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Graphical Abstract 
 
 
 

Highlights 

 

 

 Mechanosynthesis lower the formation temperature of Nd0.33Eu0.67Fe1-xCrxO3 

nanoparticles by ~ (470oC - 700oC) relative to conventional processing routes.  

 The lattice parameters of the nanoparticles decrease and the distortion of their 

orthorhombic structure reduces with increasing x.  

 About ~ 5% of Eu3+/Nd3+ and Fe3+/Cr3+ cations exchange their normal A- and B-

perovskite-related sites.  

 Partial superparamagnetism is revealed, which enhances with increasing x.  

 The Nd0.33Eu0.67Fe1-xCrxO3 nanoparticles exhibit a complex surface structure. 

 

Abstract  

We report on the structure and surface composition of Nd0.33Eu0.67Fe1-xCrxO3 (x = 0.0, 0.3, 0.5, 0.7, 0.9 and 

1.0) nanoparticles (~30 nm) mechanosynthesized at temperatures that are ~ 470– 700 oC  lower than those 

at which the pure and doped pristine materials conventionally form. XRD Rietveld and FT-IR analyses show 

that with increasing x the lattice parameters decrease and the bond lengths and angles vary in a way that 
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reduces crystalline distortion. Whilst the majority of the Eu3+/Nd3+  and Fe3+/Cr3+ cations occupy the normal 

perovskite-related A- and B-sites, respectively, ~ 5% of them exchange sites.  57Fe Mössbauer 

spectroscopy confirms the presence of these antisites and reveals a superparamagnetic behaviour at 298 

K that enhances with increasing x. XPS measurement reveals a complex surface composition of the 

nanoparticles with traces of Eu2O3, Nd2O3, Cr2O3 and Fe2O3 as well as partial O2--deficiency. 

 

Keywords: Orthoferrites; Mechanosynthesis; XRD; Mössbauer Spectroscopy; XPS. 

 

 

 Introduction 

The physical and chemical properties of the perovskite-related europium ferrite EuFeO3 and 

europium chromite EuCrO3 are attractive from an applied viewpoint [1-4]. For instance the 

multiferroicity, low temperature canted antiferromagnetism, high dielectric constants, low 

dielectric losses and the high temperature stability render them potential in applications that 

include magnetic storage devices, spin switches, multifunctional smart devices, magneto-electric 

coupling devices, gas sensing devices and solid oxide fuel cells among others [1-11]. Both solids 

crystallize in a distorted orthorhombic crystalline structure (SG: Pbnm; #62) where the rare earth 

(RE) Eu3+ cation and the transition metal (TM) cations, respectively, occupy the cuboctahedral (A) 

and the corner-sharing octahedral (B) sites [1-5]. The Néel temperatures (TN) of these G-type 

antiferromagnets are  662 K (EuFeO3) and   181K (EuCrO3) [6].  

It has been demonstrated that the magnetic and electrical properties of bulk EuFeO3 and 

EuCrO3 may be tangibly tuned when they are RE/TM cation-doped and/or have their average 

particle size reduced to the nanometer scale [1,3,7,8]. The partial substitution of the A-site Eu3+ in 

EuFeO3 with RE ions was addressed by few workers. For instance, doping with Sm3+ was found 

to increase the EuFeO3conductivity [10]. Taheri et al have shown that doping EuCrO3 with Ce3+ 

to form Eu1−xCexCrO3 nanoparticles has significantly increased TN and resulted in novel magnetic 

and electric properties including magnetic exchange bias effect, magnetization reversal, and 

relaxor-type dielectric properties [7,8]. In an earlier study, Liu et al reported a Mössbauer study 

on the effect of Gd3+-doping on the hyperfine properties of bulk EuFeO3 [12]. The influence on 

the structural and magnetic properties of EuFeO3 when the Fe3+ ions at the B-site are substituted 

with a TM ion such as Co3+
, Sc3+, Ca2+ and Mn3+ has also been reported [11,13-16].  Among the 

various TM cations, however, Cr3+ and Fe3+ appear to be the most attractive cationic substituents 

in EuFeO3 and EuCrO3, respectively. This is partially related to the fact that the magnetic super-

exchange interaction between both cations could be monitored as a function of cationic 
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concentration and the particle size [1,4,9]. Of special interest to us in this work is a previous study 

on the structural and magnetic properties of mechanosynthesized EuCrxFe1-xO3 (x = 0.0-1.0) 

nanocrystalline particles in which we reported an unusual Eu3+/Cr3+-Fe3+ cationic A-B site 

exchange (antisite defects), unit cell expansion, enhanced structural distortion and a reduction in 

TN with increasing Cr3+ content [1,4,6].  Whilst antisite disorder in perovskite-related solids has 

been reported to be externally-induced, such as when the solids are radiation-damaged [17], it is 

interesting to note how the effect was induced by the use of the mechano-synthesis route in EuCrO3 

and EuCrxFe1-xO3 [1,4,6]. Intriguingly a magnetocaloric effect augmented by magneto-

electric coupling was reported recently for the isostructural DyFe0.5Cr0.5O3 compound [18]. Such 

an effect is, to the best of our knowledge, not hitherto reported for EuFe0.5Cr0.5O3 or any other 

EuCrxFe1-xO3 (x ≠ 0.5) compound.  This hints on the role that could be played by the effective 

magnetic moment of some RE-substituents for Eu3+ ions in the EuCrxFe1-xO3 solid solution. 

Despite the huge interest in EuFeO3, EuCrO3 and their cation-doped derivatives, to our knowledge 

there are no published studies where either EuFeO3 or EuCrO3 in the form of bulk or nanoparticles, 

has been co-substituted with a TM cation and RE one simultaneously.  

Conventionally, pure and cation-doped bulk and microcrystalline EuFeO3 and EuCrO3 are 

prepared with the solid-state reaction (ceramic) route wherein the reactants, either oxides and/or 

carbonates, are pre-heated during two or more prolonged heating sessions (12-24 h) at elevated 

temperatures (1000-1380 C) [1-4]. The materials have also been prepared using the self-propagating 

high-temperature synthesis routes where temperatures in the range of ~1400 to ~ 2200 C were used 

[5,6]. Alternatively, the sol–gel preparation method, which involves double sintering a dried gel 

powder at 800 C and 1000 C (6 h) has also been used [10]. In addition, a combustion reaction 

technique, where a heating treatment at 950 C under an atmosphere of mixed argon and hydrogen 

has been reported [8]. These methods, apart from being both resource consuming, could lead to 

typical adverse effects associated with bulk ferrites prepared under prolonged exposure to elevated 

temperatures. For example, the conductivity of the ferrite may get enhanced due to the possible 

reduction of Fe3+ to Fe2+ which could limit the usability of the material in microwave applications 

where high resistivity and minimum dielectric loss are required [19]. Over the past decades, ample 

experimental evidence has revealed oxide nanoparticles to exhibit physical properties that are 

different from those of their corresponding bulk [20,21]. In this respect we have, for some time, 

been investigating the structure, magnetic and electrical properties of cation-doped ferrite 
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nanoparticles synthesized using non-conventional low-temperature processing routes [1,4,6,19]. 

One such route that is simple and low-cost is mechanosynthesis where the reactants are 

mechanically milled to form nanoparticles with large surface area that are tightly pressed together 

[1,4,6,22,23]. The large interfaces between the particles facilitate the induction of the sought 

reaction with or without subsequent calcination.  Similar to other routes, mechanosynthesis has its 

drawbacks that include, for instance, contamination due to possible reaction with the milling media 

[22]. This could be minimized by using milling media that are hardened enough to resist wearing 

during mechanical activation. It could, also, be reduced if the solid precursors used in the 

conventional ceramic preparation routes are used as the starting milling materials [23]. The 

presence of amorphous phases that escape detection with normal diffraction techniques is 

sometimes an inevitable drawback of mechanosynthesis. Often these amorphous materials stick to 

the surfaces of produced particles and are associated with extremely small amounts of un-reacted 

precursors or intermediate phases. This often leads to complex surface structures of the produced 

nanomaterials and reflects both the bottom-up nature of the technique and the extreme difficulty 

in using precursor amounts that result in an ideal stoichiometric product [1,6]. 

While core-probing techniques, such as X-ray diffraction and transmission Mӧssbauer 

spectroscopy, could reveal the mechanosynthesized nanoparticles to be structurally single-phased, 

the bottom-up nature of mechanosynthesis could lead to reminisces of un-reacted materials or 

intermediate phases on the surfaces of the nanoparticles. These, while normally are smaller than 

the detection limit of the core-probing methods, could be investigated with surface-sensitive 

techniques such as X-ray photoelectron spectroscopy. It is worth noting here that 

mechanosynthesized nanocrystalline particles of NdFeO3 are reported to form at room 

temperature, possess modified crystal structure and exhibit larger magnetization saturation relative 

to other RE orthoferrites [24]. This suggests that mechnosynthesis could lead to the production of 

Nd3+-doped or co-doped versions of EuFeO3 nanoparticles with modified structural and magnetic 

properties at low temperatures.  

In this paper, we report on the low temperature mechano-synthesis of nanocrystalline 

particles of Nd3+ and Cr3+ co-substituted EuFeO3 of the composition Nd0.33Eu0.67CrxFe1-xO3 

(x =0.0-1.0) and their core and surface structural analysis with X-ray diffraction (XRD), Fourier 

transform infrared spectroscopy (FT-IR), 57Fe Mössbauer spectroscopy, and X-ray photoelectron 

spectroscopy (XPS).   We first study the structural phase evolution during the formation of the 
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particles. This will be followed by a detailed structural investigation of the crystal structure of the 

cores of the nanoparticles. Finally, the structure and composition of the surfaces of the 

nanoparticles will be probed by analyzing their XPS data. 

2.1. Experimental   

Powder samples of Nd0.33Eu0.67CrxFe1-xO3 (x = 0.0, 0.3, 0.5, 0.7, 0.9 and 1.0) were prepared 

using the mechanosynthesis route, as we detailed in [1], using mixtures of highly pure Nd2O3, 

Eu2O3, Cr2O3, and α-Fe2O3 reagents (> 99 %; Sigma Aldrich) in the molar ratios of 0.17: 0.33: x/2: 

(1-x)/2. The prepared mixed powders were subjected to mechanical milling for different times 

using A Fritch D-55743 P6 milling machine with tungsten carbide vial (250 mL) and balls (10 mm 

in diameter). The ball-to-powder mass ratio was 22:1. The milling was performed for pre-set time 

intervals with a speed of 300 rpm.  A Carbollite (HTF 1800) furnace was used to sinter the pre-

milled mixtures at different temperatures for periods of 6 h. The phase evolution as the reaction 

proceeded was monitored with an X’Pert PRO PANalytical X-ray diffractometer equipped with a 

scintillation counter and an exit beam graphite monochromator. Cu-k 
 
radiation (λ =1.5406 Å) 

was used in 2θ- range of 20o to 80o in angular steps of 0.014o 
 

and a counting time of 0.02 s per 

step. Rietveld refinement structural analysis of the XRD patterns (e.g. ionic site occupancies of 

fractional coordinates, lattice parameters, phase abundance,…,etc.) was performed using the 

MAUD analysis code [25]. In this context, we note that the Rietveld method, as implemented in 

the MAUD software, can help in estimating the crystallite size and strain. This is because the XRD 

peaks are assumed to be tunable Voigt, pseudo-Voigt or the Pearson VII functions whose Gaussian 

and Lorentzian components could be, respectively, used to compute the crystallite size [26] and 

strain [27] when the whole diffraction pattern is simultaneously fitted. High resolution 

transmission electron microscopy (HRTEM) was performed using a JEM 2100F system operating 

at 200 kV. A Perkin-Elmer spectrometer was used to collect FT-IR spectra. 57Fe Mӧssbauer spectra 

were recorded at 298 K and 78 K using a conventional constant acceleration and the isomer shift 

values are quoted relative to α-Fe foil at 298 K. XPS measurements was performed using an 

Omicron Nanotechnology XPS system with Al Kα radiation (h = 1486.6 eV). All scans were 

done at a base pressure of 1.2  10-9 mbar. As charging effects are unavoidable in XPS 

measurements of non-conducting samples, charge compensation was performed by electron 
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flooding of the samples’ surfaces using a built-in neutralizer. The binding energies were calibrated 

according to the C 1s reference peak at the binding energy of 284.6 eV.  

3. Results & Discussion 

3.1. Formation  

Figure 1(a) shows the XRD patterns recorded from the 0.17: 0.33: 0.5 molar mixture of Nd2O3, 

Eu2O3 and α-Fe2O3, intended to form Nd0.33Eu0.67FeO3 (i.e. x = 0.0), milled for 1, 10 and 20 h. 

After just 1 h of milling, the peaks indexable to both Nd2O3 and Eu2O3 almost disappear implying 

a milling-induced transformation of both oxides into an amorphous state, possibly in the form of 

thin films on the surface of the size-reduced α-Fe2O3 whose reflection peaks substantially become 

broader and weaker in intensity. Further milling of the mixture for 10 h induced a reaction resulting 

in nearly a complete formation of a nanocrystalline perovskite-related Nd0.33Eu0.67FeO3 phase as 

is evident from the dominant broad reflection peaks. However, a small amount of unreacted α-

Fe2O3 was present, which remained even after 20 h of milling.  To complete the reaction leading 

to the single-phased Nd0.33Eu0.67FeO3, the 20 h pre-milled reactant mixture was calcined in air at 

400 oC and 500 oC. The XRD patterns of the calcined mixtures are shown in Figure 1 (b). 

Calcination at 500 oC is required to form the sought single-phased Nd0.33Eu0.67FeO3. This 

temperature is significantly lower (~ 470 oC – 700 oC) than those previously reported for the 

formation of doped rare-earth orthoferrites [9,28,29]. Turning to the material at the other end of 

the Nd0.33Eu0.67CrxFe1-xO3 series, namely Nd0.33Eu0.67CrO3 (i.e. x = 1.0), Figure 2 (a) and (b) show 

the XRD patterns recorded from the appropriate molar mixture of Nd2O3, Eu2O3 and Cr2O3. To 

produce the single-phased Nd0.33Eu0.67CrO3 the reactant mixture was pre-milled for 40 h and then 

calcined at 800 oC (6 h). To synthesize the remaining samples in the Nd0.33Eu0.67CrxFe1-xO3 series 

(x = 0.3, 0.5, 0.7, and 0.9), the milling of the reactants was halted when it was realized that further 

milling results in no further reaction. The required reaction was then completed by subjecting the 

finally-milled mixture to calcination at different temperatures until a single-phased final product 

was attained. In Figure 3, we present the XRD patterns of the obtained single-phased 

Nd0.33Eu0.67CrxFe1-xO3 (x = 0.0, 0.3, 0.5, 0.7, 0.9 and 1.0).  

In general the formation of Nd0.33Eu0.67CrxFe1-xO3 nanoparticles, required longer milling 

times for the reactants as x increased, rising from 20 h (x ≤ 0.5) to 30 h (x = 0.7) to 40 h (x = 0.9 

and 1.0). The calcination temperature of the pre-milled reactant mixture increased from 500 oC (x 

≤ 0.9) to 800 oC (x = 1.0). The inset of Figure 3 shows how the progressive substitution of the 
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larger Fe3+ ion by the smaller Cr3+ one [35] in the structure of Nd0.33Eu0.67CrxFe1-xO3 consistently 

shifts the (112) x-ray reflection peak towards a larger Bragg angles. The TEM images (Figure 4) 

show all the samples to be composed of nearly spherical and irregular-shaped nanoparticles that 

tend to aggregate. All samples with (x < 1.0) show generally a broad size distribution with an 

average particle size of (30 ± 3) nm for the samples with (x 0.5) and (33 ± 6) nm for the sample 

with (x= 0.9). The particle size distribution of the sample with no Fe3+ content, (x = 1.0), is 

narrower than the rest with an average particle size of (26 ± 3) nm. 

Figure 5 shows the FT-IR spectra recorded for all Nd0.33Eu0.67CrxFe1-xO3 samples to have 

two broad cation (M) - anion (O) vibrational bands that are characteristics of perovskite-related 

materials in the 800-400 cm-1 wavenumber range. These bands arise from the overlapping of the 

Eu/Nd-O stretching and Fe/Cr-O stretching and deformation of the FeO6 vibrational modes [30-

34]. In the spectrum of the sample with x = 0.0 (Nd0.33Eu0.67FeO3) the first band at ⁓564 cm-1 is 

similar to but slightly higher than those ascribed to Fe–O in both EuFeO3 (560 cm-1) and NdFeO3 

(550 cm-1) [30,33-35,]. Both bands in the FT-IR spectra of the samples with x = 0.3-0.9 shift 

gradually with increasing Cr3+ concentrations (x) towards higher wavenumbers up to x = 0.9.  The 

positive band shift ceases to exist for the sample with x = 1.0 (Nd0.33Eu0.67CrO3) that only features 

Cr–O, O-Cr–O and Eu/Nd–O bands. The reported wavenumber ranges for these bands in pure 

EuCrO3 are in the ranges of ⁓540-600 cm-1, 420-457 cm-1 and 473-584 cm-1 respectively 

[31,34,35]. The lower mass of Cr3+ ion relative to Fe3+ one may contribute to the increase in 

frequency going from x = 0.0 to x = 1.0. The effect of random substitution may be allowance of 

bands not seen in the x = 0.0 and 1.0 samples due to lowering of the site symmetry of the MO6 

octahedra as a result of differing neighbouring atoms.  These vibrations may contain contributions 

from symmetric stretches which lie at higher wavenumbers than the allowed asymmetric stretches 

in the non-substituted materials.  

3.2. XRD Rietveld structural analysis  

It is evident from Figure 3 that the intensity of certain reflection peaks in the XRD profiles 

of Nd0.33Eu0.67CrxFe1-xO3 materials, such as those of the (112) planes, systematically change and 

their positions shift with increasing Cr3+ concentration (x). A careful Rietveld analysis was 

performed for the XRD patterns of all samples starting from the crystallographic data of 

orthorhombic EuFeO3 (space group Pnma (# 62)) where the Cr3+ ions are introduced as 

substituents for the Fe3+ cation. The results of the best refinements are presented in Table 1. Figure 
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6 shows only the refined XRD patterns for the samples with x = 0.0 and x = 1.0 as the refined 

structural features of the remaining samples are intermediate between these (see supplementary 

information).  

Generally, the Nd3+ ions substitute for Eu3+ at the (4c) cuboctahedral A-sites whereas the 

Cr3+ ions replace Fe3+ at the (4a) octahedral B-sites. The XRD patterns were found amenable to 

best fits with structural models with antisite defects where the ~ 5% of the Eu3+/Nd3+ partly 

exchange their A-sites with the B-site Fe3+/Cr3+ ions. Assuming similar Eu3+/Nd3+ and Fe3+/Cr3+ 

atom form factors and taking into account the very small number of the antisites, the Eu3+-Cr3+ 

antisites given in Table 1 should be taken as equivalent to those involving any of Nd3+-Fe3+, Nd3+-

Cr3+ and Eu3+-Fe3+ cationic pairs. This cationic site exchange is similar to that we previously 

reported for EuFexCr1-xO3 nanocrystalline particles using an identical mechano-synthesis regime 

[1,4,6] and could be a consequence of the initial milling process that led to the intercalation of the 

Eu3+/ Nd3+ ions in the octahedral voids of the corundum-related -Fe2O3 and Cr2O3 structures. The 

estimated average crystallite size slightly increases with increasing (x) and is comparable, within 

experimental errors, to the TEM-estimated particle average size (Figure 4). 

The lattice constant of all samples satisfy the relation a < c/√2 < b, as is shown in Figure 7 

indicating that these materials do not exhibit Jahn-Teller effect [36]. The lattice parameters for the 

sample with x = 0.0 (Nd0.33Eu0.67FeO3) are slightly larger than those reported for EuFeO3 [4], 

reflecting the partial substitution of the Eu3+ ion (1.066 Å) with the larger Nd3+ ions (1.27 Å) [37]. 

With increasing Cr3+ content (x), the lattice parameters decrease monotonically in such a way that 

the rate of decrease in the lattice constant c is more pronounced than a and b. These results bear 

good agreement with those reported for EuFexCr1-xO3 prepared using a similar route to that used 

in the present study [4] and imply that the Fe3+ ions (0.645 Å) are substituted with the smaller Cr3+ 

ones (0.615 Å) [37]. 

The lattice strain (Table 1) generally increases with increasing Cr3+ content (x) which may 

be related to the apparent shrinkage of the lattice parameters of the samples shown in Figure 7 and 

Table 1 as well as their bond strengthening deduced from the FTIR measurements as discussed 

above. Additionally for the sample with  x = 1.0, which shows the highest strain value, the apparent 

reduction in the average particle size relative to the rest of the samples (Figure 4), implies a larger 

surface area-to-volume ratio which could enhance the crystalline lattice strain due to a complex 

interplay between bond contractions and expansions. 
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It is seen in Table 1 that with increasing Cr3+ concentration in the Nd0.33Eu0.67CrxFe1-xO3 

materials,  the x- and y- fractional coordinates of the A-site cations and those of the O2- anions 

slightly vary in response to the mismatch of the ionic radii between the A-site RE cations and  the 

B-site Fe3+ cations and the Cr3+ substituents. This leads to the bond lengths and angles given. 

Within experimental error, the A-B cationic bond lengths remain almost constant and those of the 

metal-oxygen ligands (A–O1, B–O1, and A–O2) generally decrease with increasing x before 

increasing for the Fe3+ -free sample (x = 1.0). In contrast, the lengths of the (B–O2) bonds 

monotonically increase as x increases and decreases for the sample with x = 1.0. With increasing 

Cr3+ concentrations, the tilting of octahedra is generally reduced as the bond angles B–O1–B and 

B –O2– B increase. This, in turn, reflects a shift towards a structure with higher symmetry. Figure 

8 shows the degree of structural distortion for each of the end Nd0.33Eu0.67CrxFe1-xO3 samples, i.e. 

Nd0.33Eu0.67FeO3 with x = 0.0 and Nd0.33Eu0.67CrO3 with x = 1.0. This is illustrated by distances 

between the central A-site Eu3+/Nd3+ cation and its four nearest O2− anionic neighbours. The 

distances and angles show that orientation of the surrounding FeO6 octahedra (x = 0.0) to be more 

asymmetric relative to that of the CrO6 octahedra (x =1.0). We recall that the body diagonals 

connecting adjacent octahedra in the ideal perovskite structure are collinear [38]. 

A special note here goes for the very weak peak at 2 36 in the XRD profile of the pre-

milled mixture for the sample with x = 1.0 calcined at 800 oC (Figure 2). This very weak peak, 

while indexable to the perovskite-related Nd0.33Eu0.67CrO3 particles as indicated by the bar diagram 

of Figure 2, also coincides with the most intense reflection peak of Cr2O3. This suggests the 

possibility of having un-reacted Cr2O3 on the surface of the nanoparticles as hinted before. 

Additionally, for the other samples in the series, it is possible to find surface traces of un-reacted 

-Fe2O3, whose most intense XRD reflection peak is also at 2 36. This will be elucidated 

further using the XPS surface analysis. 

 

3.3. Mössbauer spectral analysis  

Figure 9 and Figure 10, respectively, show the 57Fe Mӧssbauer spectra of 

Eu0.67Nd0.33CrxFe1-xO3 nanocrystalline particles recorded at 298 K and 78 K, with the exception of  

the sample with x = 1.0. The corresponding fitted hyperfine parameters are shown in Table 2. The 

Mӧssbauer spectra recorded for the sample with x = 0.0 at 298 K show a well-defined magnetic 

sextet superimposed on a central paramagnetic broad component. This spectrum was best fitted 
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with one magnetic six-line pattern and three doublets. These doublets, which amount to ~ 39% of 

the total spectral area, reduce to one doublet with an intensity of ~ 3% in the 78 K spectrum. This 

is indicative that 36 % of the nanoparticles are superparamagnetic with blocking temperature (TB) 

in the range between 78 K and 298 K. The very week doublet at 78 K could be associated either 

with distorted Fe3+/ Eu3+configurations in some particles leading to Néel temperatures < 78 K or a 

superparamagnetic behaviour due to very fine particles with TB < 78 K [4,21]. Combining this 

observation with the XRD Rietveld refinement where weak cationic site exchange was concluded, 

this paramagnetic doublet is likely to be due to a distorted Fe3+/ Cr3+ and Eu3+/ Nd3+ configurations 

in some nanoparticles.  It is pertinent to mention that “superparamagnetism” is generally associated 

with nanoparticles of ferromagnetic and ferrimagnetic systems rather than antiferromagnetic ones 

[30]. The fitting of the magnetic spectral component, at 298 K and 78 K, with one sextet suggests 

a unique B-site environment around the Fe nuclei in the majority of the particles. It also suggests 

that the Eu3+/Fe3+ cationic antisite exchange, deduced from the XRD data, is generally random as 

a localized presence of the Fe3+ ions at the A-site would require at least an additional spectral 

component with different Mossbauer parameters. The isomer shifts () of all spectral components 

at both temperatures are characteristic of Fe3+ cations at high spin-state [39]. The values of the 

effective hyperfine field (Heff) obtained at both temperatures are slightly lower than those reported 

(50.2 T - 54.0 T) for EuFeO3 [4]. This could be explained in terms of the small particle sizes and 

the inevitable surface effects that lead to weakening in the Fe3+-Fe3+ magnetic exchange 

interaction. It could reflect the presence of Nd3+ together with Eu3+ cations in the crystal structure, 

although this has to be better investigated and confirmed.  

Considering the Mӧssbauer spectra of the Nd0.33Eu0.67CrxFe1-xO3 samples with x ≠ 1.0 

(Figure 9), the 298 K Mӧssbauer spectrum of the sample with x = 0.3 shows a broad and weak 

magnetic component superimposed on a central paramagnetic one whose area amounts to ~ 52% 

of the whole spectrum.  The magnetic component weakens, both in the value of Heff and its 

intensity, as x increases collapsing completely for the samples with x ≥ 0.5. The 298 K spectra of 

the samples with x = 0.3 was best fitted with three doubles and two sextets with the hyperfine 

parameters listed in Table 2. Sextet 1 with larger Heff and smaller  is assigned to Fe3+ ions with 

poor Cr3+ and Eu3+ environments (i.e. as in un-doped EuFeO3) whereas sextet 2 with smaller Heff 

and larger  represents environments of the Fe3+ ions that are rich in Cr3+ and Eu3+. The reduction, 

here, in Heff reflects a weakening in the Fe-Cr exchange interaction whereas the increase of  is 
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implicative of a change in the chemical environment surrounding the Fe3+ ions following the 

incorporation of the Cr3+ dopant ions instead of the expelled Fe3+ ions. The 298 K Mössbauer 

spectra of the samples with x = 0.5-0.9 were fitted, each, with two paramagnetic doublets. The 

quadrupole splitting values for these doublets generally decrease with increasing x and are 

indicative of reduced lattice distortion with increasing Cr3+ content and a more symmetric crystal 

structure, agreeing with the XRD analysis discussed above.   

The 78 K Mӧssbauer spectra of the Eu0.67Nd0.33CrxFe1-xO3 nanoparticles with x ≠ 1.0, 

shown in Figure 10, indicate magnetic ordering at this temperature. Well-resolved six-line 

magnetic patterns were attained for the samples with x = 0.3, 0.5, and 0.7, and each of which was 

fitted with two sextets (Table 2). These spectra were fitted using a similar scheme to that used for 

the 298 K counterparts and the fitting parameters are given in Table 2. The sextet with the higher 

magnetic field (sextet 1) can be attributed to nuclei of Fe3+ ions in B-sites having a majority Fe3+ 

nearest cationic neighbors. The sextets with lower fields are associated with B-site Fe3+ and 

possibly A-site Fe3+, as implied by the XRD analysis, that are surrounded with Eu3+/Nd3+and/or 

Cr3+ nearest neighbours. It is to be noted that the spectral area of the doublet in the 298 K spectrum 

of the sample with x =0.3 (~ 52%) has reduced in the 78 K spectrum to only ~ 8%. This indicates 

that ~ 44 % of the nanoparticles in the sample are superparamagnetic with 78 K< TB ≤ 298 K. 

Using the same reasoning ~ 13 % of the nanoparticles in that samples with x = 0.5 and x = 0.7 are 

superparamagnetic with 78 K< TB ≤ 298 K.  Evidently the small area of the doublets in the spectra 

of the Eu0.67Nd0.33CrxFe1-xO3 nanoparticles with (x = 0.3, 0.5 and 0.7) are a consequence of particle 

size suggesting values of  TB < 78 K as explained above. The sample with x = 0.9 shows a very 

poorly resolved magnetic spectrum which reflects the very small number of 57Fe nuclei and the 

associated limited magnetic exchange interactions. 

  3.4. XPS analysis 

Figure 11 shows the Eu 3d and Nd 3d core-level XPS spectra recorded from representative 

nanocrystalline Nd0.33Eu0.67CrxFe1-xO3 particles, namely those with x = 0.0, 0.5 and 1.0. Resolved 

doublets related to the spin orbit coupling of 3d5/2 and 3d3/2 are evident. For the sample with x = 

0.0 (Nd0.33Eu0.67FeO3), the Eu 3d5/2 and 3d3/2 binding energies at ~1131.9 eV and ~1161.7 eV with 

a spin–orbit splitting of 29.8 eV and the associated satellite peak at ~1140.8 eV are characteristic 

of Eu3+ compounds [6,40-43]. To identify the origin of the Eu3+ species, the 3d5/2 (3d3/2) envelops 

were deconvoluted into two components. The dominant component at binding energies of 1132.1 
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eV (1161.9) eV is related to Eu3+ in an un-reacted Eu2O3 at the surface of the Nd0.33Eu0.67CrxFe1-

xO3 nanoparticles [41-43]. The small difference between the binding energies of the samples 

presented here and those reported for Eu3+ in pure Eu2O3 (1133.5 eV (1162.0) eV) could be 

associated with the presence of Nd3+ dopant ions shifting the energies to smaller values. The other 

smaller Eu3+ spectral component with 3d5/2 (3d3/2) binding energies of ~ 1129.0 eV (1159.3) eV 

does not match any reported compound, hence we associate it to Eu3+ in EuFeO3. No traces of Eu2+ 

ions, whose binding energies are expected to be in the vicinities of ∼1124 and ∼1154 eV, are 

observed in the XPS spectrum [6]. The Eu 3d5/2 and 3d3/2 XPS spectral doublets for the samples 

with 0.0 < x < 1.0 shift towards higher binding energies with increasing Cr3+ content (x) reflecting 

the change in the environment around Eu ions as is exemplified by the spectrum of  the sample 

with x = 0.5   (Figure 10). For the sample with x = 1.0 (Nd0.33Eu0.67CrO3), the 3d5/2 binding energies 

of the two components at 1133.8 eV and 1135.8 eV could be assigned to Eu3+ in Eu2O3 and/or 

EuCrO3 compounds respectively [6,40,41,44,45]. Hence, as it is shown in Table 3, the Eu 3d 

spectrum implies a complex surface structure for the Nd0.33Eu0.67CrxFe1-xO3 where traces of Eu2O3, 

EuFeO3 and EuCrO3 are presenting.   

The Nd 3d5/2 and 3d3/2 core-level XPS spectra (Figure 11), which exhibits broad doublets, 

follow a similar trend to those of Eu 3d5/2 (3d3/2) as x increases. The Nd 3d5/2 envelop for the 

material at x = 0.0 (Nd0.33Eu0.67FeO3) is fitted with two components at binding energies of 971.3 

eV and 978.5 eV that are attributed to Nd3+ in Nd2O3 compounds [46], whereas those for the sample 

with x = 1.0 (Nd0.33Eu0.67CrO3), the binding energies at 978.3 eV and 984.2 eV are attributed to 

Nd3+ in Nd2O3 and Nd0.33Eu0.67CrO3 compounds [46,47] with no traces of Nd2+ ions at the surface 

of the nanoparticles. Thus the Nd 3d spectrum implies the presence of some traces of un-reacted 

Nd2O3 species.  

Figure 12 shows examples of Fe 2p and Cr 2p core-level XPS spectra of selected 

Nd0.33Eu0.67CrxFe1-xO3 nanoparticles. For the sample with x = 0.0 (Nd0.33Eu0.67FeO3), it was readily 

noticed that the Fe 2p3/2 and 2p1/2 spectral peaks are not typical of Fe3+ compounds. Accordingly  

the spectrum was fitted with one component having binding energies at 708.5 eV and 721.9 eV. 

These values are in good agreement with those previously reported for Fe3O4 which has both Fe2+ 

and Fe3+ ions in the ratio of 1: 2 [48]. It goes without saying that at the surface of the nanoparticles, 

the bonding of both ions and O2- need not be that of the ideal Fe3O4. Such a reduction of Fe3+ to 

Fe2+ at the surface has indeed been reported for other rare earth orthoferrites prepared by 
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mechanical milling such as PrFeO3 [49] or by the conventional ceramic technique such as ErFeO3 

[50] and Ir-doped YbFeO3 [51]. Li et al have attributed the existence of Fe2+ ions at the surfaces 

of the orthoferrite particles to the presence of oxygen vacancy as inevitable point defects in these 

perovskite-related materials [50]. These defects are likely to exist in materials like the present ones 

where the ingredients were mechanically-milled and subjected subsequently to calcination. To 

charge-balance the oxygen vacancy (+2e), a reduction of Fe3+ to Fe2+ is likely.  

For the samples with x ≠ 0 it is seen in Figure 12 that the peaks of the Fe 2p3/2 and 2p1/2 

spectrum shift towards higher binding energies with increasing x. This is shown in Figure 11 for 

the sample with x = 0.7 where the peaks are deconvoluted into two components at binding energies 

of 709.9 eV and 711.9 eV that are related to Fe3O4 and Fe2O3 compounds respectively [44,52]. 

The ratios of the two components reflect a decrease in Fe2+ surface population and an increase in 

that of Fe3+ with increasing x. For the sample with x = 0.9 no Fe2+ traces are detected in the Fe 2p 

core-level XPS spectra of the Nd0.33Eu0.67CrxFe1-xO3 particles and the binding energies match with 

those of Fe3+ as in Fe2O3.  Thus, the Fe 2p XPS data suggest the presence of un reacted traces 

Fe2O3 on the surface of the Nd0.33Eu0.67CrxFe1-xO3 nanoparticles. It also suggests the presence of 

the oxygen-deficient perovskite-related Nd0.33Eu0.67Fe1-xCrxO3-. 

The binding energies associated with Cr 2p3/2 (2p1/2) spectral doublets for the samples with 

x > 0.0 are typical of Cr3+ compounds and shift towards higher values from 575.8 eV (587.4) eV 

at x = 0.1 to 577.0 (587.3) eV at x = 1.0. Fitting the Cr 2p3/2 peak with two components. The first 

at binding energies in the ranges of 573.4 eV – 575.5 eV is attributed to Cr3+ in Cr2O3 [6,49]. The 

second, at binding energies in the range 578.3 eV – 579.6 eV, is associated with Cr3+ in 

Nd0.33Eu0.67CrxFe1-xO3 in [6]. As mentioned previously, the slight difference in the binding 

energies from those previously reported for EuCrxFe1-xO3 is attributed to the presence of Nd3+ ions.  

The existence of the complex surface composition of the Nd0.33Eu0.67CrxFe1-xO3 

nanoparticles was confirmed by the O 1s XPS spectra as shown for compounds in Figure 13. The 

O1s peak for the sample with x = 0.0 (Nd0.33Euo.67FeO3) is deconvoluted into the three components 

1, 2 and 3. Components 1 and 2, at binding energies of ~ 529 eV and 530.5 eV are attributed to 

Fe2O3 and the Fe2+-containing species, respectively. Component 3, at the binding energy of 532.4 

eV, is assigned to Eu2O3 and Nd2O3 as well as the perovskite-related Nd0.33Eu0.67Fe1O3. As more 

Cr3+ was introduced in the perovskite-related structure, the O1s peak shifts toward higher binding 
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energies and is fitted with three components that are assigned to Eu2O3, Nd2O3, the Fe2+-containing 

species, Cr2O3 and Nd0.33Eu0.67CrxFe1-xO3 in varying ratios as depicted in Figure 13.  

So, XPS studies for the Nd0.33Euo.67CrxFe1-xO3 nanoparticles have revealed a complex 

surface structure dominated by the presence of cations ascribed to the initial reactants’ mixture 

(Eu2O3, Nd2O3, Fe2O3, Cr2O3) that we assume to have not reacted during milling and subsequent  

sintering processes.   

 

4. Conclusions 

Nanocrystalline particles of Nd0.33Eu0.67Fe1-xCrxO3 (x = 0.0, 0.3, 0.5, 0.7, 0.9 and 1.0) with 

average particle size of (⁓30 nm) were found to form using the mechanosynthesis route at 

temperatures that are ~ 470oC - 700oC lower than those at which their bulk counterparts form using 

conventional high temperature routes. With increasing Cr3+ concentration (x), the lattice 

parameters of the Nd0.33Eu0.67Fe1-xCrxO3 nanoparticles decreases whereas the bond lengths and 

angles vary slightly to reduce the distortion of the orthorhombic structure. The majority of the 

Eu3+/Nd3+ and Fe3+/Cr3+ cations, respectively, occupy the A- and B-sites in the perovskite-related 

structure in a random fashion. Both XRD and 57Fe Mössbauer spectroscopy, however, suggest that 

~ 5% of these cations to exchange these usual sites. The Nd0.33Eu0.67Fe1-xCrxO3 nanoparticles 

exhibit a superparamagnetic behaviour at 298 K that becomes more evident with increasing x. A 

complex surface structure of the Nd0.33Eu0.67Fe1-xCrxO3 nanoparticles was detected with the XPS 

technique where traces of un-reacted Eu2O3, Nd2O3, Cr2O3 and Fe2O3 exist, which are to be 

expected owing to the nature of the mechanosynthesis route.  An Fe2+-containing surface species 

on the surface of the samples with x  1.0 was associated with an oxygen-deficiency on the surface 

of the nanoparticles. 
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Figure Captions: 

Figure 1: The XRD patterns recorded for the 0.67: 0.33: 1-x: x molar mixture of Eu2O3, Nd2O3, 

α-Fe2O3 and Cr2O3 with (x = 0.0): (a) milled for different times and (b) the finally pre-milled 

mixture heated at the temperatures indicated. The bars above the XRD profiles refer to the 

positions of major reflection peaks of the phase indicated. The symbol (*) indicates peaks  

indexable to unreacted of 𝛂-Fe2O3. 

Figure 2 The XRD patterns recorded for the 0.67: 0.33: 1-x: x molar mixture of Eu2O3, Nd2O3, 

α-Fe2O3 and Cr2O3 with (x = 1.0): (left) milled for different times and (right) the finally pre-

milled mixture heated at the temperatures indicated. The bars above the XRD profiles refer to the 

positions of major reflection peaks of the phase indicated. The symbol (*) indicates peaks  

indexable to unreacted of α-Cr2O3. 

Figure 3: The XRD patterns of all mechanosynthesized Eu0.67Nd0.33CrxFe1-xO3 (see text). The 

inset illustrates how the main (112) peak gradually shifts with increasing the (x). 

Figure 4: The TEM images of selected Eu0.67Nd0.33CrxFe1-xO3 nanoparticles. 

Figure 5: FT-IR spectra recorded for the nanocrystalline Eu0.67Nd0.33CrxFe1-xO3 particles.  

Figure 6: Observed (points), fitted (solid line) and difference XRD patterns of the Nd0.33Eu0.67Fe1-

xCrxO3 with x = 0.0 and 1.0. The bars refer to the positions of the Bragg's reflection.  

Figure 7: The variation of lattice parameters of Eu0.67Nd0.33CrxFe1-xO3 with x. 

Figure 8: The crystal structures of the Nd0.33Eu0.67Fe1-xCrxO3 nanoparticles with x = 0.0 

(Nd0.33Eu0.67FeO3) and x = 1.0 (Nd0.33Eu0.67CrxO3) derived from the XRD Rietveld refinement. 

Ionic distances are given in Angstroms. The large spheres represent Eu3+/ Nd3+ ions and the red 

spheres represent O2− ions on the corners of the Fe/CrO6 octahedra. 

Figure 9: The 298 K 57Fe Mӧssbauer spectrum recorded for the nanocrystalline 

Eu0.67Nd0.33CrxFe1-xO3 particles at x = 0.0, where the solid-lines represent the best fit of the 

spectrum.  

Figure 10: The 78 K 57Fe Mӧssbauer spectra recorded for the nanocrystalline Eu0.67Nd0.33CrxFe1-

xO3 particles at different x indicated in the figure, where the solid-lines represent the best fit of 

the spectrum. 

Figure 11: The Eu-and Nd-3d5/2 and 3d3/2 core-level XPS spectra recorded for the 

Eu0.67Nd0.33CrxFe1-xO3 nanocrystalline particles with the indicated values of x. The solid-lines 

represent the best fit of XPS spectra. 
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Figure 12: The Fe- and Cr-2p3/2 and 2p1/2 core-level XPS spectra recorded for the 

Eu0.67Nd0.33CrxFe1-xO3 nanocrystalline particles with the indicated values of x. The solid-lines 

represent the best fit of XPS spectra.  

Figure 13: The O 1s core-level XPS spectra recorded from Eu0.67Nd0.33CrxFe1-xO3 nanoparticles 

with the indicated x values. The solid-lines represent the best fit of XPS spectra. 
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Table Captions: 

Table 1: Refined parameters from powder XRD for the nanocrystalline Nd0.33Eu0.67Fe1-xCrxO3 

particles. Space group: Pnma (#62). The cell parameters are a,, b and c are given in units of Å. 

Eu3+: Nd3+:Cr3+  and Fe3+: Cr3+:Nd3+ are the occupancy ratios of the ions in the A- and B- sites, 

respectively. The fractional coordinates are x/a, y/b and z/c. The units for the crystallite size are 

(nm), for the bond lengths are (Å) and for the bond angles are (). Fitting parameters: RB and Rexp 

are, respectively, the reflection intensity-based Bragg factors and expected R factor. 

Table 2: Table 2: The fitted Mӧssbauer hyperfine parameters for he spectra of the 

Eu0.67Nd0.33CrxFe1-xO3 nanoparticles recorded at 298 K and 78 K. The 78 K values represented 

inside brackets and in italic font. 
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Table 1 

x x = 0.0 x = 0.3 x = 0.5 x = 0.7 x = 0.9 x = 1.0 

a (Å) 5.387(1) 5.388(1) 5.383(1) 5.372(1) 5.375(1) 5.366(2) 

b (Å) 5.578(1) 5.566(1) 5.551(1) 5.523(1) 5.510(1) 5.486(2) 
𝑐

√2
 (Å) 5.442(1) 5.437(1) 5.429(1) 5.415(2) 5.414(1) 5.401(2) 

A-site (4c) 

Eu3+:Nd3+:Cr3+  0.67:0.33:0.00 0.67:0.28:0.05 0.67:0.28:0.05 0.67:0.28:0.05 0.67:0.28:0.05 0.67:0.27:0.06 

x/a 0.9855 0.9884 0.9884 0.9884 0.9884 0.9888 

y/b 0.0540 0.0523 0.0518 0.0504 0.0495 0.0490 

z/c 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

B-site (4a) 

Fe3+:Cr3+:Nd3+  1.00:0.00:0.00 0.70:0.25:0.05 0.50:0.45:0.05 0.30:0.65:0.05 0.10:0.85:0.05 0.00:0.94:0.06 

x/a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y/b 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

z/c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

O2- (4c) 

x/a 0.0904 0.08884 0.1007 0.0910 0.0873 0.0776 

y/b 0.4542 0.4524 0.4513 0.4537 0.4628 0.4635 

z/c 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

O2- (8d) 

x/a 0.7240 0.72078 0.7207 0.7187 0.7155 0.7192 

y/b 0.3118 0.31143 0.3059 0.3036 0.2972 0.2976 

z/c 0.0533 0.05528 0.0518 0.0501 0.0510 0.0530 

Crystal. Size (nm) 27.8(2) 27.7(2) 28.5(2) 28.7(2) 33.0(4) 34.2(4) 

Microstrain x10-4 1.0(1) 3.9(1) 8.5(6) 8.0(2) 13.4(7) 14.1(4) 

Bond Lengths (Å) & Angles () 
Fe/Cr – O1 2.00 2.00 2.01 1.99 1.98 1.97 
Fe/Cr – O2 1.87 1.88 1.89 1.90 1.93 1.91 
Eu/Nd – O1 2.35 2.35 2.28 2.32 2.33 2.37 
Eu/Nd – O2 2.77 2.76 2.75 2.73 2.74 2.77 

Fe/Cr – Eu/Nd 3.26 3.27 3.27 3.26 3.26 3.26 
Fe/Cr –O1– Fe/Cr 148.1 148.5 145.0 147.9 151.1 152.5 
Fe/Cr –O2– Fe/Cr 149.1 148.0 150.0 150.6 150.7 150.5 
O1 – Fe/Cr – O2 95.1 95.8 93.6 94.1 93.9 95.8 

R-factors 

RB 8.76 9.00 9.06 8.69 8.52 8.75 

Rexp 10.04 9.86 10.23 9.70 10.02 10.18 
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Table 2 

 X Component δ(mm/s)            

 ± 0.02 

2ε/Δ (mm/s) 

 ± 0.02 

Heff (T)         

± 0.2 

Γ (mm/s)   

± 0.02 
A (%)  

            ± 1 

0.0 Doublet 1 0.27 (0.41) 0.73 (0.80)  0.81 (0.70)    11 (3)  

Doublet 2        0.38      2.45      0.36         12 

Doublet 3        0.46      4.09      2.60         16 

Sextet 1 0.36 (0.48) -0.01 (0.00) 49.4 (54.2)  0.59 (0.48)     61 (97) 

       

0.3 Doublet 1 0.21 (0.14) 1.05 (0.56)  1.27 (0.30)           4 (5) 

Doublet 2 0.26 (0.45) 2.51 (2.55)  0.84 (0.20)         41 (3) 

Doublet 3        0.31       7.50      0.80           7 

Sextet 1 0.27 (0.47) -0.12 (-0.03) 43.4 (52.8) 0.80 (0.56)         39 (72) 

Sextet 2 0.45 (0.51)   0.43 (0.00) 42.9 (49.2) 1.38 (0.84)           9 (20) 

       

0.5 Doublet 1 0.35 (0.13) 0.63 (0.56)  0.72 (0.72)         17 (8) 

Doublet 2 0.37 (0.46) 0.34 (3.86)  0.52 (0.59)         83 (5) 

Sextet 1        (0.45)         (0.00)         (48.5)        (0.69)              (71) 

Sextet 2        (0.55)         (0.04)            (45.2)        (0.75)              (16) 

       

0.7 Doublet 1 0.32 (0.11) 0.73 (0.75)  0.46 (0.59)         22 (7) 

 Doublet 2 0.36 (0.42) 0.24 (3.23)  0.46 (0.61)         78 (6) 

 Sextet 1         (0.42)         (-0.03)      (45.2)       (1.22)             (71) 

 Sextet 2        (0.64)        (-0.03)           (41.8)       (1.04)             (16) 

       

0.9 Doublet 1        0.28      0.56      0.46         50 

 Doublet 2        0.36      0.17      0.34         50 
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