

material sheets could deform into 3D configurations [13]. This will greatly 

expand the areas such as the actuators, robots and shape morphing 

functional patterned soft devices [12]-[15].  

Among the shape morphing materials, hydrogels are three-dimensional (3D) 

networks formed by hydrophilic polymer chains that embedded in a water-

rich environment. It enables to swell or de-swell (shrink) through applying 

the external stimuli (e.g. pH, chemicals, temperature, electrical, light, etc.). 

Hydrogels have the abilities to change their volumes sizably and reversibly, 

can be synthesized into transparent, elastic solid, stretchable, ionic 

conductive and shape-morphing soft materials, which are promising in 

various applications such as soft robotics, tissue engineering, and biosensors 

[196], [208]-[210]. 

6.2    Research development 

Morphing soft materials responding to external stimulation (e.g. electrical, 

mechanical and chemical) have promising applications in various fields, such 
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as flexible electronics, biomedical transducers and soft robotics [194]-[196]. As 

discussed in section 2.3.3, one of the desirable developments is to make the 

self-shaping process controllable and programmable, at least for specific 

configurations. Compared to the method used by Wang and co-workers [12], 

where hard masks were used to selectively swell hydrogel either towards top 

or bottom. They have demonstrated the “pre-designed” complex 

deformations through the periodically patterned hydrogel blocks that made 

from multi-step lithographically. Whilst patterned homogenous-layered 

structures can provide “pre-designed” 3D shapes, the post-swelling 

configurations are fixed. For reconfigurable morphing structures that 

dynamically change shapes responding to stimulation, heterogeneous 

structures are desired. Therefore, in this work, a desirable approach would be 

that the deformation configuration could be controlled in a “mask-less” way.  

The state of the arts of this research are demonstrated from the following two 

aspects: 

l Heterogeneous hydrogel blocks patterned and layered by controlled 

surface wetting at hydrophobic and hydrophilic boundaries as shown in 

Fig. 6.1. The layer thickness and uniformity are ensured and controlled 

by droplet volume and the gap between the two parallel plates. 

l Reconfigurable 3D morphing response to the stimulation inputs such as 

changing ionic concentration and temperature of the solution this 

hydrogel structure is immersed in. 
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6.3    Experimental methods 

6.3.1  Fabrication of heterogeneous hydrogel structure 

To structure and shape the hydrogel, hydrophobic/hydrophilic patterns were 

created [14]. Fig. 6.1 shows patterned Parylene-CTM hydrophobic area and 

hydrophilic silicon dioxide (SiO2) patterns, both on smooth silicon substrate. 

Functional (swell-able) hydrogel droplets/blocks were deposited on this 

Parylene-SiO2 surface, shape-controlled by hydrophobic/philic boundaries, 

and squeezed into “button” shape by non-functional soft substrate (e.g. non-

swelling gel) before cross-linked to form the desired heterogeneous structure.  
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Figure 6.1 (a) Schematic view of the heterogeneous hydrogel structure patterned by 
hydrophobic/philic surface (b) photos show the fabrication process of the 
heterogeneous hydrogel structure patterned by hydrophobic/philic surface.    

To prepare the non0functional soft substrate, Acrylamide powders were 

dissolved in DI water with the amount of acrylamide 14.0 wt%. N,N’-

Methylenebisacrylamide (BisAA or MBAA) was used as a cross linker, with 

N,N,N′,N′-Tetramethylethylenediamine (TEMED) used as accelerator and 

Ammonium Persulfate (APS) as thermoinitiator, the molar ratios are 0.028, 

0.031 and 0.152 mol%, respectively (relative to acrylamide monomer). 

Therefore, I have added 0.00085g BisAA, 0.00139g APS and 1.13ul TEMED 

into the 14.0 wt% acrylamide.  
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The functional hydrogel used are Poly(Acrylamide-Sodium Acrylate), created 

from poly-acrylamide (PAAm) network with Sodium Acrylate (SA) which 

contains free positive sodium ions. The crosslinking agent N,N’-

Methylenebisacrylamide (BisAA or MBAA), with N,N,N′,N′-

Tetramethylethylenediamine (TEMED) and Ammonium Persulfate (APS) 

used as initiators for the polymerization process. In order to prepare the 

different ionic concentration of the gels for different swelling/de-swelling 

behaviour, the amount of Sodium Acrylate (SA) has been modified, details 

shown on Table 6.1. 

Table 6.1 The detailed concentration for different composites of two hydrogel blocks  

 

Functional hydrogel patterns  Pattern I Pattern II 

Acrylamide (ul) 94.08 94.08 

Sodium Acrylate (ul) 26.88 80.64 

BisAA (ul) 17.47 17.47 

Food dye (ul) 192.5 138.5 

N,N,N′,N′-Tetramethylethylenediamine 
(TEMED, ul) 

0.84 0.84 

Ammonium Persulfate (APS, ul) 8.4 8.4 



 

 

146 
 
 

6.4    Results and discussion 

6.4.1  Swelling and de-swelling  

The gel swelling and de-swelling can happen when immersed in different 

concentrations of PBS (phosphate buffered saline) solution and DI water 

depending on ionic concentration of the gel and the solution. Fig. 6.2a-c 

demonstrate how the swelling and de-swelling behaviour is recorded, by 

showing a dried cylinder-shaped gel swelling for 35 minutes in different 

concentrations of PBS solution and DI water. The height of the swelling 

hydrogel was controlled by a cover slip, and the diameters were 

experimentally measured for swelling ratio calculation, given by swelling 

ratio=dm/d0, where d0 is the original diameter for the gel pattern before 

immersing in different solutions. dm is the measured diameter for the gel 

pattern after swelling or de-swelling behavior. From the experiment results, it 

can be seen that when immersed in DI water, both of the hydrogel pattern 

have swelled, when immersed in 0.1M PBS, the higher concentration of 

hydrogel pattern (pattern I) swell while the lower concentration of hydrogel 

pattern (pattern II) de-swelling, when immersed in 0.5M PBS, due that the 

concentrations of both pattern I and II are lower than 0.5M PBS, in this case, 

all patterns behave de-swell which as expected.     
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Figure 6.2 Swelling ratio behaviour at (a) 0.1M PBS (b) 0.5M PBS and (c) DI water 
for different composites of pattern I and pattern II. 

6.4.2  Single configuration demonstration   

Single configuration 3D surface shape control has been demonstrated by 

selectively swell and de-swell the heterogeneous functional hydrogel blocks 

with different composites/stimuli-responsive properties which are assembled 

on the same substrate as shown previously in Fig. 6.1. In this experiment, 

the pink coloured hydrogel block in Fig. 6.3 swelled in the 0.1M PBS 

solution, causing localized surface raising. The red coloured hydrogel block 

de-swelled in the same solution, causing localized surface concaving. When 

the substrate was detached from the bottom of the solution container, a 

complex surface with raised (pink area) and concaved (red area) surface was 

achieved as shown in Fig. 6.3. 
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Figure 6.3 Photos showing hydrogel blocks with different composites swelling and 
de-swelling over time in 0.1M PBS, causing localized surface raising and concaving 
deformations.  

6.4.3  Re-configuration characterization  

Due to the heterogeneous nature of the functional hydrogel layer, the swelling 

vs. de-swelling spatial configuration can change responding to the external 

stimulation. By changing the ion concentration of the PBS solution, initial 

reconfigurable gel deformations were achieved (flat shape – “S” shape – “C” 

shape and “W” shape). This responsive shape morphing demonstration was 

shown in Fig. 6.4. When immersed in DI water, the gel started bending to “C” 

shape. When immersed inside the PBS concentrations with 0.1M and 0.5M, 
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the hydrogel structure shaped to “S” shape and “W” shape respectively. This 

is a combined result from: 

l Hydrogel block-B (pink coloured) changes from deswelling to swelling 

state, responding to the PBS concentration decrease. 

l Hydrogel block-A (red coloured) maintains high ratio swelling.  

 

 

 

 

 

 

Figure 6.4 (a) Schematic illustration showing hydrogel structure shape 
reconfiguration with different shapes of “S”, “W” and “C” with (b) corresponding of 
photos view.   

Such reconfigurable response shaping hydrogel shed a light on the great 

potential of sensing and actuation applications with complex 3D morphing 

materials. While this research currently focuses on ionic concentration 

related response to achieve 3D morphing patterns, other stimulations such as 

temperature, electrical and physical constrains could all affect the swelling 
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behaviour. Meanwhile, hydrogel is the soft material and can be tuned even 

more elastic and conductive by adding the nanoparticles into it, to achieve an 

integrated multilayer device with electro-luminescent responsive behaviour. 

It is foreseeable, that more advanced functions can be achieved with 

additional hydrogel functional blocks, which enabling next-generation 

flexible electronics with heterogeneous layered structures. 

6.5    Chapter Summary 

In summary, the design, fabrication and characterization of well-defined 

controllable morphing technology by patterning and controlling the variform 

of hydrogel droplets onto hydrophobically patterned surface, which to 

achieve the advanced and complex 3D morphing structures. The 

investigation considers deposited different composites of functional hydrogel 

droplets (with swelling ratio mismatch) onto patterned hydrophobic surface 

(a “two-parallel plate” configuration, shape-controlled by hydrophobic 

boundaries) to generate the heterogeneous layer. This unique way of 

generating 3D morphing structures could have potential applications in ionic 

concentration sensing, PH sensing and soft robotics.  
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Chapter 7 

Conclusion and Future Possibilities   

7.1    Conclusion  

In general, this thesis discussed the research in developing elastic instabilities 

induced Strain-Gated logic sensing, Topo-Optical sensing and advanced 3D 

morphing actuation system. The engineering approach was mainly based on 

theories and technologies relevant to soft materials and associated micro-

fabrication methods. 

The elastic instabilities growth within the multi- layer elastomer systems has 

been discussed. It was observed that when a super-flexible multi-layer 

substrate with modulus mismatch was compressed under large strain, the 

surface would deform, and the elastic instabilities would evolve. By designing 

the mechanical properties and film thickness, different types of instabilities 

(e.g. wrinkles, creases, folds) have been observed and characterized on both 

plain and patterned surface. Patterned Au thin hard film layer has been 

designed to achieve the controllable formation of surface creasing and 

patterned micro-hole arrays thin hard film layer for controlling the local 

energy concentration and spatial location of the required deep creasing 

patterns. 
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Chapter 4 discussed the development of test structures for the realization of 

super-flexible strain-gated logic transducers with a high strain sensing range 

(up to 60%) by allowing intimate, mechanically conformable integration with 

soft materials. Such sensors with the ability to detect multiple strain values 

have been designed and fabricated through dual self-assembly monolayer 

(SAM) based method. The arrayed and interconnected “multiple finger” Au 

electrode structures with different gap value Lg are demonstrated to generate 

the stepwise electro-resistance sensing signals. Under mechanical in-plane 

compression, the surface instabilities of creases can be generated in between 

the finger electrodes that will bring the initially separated finger electrodes 

into contact sequentially due to their different Lg, the resistance displays a 

drop before and after the contact of each finger electrodes to generate the 

stepwise sensing signal. The designed devices have been developed to explore 

the geometry design effect on the electrode-elastomer “stiff film on soft 

elastomer” surface deformation. The enabled stepwise strain-electrical 

resistance switching is suitable for future interconnected sensor array type of 

super-compressible devices. 

In the work discussed by chapter 5, a flexible topo-optical sensing technology 

was successfully achieved by employing functional luminescence composites 

in multi-layer elastomer structures (casting and drying a drop of optical 

indicator solution on the plasma treated PDMS surface), to translate surface 

topography into optical signal by inducing photo-luminescence function. This 

has been realized by the controllable formation of creasing/folding patterns 
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at threshold substrate strains. By designing the structural patterned 

templates with various geometrical inputs of lattice patterns, the threshold 

strains can be tuned. Apart from the threshold strains, folding-in depth 

distribution, results repeatability, and signal noise ratio (SNR) optical pattern 

contrast have also been studied.  

In order to improve the SNR and contrast, a coated thin optical Iridium-III 

indicator layer has been introduced with which the photoluminescence can 

be largely quenched by the presence of oxygen. When the surface is 

functionalized with Iridium-III under mechanical compression, the self-

folded creasing surface could create a hypoxia condition that emitted strong 

red luminescent light, while surfaces exposed to ambient air remain dark due 

to oxygen quenching effect. Thus the noise background has been removed 

and the SNR contrast is improved when compared with FOA. For such ultra-

high contrast topo-optical sensing approach that coupled by fluorescent light, 

the deforming super-flexible elastomer part of the sensing system is 

physically separated from the fixed rigid detector and signal processing part 

during operation. Since there is no metal interconnects on the deforming 

substrate, this development has shown an alternative solution to the 

challenges faced by stretchable/super-flexible sensor packaging, providing 

opportunities for future applications in tuneable optics and stretchable 

electronics. 

This thesis also discussed the initial study into the advanced 3D morphing 

actuation technology, where an innovative way of printing and patterning soft 
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functional hydrogel morphing structure has been focused to develop the 

heterogeneous layered structures of hydrogel to generate reconfigurable 3D 

morphing device. In chapter 6, a prototype of controllable 3D morphing 

transducers by functional different composites of hydrogel has been achieved. 

The functional hydrogels were deposited onto the patterned hydrophobic 

surface, after that, such functional hydrogels were covered with non-swelling 

substrate to transfer the hydrogels from mask to such soft substrate. Then, 

the transferred soft functional material was immersed inside the different 

solutions (e.g. PBS, DI water) to achieve the controllable shape patterns 

generation. Currently some initial configurations are achieved such as S, W 

and C shape due to the different swelling and de-swelling ratios. Such 

complex 3D soft structures can be potential used such as flexible electronics, 

soft robotics, and microfluidics.  

7.2    Future Possibilities 

Further to the work discussed in this thesis, some research challenges remain 

and more works are required for further structure optimization.  

As described in session 4.3.4, the Au interconnects along the tension of y 

direction were increasingly likely to break due to the Possion effect, thus only 

the two-step electrical sensing was achieved. To address the challenge, future 

work will focus on optimizing the interconnect designs for better protection 

and improving stepwise electrical signal.  
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In chapter 5, a hardening skin layer was created by uniform plasma treatment 

of PDMS surface. A different approach would be to selectively treat the PDMS 

surface, which means some parts of the PDMS surface been treated with 

oxygen plasma to create the hardening thin layer while others are not. 

Therefore, due to the modulus mismatch on surface and cross different layers, 

much more complex micro patterns could be generated such as “N”, “U”, “T” 

or even LETTERS, which can be potentially used as bio-medical substrates 

for bio-marking or bio-tracing. 

Currently, the time lapsing of the signal intensity start to drop at 75 h for the 

Ir-III at ε = 0.52, due to the oxygen sensitivity nature of Ir-III. Therefore, the 

potential application for adaptive topo-optical grid could be promising for 

some biological applications (minutes to days), where the oxygen 

concentration can be controlled at relatively low level in bio-media (i.e. 

aqueous solutions). However, for a long period of sensing time (such as for 

several weeks), the development of long lasting/permanent high contrast 

topo-optical sensing mechanism is of great importance, which could be 

specialized in luminescent materials in the future so that the high contrast 

window would be likely to be extended to weeks or even longer.   

Most optical performances demonstrated in this thesis were quantified by 

microscope. When under the mechanical stimuli, the created microscopic 

folds are usually difficult to be observed by the naked eye. The future plan is 

to make it scalable which enable to apply this high contrast topo-optical 

sensing system for wider application field, such as under the macro-scale 
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(like center-meter scale) and can be captured by the eyeball directly and 

clearly. Therefore, the idea of macroscopic topo-optical sensing is interesting 

for its convenient implementation/integration in scaling-up applications, 

which could be as part of the future work. 

In chapter 6, initial experimental works are presented to achieve the 

functional hydrogel based 3D morphing structures. For further 

understanding of the swelling and de-swelling performance, numerical 

analysis (e.g. ABAQUS FEA with hyper-elastic material model) can be used to 

perform the behaviour of substrate and hydrogel patterns. In order to 

understand how the convex and concave configuration can be generated, the 

simulation analysis enables to explain whether a tensile stress (σ) or a 

compressive stress (σ) can be induced on the top surface of the substrate, 

which causes either the clockwise or counter-clockwise bending moment (M). 

Furthermore, currently the research focuses on ionic concentration related 

response, other stimuli (e.g. temperature, electrical and physical constrains) 

could all affect the swelling behaviour that could be as part of the future work. 
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Appendix 1 

Run-sheet of PDMS bilayer creasing with Au micro-pattern embedded by SAM treatment.  
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Appendix 2 

Run-sheet of PDMS bilayer creasing with Au embedded-SAM with MPTMS.  
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Appendix 3 

Publications and award certification are presented in the following pages.  
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Appendix 4 

Publications and award certification are presented in the following pages.
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Researchers discover novel optical sensing
technology
17 April 2020
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Researchers at Northumbria University have
developed a new optical sensing technology which
can light up areas of an object or material by
creating microscopic wrinkles and folds within its
surface. 

Inspired by the way the outer layer of plants and
animals can change color in nature, researchers
have combined their expertise in physics and
chemistry to create the new technology. It could
have a variety of practical applications, including
within flexible wearable devices, electronics, and in
3-D printing. The research was carried out by Dr.
Ben Bin Xu, Dr. Yifan Li and Dr. Valery
Kozhevnikov, from Northumbria University,
supported by EPSRC and the Royal Society Kan
Tong Po International Fellowship 2019.

There are two specific elements to the research.
The first was the creation of a thin 'film' or material
which, when stimulated with a mechanical or
electronic signal, results in microscopic folds being
created on its surface, usually too small to be seen

with the naked eye. The second element was the
creation of a chemical 'paint' which is applied to the
material. When the folds are created in the surface,
the resulting change in oxygen levels within the
'paint' leads to a chemical reaction. This creates a
luminescent effect, making the surface of the
material appear to 'light up' in the area where the
fold has occurred.

Dr. Xu, an associate professor in Mechanical
Engineering who led the project said: "Wrinkles and
folds are usually unwanted in engineering terms.
Similarly, an oxygen quenching effect is not popular
in fluorescence science. However, through micro-
engineering, magic happened, and two unwanted
phenomena were turned into a responsive and
programmable 'fold to glitter' function."

When subjected to mechanical stimuli, elastomeric
materials such as that created by the Northumbria
University researchers can undergo surface
changes, such as wrinkles and cracks. This can be
used to create switchable optical features and
structural color with dynamic luminescent patterns.
The phenomenon of elastic wrinkling and folding
exists widely in nature and there has been much
research by academics to understand the
mathematical and physical science behind these
changes and to explore how this could be used for
innovative engineering solutions.

The research paper setting out the findings has
been published in scientific journal Nature
Communications and it is hoped this latest research
will create new opportunities for designing the next
generation of flexible/wearable devices. 

  More information: Cong Wang et al. A flexible
topo-optical sensing technology with ultra-high
contrast, Nature Communications (2020). DOI:
10.1038/s41467-020-15288-8
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The mechanics study of surface morphology
has led to the discovery of the optical sensing
technology. Credit: Northumbria University

Shardell Joseph
Materials World magazine, 3 Jun 2020

Creating folds on the surface of materials
has led to a ‘fold-to-glitter’ optical
technology. 

With potential applications in flexible wearable,
healthcare and or engineering devices, the
technology proves, for the first time, that elastic
folding on the surface of soft matter can enable
high-contrast optical sensing. 

Creating folds on the surface of materials has
led to a ‘fold-to-glitter’ optical technology, with
potential for application in flexible and wearable
healthcare and engineering devices. 

According to researchers from Northumbria
University, UK, the technology proves, for the
first time, that elastic folding on the surface of
soft matter can enable high-contrast optical
sensing. 

‘Wrinkles and folds are usually unwanted in
engineering terms, as they represent structural
failures,’ says Ben Xu, Associate Professor in
Mechanical Engineering at the University. ‘In
this research, we harness this reversible
transition.’ 
The soft multi-layer of the elastomeric material
is designed and micro-engineered, and then
subjected to mechanical stimuli. The desired
wrinkles and fold patterns are, in turn, realised
on the surface in a controlled and targeted way,
to create switchable optical features and structural colour with dynamic luminescent patterns. 

‘The actuated folds in the soft material can be easily observed from top view under fluorescence
microscope with the assistance from an optical indicator layer,’ says Xu. ‘By further applying a thin layer,
around 600nm, of functional phosphorescent cyclometallate on the surface, the targeted folding can lead
to an ultra-high-contrast optical sensing.’ 

The research consists of two different elements – creating a thin film and a chemical paint. When
stimulated with a mechanical or electronic signal, the thin film results in microscopic folds being created on
its surface, usually too small to be seen with the naked eye.

This is followed by applying the chemical paint developed by the researchers to the material. When the
folds are created in the surface, the resulting change in oxygen levels within the paint leads to a chemical
reaction, creating a luminescent effect. This makes the surface appear to light up in the region where the
fold exists. 

According to Xu, some applications have already been demonstrated. These include an in-plane topo-
optical sensor to detect large surface strains, a dynamic 2D spy barcode that can hide information, an
adaptive topo-optical luminescence grid and a flexible bending sensor to detect out-of-the-plane bending
degree. The team plans to integrate the technology in a wider range of applications. 
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‘Due to the elastic nature of the multi-layer structure and the instability morphology, this technology can be
developed into a wearable device with proper [integration of] other electronic units, or combined with
signal reading/interpreting mechanism to increase the visibility of generated high-contrast optical signal,’
Xu explains. 

‘We are aiming to develop one or two flexible devices for epidermal diagnosis or therapeutic application
next, with proper funding support.’
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Scientists from Northumbria University have
developed a new optical sensing technology
which can light up areas of an object or material
by creating microscopic wrinkles and folds
within its surface.

Inspired by the way the outer layer of plants and
animals can change colour in nature, the
researchers have combined their expertise in
physics and chemistry to create the new
technology.

It could have a variety of practical applications,
including within !exible wearable devices,
electronics, and in 3D printing.

Their research paper setting out the "ndings,
entitled A !exible topo-optical sensing technology
with ultra-high contrast, has been published in the
prestigious scienti"c journal Nature
Communications.

There are two speci"c elements to the research.
The "rst was the creation of a thin ‘"lm’ or material
which, when stimulated with a mechanical or
electronic signal, results in microscopic folds being
created on its surface, usually too small to be seen
with the naked eye.

The second element was the creation of a chemical
‘paint’ which is applied to the material. When the
folds are created in the surface, the resulting
change in oxygen levels within the ‘paint’ leads to a
chemical reaction. This creates a luminescent e#ect,
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making the surface of the material appear to ‘light
up’ in the area where the fold has occurred (see
diagram below).

The research was carried out by Dr Ben Bin Xu and
Dr Yifan Li, from Northumbria University’s
Department of Mechanical and Construction
Engineering, and Dr Valery Kozhevnikov from
Northumbria’s Department of Applied Sciences.

Dr Xu, an associate professor in Mechanical
Engineering, led the project and said: “Wrinkles and
folds are usually unwanted in engineering terms.
Similarly, an oxygen quenching e#ect is not popular
in !uorescence science.

“However, through micro-engineering, magic
happened, and two unwanted phenomena were
turned into a responsive and programmable ‘fold to
glitter’ function.”

When subjected to mechanical stimuli, elastomeric
materials such as that created by the Northumbria
University researchers can undergo surface
changes, such as wrinkles and cracks. This can be
used to create switchable optical features and
structural colour with dynamic luminescent
patterns.

The phenomenon of elastic wrinkling and folding
exists widely in nature and there has been much
research by academics to understand the
mathematical and physical science behind these
changes and to explore how this could be used for
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innovative engineering solutions.

It is hoped this latest research will create new
opportunities for designing the next generation of
!exible/wearable devices.

Professor John Woodward, Pro Vice-Chancellor of
Northumbria University’s Faculty of Engineering and
Environment, said: “This is exciting new research
with a number of emerging applications in !exible
and wearable electronics and bio-devices.”

The work at Northumbria is part of a wider
international collaborative research programme
which also involved Prof Jie Kong from
Northwestern Polytechnical University in China and
Prof Ben Zhong Tang from Hong Kong University of
Science and Technology.

It has been supported by the Engineering and
Physical Sciences Research Council (EPSRC) and the
Royal Society Kan Tong Po International Fellowship
2019.

Professor Laurent Dala, head of Northumbria’s
Department of Mechanical and Construction
Engineering, added: “The outcomes show promise
for future international collaboration between
Northumbria University, Northwestern Polytechnic
University, China and Hong Kong University of
Science and Technology and indicate the bene"t of
UKRI "nding International research teams through
fellowship grants.”

Find out more about Northumbria
University’s Department of Mechanical and
Construction Engineering and Engineering Materials
and Mechanics Group (EM²G).
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Fold to Glitter –
researchers discover
novel optical sensing
technology
Scientists from Northumbria University have developed a new optical
sensing technology which can light up areas of an object or material by
creating microscopic wrinkles and folds within its surface.

Inspired by the way the outer layer of plants and animals can change colour
in nature, the researchers have combined their expertise in physics and
chemistry to create the new technology.

It could have a variety of practical applications, including within flexible
wearable devices, electronics, and in 3D printing.

Their research paper setting out the findings, entitled A flexible topo-
optical sensing technology with ultra-high contrast, has been published in
the prestigious scientific journal Nature Communications.

There are two specific elements to the research. The first was the creation
of a thin ‘film’ or material which, when stimulated with a mechanical or
electronic signal, results in microscopic folds being created on its surface,
usually too small to be seen with the naked eye.

The second element was the creation of a chemical ‘paint’ which is applied
to the material. When the folds are created in the surface, the resulting
change in oxygen levels within the ‘paint’ leads to a chemical reaction. This
creates a luminescent effect, making the surface of the material appear to
‘light up’ in the area where the fold has occurred (see diagram below).

https://www.nature.com/articles/s41467-020-15288-8
https://www.nature.com/articles/s41467-020-15288-8


The research was carried out by Dr Ben Bin Xu and Dr Yifan Li, from
Northumbria University’s Department of Mechanical and Construction
Engineering, and Dr Valery Kozhevnikov from Northumbria’s Department of
Applied Sciences.

Dr Xu, an associate professor in Mechanical Engineering, led the project and
said: “Wrinkles and folds are usually unwanted in engineering terms.
Similarly, an oxygen quenching effect is not popular in fluorescence
science.

“However, through micro-engineering, magic happened, and two unwanted
phenomena were turned into a responsive and programmable ‘fold to
glitter’ function.”

When subjected to mechanical stimuli, elastomeric materials such as that
created by the Northumbria University researchers can undergo surface
changes, such as wrinkles and cracks. This can be used to create switchable
optical features and structural colour with dynamic luminescent patterns.

The phenomenon of elastic wrinkling and folding exists widely in nature
and there has been much research by academics to understand the
mathematical and physical science behind these changes and to explore
how this could be used for innovative engineering solutions.

It is hoped this latest research will create new opportunities for designing
the next generation of flexible/wearable devices.

Professor John Woodward, Pro Vice-Chancellor of Northumbria University’s
Faculty of Engineering and Environment, said: “This is exciting new research
with a number of emerging applications in flexible and wearable electronics
and bio-devices.”

The work at Northumbria is part of a wider international collaborative
research programme which also involved Prof Jie Kong from Northwestern
Polytechnical University in China and Prof Ben Zhong Tang from Hong Kong
University of Science and Technology.

It has been supported by the Engineering and Physical Sciences Research
Council (EPSRC) and the Royal Society Kan Tong Po International
Fellowship 2019.



Professor Laurent Dala, head of Northumbria’s Department of Mechanical
and Construction Engineering, added: “The outcomes show promise for
future international collaboration between Northumbria University,
Northwestern Polytechnic University, China and Hong Kong University of
Science and Technology and indicate the benefit of UKRI finding
International research teams through fellowship grants.”

Find out more about Northumbria University’s Department of Mechanical
and Construction Engineering and Engineering Materials and Mechanics
Group (EM²G).

Northumbria is a research-rich, business-focused, professional university
with a global reputation for academic excellence. Find out more about us
at www.northumbria.ac.uk
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ARTICLE

A flexible topo-optical sensing technology with
ultra-high contrast
Cong Wang 1, Ding Wang1, Valery Kozhevnikov2, Xingyi Dai3, Graeme Turnbull 2, Xue Chen1, Jie Kong3✉,
Ben Zhong Tang 4✉, Yifan Li 1✉ & Ben Bin Xu 1✉

Elastic folding, a phenomenon widely existing in nature, has attracted great interests to

understand the math and physical science behind the topological transition on surface, thus

can be used to create frontier engineering solutions. Here, we propose a topo-optical sensing

strategy with ultra-high contrast by programming surface folds on targeted area with a thin

optical indicator layer. A robust and precise signal generation can be achieved under

mechanical compressive strains (>0.4). This approach bridges the gap in current mechano-

responsive luminescence mechanism, by utilizing the unwanted oxygen quenching effect of

Iridium-III (Ir-III) fluorophores to enable an ultra-high contrast signal. Moreover, this tech-

nology hosts a rich set of attractive features such as high strain sensing, encoded logic

function, direct visualisation and good adaptivity to the local curvature, from which we hope it

will enable new opportunities for designing next generation flexible/wearable devices.

https://doi.org/10.1038/s41467-020-15288-8 OPEN

1 Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
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Engineering, Northwestern Polytechnical University, Xi’an 710072, China. 4Department of Chemistry, The Hong Kong Branch of Chinese National Engineering
Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear
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One of the latest trends in next generation micro-electronics
technology is to develop flexible optical sensors and
actuators, which holds promises in strain/pressure sen-

sing1–4, wearable devices5–7, electronic skin8–10, camouflaging11,
etc. By utilizing soft materials, recent efforts have explored the
flexible optical technology with extra controllability and on-
demand color changing such as triboelectric–photonic12,13, piezo-
electroluminescent14, piezo-photonics15–17, mechano-responsive
luminescence (MRL) and mechanochromism18. Among those
approaches, MRL, a tunable and switchable luminescence (or
chromism) in response to mechanical stimulus19,20, have attracted
considerable interests for their potentials in sensing/micro-devi-
ces21, data storage22,23, flexible display24,25, security pattern/
inks26, etc. However, the optical performance has been discounted
by aggregation-caused quenching (ACQ)27,28, thus limit the fur-
ther applications for MRL materials. Whereas the current
advances in Aggregation-induced emission (AIE) have achieved
emergence characteristics at molecular level to overcome the
drawbacks of ACQ29–31, novel optical sensing mechanisms remain
yet to be exploited to enable wider scale-up perspectives.

Inspired by epidermal color changing scheme from nature,
researchers have been able to amplify signal by generating
luminescent molecular dominos19 thus realize multi-state optical
switching by engineering micro/nano-structures on surface18.
By far, all practiced strategies will easily result into a noisy
and low-resolution signal, which poses challenges in triggering
controllable signals for scalable applications. Subject to the
mechanical stimuli, elastomeric materials can undergo surface
morphological change (e.g. wrinkles and cracks) which has been
used to create switchable optical features25,32, and structural
colour with dynamic luminescent patterns33. Zeng et al reported
an interesting mechanochromic device by using cracks and
folds34 to trigger optical signals within a moderate stretching
strain of 0.2. While the understandings on controllably generating
elastic instability morphologies have been extended35–38, even to
form 3D structures39–41, surface topology enabled optical sensing
in response to large compressive strain (more than 0.4) has not
been reported elsewhere.

In this work, we propose a topo-optical sensing strategy with
ultra-high contrast by constructing a patterned elastic multilayer
coated with a nanometer thin optical indicator layer. The keys to
achieve such high contrast topo-sensing strategy include the
targeted folding on elastic surface guided by the pre-defined lat-
tice pattern and the autonomous optimization of contrast by
selectively oxygen quenching of the coated Iridium-III complexes
(Ir-III) fluorophore layer. The unique self-contact geometry of
folding area preserves intensity by mechanically creating a
hypoxia zone, whereas the intensity reduces significantly for the
rest of surface due to the oxygen-quenching at the open air.
Moreover, we successfully demonstrate several conceptual designs
based on this topo-sensing approach such as an in-plane strain
sensor, a 2D spy barcode, an adaptive topo-optical grid with
potential for bio-applications and a flexible bending sensor, to
shed the lights on the future applications in micro-devices and
flexible/wearable electronics.

Results
Configuration of targeted folding on elastic multilayer. The
multilayer system consists of a soft polydimethylsiloxane film
(PDMS, shear modulus Gsub ≈ 0.15 MPa, thickness of 125 µm) on
a vinylpolysiloxane mounting substrate (VPS, shear modulus ≈
0.35MPa, thickness of 1.5 mm). Oxygen plasma was applied to
create a hard skin layer (shear modulus Gf ≈ 1.8 MPa, thickness of
100 nm) on the top of PDMS film. By applying a uniaxial com-
pression (Fig. 1a), εcomp ¼

L0
L " 1, an elastic morphological

development is shown on the surface. A similar setting has been
previously used to configure wrinkle pattern by pre-placing
Bravais lattice holes on the surface at low compression42, where
an unexpected formation of wrinkle-to-crease/folding transition
was discovered occasionally under a higher compression (ε > 0.4)
but have not been studied further. The key in this work is to
investigate the controllable formation of targeted crease/fold at
higher compression and translate this topographical transition
into a dedicated sensing signal in responding to a compressive
strain.

We first compare the development of elastic morphologies with
reflective optical microscopy between a plain (Fig. 1b) and a
patterned surface with a single-line array of micro-holes as shown
in Fig. 1c (diameter= 60 μm, distance D= 120 μm, hole depth h
= 12 μm, Supplementary Movie 1). Wrinkle patterns are devel-
oped globally for both plain and centre lattice hole patterned
surfaces at low compressive strains and evolved into visible
textures when strain increases to ε= 0.27. A strain energy
localization guided by the pre-placed pattern can be clearly
identified along the micro-holes array. The surface presents a
post-wrinkling development with mixed morphologies at middle
compressive strains (i.e. ε= 0.38). According to Kim and co-
workers, surface wrinkles will first undergo period doubling,
followed by the formation of creases under a modulus ratio
(Gf/Gsub) between 5.86 and 13.8943,44. A threshold strain (εth) is
the compressive strain when the first fold occurs on surface,
which is variable against the setting factors for multilayer. Here, a
compressive strain of ε= 0.52, which is slightly higher than εth, is
chosen to compare folding conditions at the same energy level.
We find that a few random folds (pointed by red arrows in
Fig. 1b) appear on the plain surface, while a single big fold locates
at the area that is defined by the pre-placed holes on surface
(dotted line in Fig. 1c). Single-line array with varied pattern
shapes (circles, diamonds, squares, triangles and hexagons,
Supplementary Fig. 1) and different D/Φ (Supplementary Fig. 2)
are also attempted, where a range of εth from 0.42 to 0.58 can be
achieved by designing the shape and D/Φ. However, the εth shows
less sensitivity on the depth of lattice pattern (Supplementary
Fig. 3), which agrees with the reported results on configuring the
wrinkle patterns with Bravais lattice45.

Realization of topo-optical sensing. The concept of translating
surface topology into optical signal (Topo-optical sensing) is
initially facilitated (Fig. 1a) through casting and drying a drop of
solution containing 1.3 mM fluorescein o-acrylate (FoA) on the
elastic surface, to fulfil the photo-luminescence function. When
the fold occurs, the in-plane length (L) locally develops into a self-
contact depth (Hc, Fig. 1a), lead to an optical signal from the top
view because of the volumetric accumulation of intensity. By
assessing the optical properties for the morphologies at (ε= 0.52)
for both plain and micropatterned surfaces under laser scanning
confocal microscopy (LSCM, Fig. 1d, e), a single-line optical
signal is clearly shown on the location defined by the micro-
pattern with an enhanced intensity (side view). We define a
signal-to-noise ratio (SNR) as, SNR ¼ peak intensity

noise , to quantitatively
analyse the optical signal, where the peak intensity is collected
from the signal of folded line and the noise represent the average
luminescence signals originated from the background surface
(excluding the folding line). In Fig. 1f, a higher SNR value is
obtained for the patterned surface than that of plain surface. With
a hole array, surface energy can be guided to form a single fold
with a deeper self-contact (Fig. 1e), rather than a distractive
energy localization with multiple folds/creases on the plain sur-
face. From the LSCM 3D reconstruction image (green opened
book, Fig. 1g) for the FoA patterned surface, we note that the
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signal noise on background remains considerably high, due to the
discontinuous fluorescein aggregation caused by small creases/
folds45.

Selectively oxygen-quenching induced ultra-high contrast. The
Iridium-III (Ir-III) complex is an oxygen-quenching phos-
phorescent material which usually emits orange-red coloured
light (λemission= 580 nm, Fig. 2a) in hypoxia condition after
being excited45. Our aim is to utilize the topological hypoxia
zone, created by targeted folding, to preserve the optical signal
on the self-contact region for the Ir-III coating layer (Fig. 2b).
Exposed to the oxygen in open air, Ir-III complex luminescence
outside of the folding area is mostly eliminated by the oxygen
quenching effect, leading to a topo-optical signal with ultra-
high contrast (see “blade” pattern in Fig. 2c and intensity
analysis in Fig. 2d). A nominal line contrast (NLC) is defined as
NLC ¼ peak intensity

mean average of the line intensity, to describe the optical signal
distribution for the selected area. After analysing the NLC data
(Fig. 2e) for the selected lines in Figs. 2b, 1e, an NLC value of 10
is achieved for the Ir-III coated surface, which is 5 folds of the
NLC (~2) for FoA coated surface.

We next scale this topo-optical relationship (SNR versus Hc,
Fig. 2f) to understand the geometrical influence on the quality of
signal. Small SNRs of 0.47 ± 0.04 are captured when the fold first
occurs at εth with an onsite Hc ≈ 1.1 μm, for both Ir-III and FoA
coated surfaces. When Hc grows higher than 1.6 μm, a stable SNR
plateau (SNR ≥ 2) is emerging for FoA coated surface which

indicate that the physical accumulation along the folding depth
reaches a threshold of intensity to enable a quality optical
feedback. This development of self-contact depth, around 500 nm
in distance, is very rapid within a strain window of ~0.037 ±
0.017. Given by a nominal strain speed of 0.02 s−1, the sensing
signal can be instantly captured in microscope within 1 s. In
contrast, an increasing trend is obtained for Ir-III coated surface
at the same threshold when Hc increases, due to the oxygen
quenching effect at the open air. When the Hc reaches 13.8 μm,
the SNR on Ir-III coated surface increases significantly to 12.5
which is 6 folds of that from FoA coated surface. By preserving
the peak intensity at self-contact area, the Ir-III coated surface
achieve higher SNRs when Hc is larger than 1.6 μm.

The time-dependent degradation of photoluminescent signal is
assessed by tracking the peak and background signals at εcomp=
0.55 (Hc ~ 13.8 μm) for up to 200 h. The results for FoA coated
surface (Fig. 2g) show a retainment of intensity after 200 h with
less than 8% decay for both peak and background signals. For Ir-
III coated surface, a rapid decrease of around 92% intensity is
discovered in first 6 h for the background signal, whilst the peak
signal remains stable for the first 70 h, then starts to fade and
reaches a decrease of 54% in 200 h. The quenching kinetics is
analysed for the Ir-III films on PDMS surfaces with varied
thicknesses (Supplementary Fig. 4) in the open air, where the
optical signals are quenched for about 5 h in all layers without
compression. Under compression, the topology enabled hysteresis
results (Fig. 2g) into a high optical contrast for about 65 h, then
the peak intensity eventually reduces due to the diffusion of
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oxygen into the elastic solids. The kinetics of diffusing oxygen
into the self-contact region of PDMS surface is complicated as it
corresponds to the factors such as temperature, local oxygen
concentration, humidity, surface porosity, chemical composition,
etc, we thus defer this understanding into future study.

Numerical analysis of self-contact depth guided by surface
pattern. We next perform numerical analysis with a commercial
finite element simulation software to understand the mechanism
of generating targeted folding. The single array of holes with
varied geometrical inputs are considered to simulate the in-plane
(Supplementary Movie 2) and out of plane (cross-section, Sup-
plementary Movie 3) strain energy localization. By comparing the
results for D/Φ= 1 (Fig. 3a) and D/Φ= 5 (Fig. 3b), we find that
the in-plane strain concentration for D/Φ= 1 is stronger than
that for D/Φ= 5. The out-of-plane (cross-section) simulation
results suggest a progressing deformation with the closure of hole
(initiation of Hc), development of Hc as a folded contact with
non-contact at the bottom (see Fig. 3b), then finally reaching a
fully self-contact stage (creasing type, Fig. 3a).

As described above, the development of self-contact is rapid
from an onsite Hc at εth, to the Hc that can provide enough
contrast. We next numerically analysis the εth as a function of
D/Φ (Φ= 40 μm) to study the threshold of generating optical
signal guided by hole pattern. After comparing with the
experimental results (Fig. 3c), the experimental results seem
larger than the simulation results for Φ= 40 μm, but good
agreements on the overall trend are obtained for the surface, even
for those surfaces patterned with different D/Φ. It should be
noted that we slightly over-compressed the surface to determine
the closure stage for each hole under reflective optical micro-
scope, due to the visco-elastic nature of materials. Thus, the

experimental εth in this paper are a little larger than the simulated
ones. The simulation for surface patterned with sharp corners
(diamonds, squares, triangles and hexagons) are less successful at
the moment as the current simulation programme does not allow
the mesh process to progress over the sharp corner, we then
separate the investigation in future work.

Following to the onsite of folding, further transient develop-
ment of Hc is critical in determining the intensity of optical signal.
We plot nominal self-contact depths (Hc/h) for different D/Φ
(Φ= 40 μm) as a function of compressive strain (Fig. 3d) to
understand this geometrical development. Excellent alignments
are found between the numerical outcomes and experimental
results for D/Φ= 1 and D/Φ= 5, meanwhile a slight mismatch is
presented for D/Φ= 2. A region (grey zone) with Hc/h values
between 0.15 and 1.2 located on a strain range of 0.39–0.59 is
outlined by analysing the experimental results where we can
expect the ideal optical signals. The results from cyclic testing
(Fig. 3e) indicate a good resilience on generating target folding
with a desired self-contact Hc (Hc of 10 μm for Φ= 40 μm and a
Hc of 18 μm for Φ= 80 μm, D/Φ= 2), to create enough intensity
of optical signal, after a short saturation period of 1–2 cycles. The
marathon cyclic assessment reveals a reliable reproducibility of Hc
even after 100 cycles (Supplementary Fig. 5), due to the elastic
nature of multilayer. Further study on the relaxation of folding
was performed by tracing Hc over a longer time duration, to
compare with the simulation results (Supplementary Fig. 6a) at a
nominal compressive strain (εcomp) of 0.5. The result indicates a
limited relaxation in Hc, which is in the same trend with the
theoretical approximation. Low hysteresis is observed during the
compression/recovery cycle (Supplementary Fig. 6b). The reason
could be the elastic nature of multilayer system and low
surface tension45,46 after being coated by Ir-III compound. We
then extend the surface design to the square lattice patterns
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(Supplementary Movie 4), where W is defined as the distance
between neighbouring lines (Supplementary Fig. 7). The results
suggest that varied εth at high strain can be achieved by designing
D/Φ, W/D of the lattice pattern, together with more capabilities
on 2D designs.

Demonstration of potential applications. To demonstrate the
potential of developing this topo-optical sensing mechanism into
device applications, an in-plane topo-optical sensor (Fig. 4a) is
presented to detect large surface strains, by simply configuring the
pattern parameters (shape, D/Φ, etc) for the pre-placed lattice
(Supplementary Movie 5). A programmable stepwise switching
mechanism is encoded in this design, where a reversible line
pattern could be logically switched between ‘0,0,0’ at ε= 0, ‘1,0,1’
at ε= 0.44 and ‘1,1,1’ at ε= 0.52, with corresponding optical
signals can be visualized by reflective optical microscopy and
fluorescence microscopy at the same time. This concept can be
further developed into dynamic 2D spy barcode products with
hidden information only appearing under a dedicated stain
(Fig. 4b) and an adaptive topo-optical luminescence grid (Fig. 4c),
which contains a tuneable feature on the size of grid under equi-
biaxial compression to track the cell behaviour.

Based on this topo-optical sensing strategy, a flexible bending
sensor can be developed by combining the in-plane pre-compres-
sion (εpre-c, Fig. 4d) to detect out-of-the-plane bending degree. After
releasing pre-stretching strain of substrate (stage I), we deploy the
device on the area to detect the bending level. By observing under
microscopy, the device first experiences a selective fold on the lattice
patterned surface at low degree bending (stage II), then all lattice
patterns are folded at high degree bending (stage III). A brief phase
diagram is created to distinguish the two-stage bending sensing for
the patterned surface (Φ= 80 μm, h= 12 μm, D/Φ= 1 (black line)
and 5 (red line), W/Φ= 5), where a clear map is obtained to
determine localized curvature with the provided εpre-c when the
optical signal occurs.

Discussion
We have described a topo-optical sensing strategy by targeted
generating folds on a micropatterned surface, with a coated
optical indicator layer. The elastic multilayer shows a robust and
precise optical signal by activating folds at the pre-patterned area
under certain strain values. The formation of folding patterns has
been studied with various geometrical inputs of the lattice pat-
terns and the results are in a good agreement with the predictions
from numerical analysis. An inherited automatic optimization on
optical contrast is also introduced by oxygen quenching the Ir-III
based optical indicator layer, which lead to an ultra-high contrast
by significantly reducing the background noise. We anticipate this
high-contrast topo-optical sensing strategy with the demonstrated
conceptual devices will open new windows for future applications
such as flexible/wearable electronics and bio-devices.

Methods
Fabrication of patterned multilayer elastomeric substrate. The lattice patterns
were prepared through SU-8 pillar array templates photo-lithographically pat-
terned on silicon wafer (Supplementary Fig. 8) and followed by a stamp transfer
(Supplementary Fig. 9). Single-line and square (multi-line) lattice arrays of SU-8
pillars were lithographically patterned on silicon substrates to create the stamp
template. Firstly, 1, 1, 1, 3, 3, 3-hexamethylsilazane (ACROS ORGANICS) was
spin-coated (30 s, 1000 rpm) onto the silicon wafer to promote adhesion. A thin
layer of SU-8 (2025, Micro Chem) was then spin-coated, followed by soft baking at
95 °C for 5 min, before being exposed to UV light under a mask aligner (EVG 620).
Post-exposure-bake was then performed (65 °C for 1 min, then ramped to 95 °C for
5 min). After being developed in an EC (ethylene lactate based) solution for 5 min,
the patterned SU-8 templates were cleaned by isopropyl alcohol and DI (de-
ionized) water. It was baked for another 15 min at 200 °C before stamp transfer.

The mounting substrates were made from vinylpolysiloxane elastomer (VPS,
Elite Double 22, Zhermack) and cut into rectangular strip (9 mm wide, 30 mm long
and 1.5 mm thick). The VPS strips were then mounted on mechanical vices
(Supplementary Fig. 9), before being pre-stretched uniaxially to 600% strain. A thin
layer (~125 µm) of polydimethylsiloxane (PDMS, Sylgard 184, base-to-crosslinker
weight ratio= 30:1) was spin-coated on the fabricated SU-8 pillars, followed by
60 min soft bake at 70 °C. An adhesion PDMS layer was then spin-coated (30:1)
onto the soft-baked PDMS to bond it to the mounting VPS layer. The multilayer
structures were cured at 70 °C for 8 h. An air plasma treatment (100 w, Henniker
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HPT-100) of 10 s was applied to create a thin hard skin layer on the lattice
patterned PDMS surface.

Solution casting of optical indicator layer. After the air plasma treatment, optical
indicator solutions (1.5 mM) were prepared by dissolving the dye into the absolute
ethanol and chloroform. A droplet of solution containing either fluorescein O-
acrylate (Sigma-Aldrich) or Iridium-III complex (synthesized in house following
the published route47) was then casted on the surface of multilayer. The solution
droplet then spread and dried at room temperature to form an optical indicator
layer with a measured thickness of ~600 nm.

Characterizations. Upon releasing the pre-stretched VPS mounting substrates, the
PDMS thin layer experienced uniaxial compression. Incremental deformation in a
unit nominal strain of ≈0.004 was applied to the sample during the compression
(progressing) or tension (withdrawing/recovery) by a fixed amount at regular
intervals in room temperature. A reflective optical microscope (Nikon LV-100) was
used for observation under white light. 3D and 2D fluorescence imaging was
performed using Nikon A1R LSCM system (LSCM). For all observations/tests,
multiple measurements were performed on 7–15 selected samples (areas) to
minimize the system error. For the fluorescein O-acrylate images, the scanner
selection was set to be Galvano, with laser excitation wavelength of 488 nm and
emission wavelength of 540 nm. For the Iridium-III images, the scanner selection
was set to be Galvano, with laser excitation wavelength of 406.6 nm and emission
wavelength of 595 nm. The captured fluorophore images were subsequently ana-
lysed by the MATLAB to get its light intensity data and image (surf, shading
interp). Standard deviations (error bars in the figures) were calculated based on the
mean averaging of a group of data from 7 to 9 independent measurements on
different samples.

Numerical simulation. We used the commercial simulation package—ABAQUS,
to simulate surface folding on the multilayer under uniaxial compression. The
incompressible neo-Hookean material model was used for all elastic materials in
this analysis. Structural symmetry was assumed when the fold is simulated. The
pseudo-dynamic method incorporated in ABAQUS was adopted. The geometrical
inputs have been magnified by 1000 times due to the limitation of mesh size in
ABAQUS. An element type CAX8H was used for mesh.

Data availability
The data that support the findings of this study are available via Northumbria Research
Data Management scheme and per request from the corresponding author (B.X.).

Code availability
The numerical code developed in this work is available upon request from Dr. Xue Chen
(sherry.chen@northumbria.ac.uk).
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Supplementary Figure 1. The formation of folding guided by the single line lattice pattern 

with different pattern shape, scale bar = 40 µm. 
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Supplementary Figure 2. Summary of threshold strains to achieve targeted folding on the 
surface patterned with different shape. 
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Supplementary Figure 3. Summary of threshold strains to achieve targeted folding with 

dependence on the hole depth. 
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Supplementary Figure 4 (a). The quenching observation for an Ir-III film of 450 nm; (b) 
Quenching kinetics analysis Ir-III films coated on PDMS surface with different thickness in 

the open air. 
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Supplementary Figure 5 The cyclic testing results (up to 100 cycles) for samples with F = 

80 µm (☐) and F = 40 µm (○), at D/F =2. 
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Supplementary Figure 6 (a). Comparison the simulation and experimental results for 

relaxation behaviour under a progressive e comp =0.5 for the surface with a single micro-hole 

array (F = 40 µm, D/Φ=5). (b) The hysteresis results for targeted folding depth on the surface 

with a single micro-hole array (F = 40 µm, D/Φ=1 and D/Φ=5). 
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Supplementary Figure 7 The formation of folding guided by the square lattice pattern 
with different pattern shape, W/D, and D/Φ. 
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Supplementary Figure 8 Profiling of the fabricated SU-8 array templates with different 
geometrical factors. 
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Supplementary Figure 9 The schematic illustration of fabrication process of structural 
surface by spin-coating a thin PDMS precursor layer on a lithographically made template. 
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ABSTRACT
Developing flexible sensors with a high strain sensing range could enable widespread downstream applications, by allowing intimate, mechan-
ically conformable integration with soft biological tissues. By characterizing interconnectedmetal electrode arrays on super-flexible substrates,
we have established a surface deformation control strategy of an array of strain transducers. The strain gated switches are capable of measur-
ing various compressive strains (up to 60%) by bringing metal electrodes into self-contact via creasing elastic instability beyond a threshold
substrate strain. The designed devices have been developed to explore the geometry design effect on the electrode-elastomer “stiff film on
soft elastomer” surface deformation. The enabled transducer array yielded a stepwise strain-electrical resistance switching mechanism which
opens up the potential of future interconnected sensor array type of super-compressible devices.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5079403

Flexible electronics and transducers where devices are sub-
ject to stretching, bending, and twisting forces have grown into
one of the more interesting technologies for next generation appli-
cations such as bio-medical electronics, smart skin, wearable sen-
sors, epidermal electronics, and sensors and actuators.1–10,12,16
Recent research on elastic substrates complying with local fea-
tures such as metal interconnects and integrated transducers has
shown great potential to withstand high strain deformation dur-
ing bending, compressing, and stretching.7,12–14 Such structured
elastic surfaces under compression and stretching can undergo
various deformations such as wrinkling, creasing, folding, and
buckling, which generates interest in engineering applications in
sensing and actuation.11,15–25 Among them, recently developed

metal-elastomer strain gated transducers have utilized mechan-
ically gated super-flexible electrical switches to provide sensing
mechanisms for wearable electronics.5,8,9,23

Controllably and reversibly generating creasing and other
instability patterns on the surfaces of soft materials by electrical,26
temperature,27 mechanical,28 and electrochemical29 stimulations
have attracted considerable interest in developing them into sens-
ing and actuation applications. One of the latest super-compressible
(up to 60%) strain-gated electrical switching sensing mechanisms
utilizes surface instabilities such as wrinkles and creases on soft
elastomer substrates under compression with stiff film patterns on
top (e.g., metal electrodes).5 Such devices with single-pair of metal
“finger” electrodes relying on the controllable formation of surface
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FIG. 1. (a) Schematic (middle) and microscopic image (left) of patterned multi-
switching Au strain transducer array, with Au patterns transferred from silicon
to the PDMS-VPS substrate by a dual-SAM (self-assembly monolayer) assisted
metal transfer process. SEM top-view images showing two different interconnect
configurations: (b) 4 pairs of finger transducers “F” interconnected with two bulk
contact electrodes “E”; (c) 4 pairs of finger transducers interconnected with contact
electrodes by serpentine structures (scale bars = 200 µm).

creases to bring initially disconnected regions of the metal electrode
into self-contact were previously reported.5 When compressed (x-
direction in Fig. 1), the stiff Au film (Young’s modulus 50–70 GPa)
wrinkles due to its near inextensibility. The much softer (Young’s
modulus 0.4–4 MPa) substrate areas in the gap between Au elec-
trodes can have greater deformation due to the local amplification
of strain by the stiff films nearby. At higher compression, a crease
forms in this gap between electrodes, generating the desired elec-
trodes’ self-contact switching mode.5 The measured resistance dis-
played a significant step change from ∼1013 Ω to ∼102 Ω after the
self-contact of the electrodes after the substrate compression strain
surpasses threshold values.5 The switching threshold strains can be
controlled by geometry design (e.g., Au electrode width Wf , length
Lf , and gap width Lg) as well as material and structural properties,5
and recent research in surface instabilities has shown that the defor-
mation mode can also be controlled via such designs.21 Moreover,
the latest study into surface instabilities on such heterogeneous sur-
faces with patterned regions of different materials (e.g., stiff metal
electrodes and soft elastomers) opens the possibilities for research
into advanced surface morphing and more complex application
devices.21

For future development of transducer arrays applied to a larger
area under compression, it is important to develop electrode inter-
connect technologies which should ultimately enable row-column
addressing. This paper discusses a multi-finger switching mecha-
nism with the controllable competing elastic instability growth on

super-flexible surfaces, by design and micro-engineering intercon-
nect more complex Au on polydimethylsiloxane-vinylpolysiloxane
(PDMS-VPS) bilayer structures. Such a structure was fabricated
by a dual-SAM (self-assembly monolayer) assisted metal transfer
process which transfers photolithographically patterned Au elec-
trodes (thickness = 74 nm) from silicon to the PDMS-VPS substrates
[Fig. 1(a)] with details given in the supplementary material, provid-
ing a stepwise resistance-strain response sensing mechanism which
could shed light on the future applications in widespread down-
stream applications, tunable and stretchable electronics.24–28 This
work also experimentally studied instabilities (patterned stiff and
soft regions) on heterogeneous surfaces under large compression
strains (up to 60%) which could help the development in related
theoretical studies, such as that initiated in Ref. 21.

The designed and fabricated transducer arrays and intercon-
nects are shown in Fig. 1. Each of the paired Au finger electrodes
based on the previous design5 with key dimensions (e.g., finger elec-
trode width Wf , length Lf , and gap width Lg) was interconnected
by two different configurations. Figure 1(b) shows the SEM image
(Tescan® Mira3) of the bulk interconnect configuration linking 4
pairs of finger electrode transducers (labeled F1 to F4) with 2 contact
electrodes (labeled E). Figure 1(c) shows the serpentine intercon-
nect configuration which helped protecting the Au electrodes from
damage caused by perpendicular direction stretching due to Pois-
son effect (see details in the supplementary material). This research
focuses on the relationship between the geometry design parameters
such as Wf , Lf , and Lg and 2D (top-view) deformation for the Au
electrodes and gaps in-between at different substrate compression
strains εsub. Other parameters such as the contact electrode length
Le and the adjacent serpentine interconnect spacing Wg [Fig. 1(c)]
were also considered.

The uniaxial (x-direction) substrate compression was provided
by releasing the pre-stretched PDMS-VPSmounting layer from L0 to
L. Wrinkles on Au finger electrodes started to develop at low strain,
and eventually both wrinkles on Au and creases on PDMS after sub-
strate strain εsub = (L0 − L)/L0 went beyond threshold as illustrated
in Fig. 2(a). Figures 2(a) and 2(b) show that the reversible wrinkling
process on Au has reduced the finger length from Lf 0 to Lf , resulting
in a local strain change εAu-x = (Lf 0 − Lf )/Lf 0. Meanwhile as dis-
cussed, the gap area in-between (softer PDMS surface) will have its
local strain amplified due to surrounding stiffer film patterns with
εGap-x = (Lg0 − Lg)/Lg0.

Figure 2(c) shows the Au wrinkling 3D profiles obtained by
Atomic Force Microscopy (AFM BrukerTM 3100) scan with which
they progressively grew under different substrate strains. Based on
the critical wrinkling strain of εw = 0.25( 3ĒsĒf )2/3, the expected the-
oretical εw = 6.7 × 10−4 calculated based on the elastic plane-strain
moduli of Ef = 7 × 1010 Pa and 74 nm gold film of Es = 4 × 105 Pa.
In reality, the wrinkles started to form at a substrate strain εsub = 9× 10−3. This indicates and confirms that the local strains on stiff Au
electrodes significantly lagged behind those of the substrate and soft
PDMS gap areas, which is considered as a helpful technique to pro-
tect metal films under large compression strains. The wrinkles on Au
continuously grew under further x-direction compression, covering
the majority of the Au electrodes at the substrate strain of 0.12. The
wrinkle wavelength at substrate strain εsub = 0.12 was calculated to be
17 µm according to λ0 = (2πhf )( Ēf3Es)1/3, which closely agreed with
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FIG. 2. (a) 3D Schematics showing the Au wrinkling—
PDMS creasing 3D deformation process under uniaxial
substrate compression—pair of finger electrodes into self-
contact due to PDMS creasing, and wrinkling on Au finger
electrodes. (b) Top view optical microscopic image showing
local strain changes on Au due to wrinkling, and PDMS gap
area due to creasing. (c) AFM scan 3D surface profile view
of the wrinkle development on the Au electrode at various
substrate strains for a device with Wf = 25 µm, Lg = 50 µm,
and Lf = 225 µm.

the actual measured value of 18 µm (shown in the supplementary
material).

To further understand this local strain difference between Au
and PDMS areas against the substrate strain, characterization exper-
iments were designed and conducted using a Nikon® LV-100 optical
microscope. We focused on local strains of each Au finger electrodes
εAu-x = (Lf 0 − Lf )/Lf 0, as well as PDMS gap area εGap-x = (Lg0 − Lg)/Lg0
between the paired finger electrodes. The length data Lf 0, Lf and Lg0,
Lg were all measured by the Nikon system from top view. The rela-
tionships between εAu-x, εGap-x, and εsub were comparatively studied
against other key geometry design parameters of the Au electrodes

such as Lf , Lg , finger widthWf , and locations in the transducer array
(E, F1 to F4).

Figure 3(a) shows the relationship between the Au local strains
against the substrate strains. The εAu-x always lagged behind the εsub
which is indicated by the dashed line. The strain gap was observed
to be constantly ∼0.03, until εsub = 0.45 where this gap increased
to around 0.05 when large creases started to appear on PDMS sur-
faces which absorbed more strain energy. This has confirmed the
previous assumption that the local strains on stiff Au electrodes
significantly lagged behind those of the substrate. Together with
the reversible wrinkling mechanism, most Au electrodes remain

FIG. 3. Local strain change comparisons: (a) Au electrodes
strain vs. substrate strain comparing F1 to F4, and con-
tact pads E1. (b) The PDMS gap strain vs. substrate strain
comparing between electrodes with varied Lg0 and Lf0. [(c)
and (d)] Finger electrode width Wf effect on the PDMS
gap strain vs. substrate strain for F2 and F3 electrodes; all
dashed lines indicate substrate strain value as a reference.
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intact after >10 cycles of repeated compression. For determining
the switching strain values that bring Au finger pair electrodes into
self-contact, Figs. 3(b)–3(d) show detailed comparative results of the
PDMS gap strain εGap-x versus the substrate strain εsub. When εGap-x
= 1 at Lg = 0, it was an indication that the PDMS area in the gap was
completely folded into the crease from the top view, as illustrated in
Fig. 2(a). The corresponding value of εsub at this point is close to the
switching strain.

Figure 3(b) shows the comparison of results between differ-
ent finger electrodes (F1 to F4) on the same transducer array where
Wf = 35 µm, initial Lf 0 ranges from 225 µm to 250 µm, and Lg0
from 10 µm to 55 µm, respectively. All εGap-x are far greater than the
εsub (indicated by a dashed line) due to the expected strain ampli-
fication effect. It can be observed that for a pair of electrodes F1
with smallest Lg0, the self-contact strain is around εsub = 0.08, which
is significantly lower than typical creasing strains of around 50%
on plain PDMS surfaces.5,20 As Lg gradually increased, it required
much higher substrate strains to bring F2 and F3 pair electrodes into
self-contact, at εsub = 0.2 and εsub = 0.5, respectively. For F4 elec-
trodes, it is understandable that the large Lg0 made it impossible
for the pair of electrodes to reach each other before the 0.6 sub-
strate strain limit [Fig. 3(b)], due to insufficient self-contact depth
(estimated to be around 19 µm) before reaching the limit. Since the
natural wavelength of the crease is ∼3.5 times of substrate thickness
H (H = 110 µm in this case), multiple creases may occur at larger dis-
tances, which prevents the electrodes from achieving contacts even
at higher strains.

We also compared finger electrode width Wf (25 µm, 35 µm,
and 50 µm) effect on gap strain εGap-x, as shown in Figs. 3(c) and
3(d). The initial gap distance Lg0 for F2 electrodes [Fig. 3(c)] was
kept at 15 µm while Lg0 for F3 [Fig. 3(d)] was kept at 25 µm.
The electrode lengths Lf 0 are 250 µm and 245 µm, respectively. It
was clearly observed in both cases that electrodes with narrow Wf
(25 µm) had much lower εsub of 0.1 and 0.4, respectively, when
the electrode pair made self-contact. This suggests that a wider Au
electrode may require more energy to be pulled into the creasing
created in the PDMS gap area, since the electrode prefers small
wrinkling.

Based on the above deformation study, we demonstratedmulti-
step or “stepwise” electrical resistance change corresponding to dif-
ferent levels of εsub. The Everbeing EB8 manual probe station (with
EB-05 probes) which connected to a Keithley® 4200 analyzer (I-V
mode, −1 V to +1 V sweep, with 0.2 V/step) was used to characterize
the resistance value change. As shown in Fig. 4, the step-wise strain-
resistance sensing has been achieved by surface elastic instability
induced multi-finger electrodes with different distances between the
electrodes. For the designed Lg values (Lf = 510 µm and 520 µm,
respectively), the estimated finger electrode resistance would be in
the region of 50 Ω. When the first pair of electrodes was in con-
tact, the calculated resistance would be ∼100 Ω, assuming that the
contact resistance is zero. This will be reduced to 50 Ω when the
second switching was achieved. Figure 4(b) shows greater details
of the two-step switching resistance-strain relationship. Between
0.45 and 0.52, the first step switching stage was achieved, with
a resistance of ∼120 Ω. Under further compression, the second
step switching stage occurred at the substrate strain range of 0.54< εsub < 0.58 by measuring the resistance to be ∼50 Ω. Note that
the error bars indicate multiple measurements at different current

FIG. 4. (a) Resistance of the test structure as a function of strain. The resistance
change during the two-stage switching is highlighted in a red ring and detailed in
(b). Two-stage resistance switching strain sensing: Resistance of the transducer
array as a function of strain during the two-stage switching period (0.45 < ε < 0.52
and 0.54 < ε < 0.6) (b).

levels that in most cases indicate that Joule heating is not influencing
the measurement. The probe-Au electrode contact resistance was
characterized to be ∼7.9 Ω with a standard deviation of 1.17. The
variation of the experimental resistance values may bemainly caused
by the contact resistance between the touching Au finger electrodes.
The corresponding substrate strains at switching were also in good
agreement with the electrode deformation observations.

In conclusion, a new strategy has been established to detect the
multiple strain values on a soft elastic substrate to study the metal-
elastomer deformation behavior of a super-compressible strain
transducer array. We have characterized the relationship between
electrode geometries and compression strain ratios, together with
the growth and co-existence of wrinkles and creases on multi-
switching electrodes. Multi-steps of electrical resistances were gen-
erated at different switching strains on an individual device. This
has been demonstrated by using the multiple finger electrode soft
electronics with different distances between the electrodes, which
has potential for future stretchable/epidermal electronics, flexible
sensors, health monitoring, and wearable device applications.

This supplementary material contains the experimental and
fabrication method, as well as the additional results to support the
results and claims in the main context.
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SUPPLEMENTARY MATERIAL 

Fabrication process – dual-SAMS assisted metal transfer process from silicon to PDMS-VPS:  

Dual SAMS preparation of patterned Au on silicon: The gold layer was patterned with a lift-off process on the silicon 

substrates. Firstly, MEGAPOSITTM SPRTM 220-7 positive photoresist was spin coated on silicon wafers. The photoresist then 

patterned through photolithography process (Karl-SussTM MA8 mark aligner).  An anti-stiction SAM layer Perfluoro-decyl-

trichloro- silane (FDTS) was then deposited using a MemsStar AURIXTM system. Au layers with thicknesses ranging between 

~16nm and ~100nm were then deposited on top of FDTS treated patterned photoresist via sputtering.  The lift-off process was 

performed by soaking the sample in acetone solvent before cleaning with isopropyl alcohol (IPA) and absolute ethanol.   The 

patterned Au electrodes on FDTS-silicon were then treated with MPTMS (3-Mercaptopropyl-trimethoxysilane) as an SAM 

adhesive, by soaking in 25mM MPTMS in absolute ethanol solution for 3 hours.  The sample was then washed in absolute 

ethanol before N2 drying and ready for Au transfer process (Fig. S1a).   

Pre-stretched PDMS-VPS bilayer fabrication: The PDMS-VPS bi-layer elastomer, consists of a strip of thick and stiff 

mounting layer (3 mm thick, 9 mm wide and 30 mm long) made of Vinylpolysiloxane (VPS) (mixing ratio base with catalyst 

of 1:1), which was prefabricated before being fixed in a mechanical vice and pre-stretched from 5mm to 30mm length, a softer 

unstressed thin PDMS film layer (SylgardTM 184, ~110 µm thick, 30:1 for elastomer base and cross-linker, Young’s Modulus 

of 0.12 ± 0.02 MPa) was attached on the VPS stiff layer under tensile stress (due to its pre-stretching).  

Au transfer and substrate compression: The Au-on-Silicon sample with MPTMS-SAM adhesive was then flipped and 

pressed against PDMS surface of the pre-stretched PDMS-VPS substrate for 10 minutes, before being peeled off to complete 

the Au PDMS-VPS transducer device fabrication (Fig. 1a and S1b).  The completed device was then compressed in a controlled 

manner via releasing the pre-stretched VPS mounting layer by slowly turning the screw thread (pitch = ~ 1.25mm/turn) of the 

mechanical vice.  

Poisson effect caused damage and improved interconnects design:  

During the substrate compression process from 0 to 0.6 strain, it is inevitable that tensile transverse strains (y-direction in 

Fig. 1) perpendicular to the compression direction with G=E/2(1+ν) are generated by the uniaxial compressive strain change 

due to the Poisson’s effect (where G is shear modulus, E represents Young’s modulus and ν is the Poisson’s ratio). This non-

uniform strain distribution causes the unwanted damage to some interconnection part of the transducers when substrate strain 

went above 0.25, as shown in Fig. S2a. In order to prevent such damage, serpentine shaped Au interconnects have been designed 



2 
 

to “bridge” connect finger electrodes “islands” across the serpentine spacing Wg in some devices (Fig. 1).  Fig S2b shows the 

effect of y stretching onto the gap serpentine as substrate strain increases. It successfully prevented cracking damage for 

substrate strains up until 0.35 (Fig. S2b).  The interconnecting areas of finger electrodes F1 and F4 started to sustain certain 

degrees of damage beyond 0.35, while F2 and F3 remained intact upto 0.6 substrate strain.  Future work will focus on optimizing 

the interconnect designs for better protection.   

AFM profile of Au wrinkling at various substrate strains:  

Figure S3a has shown the cross-section wrinkling profile of the Au finger electrodes sustaining various substrate strains. 

The cross-section line was taken from the 3D profile shown in Fig 2c and S3b.  At a substrate strain of 0.12, the wrinkling 

wavelength can be calculated as 18 Pm, agreeing with the theoretical calculation described in the main paper.   

Magnified Images showing before and after the Au contact caused by creasing:  

Figure S4 shows sequential microscopic images showing the Au finger electrodes (bright area) and the PDMS gap, before 

and after the contact caused by creasing.  The substrate strains change from 0.38 (Fig. S4 - image 1) to 0.52 (contact point, 

image 5), 0.55 (image 6). 

 

FIG. S1.  Schematic images illustrating the dual SAM Au transfer process: (a) Lift-off + lithographically patterned multi-switching Au strain 
transducer array on silicon substrate ready for transfer.  (b) Au patterns transferred from silicon to PDMS-VPS substrate by dual-SAM (self-
assembly monolayer) assisted metal transfer process.  
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FIG. S2.  (a) Consecutive microscopic images at various substrate strains on bulk interconnect electrode devices with probing needles (dark 
colored) in the view. Circled areas started showing interconnecting areas of F1 and F4 finger electrodes being stretched due to Poisson effect; 
(b) Consecutive microscopic images showing serpentine shaped structure significantly reduced interconnects stretching from Poisson effect 
upto 35% substrate compression.  (Scale bars = 200 Pm) 

 

 

FIG. S3.  (a) Cross-section wrinkling profiles for the Au finger electrodes sustaining various substrate strains. These cross-section line was 
taken from (b) the 3D profile measured by the BrukerTM AFM system.   
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FIG. S4.  Sequential microscopic images showing the Au finger electrodes (bright area) and the PDMS gap, before and after the contact 
caused by creasing.  The substrate strains change from 0.38 (image 1) to 0.52 (contact point, image 5), 0.55 (image 6). 
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ABSTRACT 

This paper demonstrates a unique way of creating 
heterogeneous layered structures of soft functional 
materials for advanced transducer applications. Hydrogel 
droplets with different composites were patterned by a 
“two-parallel plate” configuration used in microfluidics 
applications. Resulted heterogeneous layered structures of 
hydrogel were created, generating reconfigurable 3D (3-
dimensional) deformation responding to discrete levels of 
stimulation inputs. 
 
KEYWORDS 

Heterogeneous hydrogel, droplet microfluidics, 
responsive swelling, flexible sensors, surface wettability 
 
INTRODUCTION 

Morphing soft materials responding to external 
stimulation (e.g. electrical, mechanical and chemical) have 
promising applications in various fields, such as flexible 
electronics, biomedical transducers and soft robotics. One 
of the desirable developments is to make the self-shaping 
process controllable and programmable, at least for 
specific configurations.  

Wang et al. [1] has demonstrated 3D shape control 
through planar (flat) patterned, homogeneous swell-able 
hydrogels. “Pre-designed” complex deformations were 
demonstrated by the periodically patterned hydrogel blocks 
made from multi-step lithographically. The shape 
morphing was then generated due to elastic mismatch 
between non-swelling substrate and swelling gel blocks [1, 
2].  Holed “swelling masks” were employed to control the 
swelling directions, in order to re-configure the 
deformation patterns [1].  

Whilst patterned homogenous layered structures can 
provide “pre-designed” 3D shapes, the post-swelling 
configurations are fixed in [1, 2]. For reconfigurable 
morphing structures which dynamically change shapes 
responding to stimulation, heterogenous structures are 
desired. 

Uniform heterogenous bio-content deposition was 
achieved previously by droplet microfluidics utilizing 
surface wettability (hydrophobic/philic patterns) [3]. More 
recently, using droplet microfluidics to control the 
formation of encoded multifunctional, and heterogeneous 
hydrogel building blocks have been exploited to form 
complex hydrogel architectures, inspired by natural bio-
structures [4, 5].  

In such cases [1, 4], two parallel plates with millimeter 
to sub-millimeter gap in-between (similar to a Hele-Shaw 
Cell) were introduced to help achieve a uniformly thin 
deposited layer.   

Combining the latest development in smart hydrogel 
patterning, and the hydrogel-based 3D morphing 
technology brings the great potential of next generation re-
configurable, stimuli-responsive, morphing soft 
transducers. 

 
METHODOLOGY 

The state of the art of this work are demonstrated from 
the following two aspects: 

• Heterogeneous hydrogel blocks patterned and 
layered by controlled surface wetting at hydrophobic and 
hydrophilic boundaries (figure 1).  The layer thickness and 
uniformity are ensured and controlled by droplet volume 
and the gap between the two parallel plates shown in figure 
1.  

• Reconfigurable 3D morphing response to the 
stimulation inputs such as changing ionic concentration 
and temperature of the solution this hydrogel structure is 
immersed in.  

 

 
Figure 1:  Schematic view of the heterogenous hydrogel 
structure patterned by hydrophobic/philic surface. 

 
The hydrogel used are Poly(Acrylamide-Sodium 

Acrylate), created from poly-acrylamide (PAAm) network 
with Sodium Acrylate (SA) which contains free positive 
sodium ions.  N,N’-Methylenebisacrylamide (BisAA or 
MBAA) was used as a cross linker, with N,N,N′,N′-
Tetramethylethylenediamine (TEMED) and Ammonium 
Persulfate (APS) used as initiators for the polymerization 
process.   

978-1-5386-8104-6/19/$31.00 ©2019 IEEE 2508
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The gel swelling will happen when immersed in PBS 
(phosphate buffered saline) solution depending on ionic 
concentration of the gel and the solution. Other stimulation 
such as temperature, electrical potential and physical 
constrains will all affect the swelling behaviour. 

To structure and shape the hydrogel, 
hydrophobic/hydrophilic patterns were created. Fig. 2 (top 
left) shows patterned Parylene-CTM hydrophobic area (light 
green color) and hydrophilic silicon dioxide (SiO2) patterns 
(dark green colored & square shaped), both on smooth 
silicon substrate. 

 
 
Figure 2: Photos showing two hydrogel blocks with 
different swelling behavior (different composites) 
assembled to non-swelling gel substrate. 

 
Functional (swell-able) hydrogel droplets/blocks were 

deposited on this Parylene-SiO2 surface, shape-controlled 
by hydrophobic/philic boundaries, and squeezed into 
“button” shape by non-functional soft substrate (e.g. non-
swelling gel) before cross-linked to form the desired 
heterogeneous structure (illustrated in Fig. 1 and pictured 
in Fig. 2). 

 
EXPERIMENTAL RESULTS 
Swelling and de-swelling demonstration 

The swelling ratio and de-swelling ratio dynamically 
responding to PBS concentration and SA composition were 
obtained. Figure 3a to 3h demonstrate how the swelling 
kinetics is recorded, by showing a dried cylinder-shaped 
gel swelling for 10 minutes in 0.01M PBS solution.  The 
height of the swelling hydrogel was controlled by a cover 
slip, and the diameter was measured for swelling and de-
swelling ratio calculation.  This work currently focuses on 
ionic concentration related response, however near future 
work will also investigate temperature response (illustrated 
in figure 3i).   
 
Single configuration demonstration 

Single configuration 3D surface shape control has 
been demonstrated by selectively swell and de-swell the 
heterogenous functional hydrogel blocks with different 
composites/stimuli-responsive properties which are 
assembled on the same substrate as shown previously in 
figure 2.   

In this experiment, the pink colored hydrogel block 
(figure 4) swelled in the 0.1M PBS solution, causing 
localized surface raising.  The red colored hydrogel block 
de-swelled in the same solution, causing localized surface 
concaving.  When the substrate was detached from the 

bottom of the solution container, a complex surface with 
raised (pink area) and concaved (red area) surface was 
achieved (shown in figure 4).   

  

 
 
Figure 3: Microscopic photo shows PAAm-SA hydrogel 
swelling from (a) 0 min to (h) 10 minutes in 0.01M PBS 
solution. (i) The swelling hydrogel responds to ionic 
concentration variation and other stimulation such as 
temperature. Scale bar indicates 1mm. 

 

 
 
Figure 4: Photos showing hydrogel blocks with different 
composites swelling and deswelling over time in 0.1M PBS, 
causing localized surface raising and concaving 
deformations.   

 
Re-configuration demonstration 
 

Due to the heterogenous nature of the functional 
hydrogel layer, the swelling vs. de-swelling spatial 
configuration can change responding to the external 
stimulation. By changing the ion concentration of the PBS 
solution, initial reconfigurable gel deformation was 
achieved (flat shape – “S” shape – “C” shape).  

This responsive shape morphing demonstration was 
shown in Fig. 5. When immersed in 0.1M PBS solution, the 
gel started bending. When the PBS concentrations changed 
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(0.1M to 0.01M), the hydrogel structure reshaped from “S” 
shape to “C” shape. This is a combined result from: 

• Hydrogel block-B (pink colored) changes from de-
swelling to swelling state, responding to the PBS 
concentration decrease; 

• Hydrogel block-A (red colored) maintains high ratio 
swelling. 

Such reconfigurable response shed a light on the great 
potential of sensing and actuation applications with 
complex 3D morphing materials [6 - 8].  It is foreseeable, 
that more advanced functions can be achieved with 
additional hydrogel functional blocks – to be carried out 
during our on-going research work. 
 

 
 
Figure 5: (a) microscopic photos; and (b) schematic 
illustration showing hydrogel structure shape 
reconfiguration from “S” shape to “C” shape.  
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Abstract— This paper reports the metal-elastomer surface 
deformation control strategy of a strain transducer array capable 
of measuring compressive strains up to 60%.  Pairs of multi-
finger electrodes separated by different inter-digit gap distances 
are forced into contact by induced surface creasing deformation 
at different strains.  Test structures have been developed to 
explore and optimize the electrode-elastomer hybrid surface 
deformation. The deformation is due to large compressive strains 
in the “x-direction” but stretching caused by the Poisson effect 
can also take place in the “y-direction”. 

Keywords—elastomer, elastic instability, wrinkle, crease, strain 
sensing, test structure, stretchable electronics 

I. INTRODUCTION AND METHODOLOGY 

A. Introduction 

In the growing field of flexible electronics, devices are 
subjected to stretching, bending and twisting forces [1-7].  
Elastomer substrates can also be compressed, during which 
surface elastic instabilities will occur, such as wrinkles and 
creases, which provide potential opportunities in engineering 
applications [3,7-10].   

Initial studies on super-compressible strain gated switches 
and their applications, have reported a surface creasing induced 
resistance change in response to mechanical inputs of up to 
60% strain [3, 7].  The energy absorbing elastic instabilities 
(wrinkles and creases) on metal-elastomer surfaces helped to 
prevent metal electrode damage while providing the sensing 
mechanism.  However, due to the large Poisson’s ratio  of the 
elastomer substrates (close to 50%), the electrodes are also 
stretched along the y-direction (Fig. 1a), causing unwanted 
damage.   

To understand how to design the metal finger electrode 
array and interconnects, such that they can survive both large 
compression as well as stretching caused by Possion’s effect, 
requires investigation to determine how Au-PDMS 
(polydimethyl-silosane) surfaces deform.   

B. Methodology  

In situations where Au electrodes cover an area of the 
PDMS, an “island-bridge” type of flexible device results. The 
much stiffer Au (Young’s Modulus 50-70 GPa) tends to 
deform less than the underlying PDMS (0.4 - 4 MPa) when 
both are subjected to the same substrate compression strain.    
This has caused creases to be generated on some PDMS 
surfaces “squeezed” between Au electrodes at a substrate strain 
< 10%, which is significantly lower than typical creasing 
strains of around 50% on a plain PDMS surface.   

To investigate, Au finger electrode test structures (Fig. 1a) 
with different thicknesses (16nm - 100nm) were fabricated  by 
patterning electrodes on a silicon carrier wafer, and 
subsequently transferring them onto PDMS surfaces, supported 
on pre-stretched VPS (Vinyl-polysiloxane) elastomer 
substrates (Fig. 1b). Transfer was achieved using a self-
assembly thiol based dry-peel-off soft lithography method 
optimised after [3, 7]. 

Figure 1c shows the schematics of Au-PDMS surface 
deformation process under substrate compression. The creasing 
on PDMS elastomer surface results in Au finger electrode tips 
coming into contact (resistance step change [3, 7]), with 
wrinkles on the Au helping to absorb the deformation energy.  
The 2D geometry deformation (measured while viewing from 
above) can be measured as a change in either:  

• Au finger electrode length Lf and width Wf  (fig. 1a) 

• or, PDMS surface length between opposite Au finger 
electrode tips Lg, and the adjacent finger spacing, Wg (fig. 
1a) 

To investigate the parameter space, a range of finger 
electrode array devices were fabricated and tested in parallel. 
Finger length was varied from the longest at 525 µm (F4 in 
figure 1a) to the shortest at 240 µm (F1), with Lg ranging 
between 5 and 100 µm, and Wg from 100 to 200 µm.   

2018 International Flexible Electronics Technology Conference (IFETC)

978-1-5386-3357-1/18/$31.00 ©2018 IEEE



In an attempt to prevent Poisson’s effect related damage, 
serpentine shaped Au interconnects have been designed to 
“bridge” connect finger electrodes “islands” across the PDMS 
spacing Wg in some devices, as shown in Fig 1c inset.   

II. EXPERIMENTS AND RESULTS SUMMARY 

A. Au-PDMS 2D geometry change under compression 

By applying substrate compression through releasing pre-
stretched VPS mounting layer [7],  differences have been 
observed in the deformation strain of both the Au finger 
electrode and PDMS along x (εAu-x, εPDMS-x), and y-direction 
(εAu-y, εPDMS-y), where:  

εAu-x=(Lf0 - Lf)/Lf0          (1) ; εAu-y=(Wf0 - Wf)/Wf0             (2); 

εPDMS-x=(Lg0 – Lg)/Lg0    (3); εPDMS-y=(Wg0 – Wg)/Wg0      (4); 

The 2D geometry dimension changes have been observed 
and measured by both Nikon LV100 optical system and 
Atomic Force Microscope (Fig. 2) at different substrate strains. 
Fig. 3 shows selected results of PDMS deformation in the gap 
(Lg) between two finger electrodes εPDMS-x , which are 
consistently >> substrate strain (dashed line).  The electrode 
gap strain of 1.0 in these plots indicates the contact of two Au 
finger tips brought by the formation of surface creases.    

B. 3D geometry deformation under compression 

The 3D profile of the electrode deformation was primarily 
measured by AFM (Fig. 2 and 4, BrukerTM 3100). Fig. 4 
shows the 3D geometry of the progressive wrinkling of an Au 
electrode characterised from substrate strain.  The wrinkling 
instability is seen to begin at a substrate strain of 0.009, 
whereas the theoretical value for Au on PDMS is calculated to 
be 6.7×10-4. This discrepancy is not a surprise, as 2D 
geometry observations confirm that Au deformation lags 
significantly behind that of the substrate.   

C. Poisson’s Effect and Result Summary 

Figure 5 shows the y-direction stretching which affects the 
Au electrodes, serpentine interconnects and PDMS areas as a 
result of the Poisson’s effect.  The y-direction stretching strain 
of Au and PDMS are measured to be εAu-y = 8.7% and εPDMS-y = 

37.1%, under a substrate compression of 33% and a Poisson’s 
ratio of 42% (strain dependant).   

III. CONCLUSIONS 
Test structures have been developed to characterize the 

metal-elastomer deformation behaviour of a super-
compressible strain transducer array under compression up to 
60%. This initial study has been focused on the relationship 
between electrode geometries and compression strain ratios, 
with the growth and co-existence of wrinkles and creases on 
multi-switching electrodes being characterised for the first 
time. Future work will focus on fully characterising the 
mechano-responsive electrical switching mechanism of the 
designed sensors. 
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Figure 1. (a) Patterned Au strain transducer test structures on a 
silicon wafer with a top SEM view and the finger electrode design 
dimensions (top view); (b) Au transferred to PDMS-VPS bi-layer 
(inset photo by Nikon microscope) (c) Schematic view of the Au-
PDMS 3D deformation process under uniaxial substrate 
compression. 
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Figure 4. AFM profile of wrinkle development on Au electrode 
at various substrate strains 

 
Figure 3. Electrode gap PDMS strain εPDMS-x vs. applied substrate 
strain (from 0 to 60%) with different Au electrode geometry 
designs 

 
Figure 5. Y-direction stretching (Poisson’s Effect) of PDMS 
and Au under various x-direction compression strains 

ε=0

Au

εsub=0.022

 
Figure 2. AFM image showing Au 3D deformation initialization 
under uniaxial substrate compression (0% and 2.2% strains). 
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Abstract—This paper reports a novel sensing strategy by 

employing elastic instability as a key mechanism to achieve super 
flexible (up to 60%) strain sensing. Inspired by Mechano-
Responsive Luminescence (MRL) phenomenon, we have 
demonstrated this optical strain sensing strategy by employing 
PDMS based functional luminescence composites multi-thin-
layer structure, where fluorescent pattern signal was generated 
at designed strain values.  Line-shaped fluorescent patterns were 
switched ON and OFF by elastic instabilities (e.g. wrinkling, 
creasing) on micro-structural soft surfaces during compressive 
deformation.  This has extended the current understanding of 
large strain sensing where creating electrical connection is 
challenged by the metal fracture and delamination.  The control 
of switching strain values by micro-structural geometry design 
has been demonstrated and discussed.   

Keywords — mechano-responsive luminescence, elastic 
instability, crease, strain sensing, stretchable   

I. INTRODUCTION 
Bendable and stretchable sensor and actuator technologies 

based on soft functional materials have become ever popular 
with emerging applications such as epidermal electronics, 
artificial skins, and soft robotics [1-4].  Conventional flexible 
electronics are bendable devices where the substrate has a 
reduced thicknesses, laminated with metal interconnects to 
reduce the strain change due to bending.  For the emerging 
stretchable/super-flexible devices [1-4], substrate deformation 
strain could be much higher than the fracture strains of rigid 
materials during compressing and stretching.  To avoid 
compromising local features such as metal interconnects and 
integrated transducers, different strategies have been 
developed, such as island-bridge and serpentine shaped 
interconnects [1, 5] and competing growth of elastic 
instabilities [4, 6].   

This paper presents a concept in which large mechanical 
strain change (up to ~60% or 0.6) is transduced to optical 
signals switching by elastomeric substrates with micro-
engineered materials and structural characteristics. Coupled by 
fluorescent light, the deforming super-flexible elastomer part 
of the sensing system is physically separated (Fig. 1) from the 
fixed rigid detector and signal processing part during operation.   

For example, the rigid detection part (Fig. 1) could be 
integrated to a “close to body” device (e.g. wrist band), while 
the flexible Mechano-Responsive Luminescence (MRL) part 
could be mounted to deforming surfaces e.g. a skin patch.  
Since there is no metal interconnects on the deforming 

substrate, this development has shown an alternative solution 
to the challenges faced by stretchable/super-flexible sensor 
packaging, providing opportunities for future applications in 
tunable optics and stretchable electronics. 

II. BACKGROUND 
Optical strain sensors have long been developed, mainly in 

the form of fibre optics [7], although with a relatively low 
strain span (typically < 0.004 or 0.4%).   

This paper presents an elastomer based super-flexible (up 
to 0.6) optical-strain signal transformation mechanism, 
utilizing Mechano-Responsive Luminescence (MRL).   

A. Mechano-Responsive Luminescence 
The term of MRL is getting more researched in recent 

years, and used to describe a reversible change in 
photophysical properties such as luminescence color, intensity, 
pattern or lifetime by mechanical stimulation e.g. expansion, 
compression and twisting [8, 9].   

Examples can be found, such as using the mechanical force 
to change the arrangement of luminescent molecular which can 
lead to the optical switching response [8, 9]. Such properties 
could potentially be facilitated for sensing applications 
integrated with optical detection systems, such as photo-diodes, 
fluorescence microscopes (e.g. laser scanning confocal 
microscope (LSCM), fluorescence lifetime imaging (FLIM)), 
fluorescence scanners and devices with image sensors (e.g. 
mobile phones, sports smart wristbands).  

B. Elastic Instability Growth on Bi-layer Elastomers 
Elastic instabilities such as surface creases play a crucial 

role in many natural and engineering systems [4, 10].  
Recently, super-flexible strain sensing with step-wise electrical 
signals has been achieved by utilizing elastic instabilities 
generated on micro-engineered elastomer bi-layers [4, 6].    

Such configuration usually consists of multi-layers of 
elastomer thin films with different Young’s Modulus, e.g. a 
softer Polydimethylsiloxane (PDMS) layer on top of a spre-
stretched Vinylpolysiloxane (VPS) layer with higher modulus 
[4, 6].  By relaxing the pre-stretched VPS layer from a length 
of L0 to a reduced lenghth L, the PDMS top layer is compressed 
controllably [4, 6].  Hence, the elastic instabilities e.g. surface 
creases would be created subject to the uniaxial compression 
strain, given by:  

ε = (L0-L)/L0                   (1) 
This work is supported by EPSRC (EP/N007921/1, EP/L026899/1), and 
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Fig. 1. (a) Cross-section view of the PDMS-VPS bi-layer structure coated 
with fluorophore (dots). Fluorophore concentration effect can be seen 
after surface creases generated by uniaxial compression.  (b) and (c) The 
proposed sensing mechanism: optical signal generated by fluorophore-
PDMS-VPS is detected by the rigid part of the sensor system giving 
ON/OFF digital outputs.    

Fig. 2. 3D (a to d) and cross-sectional (e) views of the device fabrication 
process: (a) lithographically patterned SU-8 on silicon carrier wafer; (b) 
PDMS spin-coating over SU-8 patterns; (c) flip the silicon carrier and 
attach PDMS to pre-streched VPS; (d) Peel off silicon/SU-8 after 
baking, leaving patterned PDMS on VPS; (e) dip/drop coating of 
fluorophore (fluorescein o-acrylate) on top of plasma treated PDMS 
surface.   

III. METHODOLOGY 

A. Surface Creasing Induced MRL for Strain Sensing:  
Fig. 1a shows the set-up of PDMS on pre-stretched VPS bi-

layer described in previous section.  The fluorophore coating 
on PDMS surface will be physically concentrated and show 
high-contrast fluorescence pattern when surface creases 
generated by uniaxial compression (fig. 1a).   And we propose 
to utilize this surface instability induced MRL effect for strain 
sensing applications.  Fig. 1b and 1c show the proposed optical 
switch strain sensing mechanism based on MRL:  

x Fabrication: Micro-structured elastomer bilayer MRL 
device monitored by fluorescence detector. 

x Surface creasing pattern generation: Uniaxial 
compressive generates surface creasing at the surface 
micro structures (an array of holes in this case) 

x Fluorescent pattern generation: Surface creasing 
pattern creates line-shaped fluorescent patterns  

x Signal processing: The detected signal is then 
processed, outputting “ON/OFF” status.  

B. Fabrication of Patterned Elastomer Bi-layer 
Fig. 2 shows the fabrication process of patterned elastomer 

bi-layer by using SU-8/Si dry peel-off soft lithography 
technology.     Different thicknesses of SU-8 photoresist was 
spin-coated and lithographically patterned on silicon carrier 
wafer (fig. 2a). PDMS (Sylgard 184TM kit) mixture with 30:1 
base to curing agent ratio was then spin-coated over SU-8 
patterns (fig. 2b).  The PDMS coated silicon carrier was then 
flipped and attach to pre-streched VPS to form a VPS-PDMS 
bond (fig. 2c). After baking at 70°C for 8 hours, the 
silicon/SU-8 carrier mold was peeled off, leaving patterned 
PDMS on VPS (fig. 2d).  After a 30 sec oxygen plasma 
treatment, the PDMS surface was then coated with fluorescein 
o-acrylate (Sigma Aldrich®) (fig. 2e). 

The patterned PDMS surfaces consist of arrays of circular 
holes with different diameters Φ, pitches r = D/Φ and depths h 
(fig. 2e), by designing SU-8 mold dimensions and thicknesses.    

IV. RESULTS AND DISCUSSION 

A. Surface Creasing Pattern Generation 
The arrays of circular holes on PDMS surface control  

surface creasing patterns during uniaxial compression, by 
concentrating the local energy.  Thus, surface creases are 
expected to form along the column of holes perpendicular to 
the compression axis.   

Fig. 3 shows the surface instability growth on hole 
patterned PDMS surface, during the uniaxial compression of 
the pre-stretched VPS.  When substrate strain ε=0 (fig. 3a), 
there is only hole array geometry on the PDMS surface.  When 
the uniaxial compression (fig. 3b, horizontal direction) initiates 
(e.g., a small ε=0.13), the surface instabilities start to grow at 
or near the hole patterns.  After the compression strain goes 
beyond a critical point (in this case ε=0.515 or 51.5%), large 
creases perpendicular to the compression axial start to form 
along the column of holes (fig. 3c).  

 



Fig. 3. Microscopic view of hole-patterned PDMS surface during uniaxial 
compression (horizontal direction), with D=20µm, r=3 and h=13µm at 
different strains: (a) ε=0; (b) ε=0.13; (c) ε=0.515.  

Fig. 4. (a) Fluorescent patterns on patterned PDMS surface under uniaxial 
compression at different strain values.  (b) Fluoresecence image signal 
processing to determine whether line pattern is formed: (left)  Canny 
edge detection; (right) Hough conversion.  

Fig. 5. Relationship between (a) strain ε and output signal switches from 0 to 
1, (b) switching strain ε and hole depth h, representing the formation of 
fluorescence line pattern.  

B. Fluorescent Pattern Generation 
To observe the fluorescence signals, a Leica® DMR 

fluorescence microscope has been used initially.  Fig. 4a shows 
the fluorescent patterns generated by the surface creases during 
uni-axial (horizontal direction) substrate compression at 
different strain values.  The line patterns along the holes start to 
form after a compression strain of 0.515 (51.5%).   

C. Signal Processing 
The ON/OFF (or 0/1 output) switching strain has been 

defined to be the value at fluorescent line pattern forming. To 
automatically determine whether fluorescent line patterns have 
been formed (logic “1”), we: (1) used the Canny edge detection 
(2) Mapping of edge points to the Hough space in an 
accumulator (r, theta), followed by infinite line conversion to 
finite lines (min. length set to 200 pixels).  Hence a detected 
line longer than 200 px. will return a logic “1” as in Fig. 4b.   

D. Hole Depth vs. Switching Strain 
Fig. 5 shows the relationship between hole depth h and 

switching strain εs.  For different hole geometries, the output 
signal changes from 0 to 1 when substrate strain increases 
beyond the switching strain εs (Fig. 5a). Fig. 5b indicates a 
trend of increased switching strain εs.   

Fig. 5b shows that the switching strain εs value increases 
from 0.410 to 0.515,  with reduced hole depth from 65 µm to 
13 µm respectively.  This suggests the switching strain value 
could be controlled by micro-structure geometry design, giving 
the opportunity to develop future MRL strain sensors with 
multiple switching strain values.       
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Abstract — Developing MEMS sensors with a high strain 
sensing range (up to 0.6) and a stepwise sensing mechanism could 
enable widespread downstream applications, by allowing intimate, 
mechanically conformable integration with soft biological tissues. 
Most approaches to date focus on challenges to associate the 
sensing mechanism with high peak strains under large 
deformation.  

By designing and characterizing test structures with multi-
switching electrodes on super-flexible substrates, this research has 
established a strategy for stepwise strain-sensing mechanism 
based on elastic instabilities. The growing and co-existence of 
wrinkles and creases on multiple electrodes with different 
dimensions are observed under lateral strains ranging between 0.3 
and 0.6.  Initial electrical measurements of the multi-switching 
mechanism has been demonstrated with a two stage resistance 
value change observed under changing compressive strain. 
Further investigation will focus on the device optimization and 
mechano-electrical signal processing.   

I. BACKGROUND 
Flexible electronic and MEMS devices have become one of 

the more interesting technologies for next generation 
applications such as bio-medical electronics, flexible circuits, 
sensors and actuators [1-4].  Recent development has shown that 
elastic substrates have great potential to withstand high strain 
deformation during bending, compressing and stretching, when 
complying with local features such as metal interconnects and 
integrated transducers [5-8].  

Among recently developed flexible MEMS applications, a 
versatile set of approaches exploits the sensing and actuation of 
planar compression strain achieved by triggering the elastic 
instabilities with placing pre-strain in an elastomer mounting 
substrate [9-11]. This paper presents a concept in which 
elastomeric substrates with engineered distributions of a set of 
materials and structural characteristics yield stepwise strain 
sensing of in-plane deformations. The related technologies and 
newly developed sensing mechanism could shed a light on the 
future applications in tunable optics and stretchable electronics. 

II. METHODOLOGY

Test structures with a single switching mechanism to sense 
super-flexible strain have been reported [4, 8].  These devices 
operate by a pair of finger electrodes contacting as a result of 

surface creasing generated in the gap at the critical strain.  At 
this point the measured resistance of these device switches from 
open (~1013 Ω) to closed (~102 Ω).  The critical strain values are 
of course related to the dimensions of the designed gap between 
the finger electrodes along the compression axis [8].  

Such mechano-electrical response (strain - resistance) test 
structures can be employed for super-flexible substrate strain 
sensing.  However, each device performs as a digital sensor with 
“ON/OFF” logic, therefore only measuring a single critical 
strain value [8].   

In order to increase the number of critical strain values the 
test structures can deliver without increasing the pad count, this 
paper focuses on studying the deformation behaviour of a test 
structure with multi-switching electrodes on super-flexible 
substrates.  The ultimate target is to enable a multi-switching 
mechanism where the strain value can be determined by 
measuring the resistance of the test structures. The following 
characterisation will be focused on electrode geometry design 
related to the surface deformation (optical measurement), and 
electrical signal (resistance) as a function of strain change.    

A. Test Structure Design 
Figure 1 shows the test structures used, with the deformation 

study focusing using two different layouts:   

• A two-terminal structure with four pairs of “finger”
electrodes labelled F1 (longest) to F4 (shortest) making
up the multi-switching strain sensing gate

• A four-terminal structure with a similar finger
arrangement to that in design I

The original lengths of finger electrodes (Lf = Lf0 in figure 1) 
range from 225 to 265µm and 500µm to 525µm, with electrode 
widths either 20µm or 50µm.  The gap between the finger 
electrodes Lg ranged between 5 and 95µm.  The probe pads were 
all 500 µm x 500 µm (original length Le = Le0 = 500 µm) in size. 
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These test structures are designed to enable both 2-point and 
4-point Kelvin measurement of device resistance.   The test 
structures are fabricated on stretched substrates and as the 
tension is reduces, the finger electrodes F1 to F4 will be brought 
into contact sequentially due to their different Lg values [4, 8].  
The finger resistance values and any contact resistance can then 
be measured.   

B. Fabrication Process 
The fabrication process involves the patterning of a gold 

layer on a silicon substrate and then transferring the pattern onto 
a pre-tensioned flexible substrate.  The gold layer was patterned 
with a lift-off process using MEGAPOSITTM SPRTM 220-7 
positive photoresist.  This involved depositing  Au layers (with 
thickness ranging between ~16nm and ~100nm) on a silicon 
wafer with an anti-stiction SAM layer Perfluoro-decyl-trichloro-
silane (FDTS, deposited using a MemsStar AURIXTM system).  
Alternatively, a thin C4F8 passivation layer deposited by 
Plasmatherm� Inductively Coupled Plasma (ICP) system could 
also be employed as an anti-stiction layer. 

Fig. 2(a) and (b) shows SEM images (Tescan® Mira3) of the 
multi-switching electrode designs on silicon, with Fig2(c) 
showing a cross-section of the gold layer with a thickness of 
74nm.  With the test structure geometric designs reported above, 
the resistance of the fingers would be expected to vary between 
∼25 to 175 Ω for the reported gold film thicknesses.   

With the gold now patterned the next stage is to transfer it 
onto the PDMS bi-layer.  This bi-layer elastomer, consists of a 
thick and stiff mounting layer (3 mm thick, 9 mm width and 30 
mm length) made of Vinylpolysiloxane, which was 
prefabricated and placed in a mechanical vice and pre-stretched 
from 5mm to 30mm length, before a softer unstressed thin 
PDMS bilayer (~110.13 µm thick) was attached.   

To transfer the Au electrodes they were treated with MPTMS 
(3-Mercaptopropyl-trimethoxysilane) as an SAM adhesive, by 
soaking in 25mM MPTMS in absolute ethanol solution for 3 
hours. The electrodes were then transferred to the bi-layer 
elastomer flexible substrate (shown in Fig. 3) from the silicon 
carrier wafer using the dual SAMs stamping method reported in 
[4, 8].   

C. Strain testing set-up 
Figure 3(c) shows the completed devices in their jig with the 

Au - PDMS test structures, mounted on the Vinylpolysiloxane 
(green coloured) stiff layer under tensile stress (mechanically 
pre-stretched).  The PDMS bilayer with the Au test structures 
(figure 3b) was then compressed by relaxing the pre-stretched 
Vinylpolysiloxane mounting layer controlled by turning the 
screw thread (pitch = ~ 1.25mm/turn) of the mechanical vice.   

By relaxing the pre-stretched Vinylpolysiloxane mounting 
layer from L0 to L, the PDMS bi-layer is compressed. Hence, the 
PDMS surface instabilities would be expected to change 
(Wrinkles-Creases) depending on the strain under uniaxial 
compression, which is given by:  

ε = (L0-L)/L0                                              (1) 

 
Fig. 1. Design layouts of the multi-switching high-strain sensing test 
structures.   
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Fig. 2. SEM images showing (a) and (b) top view of the Au multi-switching 
test structures on silicon substrate, and (c) cross-sectional view showing Au 
thickness.  

 

(b)(a)

(C) Silicon

Au

 
Fig. 3. (a) SEM images showing transferred Au sitting on PDMS bilayer 
(~110 µm thick), (b) microscopic top view of the transferred Au test 
structures on PDMS, and (c) photo of the entire device tensioned in the 
mechanical vice.   
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III. MEASUREMENTS AND RESULTS 

A. Optical measurement of  Electrode Deformation 
To quantitatively study the electrode deformation, 

compression strains were calculated before and during the 
formation of crease in the gap between electrodes by measuring 
the “Lf0 and Lf” of the 4 finger electrodes, and “Le0 and Le” of 
the contact electrodes.  These results can then be compared with 
the mounting layer or substrate strain ε given by Eq. 1 which acts 
as a reference.   

As a result of the surface instability growth, Au electrodes 
on the PDMS surface may endure a different strain change to the 
PDMS bi-layer and the Vinylpolysiloxane mounting layers.  
Hence, 2-D measurements of the electrode deformation were 
undertaken using ImageJ software on photos taken using a 
Nikon® Eclipse LV100 microscope.  The lengths were 
measured to determine the compression strain on Au electrodes 
of the multi-switching test structures during the compression 
process (fig. 4).  

Figure 5 shows a surface deformation profile of the Au 
electrode test structures measured using a Bruker® GTK 
interferometry surface profiler.  In addition to the length 
information, the amplitude of wrinkles (figure 5(a)) can also be 
observed during the process.   

While Au wrinkling was observed at lower strain levels in a 
similar manner to previous reported single-switching test 
structures, the multi-switching structures have shown some 
interesting behaviour.   

Details recorded in Fig. 4 and 5 show that, when creases start 
to form at strains ε > 0.45 on the PDMS surfaces, the 
compression ratios (Lf0 - Lf) / Lf  start to lag behind the substrate 
strain change as shown in Fig. 6.  This is more obvious on the 
finger electrodes (F1 to F4) than the probe pad (E1).   

As a result, the multi-switching structures (especially the 
finger electrodes) are largely undamaged along the uniaxial 
compression direction, which makes electrical measurement of 
the multi-switching mechanism promising.   

B. Electrical measurement of the Multi-switching mechanism 
When there is a large strain change of up to 0.6 or 60%, it is 

inevitable that tensile transverse strains are generated by the 
uniaxial compressive strain change.  Such tensile strain is 
usually perpendicular to the compression direction, and has been 
observed to cause damage to some parts of the test structure.   

Figure 7(a) shows that the tensile strain changes on finger 
electrodes F1 to F4 are considerably larger than on the probe 
pads E1.  This non-uniform strain distribution causes 
undesirable shear force to be generated on interconnects 
between the contact pads (E1) and (F1 and F4) in both design I 
and II.  Figure 7(b) shows that on design II, right-angled 
interconnects also suffered damage due to similar shear forces.   

This damage has resulted in the following compromises 
during the electrical testing:  

1. Only 2-point resistance measurements were conducted 
at this stage.   

 
Fig. 6. Strain change comparison on multi-switching Au electrodes – finger 
electrodes F1 to F4, and contact pads E1.  Red dotted line indicates the 
substrate strain change as a reference. 

0.30 0.35 0.40 0.45 0.50 0.55
0.25

0.30

0.35

0.40

0.45

0.50

Th
e 

st
ra

in
 o

f e
le

ct
ro

de
s

The strain of substrate

 E1
 F4
 F3
 F2
 F1

 
Fig, 5. Bruker GTK surface scan providing surface profile of F2 electrode 
shows both wrinkles on Au and creases on PDMS as (a) cross-section 
view, and (b) 2D contour top view 

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
-10
-8
-6
-4
-2
0
2
4
6
8

10

Z 
(P

m
)

X (mm)

Y 
(m

m
)

Z (µm)

(a)

(b)

420-2-4-5

0

0.04

0.08

0.12

 
Fig. 4. Time sequential microscopic images showing the compression 
process generating creases (b) on PDMS and wrinkles on Au electrodes 
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2. The actual probing site of design II is as indicated in 
figure 7(b).  

3. Only finger electrodes F2 and F3 were successfully 
involved in the multi-switching strain sensing.  

However, despite the above issues, multi-switching with a 
large strain sensing mechanism has been achieved.  Figure 8 
shows the resistance measurements performed using an 
Everbeing EB8 manual probe station (with EB-05 probes) 
connected to a Keithley® 4200 analyzer (-1V to +1V sweep, 
with 0.2V/step).  It should be noted that probing these devices is 
complicated by the wrinkling and creasing of the gold as well as 
the flexible and soft nature of the substrate membrane. 

Figure 9 shows the resistance values of the test structure as a 
function of strain for design II shown in Figure 1. Each point is 
measured for a range of current level by sweeping between -1V 
and +1V, with 0.2V/steps.  For this structure the designed Lg 
values for F2 and F3 finger electrodes were 12 µm and 21 µm 
respectively, with Lf = 509 µm and 518 µm, and Wf = 50 µm.  
Given the Au thickness in this case was around 70 nm, then the 
estimated finger electrode resistance would be in the region of 
50 Ω.   Therefore when the F2 electrodes are in contact, the 
calculated resistance of the test structure will be 100 Ω, 
assuming the contact resistance is zero.  This will be reduced to 

50 Ω when F3 electrodes are also connected due to a higher 
strain.   

From figure 10, it can be observed that the first switching 
stage happens at εs = 0.45, strain range 0.45 < ε < 0.52 with a 
resistance of ~120 Ω.  The second switching stage occurs at εs = 
0.54, strain range 0.54 < ε < 0.58 with the measured resistance 
being ~ 50 Ω.  Note the error bars indicate multiple 
measurements at different current levels that in most cases 
indicate that Joule heating is not influencing the measurement.  
It is thought that the large variability in just the two data points 
is related to the contact resistance just before a good contact is 
achieved. 

The “switch on” strain εs results from the multi-switching 
test structure seem different to the previous reported values of 
single switching test structures with Lg = 12 µm and 21 µm 
reported in [8], which are 0.22 and 0.42 respectively and further 
investigation is required.    

IV. CONCLUSIONS AND DISCUSSIONS 
Test structures with the ability to detect multiple strain values on 
a super-flexible substrate have been designed, fabricated and 

 
Fig. 7. Tensile strain perpendicular to the compression direction generated 
during strain increase on both (a) design I (probe tips present) and (b) 
design II.  The damaged interconnects are highlighted by white circles.  
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Fig. 10. Two-stage resistance switching strain sensing: Resistance of the 
test structure (design II, Lg) as a function of strain during the two-stage 
switching period (0.45< ε <0.52, and 0.54< ε <0.6).  

0.45 0.50 0.55 0.60
0

200

400

600

800

R
es

is
ta

nc
e 

(o
hm

)

Strain

F3 electrode contact
induced by creasing

F2 electrode contact
induced by creasing

 
Fig. 9.  Resistance of the test structure (design II, Lg) as a function of 
strain. The resistance change during the two-stage switching are 
highlighted in a red ring and detailed in figure 10.  
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Fig. 8. Photo shows resistance measurements performed using an 
Everbeing EB8 manual probe station 



characterised, both optically and electrically.   In contrast to the 
previously reported single switching test structures, multiple 
resistance values were generated at different switching strains on 
an individual device.  This has been demonstrated using the 
multiple finger electrode test structure with different distances 
between the electrodes (the gaps are aligned along the 
compression axis).  

During characterization, issues related to unwanted tensile strain 
perpendicular to the compression axis have been observed, 
which resulted in unexpected damage to the test structure 
interconnects.  Future work will have to address minimizing 
such damage by layout modifications.  The switching strain 
values of the multi-switching test structures related to the gap 
distances were observed to be different than values reported for 
the single switching devices and further investigation is required 
to compare the performance of the two structures.  
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