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Sexual ornaments are often assumed to be indicators of mate
quality. Yet it remains poorly known how certain ornaments are
chosen before any coevolutionary race makes them indicative.
Perceptual biases have been proposed to play this role,
but known biases are mostly restricted to a specific taxon,
which precludes evaluating their general importance in sexual
selection. Here we identify a potentially universal perceptual
bias in mate choice. We used an algorithm that models the
sparseness of the activity of simple cells in the primary visual
cortex (or V1) of humans when coding images of female faces.
Sparseness was found positively correlated with attractiveness
as rated by men and explained up to 17% of variance in
attractiveness. Because V1 is adapted to process signals from
natural scenes, in general, not faces specifically, our results
indicate that attractiveness for female faces is influenced by
a visual bias. Sparseness and more generally efficient neural
coding are ubiquitous, occurring in various animals and
sensory modalities, suggesting that the influence of efficient
coding on mate choice can be widespread in animals.

1. Introduction
Darwin thought of mate choice as a pure aesthetic experience, a
selection and celebration of beauty for its own sake [1–3]. His view
has not been embraced by modern evolutionary biology, for which
choice evolves because ornaments indicate the quality of their
owners [4]. Yet little is known about the origin of the association
between ornaments and choice, that is, the primary step needed
for any further coevolutionary process to run. Could the original
association be free of any utilitarian strings and thus match the
Darwinian, aesthetic view of mate choice? Does the initiating
mechanism continue to influence mate choice in conjunction with
other mechanisms?

Perceptual biases, which encompasses both sensory and
cognitive biases, are frequently proposed to initiate the choice-
ornament coevolution [5]. The mechanism assumes that choices
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arise as by-products of the adaptation of perceptual systems to tasks unrelated to sexual selection [6].
All perceptual systems evolve biases in response to selection by the environment, and mating biases
are therefore inevitable [7]. Nevertheless, the importance of perceptual biases in mate choice is rarely
assessed because biases are mostly unknown or, when known, are restricted to a specific taxon (e.g.
[5,6]). A notable exception is the preference for symmetry, which seems to occur in a wide range of taxa
and which has been proposed to have a perceptual bias origin [8]. In this study, we identify a different
perceptual bias that influences attraction to mates; a bias that is potentially universal, occurring with any
stimulus processed by any sensory system: the efficient coding bias.

There is ample evidence that perceptual systems are adapted to efficiently code information from the
natural environments, that is, the type of environment where our ancestors lived [9,10]. Efficient coding
is achieved notably by removing redundant signals from stimuli [11]. In an image, redundancy occurs
when the value at a given pixel can be partly predicted by the values at neighbouring pixels. In primates,
this type of redundancy is processed by retinal ganglion cells and by the lateral geniculate nucleus [12].
Another important source of redundancy occurs in the so-called fourth-order structure of an image and is
captured by analysing sparseness in feature coding. An image feature, for example, a line with a specific
orientation, is sparsely coded if a relatively small number of encoders (e.g. neurons) are active at the
same time. In primates, the fourth-order structure of visual stimuli is essentially processed by the simple
cells of the primary visual cortex (V1) [10].

The efficient coding strategy is adaptive in at least two ways. With redundancies discarded, signals
are compacted and are thus more rapidly and precisely processed, which facilitates memory storing and
retrieving [13]. In addition, vision is remarkably costly: in humans, information coding and processing
within the visual system alone accounts for 2.5–3.5% of a resting body’s overall energy needs [14].
Because it requires a limited number of active neurons, sparse coding therefore allows saving metabolic
resources [10,15].

A stimulus that incidentally exhibits the same spatial structures than that of natural environments
provides the observer with direct benefits because it is most efficiently coded by the sensory system.
We predict that observers have evolved a preference bias for such stimuli. In this article, we tested this
prediction by studying how the degree of similarity in fourth-order spatial structures between natural
scenes (forest and open landscapes) and females’ face correlates with the attractiveness of these faces
for men.

2. Material and methods
2.1. Image datasets
Caucasian women aged between 18 and 26 were recruited by social network and advertising in different
cities from France, between 2010 and 2011. The face of each woman was photographed using a Canon
EOS 20D camera and a 50 mm lens with a standardized procedure (lens-face distance set to 1 m,
controlled lighting conditions, fixed camera settings).

All photographs were post-processed using Adobe PHOTOSHOP to normalize size (photographs were
aligned on eye position, with a fixed distance between eyes and chin). We analysed two sets of images
that have been collected for the purpose of other studies on womens attractiveness (for dataset 1, see [16];
for dataset 2, see [17]). The two datasets represent faces from different women and differ in how images
have been further post-processed (see the electronic supplementary material, figure S1). In dataset 1
(n = 166), the background was replaced by a uniform black colour, hair and necks were blurred and
images were converted to greyscale using the rgb2gray function in MATLAB. In dataset 2 (n = 68), the
background was replaced by a uniform neutral grey; neck and shoulders were removed. Photographs
were stored in .jpg format.

2.2. Scoring attractiveness
The attractiveness of woman faces was evaluated by Caucasian men recruited on public places in
Montpellier, France. In a first study (dataset 1), a Delphi-based computer program was constructed to
randomly display one face at a time to 169 men (mean: 36 years). The photographs (faces’ height on
the screen = 490 pixels for dataset 1 and 460 pixels for dataset 2) were presented on a 13 inch screen at
a 1366 × 768 resolution. The observers were seated in a chair, facing the screen at a distance of 50 cm.
For each face, the rater was instructed to move a cursor between 0 (lowest attractiveness) and 20 (highest
attractiveness). The program stored a value between 0 and 100 by linearly scaling rater’s score. Each rater
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assessed attractiveness of 30 different faces. In a second study (dataset 2), another computer program
was constructed to randomly display pairs of images to 156 men (mean: 36 years). For each pair, the
rater was instructed to click on the photograph of the face he found the most attractive. The position of
the photograph on the screen (left or right) was ascribed randomly. Each rater assessed 30 distinct pairs
corresponding to 60 faces, which could therefore be sorted for attractiveness. A score of attractiveness
was then calculated as the average rank.

For both studies, if the rater knew one of the women he had to evaluate, the trial was removed. Also,
the first photograph/pair of photographs seen by each participant was not used for the analyses, because
the task could require some habituation. Three photographs/pair of photographs, randomly chosen from
those previously assessed were displayed again at the end of the trial to test for reliability of judgement.
If both assessments differed (i.e. more than 10% differences for dataset 1 or incongruent click for dataset
2) more than once, the rater was qualified unreliable and his answers removed from the analyses. Finally,
we used ratings from 119 and 142 men in dataset 1 and dataset 2, respectively.

2.3. Sparse coding
We first whitened all images in order to model signal processing before the visual cortex, and to facilitate
convergence of the sparse coding algorithm. We used the whitening procedure described in [18]. It is
based on a circularly symmetric low-pass filter, which attenuates low frequencies and boosts high
frequencies (except the very highest frequencies). The frequency response of the filter is

R( f ) = f e−( f/fo)4
, (2.1)

with a cut-off of highest frequencies, fo, of 200 cycles/picture. Such a filter roughly resembles the spatial
frequency response of retinal ganglion cells [18]. In addition, it decorrelates first- and second-order
statistics of the image, leaving the higher-order redundancies that are analysed through sparse coding.

To study the sparseness of faces, we first trained an artificial neural network to reconstruct whitened
images of natural scenes with a sparse coding algorithm, a step known as dictionary learning in
visual computing (figure 1). As in a principal component analysis (PCA), the algorithm learns a set of
basis functions with the goal to reconstruct any patch of an image from a linear combination of basis
functions. Contrary to the PCA, however, the sparseness algorithm does not constrain basis functions to
be orthogonal to each other. Rather, it maximizes the sparseness of the density function of weights, that is,
for a given patch the weight associated to each basis function should be zero in most instances (figure 1).
We used the same algorithm, model parameters and training images (n = 10) as in [9], who showed that
the basis functions trained this way describe detectors of light changes (i.e. luminance contrasts) with
sensitivity properties similar to that of the simple cells located in the primary visual cortex of primates
(V1 area). We trained three dictionaries, with the size h2 of basis functions set to 8 × 8, 12 × 12 or 16 × 16
pixels. Varying the size of basis functions is equivalent to modelling different sizes for the receptive field
of V1 neurons. In each dictionary, the number of basis functions was set to h2.

Then, for each face representation we extracted patches of size h2, centred on every pixel. Accounting
for the effect of edges, this represents n = 316 999, 312 471 and 307 975 patches for an image of size
500 × 650, with h = 8, 12 and 16, respectively. We removed patches representing the background only
(i.e. all black patches in dataset 1 and all neutral grey patches in dataset 2) to avoid overestimating
sparseness in pictures with a high amount of background. We used the conjugate gradient descent
algorithm implemented in the sparsenet package for MATLAB [9] to look for the coefficients ai of the
linear combination of basis functions that minimizes the cost function described in figure 1, which aims
at reconstructing each image patch from the dictionary while maximizing both the precision of patch
reconstruction and the kurtosis of ai. The sparseness of each face representation was then estimated with
two different measures, the mean kurtosis of ai:

kurtosis = 1
n

n∑
1

1
h2

h2∑
i=1

(ai − ā)
σ (a)4 (2.2)

and the mean activity ratio [19] adapted to ‘population sparseness’ [20]:

activity ratio = 1
n

n∑
1

(
(1/h2)

∑h2

i=1 |ai|
)2

(1/h2)
∑h2

i=1 a2
i

. (2.3)
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Figure 1. Workflow for estimating the sparseness of face images. We first trained 144 basis functionsΦi (of size 12 × 12) to reproduce
natural scenes using the same sparseness algorithm and model parameters as in [9]. Then, for each face image we convolved basis
functions with n patches p(x, y) and worked out the combination of activity coefficients ai (i.e. the weights ofΦi) that minimizes a cost
function. Coordinates (x, y) of patch centres take all possible values along the width and the height of an image, respectively. The cost
function accounts for both the quality of face reconstruction and the sparseness of ai distribution.λ determines the relative importance
of these two components. The quality of reconstruction is given by the error mean square. During minimization, sparseness of ai was
estimated by summing each coefficient activity (scaled by constantσ ) passed through a nonlinear function S (see [8]). Here,λ = 0.044
and σ = 0.316. Analyses were repeated with 64 basis functions (8 × 8), and with 256 basis functions (16 × 16). We calculated two
measures of sparseness for each face: the kurtosis of ai distribution and the activity ratio (using |ai|). A sparse representation of face has
high kurtosis and low activity ratio.
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Figure 2. Correlation between attractiveness and kurtosis of ai distribution in dataset 1. Attractiveness is an average score within the
interval [0; 100]. The number of basis functions and the size of receptive fields were set to 16 × 16.

2.4. Facial symmetry and skin roughness
For each face, we further estimated its symmetry using a classical method based on landmark points
[21,22]; for details, see the electronic supplementary material, figure S2). We also analysed the roughness
of skin texture by calculating entropy (function entropyfilt in MATLAB), a measure of randomness in pixel
distribution. A unique roughness value was attributed to each face by averaging entropies calculated for
every 12 × 12 squares embedded within three 180 × 100 rectangles; one on each cheek and one on the
forehead (electronic supplementary material, figure S2).

2.5. Statistical analyses
We analysed the two datasets separately. Using the statistical software R, we performed linear models
with attractiveness as a response variable, facial symmetry, skin roughness, age of women and sparseness
(either kurtosis or activity ratio) as explanatory variables. The significance of each term was assessed from
the full model including all four explanatory variables. Model assumptions were validated graphically
by plotting the residuals versus fitted values to evaluate homogeneity, the residuals versus each
explanatory variable to evaluate independence (in multivariate models only), and by drawing a QQ-plot
of standardized residuals to assess normality.

3. Results and discussion
3.1. Sparseness and attractiveness are correlated
With dataset 1, variation in sparseness significantly explained variation in attractiveness independently
of the measure of sparseness and the size of receptive fields (table 1; figure 2). With dataset 2, sparseness
was significantly or marginally significant except in one case (activity ratio with 8 × 8 basis functions,
table 1). The Spearman coefficient of determination (R2) between attractiveness and sparseness varied
between 0.17 (dataset 1; electronic supplementary material, table S1) and 0.04 (dataset 2).

Our results show that female faces which are rated the most attractive by men should be the most
sparsely coded by the primary visual cortex of these men. The correlation is stronger and more significant
with dataset 1 compared with dataset 2. This difference is not explained by sample size (results not
shown) but was expected from differences in image processing. Contrary to dataset 1, faces of dataset 2
were (i) presented in colour, which influences rating of face attractiveness [23] and (ii) reveal more hair,
which represent many high frequency features influencing more the predicted than the real sparseness
in mens’ V1, because our model gives similar weight to any region of an image while people viewing
faces typically spend little time scanning hair [24]. In support to this second explanation, R2 between
attractiveness and kurtosis (using 12 × 12 basis functions) increased from 7 to 11% when hair in dataset 2
was blurred as in dataset 1 before calculating kurtosis (electronic supplementary material, table S2). It is
notable that, despite these two limitations, the same trend as in dataset 1 could be detected in dataset 2.
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Table 1. Summary of the regressionmodels. (Themodels testedwere attractiveness∼β0 + β1 × sparseness + β2 × symmetry +
β3 × roughness + β4 × age + ε; ε ∼ N(0, σ 2). Results are provided in the form βi(P(t)), with P(t) giving the significance of the
test βi = 0. β2 and β4 were never significantly different from 0 (electronic supplementary material, table S1). Sparseness is measured
either as kurtosis or as activity ratio. Result for skin roughness is given for the model with kurtosis as a measure of sparseness only.)

dataset 1 dataset 2

size of

receptive fields kurtosis activity ratio roughness kurtosis activity ratio roughness

8 × 8 4.17 (0.021) −241 (2.8 × 10−3) −3.51 (0.071) 14.4 (0.054) −541 (0.124) −5.88 (0.677)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 × 12 2.03 (7.2 × 10−4) −168 (1.1 × 10−3) −4.62 (0.021) 4.56 (0.042) −572 (0.052) −1.71 (0.904)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 × 16 1.55 (1.4 × 10−4) −157 (5.3 × 10−4) −3.29 (0.087) 2.80 (0.094) −409 (0.083) −2.21 (0.879)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2. Efficient coding influences attractiveness
Beyond this correlational relationship, what is the effective influence of sparseness on attractiveness?
Our results on sparseness were obtained while controlling for three factors: age of women, facial
symmetry and skin roughness. In our analyses, the first two factors were never found to be significant
(electronic supplementary material, table S1). This is not unexpected given the limited variation in age
in our datasets, and the limited associations between attractiveness and symmetry found in previous
studies investigating naturally varying asymmetry in faces (for a review, see [25]). Skin roughness was
significantly or marginally significant in dataset 1 but not in dataset 2 (table 1). Although we used a
classical method of texture analysis based on a grey-level co-occurrence matrix, the method may be
limited for modelling texture perception in coloured images [26], thereby explaining the discrepancy
between the two datasets. Both facial symmetry and skin roughness are thought to explain a limited
fraction of variance in attractiveness [25], and it has been further suggested that their correlations with
attractiveness could be driven by third factors [27,28]. Similarly, one cannot exclude that the correlation
between sparseness and attractiveness actually reflects the influence of uncontrolled covariates.

Despite the above caveat, and given that we have excluded certain obvious covariates such as
skin smoothness, we would nevertheless argue that the magnitude of the correlation between coding
sparseness on attractiveness indicates a phenomenon of biological significance. Sparse coding is a
ubiquitous strategy, occurring from peripheral sensory systems [29] to higher brain areas [13]. By
modelling sparseness in V1 only, it is therefore likely that we underestimate the overall effect of sparse
coding on attractiveness.

More importantly, our results are in line with a body of literature suggesting that efficient coding
directly determines aesthetics preferences. A century of research in empirical aesthetics has revealed
preferences for certain forms and patterns that appear universal, being shared between societies in
humans [30] and between species (e.g. [31,32]). Furthermore, these preferences are not domain-specific,
being expressed with faces, landscapes as well as simple abstract geometric forms [30]. The best
documented of these preferences are for symmetrical, averaged and prototypical forms, curved contours
and scale-invariant patterns [30]. As noted by several authors (e.g. [33,34]), these preferred stimuli have
in common to be efficiently coded by the perceptual system (in primates, for example, in the retina
for curved forms, in the lateral geniculate nucleus for scale-invariant patterns, and in the cognitive
areas for prototypical stimuli). In accordance with this efficient coding theory of aesthetics, it has been
predicted that stimuli coded sparsely by the perceptual system should be viewed as attractive [34]. To our
knowledge, our study is the first to test and support this prediction.

3.3. Evolutionary consequences of sparse and efficient coding
We evidenced that faces coded sparsely by the primary visual cortex V1 are more attractive. The primary
visual cortex is a generalist brain region that has been shaped through natural selection and development
to process the complex statistics of natural scenes [10,35], not to perform a specific task like identifying
faces or evaluating their attractiveness. The positive correlation between face attractiveness and sparse
coding in our model of V1 simple cells thus indicates that attraction for faces is, at least in part, a
perceptual bias driven by the efficient coding strategy of the neuronal circuitry.
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The efficient coding bias is expected to influence evolution of communicative traits. Here it is

important to clarify what does the attractiveness for a sparse face really mean. From a sparse coding
perceptive, the sparsest face would be entirely blank. Yet all the face features have not primarily
evolved for communicative purposes. The presence, location and design of the mouth, nostrils, eyebrows
and other face features are constrained during development and have been selected to ensure vital
physiological functions. In addition, these features are important cues used to evaluate the genetic
quality and health state of a potential mate through visual assessments that certainly have primacy
over the efficient coding bias. Although, as demonstrated here the efficient coding bias may explain a
non-negligible fraction of variance in attractiveness, and we suggest that it may contribute to finely tune
the design of sexually selected traits. In other words, the efficient coding bias would not explain why the
peacock has a long tail but it could provide explanations for the design of eyespots and other refinements.

The efficient coding bias is probably universal. Sparse coding in particular is used in visual, auditory
and olfactory systems of various animals including invertebrates [36,37]. This perceptual bias thus offers
a general mechanism for nucleating the association between ornaments and preferences, which could
subsequently coevolve, become adaptive or diversify through other mechanisms of sexual selection.
Noteworthy, the efficient coding bias could also promote the diversification of signals since the nature of
the preferred stimuli can vary between species, populations and even individuals.

Last, the efficient coding bias is tightly linked to the model of sensory exploitation. While this
model posits that signals adapt to the external environment to optimize information transmission [38],
according to the efficient coding bias, this optimization is further permitted by adaptation of signals
to the internal environment of the perceiver. Many studies on sensory exploitation have evidenced that
signals are both adapted to the environment and are preferred by the perceiver, but it is largely unknown
why the adapted signals are preferred: do they improve signal detection or recognition, the evaluation of
information, its reliability? Similarly, it is still unclear why efficiently coded stimuli should be preferred.
They could be energetically beneficial to the observer [10,15], but it has been also demonstrated that
such stimuli are more precisely coded by the perceptual system and are stored longer in memory [13,15].
Neurophysiologists and behavioural ecologists could both contribute to highlight this question.

Our main result that coding sparseness in observers’ V1 is correlated with facial attractiveness concord
with recent advances in psychology and neuroscience, which suggest that aesthetic preferences in part
are a perceptual bias favouring efficiently coded stimuli. This implies that the benefits of selecting an
aesthetical display can be fortuitous, not adaptive in the context of a specific visual task. These findings
support Darwin’s view that mate choice is not necessarily adaptive, but instead is primarily influenced
by attraction for pure beauty [1–3].

Modern evolutionary biologists have almost (but see [39]) invariably interpreted preferences for
symmetrical, averaged and gender-typical communicative traits under the umbrella of the quality-
indicator traits paradigm ([25,28]; see also [32] in birds). All these preferences can also be explained
by the efficient coding bias. Future studies should allow unravelling of the relative contribution of the
efficient coding bias and of preferences that evolved to assess mate quality in sexual selection.
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