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ABSTRACT

The thesis is in two parts. Part one is a review of existing work in the area of software testing 

and more specifically symbolic execution. Part two is a description of the symbolic execution 

testing system for COBOL (SYM-BOL). Much of the work presented has been published or 

accepted for publication.

Part one commences by introducing the aims of software testing and is followed by a review 

of the tools and techniques of software testing that have been developed over the past 25 

years. A simple taxonomy of software testing techniques is given. One potentially powerful 

technique is symbolic execution. The principles of symbolic execution are described followed 

by the problems in applying symbolic execution. Part one is completed by a review of 

existing symbolic execution testing systems. No symbolic execution testing system has 

previously been built for a commercial data processing language such as COBOL. Part two 

commences by outlining the features of the SYM-BOL system and describes the user 

strategies that may be employed when using the system.

The system generates an intermediate form in stages by transforming the source program into 

one that contains only a limited number of language constructs. Path selection can be 

automatic or undertaken by the user. In both cases the results of the symbolic execution 

already undertaken are available to the path selector to help reduce the likelihood of selecting 

an infeasible path. A description of how the Nag-library linear optimizer E04MBF is used for 

feasibility checking is given. Feasible solutions are turned into files of test cases. Simple 

assertions may be included in the source program which do not affect the normal execution 

of the software but which can be verified by inclusion in the symbolic execution.
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RESEARCH AIMS

At the outset the principal aim was to undertake a broad literature survey to review software 

testing techniques with a view to establishing an area in need of further work. One such area 

was symbolic execution which did not appear to have been considered in the area of 

commercial data processing software. The research aims from this point were as follows:

1. Undertake a literature survey to review the existing symbolic execution testing 

systems and establish their strengths and weaknesses.

2. Identify the problems facing the application of symbolic execution to commercial data

processing software and in particular to COBOL.

3. Propose means of overcoming the problems in creating a COBOL symbolic execution 

testing system.

4. Devise an approach to path selection that:

a. selects more useful paths than existing symbolic execution systems;

b. utilises the results of symbolic execution in a bid to reduce the 

likelihood of selecting infeasible paths.

5. Identify problems facing the use of a linear programming routine to assess the 

feasibility of paths and to overcome these problems demonstrating the practicality of 

the technique in a COBOL system.
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6. Demonstrate that these proposals are practicable by constructing a prototype symbolic

execution testing system for COBOL. It is not considered possible within the time- 

scale of a Ph.D. to build a full system.

7. Evaluate the prototype symbolic execution testing system for COBOL.

8. Identify further work necessary to turn the prototype into a full working system and  ̂

to identify areas in need of further research.
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REVIEW
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CHAPTER ONE INTRODUCTION

This thesis is concerned with program testing and in particular with symbolic execution as 

a technique for aiding program testing.

The term ‘testing’ is often used to describe techniques of checking software by executing it 

with data. A wider meaning will be attributed to testing in this thesis. Testing includes any 

technique of checking software, such as program proving as well as the execution of test 

cases. Checking implies that a comparison is undertaken. The comparison is often made 

between the output from a test and an expected output produced by the tester. The expected 

output is usually based on the specifications. The tester derives the expected result by hand.

Two terms often associated with testing are ‘verification’ and ‘validation’. Verification refers 

to ensuring correctness from phase to phase of the software development cycle. Validation 

involves checking the software against the requirements. These strategies have been termed 

the horizontal and vertical checks. Sometimes, verification is associated with formal proofs 

of correcmess, whilst validation is concerned with executing the software with test data. This 

thesis avoids these terms and instead refers only to testing.

Program testing is one of many activities that go to make up the larger complex task of 

software development The development of a software product is a series of transformations 

from one level of abstraction to the next culminating in executable software. The need for 

program testing arises out of an inability to guarantee that the earlier transformations have 

been performed adequately. Testing is an activity which attempts to assess how well earlier

15



i

Chapter 1 Introduction

transformations have been performed.

Software development commences when the commissioner identifies a need. Producing 

software which provides the required functions will not necessarily satisfy all the requirements 

placed upon it. Additional requirements may be that the system satisfies legal obligations or 

that it performs within specified response times or that it meets documentation standards or 

that the software is written to a particular house style to enable easier modification. This 

thesis addresses the testing of functional requirements rather than non-functional testing.

Functional testing may be employed when testing a new program or when testing a program

that has been modified. ‘Regression testing’ is the name given to part of the functional testing

that follows modification. Primarily, regression testing is undertaken to determine whether the 

correction has altered the functions of the software that were intended to remain unchanged. 

There is a need for the automatic handling of regression testing. Fischer describes a technique 

and associated software tool for determining which tests need to be re-run following a 

modification [Fisc77].

It is easy to define levels of abstraction through which software development passes. One 

such series is as follows:

* requirement definition;
* requirement specification;
* software design;
* software.

16



Chapter 1 Introduction

A program which contains faults will not be congruent with the software design. The software 

design may in turn contain faults preventing it matching the requirements specification, and 

so on. Even the first level of abstraction, the requirement definition, contains faults in that it 

is not congruent with the ‘real’ requirement.

To help overcome this tendency for increasing fault incidence with the levels of abstraction, 

testing should take place at each level. Discovery of faults at a particular level of abstraction 

may cause development to return to a previous level or several earlier levels of abstraction 

before the source of the problem is discovered.

Testing at each level of abstraction is not easy. The software can be tested by executing it 

with test cases. This is not generally possible for the higher levels of abstraction where 

alternative techniques are necessary. There are some exceptions to this where specifications 

written in notations such as VDM can be executed, albeit inefficiently, and hence tested in 

much the same way as the software itself [Hekm85]. Advances in formal specification have 

brought greater confidence in the correctness of specifications and designs but most software 

developers still use execution of the software as the final demonstration of correctness.

1.1 Rapid Prototyping

One approach to functional testing that has received attention recently is that of prototyping. 

A prototype is a system or program that works in the sense that it is capable of accepting 

input data and processing it to produce output. This does not imply that the system is fully

17
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‘working’. A prototype is not expected fully to satisfy the requirement or meet non-functional 

requirements such as levels of performance.

Prototypes differ from working systems in that working systems are in use [Dear83]. A 

prototype, on the other hand, may perform only a limited range of the functions required. It i

is a development tool. There may be more than one prototype, each explores some part of the 

required functions.

The purpose of a prototype is to allow the rapid creation of a system that performs in a way 

similar to that required of the working system. The prototype is then used as a communication 

tool between the commissioner and the system developer. When the commissioner has ^

difficulty specifying the requirements a prototype provides a tangible ‘object’ on which to 

base discussions. The problems encountered with the prototype allow the creation of the 

working system with the problems removed.

Rapid prototyping can be viewed as a technique for assessing the higher levels of abstraction 

from the requirement definition down to the software design. It is not a tool for testing the 

software immediately prior to launching a ‘working’ system. The deliverable that arises from ^

creation of a prototype is a specification that is more reliable than would otherwise be the 

case. This thesis does not consider the testing of prototypes.

18



Chapter 1 Introduction

1.2 Software product testing

A software product consists of several components: the executable software; software 

documentation; user documentation; etc. All of these components are to be fit for purpose 

before release of the software product and so each requires testing. This thesis is concerned 

with testing only the software component.

The literature is not united about the aims of software testing. Testing encompasses detecting 

errors during development and checking the requirements. The goals of testing by execution 

are unclear. On the one hand, testing is concerned with finding faults in the software, on the 

other it is concerned with demonstrating that there are no faults in the software, though it is 

difficult to see how this may be done other than by formal verification.

These differing perspectives may be viewed as an individual’s attitude towards testing which 

may have an impact on how testing is conducted. Aiming to find faults is a destructive 

process, whereas, aiming to demonstrate that there are no faults is constructive. Adopting the 

latter strategy may cause the tester to be gentle with the software thus giving rise to the risk 

of missing inherent faults. The destructive stance is perhaps more likely to uncover faults 

because it is more probing. Weinberg [Wein73] suggests that programmers regard the 

software they produce as an extension of their ego. To be destructive in testing is therefore 

difficult. NASA appears to have believed this for many years having, in 1975, established 

teams of software validators separated from the software creators [Spec84].

19
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An alternative view is that testing passes through two distinct phases. Few people with any 

experience of writing programs would begin testing by expecting the program to be correct, 

i.e. without any faults. The first phase of testing is where errors are expected to be detected. 

Once these errors have been found the cause, i.e. the faults in the software, must be found. 

The location of faults - debugging - is an associated but distinct activity. On locating a fault, 

it must be corrected and testing continued.

Gradually, as the detection of errors becomes less frequent, the role of testing changes. A 

second phase of testing commences in which the aim is to demonstrate that the program is 

now correct, i.e. free from faults.

Precisely when the transition from phase one testing to phase two testing takes place is not 

easy to define. When the tester begins to feel confident that the faults have been removed 

seems intuitively correct, but we do not have a measure of this confidence. Similarly, it is 

difficult to state the circumstances when the test reverts to phase one when a fault is 

discovered in phase two.

There are many questions concerning testing which are difficult to answer. How much testing 

should be undertaken? When should we have confidence in the software? When a fault is 

discovered, should we be pleased that it has been found, or dismayed that it existed? Does 

the discovery of a fault lead us to suspect that there are likely to be more faults and, the more 

faults we find, the more we suspect are left waiting to be discovered. At what stage can we

20
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feel confident that all, or realistically most, of the faults have been discovered? To what 

extent is testing concerned with Quality Assurance? What is the relationship between testing 

and the creation of fault tolerant software? In short, what is it that we are doing when we test 

software?

Testing is about both finding faults AND demonstrating their absence. The aim is to 

demonstrate the absence of faults. This is achieved by setting out to find them. These views 

are reconciled by establishing the notion of the ‘thoroughness of testing’. Where testing has 

been thorough, faults found and corrected, re-tested with equal thoroughness, then we have 

established confidence in the software. If, on the other hand, we have no feel for the 

thoroughness of the test we have no means of establishing confidence in the results of the 

testing. Much work has been done to establish test metrics to assess the thoroughness of a set 

of tests and to develop techniques that facilitate thorough testing. These are discussed in 

Chapter 2.
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CHAPTER TWO TOOLS AND TECHNIQUES OF TESTING

There are many widely differing testing techniques. But, for all the apparent diversity they 

cluster or separate according to their underlying principles. There are two prominent strategy 

dimensions: functional/structural and static/dynamic. A purely functional strategy uses only 

the requirements defined in the specification as the basis for testing, whereas a structural 

strategy is based on the detailed design or implemented source code. A dynamic approach 

executes the software and assesses the performance, whilst a static approach analyses the 

software without recourse to its execution.

2.1 Functional versus structural testing

A testing strategy may commence either from the specification or from the software. When 

starting from the specification the required functions are identified. The software is then tested 

to assess whether the functions are provided by the software. This is known as functional 

testing, not to be confused with the functional v non-functional categories of testing. 

Alternatively, commencing from the software, the structure is identified and used to derive 

test cases which in turn are used to assess whether the software meets the specification. This 

is known as structural testing. When developing a new program based on an existing program 

where only a subset of the functions are required it is all to easy to accidentally incorporate 

unnecessary functions. These functions which are included in the software, but not required, 

are more likely to be identified by adopting a structural testing strategy in preference to a 

functional testing strategy. The converse may be true for errors of omission.

23
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Chapter 2 Tools and Techniques of Testing

2.1.1 Functional testing

Functional testing involves two main steps. First, identify the functions which the software 

is expected to perform. Second, create test data which will check whether these functions are 

performed by the software. No consideration is given to HOW the program performs these 

functions. This approach is used during system and acceptance testing.

There have been significant moves towards more systematic creation of requirement 

definitions, specifications and design [DeMaSl, Haye87, Jack75, Jone86]. These may be 

expected to lead to a more systematic approach to functional testing. Rules can be constructed 

for the direct identification of function and data from systematic design documentation. These 

rules do not take account of likely fault classes. Weyuker and Ostrand [Weyu80] suggest that 

the next step in the development of functional testing is a method of formal design 

documentation which includes a description of faults associated with each part of the design 

as well as the design features themselves.

Howden [Howd81] suggests this method be taken further. It is not sufficient to identify 

classes of faults for parts of the design. Isolation of particular properties of each function 

should take place. Each property will have certain fault classes associated with i t  There are 

many classifications of faults. A detailed classification is given by Chan [Chan79] and is a 

refinement of Van Tassel’s [VanT78] classification. Chan’s classification consists of 13 

groups which are subdivided to produce a total of 47 categories. Kaner [Kane88] also 

identifies 13 major categories which are subdivided giving a total of over 400 specific errors.

24



Chapter 2 Tools and Techniques of Testing

Functional testing has been termed a black box approach as it treats the program as a box 

with its contents hidden from view. Testers submit test cases to the program based on their 

understanding of the intended function of the program.

An oracle is someone who can state precisely what the outcome of a program will be for a 

particular case. Such an oracle does not always exist and at best only imprecise expectations 

are available [Weyu82]. Simulation software provides a powerful illustration of this problem. 

No precise expectation can be determined and the most precise expectation that can be 

provided is a range of plausible values.

2.1.2 Structural testing

The opposite strategy to the black box approach is the white box approach. Here testing is 

based upon the detailed design or source code rather than on the functions required of the 

program, hence the title structural testing. This approach is used during unit testing and 

integration testing.

Whilst functional testing necessitates the execution of the program there are two possibilities 

for structural testing. First, and most commonly practised, is to execute the program with test 

cases. Second, and less common, the functions of the program are compared with the 

required functions for congruence. The second of these approaches is characterized to some 

extent by symbolic execution and more precisely by program proving.
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Structural testing that involves execution of the program may require the execution of a single 

path through the program or that a particular level of use has been made of all the code. The 

notion of a minimally-thorough test has occupied research efforts over the years. The level 

of what constitutes a minimally-thorough test of a program has progressively been increased 

as follows:

* All statements in the programs should be executed at least once [Mill63].

* All branches in the program should be executed at least once [Mill63].

* All LCSAJ’s in the program should be executed at least once [WoodSO]. An LCSAJ

(linear code sequence and jump) is a sequence of code ending with a transfer of 

control out of the linear code sequence.

Miller [Mill84] has listed a range of 13 structure based coverage measures ranging from

* execute all statements in a program; 

through

* execute all subtrees in the hierarchical decomposition tree for the program;

to

* domain testing of a path using the paths input variables.

Achieving each of these is necessary for a good test to be performed on a program. To 

achieve a given level of coverage requires that all earlier level metrics have been achieved. 

The best test is an exhaustive test where all paths through the program are domain tested. 

Here domain tested means that N+1 tests are executed on the path boundary and two tests off 

the boundary for each predicate on the path where N is the number of input variables on the

26
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path. There are two obstacles to this goal which account for the existence of the other 

measures listed above.

The first obstacle is the large number of possible paths. The number of paths is determined 

by the numbers of conditions and loops in the program. All combinations of the conditions 

must be considered and cause a rapidly increasing number of combinations as the number of 

conditions increases. Loops add to the combinatorial explosion and give rise to an excessively 

large number of paths. This is most acute when the number of iterations is not fixed but 

determined by input variables.

The second obstacle is the number of infeasible paths. An infeasible path is one which 

cannot be executed due to the contradiction of some of the predicates at conditional 

statements. It is surprising that, in a sample of programs, of the 1000 shortest paths only 18 

were feasible [Hedl85].

1 accept A
2 if A > 15
3 then
4 compute B = B + 1
5 else
6 compute C = C + 1
7 end-if
8 if A < 10
9 then
10 compute D = D + 1
11 end-if
Figure 2.1 A program fragment

Consider the program firagment in figure 2.1. There are four paths through this firagment as 

follows:

27



i
Chapter 2 Tools and Techniques of Testing

Path 1 lines 1,2,3,4,7,8,11.

Path 2 1,2,5,6,7,8,9,10,11.

Path 3 1,2,5,6,7,8,11.

Path 4 1,2,3,4,7,8,9,10,11.

Path 1 can be executed so long as the value of A is greater than 15 after the execution of 

line 1.

Path 2 can be executed so long as the value of A is less than 10 after the execution of 

line 1.

Path 3 can be executed so long as the value of A lies in the range 10 to 15 inclusive after 

the execution of line 1.

Path 4 cannot be executed regardless of the value of A because A cannot be both greater 

than 15 and less than 10 simultaneously. Hence this path is infeasible.

Even trivial programs contain a large number of paths. Where a program contains a loop 

which may be executed a variable number of times the number of paths increases 

dramatically. A path exists for each of the following circumstances:

* where the loop is not executed;

* where the loop is executed once;

* where the loop is executed twice... etc.

The number of paths is dependent on the value of the variable controlling the loop. This poses

a problem for a structural testing strategy. How many of the variable-controlled-loop-derived

28
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paths should be covered? Miller and Paige [Mill74] sought to tackle this problem by 

introducing the notion of a level-i path.

A level-0 path leads from an entrance to the software to an output without employing any 

branch more than once. Any loop that exists on the level-0 path is executed only once when 

it is executed. A level-1 path is a series of consecutive branches that have already been 

included on a level-0 path. Thus a level-1 path is part of a level-0 path that is to be repeated 

just once. Similarly, a level-2 path is part of a level-1 path that is to be executed once more 

than on the level-1 path, ie. three times.

A possible structural testing strategy might attempt to execute the greatest level path, say 

level-greatest path. By attempting to execute level-greatest path first, many of the branches 

on lesser level paths (ancestral paths) will be collaterally executed. In other words, when 

executing the deepest level-i path many other ancestral paths will necessarily be executed as 

part of that execution, thus reducing the number of tests required to execute the remaining 

unexecuted branches.

Because the testing of every path is generally impossible, branch coverage is commonly used 

as a more practical metric. However, achieving a high branch coverage is not a simple matter, 

the main hindrance being infeasible paths. The difficulty becomes apparent when a feasible 

path is sought for a particular branch. Many of the selected paths may be found to be 

infeasible and pinpointing a feasible path can require much careful searching.
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A further difficulty in achieving complete coverage of a testing metric is the presence of 

island code. This is a series of lines of code following a transfer of control or program 

termination and is not the destination of a transfer of control from elsewhere in the program. 

An example of island code is a procedure that is not invoked. Island code should not exist. 

It is caused by an error in the invocation of a required procedure, or the failure to recognize 

redundant code following a maintenance change.

2.2 Static versus dynamic analysis

A testing technique that does not involve the execution of the software with data is known 

as static analysis. This includes program proving, symbolic execution and anomaly analysis. 

Program proving involves rigorously specifying constraints on the input and output data sets 

for a software component such as a procedure. The proof is created by demonstrating that 

each sequence of steps in the procedure causes the input to be transformed to the output. 

Symbolic execution creates expressions for the output variables on a path in terms of input 

variables and constants. Anomaly analysis searches the program source for anomalous features 

such as island code.

Dynamic analysis requires that the software be executed. The goal is to achieve a certain level 

of program test effectiveness. For example, a coverage metric such as coverage of branches 

in a program may be used to assess the effectiveness of a test. Test data is created and, 

following execution, the output is compared with the expectation. Following a test execution 

the values for the program test effectiveness metrics are reported. Dynamic analysis could be
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Chapter 2 Tools and Techniques of Testing

described as a form of automatic documentation of software execution.

The recording of test effectiveness metrics during dynamic analysis relies on the use of 

probes inserted into the program [Knut73, Paig74]. These probe statements make calls to 

analysis routines which record the frequency of execution. As a result the extent of 

statement, branch, LCSAJ and any other coverage metric can be reported on completion of 

execution. The code not exercised by the testing is listed.

Assertions about the values of variables can be incorporated at particular points in the 

program. Should these assertions be violated during execution the dynamic analysis would 

report the details of the violation.

Dynamic analysis can act as a bridge between functional and structural testing. Initially 

functional testing may dictate the set of test cases. The execution of these test cases may be 

monitored by dynamic analysis. The program can then be examined structurally to determine 

test cases which will exercise the code left idle by the previous test. This dual approach 

results in the program being tested for the functions required and, the whole of the program 

being exercised. The latter feature ensures that the program does not perform any function 

that is not required.
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2.3 Taxonomy of testing techniques

Over the last 15 years many testing techniques have been established. There is no generally 

accepted testing technique taxonomy. The degree to which the techniques employ a static v 

dynamic analysis or a functional v structural strategy varies and provides the basis for a 

simple classification of testing techniques. The grid in figure 2.2 outlines one classification. 

The techniques are described later in the chapter.

2.3.1 Static-structural

No execution of the software is undertaken. Assessment is made of the soundness of the 

software by criteria other than its run-time behaviour. The features assessed vary with the 

technique. For example, anomaly analysis checks for peculiar features such as the existence 

of island code. On the other hand, program proving aims to demonstrate congruence between 

the specification and the software.

2.3.1.1 Symbolic execution

Symbolic execution, sometimes referred to as symbolic evaluation, does not execute a 

program in the traditional sense. The traditional notion of execution requires that a selection 

of paths through the program is exercised by a set of cases. In symbolic execution, cases 

consisting of actual data values are replaced by symbolic values. A program executed using 

inputs consisting of actual data values results in the output of a series of actual values. 

Symbolic execution on the other hand produces a set of expressions, one expression per 

output variable. Symbolic execution occupies a middle ground of testing between executing
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S tr u c tu r a l F u n c t io n a l

* * * * * * * * * * * * * * * * * * * * * * *

S t a t i c

Dynamic

Symbolic e x e c u t io n  
[Clark76a, King?4]

P a r t i t i o n  a n a l y s i s  
[R ichSl]

Program prov ing  
[Floy67]

Anomaly a n a ly s i s  
[Rama?4, Oste83]

* * * * * * * * * * * * * * * * * * * * * * *

Computation t e s t i n g  
[Clark83]

Domain t e s t i n g  
[Clark83]

Autom atic path  based  * 
t e s t  data  g e n e r a t io n  * 
[Hedl81, Ince87] *

M utation a n a ly s i s  
[Budd78]

Random t e s t i n g  
[Dura84, Ince84]

E q u iva len ce  
P a r t i t i o n i n g  
[Myers?9]

C a u s e - e f f e e t  graphs  
& D e c is io n  T ab les  
[Myers79, Good75]

A d aptive
p e r tu r b a t io n
t e s t i n g
[Coop76, Andr81]

* * * * * * * * * * * * * * * * * * * * * * *

Figure 2.2 Classification of testing techniques

33



{
Chapter 2 Tools and Techniques of Testing

with test data and program proving.

There are a number of symbolic execution systems, for example see [Boye75, Clar76a, 

King76, Rama76]. The most common approach to symbolic execution is to perform an 

analysis of the program resulting in the creation of a flowgraph. This is a directed graph 

which contains decision points and the assignments associated with each branch. By traversing 

the flowgraph from an entry point along a particular path a list of assignment statements and 

branch predicates is produced. The execution part of the approach takes place by following 

the path from top to bottom. During this path traverse, each input variable is given a symbol 

in place of an actual value. Thereafter, each assignment statement is evaluated so that it is 

expressed in terms of symbolic values of input variables and constants.

Consider path 1, 2, 3, 4, 5, 6, 8, 9, 11, 12 through the program fragment in figure 2.3. The 

symbolic values of the variables and the path condition at each branch are given in the right- 

hand columns for the evaluation of this path.

At the end of the symbolic execution of a path the output variables will be represented by 

expressions in terms of symbolic values of input variables and constants. The output 

expressions will be subject to constraints. A list of these constraints is provided by the set 

of symbolic representations of each condition predicate along the path. Analysis of these 

constraints may indicate that the path is not executable due to a contradiction. This 

infeasibility problem is encountered by all forms of path testing.
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Path Condition A B C D
1 accept A - a - - -

2 accept B - a b - -

3 accept C - a b c -
4 accept D - a b c d5 compute A = A + B - a+b b c d6 if A > C a+b<=c a+b b c d7 then compute D = D + 1
8 end-if a+b<=c a+b b c d9 if B = D a+b<=c a+b b c d10 then display 'Success' A D

11 else display 'Fail' A D a+b<=c AND b O d a+b b c d12 end-if a+b<=c AND b o d a+b b c d

Figure 2.3 Program fragment and symbolic values for a path.

Ideally, a series of assertions for output variables should be produced prior to detailed design. 

The output expressions from symbolic execution are examined to ensure that they do not 

conflict with the assertions. In the example of figure 2.3 only the symbolic expressions for 

A and D will be of interest as these are the only output variables.

A major difficulty for symbolic execution is the handling of loops (or iterations). Should the 

loops be symbolically evaluated once, twice, a hundred times or not at all? Some symbolic 

executors take a pragmatic approach. For each loop three paths are constructed, each path 

containing one of the following:

* no execution of the loop;

* a single execution of the loop;

* two executions of the loop.

Symbolic execution does not specify the number of paths that should be considered, nor is 

there a set of criteria for selecting paths to execute symbolically, but coverage metrics may 

be used to assess thoroughness.
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2.3.1.2 Partition analysis

Partition analysis uses symbolic execution to identify sub-domains of the input data domain. 

Symbolic execution is performed on both the software and the specification. The path 

conditions are used to produce the sub-domains such that each sub-domain is treated 

identically by both the program and the specification. Where a part of the input domain 

cannot be allocated to such a sub-domain then either a structural or functional (program or 

specification) fault has been discovered. In the system described by Richards [RichSl] the 

specification is expressed in a manner close to program code. This is impractical. 

Specifications need to be written at a higher level of abstraction if this technique is to prove 

useful.

2.3.1.3 Program proving

The most widely reported approach to program proving is the ‘inductive assertion verification’ 

method after Floyd [Floy67]. In this method assertions are placed at the beginning and end 

of selected procedures. "A procedure is said to be correct (with respect to its input and output 

assertions) if the truth of its input assertion upon procedure entry ensures the truth of its 

output assertion upon procedure exit." [Hant76].

There are many similarities between program proving and symbolic execution. Neither 

technique executes with actual data and both examine the source code. Program proving aims 

to be more rigorous in its approach. The main distinction between program proving and 

symbolic execution is in the area of loop handling. Program proving adopts a theoretical
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approach in contrast to symbolic execution. An attempt is made to produce a proof that 

accounts for all possible iterations of the loop. Some symbolic execution systems make the 

assumption that if the loop is correct when not executed, when executed just once and when 

executed twice then it will be correct for any number of iterations.

Analysis of the source code is performed in the same manner as for symbolic execution, but 

the goal is not just a single expression for an output variable. Instead, many points along a 

path are selected and assertions concerning the state of variables at these points are made. The 

source code analysis produces expressions at the selected points and a comparison is made 

between the derived expressions and the assertions. One of the selected points is usually 

chosen to be a point of output for the path, and at this point the goal of program proving is 

the same as for symbolic execution, namely, the output of expressions representing variables.

Program proving can be summarized by the following steps:

* Construct a program.

* Examine the program and insert assertions at the beginning and end of all procedure

blocks (definition of blocks is arbitrary).

* Determine whether the code between each pair of start and end assertions will 

always achieve the end assertion given the start assertion.

* If the code achieves the end assertions then the block has been proved correct.
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If the code fails to achieve the end assertion then mistakes have been made in either 

the program or the proof. The proof and the program should be checked to 

determine which of these possibilities has occurred and appropriate corrections 

made.

DeMillo et al. [DeMi79] describe how theorems and proofs can never be conceived as 

‘correct’ but rather, only ‘acceptable’ to a given community. This acceptability is achieved 

by their being examined by a wide audience who can find no fault in the proof. Confidence 

in the proof increases as the number of researchers, finding no faults, increases [Laka76]. This 

approach has clear parallels with the confidence placed in software. The wider the audience 

that has used the software and found no fault the more confidence is invested in the software.

When a program has been proved correct, in the sense that it has been demonstrated that the 

end assertions will be achieved given the initial assertions, then the program has achieved 

partial correctness. To achieve total correctness it must also be shown that the block will 

terminate, in other words that loops will terminate [Elpa72].

The validity of program proving relies upon the notion that it is unlikely that a mistake will 

be made both in the program and a corresponding compensating mistake made in the 

assertions which are the basis of the proof. This is rather optimistic for all but the simplest 

programs. Program proving is now regarded as being too difficult to be of practical use.
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2.3.1.4 Anomaly analysis

The first level of anomaly analysis is performed by the compiler to determine whether the 

program adheres to the language syntax. This first level of analysis is not usually considered 

testing. Testing is usually deemed to commence when a syntactically correct program is 

produced.

The second level of anomaly analysis searches for anomalies that are not outlawed by the 

programming language. Examples of such systems are DAVE [Oste76], FACES [Rama74] 

and TOOLPACK [Oste83]. Other systems such as SPADE[Carr86] and MALPAS[Webb87] 

also include anomaly analysis as a prerequisite to other system features. Anomalies which can 

be discovered by these systems include:

* the existence of unexecutable code (island code);

* problems concerning array bounds;

* failure to initialize variables;

*  labels and variables which are unused;

* jumps into and out of loops; 

and even:

* high complexity;

* departure from programming standards.

Discovery of these classes of problems is dependent on the analysis of the code. The first 

phase of anomaly analysis is to produce a flowgraph. This representation of the software can
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now be easily scanned to identify anomalies. Determining infeasible paths is not within the 

bounds of anomaly analysis.

Some features of anomaly analysis have been grouped under the title data flow analysis. Here 

emphasis is placed on a careful analysis of the flow of data. Software may be viewed as flow 

of data from input to output. Input values contribute to intermediate values which in turn 

determine the output values. "It is the ordered use of data implicit in this process that is the 

central objective of study in data flow analysis" [Fosd76]. The anomalies detected are:

* Assigning values to a variable which is not used later in the program.

* Using a variable (in an expression or condition) which has not previously been 

assigned a value.

* (Re)assigning a variable without making use of a previously assigned value e.g.

10 X := 5

11 X := 10

Line 10 is redundant.

Data flow anomalies may arise from mistakes such as misspelling, confusion of variable 

names and incorrect parameter passing. The existence of a data flow anomaly is not evidence 

of a fault; it merely indicates the possibility of a fault. Software that contains data flow 

anomalies may be less likely to satisfy the functional requirements than software which does 

not contain them.
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The role of data flow analysis is one of a program critic drawing attention to peculiar uses 

of variables. These peculiarities must be checked against the programmer’s intentions and, if 

in disagreement, the program should be corrected.

2.3.2 Dvnamic-functional

This class of technique executes test cases. No consideration is given to the detailed design 

of the software. The use of decision tables and cause-effect graphing creates test cases from 

the rules contained in the specification. Alternatively, test cases may be generated randomly. 

Equivalence partitioning [Myer79] creates test cases based on a decomposition of the required 

functions. Adaptive perturbation testing [Coop76, AndrSl] attempts to create additional, more 

effective, test cases by modifying previous test cases. In all the approaches there is the need 

for an oracle to pronounce on the correctness of the output.

2.3.2.1 Equivalence partitioning

The aim of this technique is to devise test cases such that each case represents a set of 

equivalent test cases. The set of test cases form an equivalence class. The assumption is that 

if one test case in the equivalence class detects an error then all other test cases in the same 

class will also detect the same error. Equivalence partitioning is the technique of identifying 

the finite number of equivalence classes and devising a case to represent the class.

There are two types of equivalence class: valid and invalid. Valid equivalence classes are 

those that the software is required to process. Invalid equivalence classes are those that should
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be rejected. It is important to devise test cases for both types of equivalence class.

Goodenough and Gerhart [Good75] suggest that "a basic hypothesis for the reliability and 

validity of testing is that the input domain of a program can be partitioned into a finite 

number of equivalence classes such that a test of a representative of each class will, by 

induction, test the entire class, and hence, the equivalent of exhaustive testing of the input 

domain can be performed".

2 3 . 2 . 2  Random testing

Random testing produces test data without reference to the code or the specification. The 

main software tool required is a random number generator. Duran and Natfos [DuraSl, 

Dura84] describe how estimates of the operational reliability of the software can be derived 

from the results of random testing.

Potentially, there are some problems for random testing. The most significant is that it may 

seem that there is no guarantee of complete coverage of the program. For example, when a 

constraint on a path is an equality eg A=B+5 the likelihood of satisfying this constraint by 

random generation seems low. Alternatively, if complete coverage is achieved then it is likely 

to have generated a large number of test cases. The checking of the output from the execution 

would require an impractically high level of human effort.

Intuitively, random testing would appear to be of little practical value. Results from some
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recent studies counter this view [DuraSl, Dura84, Hekm86, L0088]. Hekmatpoor, reporting 

on a series of experiments, states that a "striking result is that only a small fraction of the 

results of the full set of runs need to be examined in order to achieve the same degree of 

coverage as the full set of runs".

2.3.2.3 Adaptive perturbation testing

This technique is based on assessing the effectiveness of a set of test cases. The effectiveness 

measure is used to generate further test cases with the aim of increasing the effectiveness. 

Both Cooper and Andrews [Coop76, Andr81] describe systems which undertake this 

automatically for the testing of real-time systems.

The cornerstone of the technique is the use of executable assertions. The software developer 

inserts assertions into the software. The aim is to maximize the number of assertion 

violations. An initial set of test cases is provided by the tester. This is executed and the 

assertion violations recorded. Each test case is now considered in turn. The single input 

parameter of the test case that contributes least to the assertion violation count is identified. 

Optimization routines are used to find the best value to replace the discarded value such that 

the number of assertion violations is maximized. The test case is said to have undergone 

perturbation. This is repeated for each test case. The perturbed set of test cases are executed 

and the cycle is repeated until the number of violated assertions can be increased no further.
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2.3.2.4 Decision tables and cause-effect graphing

The strength of this approach to test data selection lies in its exploration of the combinations 

of input values. Goodenough and Gerhart [Good75] and Myers [Myer79] both suggest the use 

of decision tables as a means of developing test cases based on the specification. Consider 

the following simple specification:

The first character must be an "A" or a "B".

The second character must be numeric.

When these two conditions are satisfied update the file.

When the first character is incorrect message Ml is given.

When the second character is incorrect message M2 is given.

A decision table for representing the test cases required to test this specification is given in 

figure 2.4.

1 2 3 4 5 6 7 8  
c l  c h a r l  = "A" y y y y n n n n
c2 c h a r l  = "B" y y n n y y n n
c3 char2 numeric y n y n y n y n

70 make update x x
71 m essage Ml x x
72 m essage M2 x x x

im p o s s ib le  c a se  x x 

Figure 2.4 Decision table of test cases

The first two cases are impossible because the first character cannot be both "A" and "B" 

simultaneously and so can be discounted.
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The construction of decision tables directly from specifications for large programs would 

result in exceedingly large decision tables containing many impossible cases. To avoid this 

Myers uses the cause-effect graph as a combinatorial logic network, rather like a circuit, 

making use of only the boolean logical operators AND, OR and NOT, as an intermediate 

notation between specification and decision table. Myers [Myer79] describes a series of steps 

for determining cases using cause-effect graphs and decision tables as follows:

* Divide the specification into workable pieces. A workable piece might be the 

specification for an individual transaction. This step is necessary because a cause- 

effect graph for a whole system would be too unwieldy for practical use.

* Identify causes and effects. A cause is an input stimulus, e.g. an input variable, an 

effect is an output response.

* Construct a graph to link the causes and effects in a way that represents the 

semantics of the specification. This is the cause-effect graph.

* Annotate the graph to show impossible effects and impossible combinations of 

causes.

* Convert the graph into a limited-entry decision table. Conditions represent the 

causes and actions represent the effects and rules (columns) represent the test 

cases.

Figure 2.5 shows a cause-effect graph for the example specification. Note the relationship 

marked ‘e’. This shows a constraint between cl and c2, in this case one of exclusivity. Only 

one of c l and c2 can be true at one instant, though both may be false.
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Figure 2.5 Cause-effect graph
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Having constructed the cause-effect graph it is now used to construct a decision table. This 

is done by working from each effect and tracing back through the graph finding all 

combinations of causes that will yield the effect and all combinations that will not. Each 

combination requires a test to be included in the table. Consideration of the constraints bars 

the inclusion of impossible test cases.

In a simple case, such as the one above with 3 conditions, one may be tempted to feel that 

the cause-effect graph is an unnecessary intermediate representation. However, Myers 

illustrates the creation of test cases for a specification containing 18 causes. To progress 

immediately to the decision table would give 262,144 potential test cases. The purpose of the 

cause-effect graph is to identify a small number of useful test cases.

2.3.3 Dvnamic-structural

Here the software is executed with test cases. Creation of the test cases is generally based 

upon an analysis of the software.

2.3.3.1 Domain and computation testing

Domain and computation testing are strategies for selecting test cases. They use the structure 

of the program and select paths which are used to identify domains. The assignment 

statements on the paths are used to consider the computations on the path. These approaches 

also make use of the ideas of symbolic execution.
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A path computation is the set of algebraic expressions, one for each output variable, in terms 

of input variables and constants for a particular path. A path condition is the conjunction of 

constraints on the path. A path domain is the set of input values that satisfy the path 

condition. An empty path domain means that the path is infeasible and cannot be executed.

(

The class of error that results when a case follows the wrong path due to a fault in a 

conditional statement is termed a domain error. The class of error that results when a case 

correctly follows a path which contains faults in an assignment statement is termed a 

computation error.

"Domain testing is based on the observation that points satisfying boundary conditions are 

most sensitive to domain errors" [Clar83]. The domain testing strategy selects test data on 

and near the boundaries of each path domain [Whit80, Weuy80].

"Computation testing strategies focus on the detection of computation errors. Test data for 

which the path is sensitive to computation errors are selected by analyzing the symbolic 

representation of the path computation" [Clar83]. Clarke and Richardson list a set of 

guidelines for selecting test data for arithmetic and data manipulation computations.

2.3.3.2 Automatic test data generation

Use is made of automatic generation of test data when the program is to be executed and the 

aim is to achieve a particular level of coverage indicated by a coverage metric. One of the
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earliest forms of automatic test data generator (ATDG) produced random values for input 

variables.

It has been suggested that test data can be generated from a syntactic description of the test 

data expressed in, say, BNF [Ince87]. This may seem novel as it is not usual to prepare such 

a syntactic description of the data, but it is a technique familiar to compiler writers [Bazz82, 

Hand70, Payn78]. In the case of compilers a carefully prepared data description, that of the 

programming language, is available. The principle may be transferable to test data generation 

in general.

Many ATDGs have used the approach of path identification and symbolic execution to aid 

the data generation process for example CASEGEN [Rama76] and the FORTRAN testbed 

[Hedl81]. The system of predicates produced for a path is part-way to generating test data. 

If the path predicates cannot be solved due to a contradiction, then the path is infeasible. Any 

solution of these predicates will provide a series of data values for the input variables so 

providing a test case.

Repeated use of the path generation and predicate solving parts of such a system may produce 

a set of test cases in which we have confidence of a high coverage of the program. The 

initial path generation will provide the highest coverage. Subsequent attempts to find feasible 

paths which incorporate remaining uncovered statements, branches and LCSAJs will prove 

increasingly difficult, some impossibly difficult.
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A path-based approach which does not use symbolic execution is incorporated in the SMOTL 

system [Bice79]. The system has a novel approach to minimizing the number of paths 

required to achieve full branch coverage.

A program that has been tested with a high coverage may still not meet its specification. This '

may be due to the omission in the program of one of the functions defined in the 

specification. Data that is generated from the specification would prove useful in determining 

such omissions. To achieve this automatically requires a rigorous means of specification. The 

increasing use of formal specification methods may provide the necessary foundations on 

which to build automated functional test data generators.

I

2 3 3 3  Mutation analysis

Mutation analysis is not concerned with creating test data, nor of demonstrating that the 

program is correct. It is concerned with the quality of a set of test data [Budd78, Budd80].

Other forms of testing use the test data to test the program. Mutation analysis uses the 

program to test the test data.

The inclusion of mutation analysis as a dynamic-structural technique perhaps reduces the 

homogeneity of the class because it does not focus on how the cases were created but is 

concerned with assessing the quality of the test cases. Nevertheless, its inclusion in this class 

can be justified because it executes the software and makes some consideration of the 

software, in that a change is made to the software.

50



Chapter 2 Tools and Techniques of Testing

High quality test data will harshly exercise a program. To provide a measure of how well the 

program has been exercised, mutation analysis creates many, almost identical, programs. 

These programs are termed mutant programs. One change is made per mutant program. Each 

mutant program and the original program are executed with the same set of test data. The 

output from the original program is compared with the output from each mutant program in 

turn. If the outputs are different then that particular mutant is of little interest as the test data 

has discovered that there is a difference between the programs. This mutant is now ‘killed* 

and disregarded. A mutant which produced output that matches with the original is 

interesting. The change has not been detected by the test data, and the mutant is said to be 

‘live*.

Once the output from aU the mutants has been examined a ratio of killed to live mutants will 

be available. A high proportion of live mutants indicates a poor set of test data. A further set 

of test data must be devised and the process repeated until the number of live mutants is 

small, indicating that the program has been well tested.

A difficulty for mutation analysis occurs when a mutant program is an equivalent program 

to the original program. Although the mutant is textually different from the original it will 

always produce the same results as the original program. Mutation analysis will record this 

as a ‘live* mutant even though no test data can be devised to kill it. The difficulty lies in the 

fact that determining the state of equivalence is, in general, unsolvable and hence cannot be 

taken into account when assessing the ratio of live to killed mutants.
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Mutation analysis relies on the notion that if the test data discovers the single change that has 

been made to produce the mutant program then the test data will discover more major faults 

in the program. Thus, if the test data has not discovered any major faults and a high 

proportion of the mutants have been killed then the program is likely to be sound.

2.4 Effectiveness of program testing techniques

"If the use of a program testing technique is guaranteed to always reveal the presence of a 

particular error in a program, then the technique is said to be reliable for the error 

[Howd78b]. Whilst much work has been undertaken to develop new approaches to testing, 

only a few researchers [Howd78b, Henn84, Basi87] have attempted to determine the 

effectiveness and reliability of existing program testing techniques.

2.4.1 Howden’s studv

One of the first pieces of empirical data on testing techniques is provided in a study by 

Howden [Howd78b]. The study tested six programs of various types using several different 

testing techniques. The techniques assessed were: path testing; branch testing; functional 

structured testing; integrated structured testing; special values testing; anomaly analysis; 

special requirements; interface analysis and symbolic testing.

The first five of these techniques are dynamic-structural approaches to testing. Path and 

branch testing are used here to mean executing all paths and all branches respectively at least 

once. Structured testing is an attempt to approximate to path testing which is usually
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impossible because of the large, if not infinite, number of paths. Programs are decomposed 

into a hierarchy of functional modules and all paths through a module which require two or 

less iterations of each loop are tested at least once. Functional structured testing assesses an 

individual module while integrated structured testing treats each module in the context of the 

whole program. Special values testing is the act of testing the program with cases known to 

be problematic. For example, string processing programs are likely to exhibit errors in the 

handling of empty strings so a test case should contain empty strings.

The last four techniques are static approaches to testing. Path anomaly analysis is the 

examination of the program for suspicious looking features such as referencing a variable that 

has not been assigned a value. Special requirements testing involves checking that the 

specification stipulates the processing to be applied to all of the input domain dictated by the 

type of the input variables. Interface analysis is the checking of the consistency of the calling 

and called parameter lists. Symbolic testing symbolically executes paths. The output is used 

in two ways. First, it is used simply to generate expressions for the output variables and the 

path condition. Second, it is used to help generate test data which is then executed.

The generation of test cases and the static analyses were undertaken by hand but, because the 

use of the techniques require the application of well defined rules rather than the making of 

skill-based decisions the results are repeatable. The results of the analysis are given in 

figure 2 .6.
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Program A B C D E F Total
Number of errors present 
Number of errors found by method:

3 20 1 2 1 1 28
1 Paths 2 12 1 2 1 0 18
2 Branches 3 3 0 0 0 0 06
3 Functional Structured 2 4 1 2 0 0 10
4 Integrated Structured 3 6 1 2 0 0 12
5 Combined Structured 3 6 1 2 0 0 12
6 Special Values 3 10 1 2 1 0 17
7 Anomaly Analysis 2 2 0 0 0 0 04
8 Special Requirements 0 4 1 2 0 0 07
9 Interface Analysis 0 2 0 0 0 0 02

10 Symbolic expressions 2 11 1 2 1 0 17
11 All (5-10) 3 19 1 2 1 0 26

Figure 2.6 Howden’s analysis of testing techniques

Howden gives eight examples of errors to illustrate the differing combinations of techniques 

that will discover different classes of error. Figure 2.7 summarizes Howden’s comments on 

the effectiveness of each technique for each of the eight example errors. A blank entry 

indicates that no comment was made about the technique’s ability to discover the error, ‘Y’ 

indicates success and ‘N’ indicates that the technique was unable to discover the error.

Example error 1 2 3 4 5 6 7 8
1 Paths N N N
2 Branches N N N N
3 Functional Structured N N N
4 Integrated Structured N N N
5 Combined Structured Y N N N N N N N
6 Special Values Y N Y N N
7 Anomaly Analysis Y N N N
8 Special Requirements Y N Y
9 Interface Analysis N N N Y

10 Symbolic expressions N Y Y N Y

Figure 2.7 Summary of Howden’s analysis of effectiveness of testing techniques

Unfortunately, no mention is made of the two errors that could not be detected by any of the 

techniques. Insufficient data is provided to establish which combinations of the techniques are 

sufficient on their own to discover most of the errors.
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The results are encouraging for the use of symbolically executed expressions for output 

variables. Out of a total of 28 errors five were discovered where it would be "possible for the 

incorrect variable to take on the values of the correct variable during testing on actual data, 

thus hiding the presence of the error" [Howd78b]. The paper concluded that the testing 

strategy most likely to produce reliable software was one that made use of a variety of 

techniques. Unfortunately, no particular set of techniques was proposed, and it was suggested 

that further research is required to determine the best combination of techniques for particular 

circumstances.

2.4.2 Hennell. Hedlev and Riddell’s studv

Hennell et al [Henn84] undertook a study to assess the effectiveness of the LDRA testbed in 

finding faults in an already working system which has previously been tested by ad hoc 

methods. In the two experiments the LDRA testbed discovered errors not discovered by 

previous testing.

The testbed measures three coverage metrics TERl, TER2 and TER3 which show the 

percentage of statements, branches and LCSAJs respectively that have been covered by the 

testing.

Figures 2.8a and 2.8b show the coverage of statements, branches and LCSAJs attained firstly 

(TDl) by the best functional test data and then showing how other tests were added (TD2, 

TD3...) to give acceptable cover. These tests found 33 errors in the two programs not detected
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by previous ad hoc testing. Figure 2.9 shows the errors classified into 13 fault classes. 

Unfortunately, but perhaps not surprisingly, the authors experienced difficulty in attributing 

the detection of the errors to TERl, TER2 and TER3.

TERl TER2 TER3
% % %

TDl 78.6 63.6 40.6
TD2 96.4 88.9 64.0
TD3 97.8 91.3 65.8
TD4 98.0 92.6 67.1
TD5 98.6 93.0 67.4
TD6 99.0 93.8 68.0
TD7 99.4 94.7 68.6
TD8 100.0 97.1 71.7
TD9 100.0 97.5 72.4
Figures 2.8a Coverage for a COBOL program

TERl TER2 TER3
% % %

TDl 61.5 47.9 37.5
TD2 73.5 63.5 50.7
TD3 78.2 68.9 55.4
TD4 83.6 76.5 62.5
TD5 88.0 81.5 70.0
TD6 90.9 87.0 75.1
TD7 91.3 87.4 76.1

Functional test data set

Functional test data set

Figures 2.8b Coverage for a PL/1 program

1. Initialization error 2
2. Single statement error 3
3. Two uncoupled single statement errors 1
4. Missing loop 2
5. Compensating loop errors 2
6. Incorrect predicate 1
7. Compensating loop and alternates 1
8. Alternate missing in nested loops 2
9. Alternate missing in nested alternates in a 6

loop (or loops) in nested alternates
10. Loop missing in nested alternates in a loop 1
11. Combinatorial error from nested alternates 3

in nested loop alternates
12. Combination between nested loops 1
13. None of the above 3
Figure 2.9 Analysis of errors
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The authors conclude that after many years in attempting to quantify the testing process, 

satisfying TER3 = 1 in conjunction with a functional test set is the most cost-effective method 

of finding errors. However, explaining why this technique is so effective is not easy.

2.4.3 Basili and Selbv’s studv

Basili and Selby’s study [Basi88] involved experiments to determine how testing effectiveness 

relates to several factors: testing technique; software type; fault type; tester experience; and 

any interaction among these factors.

The testing techniques examined are: functional testing, in particular equivalence class 

partitioning and boundary value analysis; structural testing using 100% statement coverage; 

and code reading by stepwise extraction.

The study examines three different aspects of software testing: fault detection effectiveness; 

fault detection cost; and classes of fault detected. The framework for the study is summarized 

in figure 2 .10.

Four programs are used in the experiment. Each one a different type: PI a text formatter; P2 

undertakes mathematical plotting; P3 implements a numeric abstract data type; and P4 a 

database maintainer. They contain a total of 34 faults distributed between the four programs, 

9, 6, 7 and 12 respectively. The faults can be classified in many ways. The authors used two 

classifications and the distribution of the errors between them is given in figure 2 .11.
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I. Fault detection effectiveness
(a) For programmers doing unit testing, which of the testing techniques 

detects the most faults in programs ?
1. Which of the techniques detects the greatest percentage of faults 

in the programs ?
2. Which of the techniques exposes the greatest percentage of

program faults (faults that are observable but not necessarily 
reported) ?

(b) Is the number of faults observed dependent on software type ?
(c) Is the number of faults observed dependent on the expertise level

of the person testing?
II. Fault detection cost

(a) For programmers doing unit testing, which of the testing techniques
detects the faults at the highest rate ?

(b) Is the fault detection rate dependent on software type ?
(c) Is the fault detection rate dependent on the expertise level of the

person testing?
III. Classes of fault observed

(a) For programmers doing unit testing, do the methods tend to capture 
different classes of faults ?

(b) What classes of faults are observable but go unreported?
Figure 2.10 Outline of goals and questions for testing experiment [Basi87]

Omission Commission Total
Initialization 0 2 2
Computation 4 4 8
Control 2 5 7
Interface 2 11 13
Data 2 1 3
Cosmetic 0 1 1
Total 10 24 34
Figure 2.11 Distribution of faults in the program [Basi87]

The experimental design used in the final phase of the experiment is a fractional factorial 

analysis of variance design. This allows assessment of the three main effects: testing 

technique; software type; and level of expertise, and assessment of the interactions between
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these effects. The design also measured several dependent variables: percentage of faults 

detected; time taken; and from the on-line testing various measures such as number of 

executions of programs.

The following is the authors’ summary of the results:

1. With the professional programmers, code reading detected more software faults and had 

a higher fault detection rate than did functional or structural testing, while functional 

testing detected more faults than did structural testing, but functional and structural 

testing were not different in fault detection rate. (By fault detection rate the author 

means the number of faults discovered divided by the time spent looking for them.)

2. In one group of junior and intermediate level programmers, code reading and functional 

testing were not different in faults found, but were both superior to structural testing, 

while in another similar group there was no difference among the techniques.

3. With the junior and intermediate levels, the three techniques were not different in fault 

detection rate.

4. Number of faults observed, fault detection rate and total effort in detection depended 

on the type of software tested.
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5. Code reading detected more interface faults than did the other methods.

6. Functional testing detected more control faults than did the other methods.

7. When asked to estimate the percentage of faults detected, code readers gave the most 

accurate estimates while functional testers gave the least accurate estimates.

The authors’ also report that "there were few significant interactions between the main effects 

of testing technique, program and expertise level".

2.4.4 Summarv of empirical data on effectiveness of testing techniques 

The main conclusion arising from analyzing the empirical data that exists is that use of a 

variety of testing techniques is likely to be more effective than use of a single technique. 

However, it is not clear whether all techniques need to be used to discover all faults or 

whether there are sets of compatible techniques which, when used together, are likely to 

discover all of the faults.

The results produced so far are also limited to a few comparatively small studies. These need 

validating by many more repeated studies along similar lines.
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2.5 Further Evaluation of Testing Techniques

2.5.1 Classifving evaluation techniques

Approaches to the evaluation of testing techniques may be ordered according to the degree 

of observation, experimentation, and theoretical evaluation involved. At one end of the scale 

lies a theoretical approach that makes no use of sample programs nor of human testers. In the 

middle sits the laboratory experiment involving many well understood sample programs and 

many people whose abilities are known. At the other end is the observational study of real 

situations over a long period. The three studies described above are at different points on the 

theoretical-experimental-observational spectrum.

The study by Howden is the nearest to the theoretical end of the spectrum. No human testers 

were involved. A theoretically perfect-application of the techniques under evaluation was 

undertaken by the evaluator. Six programs with known errors were used. Had a classification 

of errors been used to determine which of the techniques is capable of detecting each error 

then the approach would have been entirely theoretical.

The study by Basili and Selby is the closest to the experimental midpoint. Many human 

testers were set the task of testing four quite different programs each containing a set of 

known errors.

The study by Hennell, et al is the nearest of the three to the observational end. Two
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production programs were tested by regular users of a testing tool. This study is however a 

long way from the end of the spectrum as the testing was not undertaken as a normal part of 

the software’s development but as a special experiment.

The main shortcoming of the studies undertaken to date is the small number of them and, as 

a result, the shortage of data. Basil and Selby’s study appears to be a sound experimental 

design but it avoids the thorny problem of the differences between the laboratory experiment 

and the live software development environment. Ideally, this study should have been expanded 

to include a larger number of software testers; assessing more ‘real’ programs and covering 

more testing techniques. This would provide valuable information about which combination 

of techniques would be the most appropriate for use in testing particular types of software 

with staff of particular levels of experience. Such a study would of course take a long time 

and be very expensive.

2.5.2 Proposals for further evaluation of testing techniques

Three approaches are proposed for consideration for the further evaluation of testing 

techniques: observation; experiment; and theory.

An observational study requires the researcher to identify, for each technique to be assessed, 

several organizations that currently use the technique as part of their normal software 

development. Over a long period the development of software is to be monitored and details
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of every fault discovered at every stage of the life of the software are to be recorded. The aim 

of the analysis is to assess the number of errors discovered during development using the 

techniques under investigation and to compare this to the number of errors detected later in 

the software product’s life. This will tell us which technique detects the most errors early in 

the life of the software. By recording details of software type, experience of user and effort 

expended assessment can be made of the most cost-effective method.

The experimental study should follow the same experimental design as the study by Basili 

and Selby. It should assess more testing techniques using more testers from a wider variety 

of organizations. The main aim of this study would be to gather more data to corroborate the 

findings of Basili and Selby. Indeed, there would be much to be gained from simply repeating 

their experiment with different subjects in other environments.

A theoretical study would commence by establishing or selecting a classification of software 

faults such as those proposed by Van Tassel [VanT78] and Kamer [Kame88]. A set of 

programs is then constructed or identified which contain all the faults listed in the 

classification. The evaluation now assesses which of the techniques discover the existence of 

which faults. A weakness of this approach is that it would be difficult to assess cost- 

effectiveness of the techniques.
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2.6 Summary

The principal objective of software testing is to gain confidence in the software. This 

necessitates the discovery of both errors of omission and commission. Confidence arises from 

thorough testing. There are many testing techniques which help to achieve thorough testing.

Testing techniques can be assessed according to where along the two main testing strategy 

dimensions they fall. The first dimension, the functional-structural dimension, assesses the 

extent to which the function description in the specification, as opposed to the detailed design 

of the software, is used as a basis for testing. The second dimension, the static-dynamic 

dimension, considers the degree to which the technique executes the software and assesses 

its run-time behaviour as opposed to inferring its run-time behaviour from an examination of 

the software. These two dimensions can be used to produce four categories of testing 

technique: static-functional, static-structural, dynamic-functional and dynamic-structural. As 

with all classifications this one is problematic at the boundaries. Some techniques appear to 

belong equally well in two categories.

The aims of the testing techniques range from demonstrating correctness for all input classes 

(e.g. program proving), to showing that for a particular set of test cases no faults were 

discovered (e.g. random testing). Debate continues as to whether correctness can be proved 

for life-size software and about what can be inferred when a set of test cases finds no errors. 

A major question facing dynamic testing techniques is whether the execution of a single case 

demonstrates anything more than that the software works for that particular case. This has led

64



Chapter 2 Tools and Techniques of Testing

to work on the identification of domains leading to the assertion that a test case represents 

a particular domain of possible test cases.

Many of the structural techniques rely on the generation of paths through the software. These 

techniques are hampered by the lack of a sensible path generation strategy. There is no clear 

notion of what constitutes a ‘revealing’ path worthy of investigation as opposed to a 

‘concealing’ path which tells the tester very little.

Testers often utilize their experience of classes of faults associated with particular functions 

and data types to create additional test cases. To date there is no formal way of taking 

account of these heuristics.

A significant feature of the little empirical data that has been collected is that use of a variety 

of testing techniques is likely to detect more errors than reliance upon a single technique. 

Over the last few years effort has been directed at construction of integrated, multi-technique 

software development environments.

Symbolic execution looks to be a promising technique. In an experiment Howden [Howd78b] 

discovered that symbolic execution was able to discover faults that other techniques would 

have missed. Yet, few full symbolic execution systems currently exist. Of the experimental 

systems that have been developed none addresses commercial data processing software written 

in languages such as COBOL.
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CHAPTER THREE PRINCIPLES OF SYMBOLIC EXECUTION

Symbolic execution creates a set of values for the input variables to a program. The novelty 

is in the nature of the values. Rather than create a set of actual values a set of symbolic 

values are produced.

The following program fragment determines netpay.

accept grosspay 
accept taxpcent 
accept taxfree
compute taxable = grosspay - taxfree
compute netpay = grosspay - (taxable * taxpcent/100)
display netpay

For each of the input variables the following symbolic values may be used as input.

Input Variable Symbolic value
grosspay g
taxpcent pc
taxfree tf

After symbolically executing the program the value of netpay would be : 

g-(g-tf)*pc/100
This expression holds for say the numeric values of 600, 25 and 200 for g, pc and tf 

respectively, but it also represents far more sets of values than that single case. The 

expression represents a domain of test cases.

3.1 Symbolic evaluation

Clarke and Richardson [ClarSl] use the phrase ‘symbolic evaluation’ as a collective title for 

techniques that make use of algebraic expressions to represent the values of variables. This 

use is not universal and the phrase may be used as a synonym for symbolic execution. There
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are three types of symbolic evaluation as defined by Clarke and Richardson: symbolic 

execution; dynamic symbolic evaluation; and global symbolic evaluation.

3.2 Symbolic execution

This is the evaluation of a single path using symbolic values. The output from the symbolic 

execution has two components. First, a set of expressions in terms of the symbolic values of 

the input variables and constants. Second, a set of constraints which must be satisfied in order 

for the path to be executable. Collectively these constraints are known as the path condition. 

There are two approaches to deriving the symbolic expressions and path condition: forward 

expansion and backward substitution. These are described later in this chapter.

3.3 Dynamic symbolic evaluation

Here symbolic execution takes place in parallel with the execution of actual value cases. For 

each variable encountered both the actual value and a symbolic expression are maintained. 

No feasibility checking of the path condition is required as the execution of the actual value 

case ensures that the path followed is executable unless a run time error is produced.

Dynamic symbolic evaluation is applied principally in debugging. In addition, user inserted 

assertions may be checked to see whether the processing of the input case complies with the 

assertion at that point in the path.
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3.4 Global symbolic evaluation

The aim of global symbolic evaluation is to derive a representation for a whole module. 

Whereas symbolic execution produces a representation of a single path in terms of its input 

variables and constants, global symbolic evaluation aims to achieve representations for all 

paths through a routine.

Where a routine contains only one path (no conditional statements) the result is identical to 

symbolic execution. When conditional statements are present then a set of path conditions and 

variable expressions are produced. When a routine contains loops then there is potentially an 

infinite number of paths. Global symbolic evaluation aims to identify a loop expression. From 

this further expressions representing successive iterations may be derived providing recurrence 

relations in terms of the values of variables at successive iterations.

The next step involves a loop analysis to solve the recurrence relations. As a result many 

paths representing differing numbers of iterations of a loop are represented by a single 

expression. Clarke and Richardson state that "this is not always straightforward and

sometimes may not be possible In particular, the dependence may be cyclic — V may be

mapped on W, which depends on V — in which case the recurrence relations cannot be 

solved". Howden [Howd78b] demonstrates that in general such recurrence relations cannot 

be solved, in which case global symbolic evaluation has a bleak future.

Of these three classes of symbolic evaluation this thesis addresses symbolic execution.
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3.5 Flowgraph

Before considering symbolic execution of a path it is useful to introduce the flowgraph 

representation of a program. The flowgraph is a useful way of displaying the program’s 

structure. It consists of ‘nodes’ joined by ‘arcs’. The nodes represent branch points within the 

program and the arcs represent the statements that modify variables. It is easier to identify 

a particular path from a flowgraph than from the source code of the program.

The program in figure 3.1 accepts three integers that are interpreted as lengths of the sides 

of a triangle. It determines the type of triangle that the values represent and calculates the 

area of the triangle. The program can be represented by the flowgraph in Figure 3.2. A node 

on the graph corresponds to a selection statement in the program and an arc on the graph 

corresponds to a series of input, assignment and output statements.

The flowgraph contains 33 paths. Symbolic execution considers a single path at a time. There 

are two approaches to symbolic execution of a path: forward expansion and backward 

substitution.

3.6 Forward expansion

Forward expansion is similar to the normal execution of a path. A path consists of a series 

of input statements, condition predicates and assignment statements. The symbolic execution 

commences at the root of the path and proceeds branch by branch to the end of the path. 

During a path traversal each input variable is given a symbol rather than an actual value.
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identification division, 
program-id. triangle, 
data division, 
working-storage section.
01 I pic 9.
01 J pic 9.
01 K pic 9.
01 A pic 99.
01 B pic 99.
01 C pic 99.
01 3 pic 99.
01 match pic 9.
01 area pic 999.

A * B * C) ** 0.5

begin-triangle.
accept I,J,K
if I + J > K and J + K > I and K + I > J 
then

move 0 to match 
compute S =  ( I + J + K )  / 2
compute A = S - I
compute B = S - J
compute C = S - K
compute area = (S 
if I = J 
then

add 1 to match 
end-if 
if J = K 
then

add 1 to match 
end-if 
if K = I 
then

add 1 to match 
end-if
evaluate true 

match = 0 
match = 1 
match = 3 
other 

end-evaluate 
display area 

else
display 'Not a Triangle' 

end-if 
stop run 

end program triangle.

display 'Scalene' 
display 'Isosceles' 
display 'Equilateral' 
display 'Error'

Figure 3.1 Triangle program
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accept I^,K

S=(I+J+K)/2 
A=S-I 
B=S-J 
C=S-K 
area=(S*A*B*C)**0.5

[not(I+J>K and J+K>I and K+I>J)][I+J>K 
and J+K>I 
and K+I> J]

[I=J]
add 1 to match

[loJ]

[J=K] 
add 1 to match

[JoK ]
display 'Not a Triangle'

[K=I] 
add 1 to match

[K ol]

[m atcho 0 
and match <> 
and match <> 
display 
'Error'

[=3]\ >
dispmy
'Equilateral

[=1]/ 
disp ay 
'Isoc eles'

[match=0]
display
'Scalene'

display area

Figure 3.2 Flowgraph for the triangle program
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Thereafter, each assignment statement is evaluated so that it is expressed in terms of symbolic 

values of input variables and constants.

At the end of the symbolic execution of a path, the output variables will be represented by 

expressions in terms of symbolic values of input variables and constants. The output 

expressions are subject to constraints. A list of these constraints, known as the Path Condition 

(PC), is provided by the set of symbolic representations of each condition predicate along the 

path. Analysis of these constraints may indicate that the path is not executable due to a 

contradiction.

For each path, a path condition is maintained together with a table containing each variable 

referenced and a corresponding expression. Initially, each variable expression is empty. As 

symbolic execution proceeds along a path four categories of statement are identified: input; 

assignment; predicate; and output.

When an input statement is encountered a new symbolic value is created and replaces the 

current expression representing the variable.

When an assignment is encountered two substitutions take place. First, the variables in the 

right hand side of the assignment statement are substituted by their current expressions. 

Second, the resulting assignment expression is used to update the expression representing the 

target variable. For example, when the assignment is COMPUTE A = B + C. First, replace
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B and C by their current expressions say X + Y and J + K giving COMPUTE A = X + Y + 

J + K. Second, replace the current expression for A by the newly created expression.

When a predicate is encountered each variable in the predicate is substituted by its current 

expression. Next the predicate is tested for truth. When true it is ignored because it has no 

impact on the PC e.g. A = A. When false the symbolic execution halts because a 

contradiction has been discovered e.g. A <> A. When its truth is indeterminate e.g. A = B 

then the predicate is conjoined onto the PC.

When an output is encountered the current expression is displayed.

To illustrate symbolic execution by forward expansion consider the path covering branches 

(arcs) 1, 2, 4, 6, 8, 12 and 14. The branches can be written in sequence to isolate the path 

into a straight-line form, where predicates are shown in square brackets, as follows:

1 accept I J K
2 [I+J >K and J+K >I and K+I >J] 

move 0 to match
compute S = (I+J+K)/2 
compute A = S-I 
compute B = S-J 
compute C = S-K 
compute area = (S*A*B*C)**0.5 

4 [I=J]
add 1 to match 

6 [J=K]
add 1 to match 

8 [K=I]
add 1 to match 

12 [match = 3]
display 'Equilateral'

14 display area
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Symbolic execution of this path is now described. The current expression for a variable is 

shown as:

variable: expression

e.g. total: 0 indicates that the current expression for total is 0. The PC is shown in a similar 

way.

1 accept U K

This is an input statement so the expressions for I, J and K are 

given new symbolic values.

I: i, J: j, K: k

2 [I+J >K and J+K >I and K+I >J]

To progress beyond this point the test case must satisfy the predicate enclosed 

within the brackets. First, substitute I, J and K by their current expressions, 

i+j >k and j+k >i and k+i >j

Second, decide whether its truth can be determined - no.

Third, conjoin to the PC.

PC: i+j>k and j+k>i and k+i>j 

move 0 to match

This is an assignment so the expression for match is replaced by 0. 

match: 0
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compute S = (I+J+K)/2

When a variable is assigned the value of an expression the variables that are 

incorporated in the expression are substituted by their current symbolic 

expression. In the case of I, J and K their current symbolic values are i, j 

and k.

S: (i+j+k)/2 

compute A = S-I

The symbolic value of A is achieved by substituting the variables on the right- 

hand-side by their current expression.

A: (i+j+k)/2-i 

compute B = S-J

B: (i+j+k)/2-j 

compute C = S-K

C: (i+j+k)/2-k 

compute area = (S*A*B*C)**0.5

area: (((i+j+k)/2)*((i+j+k)/2-i)*((i+j+k)/2-j)*(i+j+k)/2-k))**0.5

4 [I=J] i=j is conjoined to PC.

PC: i+j>k and j+k>i and k+i>j and i=j

The PC may be simplified (but this is not essential).

PC: i=j and 2*i>k and k>0
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add 1 to match

match is incremented by 1. 

match: 1

6 [J=K] j=k is conjoined to PC.

PC: i=j and 2*i>k and k>0 and j=k 

simplifying gives:

PC: i=j and j=k and k>0 

add 1 to match

match: 2

8 [K=I] k=i is conjoined to the PC.

PC is i=j and j=k and k>0 and k=i

Simplifying merely removes the added constraint k=i.

PC is i=j and j=k and k>0 

add 1 to match

match: 3

12 [match = 3] Substitute match with its current expression.

3 = 3 This is true ignore predicate.

display ’Equilateral’

Note the output string.

14 display area

Note the output expression.
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At the end of symbolic execution of the path the following inputs and outputs have been 

identified.

Inputs 

I = i
J = j
K = k

Output

‘Equilateral’
area = (((i+j+k)/2)*((i+j+k)/2-i)*((i+j+k)/2-j)*(i+j+k)/2-k))**0.5 
PC is i=j and j=k and k>0

The path condition dictates that output of the string ‘Equilateral’ will result when i=j=k>0.

This matches with expectation. It is not so straightforward to verify that the output for ‘area’

is correct. This is most easily achieved by substituting i, j and k with values, evaluating the

expression and comparing the result against an earlier calculation of the result for the chosen

values.

The path considered above is feasible but some paths chosen through a program are likely to 

be infeasible. As an illustration of symbolically executing an infeasible path by forward 

expansion consider the path 1, 2, 4, 7, 8, 13 and 14.
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The branches of this path are as follows:

1 accept I J K
2 [I+J >K and J+K >I and K+I >J] 

move 0 to match
compute s = (I+J+K)/2 
compute a = S-I 
compute b  = S-J 
compute c S-K 
compute area = (S*A*B*C)**0.5 

4 [I=J]
add 1 to match

7 [JOK]
8 [K=I]

add 1 to match
13 [match <> 0 and match <> 1 and match <> 3] 

display 'Error'
14 display area
Symbolic execution of this path follows.

1 accept I J K

I: i, J: i, K: k

2 [I+J >K and J+K >I and K+I >J]

PC: i+j>k and j+k>i and k+i>j 

move 0 to match

match: 0 

compute s = (I+J+K)/2 

S: (i+j+k)/2 

compute a = S-I

A: (i+j+k)/2-i 

compute b = S-J

B: (i+j+k)/2-j 

compute c = S-K

C: (i+j+k)/2-k
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compute area = (S*A*B*C)**0.5

area: (((i+j+k)/2)*((i+j+k)/2-i)*((i+j+k)/2-j)*(i+j+k)/2-k))**0.5

4 [I=J]

PC: i+j>k and j+k>i and k+i>j and i=j 

Simplifying to 

PC: i=j and 2*i>k and k>0 

add 1 to match

match: 1

To this point the symbolic execution is the same as for the path described 

earlier.

7 [JoK ]

PC: i=j and 2*i>k and k>0 and j <> k

8 [K=I]

PC: i=j and 2*i>k and k>0 and j o k  and k=i 

Simplifying to

PC: i=j and j=k and j o k  and k>0

This PC is infeasible. It is not worthwhile continuing the symbolic execution further as it will 

remain infeasible.

This approach to symbolic execution is termed ‘forward expansion’ because the execution 

commences from the root of the directed graph and progresses through the program from the
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entry point to an exit point. As the traversal of the path progresses the Path Condition is 

gradually expanded as each condition and relevant variable assignment is encountered. It has 

the advantage of detecting infeasibility at the point at which the infeasibility first occurs.

3.7 Backward substitution

Backward substitution adopts the opposite approach to forward expansion. It starts the 

symbolic execution of a path from the terminating point of the program as opposed to the 

starting point.

Backward substitution of a path is a more complicated procedure than forward expansion. It 

is iterative in nature repeatedly returning to expressions previously processed. Consider again 

the feasible path 1, 2, 4, 6, 8, 12 and 14 which is now symbolically executed backwards.

14 display area

At this point no values have been attributed to the variable area but it is 

important to note the occurrence of each output variable, 

display ’Equilateral’

Note the output of the string.

12 [match = 3]

PC: match = 3
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add 1 to match

As the initial value (symbolic or actual) is not known at this stage the 

expression must remain in terms of match, 

match: match + 1

8 [K=I]

PC: match = 3 and K = I 

add 1 to match

Match has already been encountered at branch 12 resulting in an expression 

which must now be modified. This is achieved by substituting the expression 

created at branch 12 into the occurrence of match on the RHS of the 

assignment in branch 8. Thus ‘match’ is substituted by ‘match + 1’ giving 

‘match + 1 + 1’ hence: match: match + 2

6 [J=K]

PC: match=3 and K=I and J=K 

add 1 to match

match: match + 3

4 [I=J]

PC: match=3 and K=I and J=K and K=I 

simplifies to

PC: match=3 and K=I and J=K 

compute area = (S*A*B*C)**0.5 

area: (S*A*B*C)**0.5
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compute C = S-K 

C: S-K

The handling of this assignment illustrates the naming of backward 

substitution. At each assignment a search must be made through each 

expression of each previously noted variable for the variable being assigned 

the new value. When the variable is found in an expression it is substituted 

by the new expression resulting from the assignment. In this case the previous 

expression for the variable area must now be modified to take account of the 

new value of variable C. 

area: (S*A*B*(S-K))**0.5 

compute B = S-J 

B: S-J

area: (S*A*(S-J)*(S-K))**0.5 

compute A = S-I 

A: S-I

area: (S*(S-I)*(S-J)*(S-K))**0.5

compute S = (I+J+K)/2 

S: (I+J+K)/2

Again area must be modified so too must A, B and C. 

area: (((I+J+K)/2)*((I+J+K)/2-I)*((I+J+K)/2-J)*(I+J+K)/2-K))**0.5 

A: (I+J+K)/2-I 

B: (I+J+K)/2-J
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C: (I+J+K)/2-K 

move 0 to match

Current expression for match is 

match: match + 3

Substitute 0 in place of match in the expression, 

match: 3

PC: 3=3 and K=I and J=K 

simplifies to 

PC: K=I and J=K 

2 [I+J >K and J+K >I and K+I >J]

PC: K=I and J=K and I+J>K and J+K>I and K+I>J 

which simplifies to give:

PC: K=I and J=K and I>0 

1 accept I J K

I: i, J: j, K:k

area: (((i+j+k)/2)*((i+j+k)/2-i)*((i+j+k)/2-j)*(i+j+k)/2-k))**0.5 

A: (i+j+k)/2-i 

B: (i+j+k)/2-j 

C: (i+j+k)/2-k

The backward substitution approach to symbolic execution yields exactly the same results as 

forward expansion described above.
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The next illustration is of backward substitution of an infeasible path. Consider again the path 

1, 2, 4, 7, 8, 13 and 14.

14 display area

Note output variable, 

display ’Error’

Note output string.

13 [match <> 0 and match o  1 and match <> 3]

PC: match o  0 and match <> 1 and match <> 3 

add 1 to match

match: match + 1

8 [K=I]

PC: match o  0 and match o  1 and match o  3 and K=I 7 [JoK ]

PC: match o  0 and match o  1 and match <> 3 and K=I and J o K  

add 1 to match

match: match + 2

4 [I=J]

PC: match o  0 and match o  1 and match <> 3 and K=I and J o K  and I=J

At this point the path has become infeasible because J cannot be both equal 

to K and not equal to K simultaneously.
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Ramamoorthy [Rama76] claims that in backward substitution assignment statements that do 

not affect any conditional statements need not be symbolically executed. This is not wholly 

satisfactory. Application of this rule could cause the omission of assignments that affect the 

expressions of output variables. Four categories of assignment statement can be identified:

1. assignments that affect conditional statements and output variables;

2. assignments that affect only conditional statements;

3. assignments that affect only output variables;

4. assignments that affect neither conditional statements nor output variables.

By application of Ramamoorthy’s approach categories (1) and (2) are included in the 

symbolic execution whilst (3) and (4) are excluded. It is the omission of category (3) that is 

of concern. The set of output variable expressions would be incomplete even though the PC 

would be accurate. An occurrence of category (4) in a program is of interest. If an assignment 

affects neither output variables nor the PC then its presence in the program should be 

questioned.

Ramamoorthy [Rama76] claims that backward substitution has the benefit of being the 

simpler operationally and requires the least storage space. However, forward expansion may 

determine infeasibility more quickly, handles arrays more simply and perhaps most 

importantly is intuitively more obvious than backward substitution. It is these advantages that 

have led to the more widespread adoption of forward expansion at the expense of backward 

substitution.

86



Chapter 3 Principles of Symbolic Execution

3.8 Simplification of symbolic expressions

The usefulness of the output of symbolic expressions, though potentially helpful, is hampered 

by the unfamiliar format of the expressions. One possible solution to this difficulty is to 

attempt to simplify the expression in the hope that it will be more meaningful. By simplifying 

an expression evidence is lost of how the expression was calculated. This evidence may prove 

helpful in pin-pointing a fault in the program. Both the simplified and the unsimplified 

expressions should be provided as output.

In the above examples of the output from feasible paths the expression for area is expressed 

as:

area = (((i+j+k)/2)*((i+j+k)/2-i)*((i+j+k)/2-j)*(i+j+k)/2-k))**0.5 

This expression could be simplified to:

area = ((i+j+k)*(-i+j+k)*(i-j+k)*(i+j-k))**0.5/4

In algebraic terms these two expressions are equivalent. A potential difficulty exists when 

expressions are evaluated using particular machines. Execution of the two expressions should 

give identical outputs but rounding and truncation of intermediate results may yield slightly 

different results. This may cause execution of an unintended path to take place.

3.9 Problems in applying symbolic execution

There are four problem areas which are well documented in the literature concerning the 

application of symbolic execution. These are: path selection and the evaluation of loops; a
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dilemma over how to process module calls; the evaluation of array references dependent on 

input values; and the checking of path feasibility. There are three further problems concerning 

the application of numerical optimizers for checking feasibility which are not documented in 

the literature; these are described in Part Two.

3.9.1 Path selection and loops

Current methods of path selection employ only simple strategies such as take the tme branch 

first or generate the shortest path. These strategies have a common target, that of achieving 

a particular coverage metric such as all statements or all branches are executed at least once. 

Each of these strategies is prey to the problem of selecting infeasible paths. Having identified 

a set of paths which cover say, all branches, some of the selected paths will be found to be 

infeasible. This leaves the problem of identifying feasible paths which include the non

covered branches resulting fi*om the infeasible paths. Further, such a strategy does not 

consider the usefulness of the selected paths.

Many systems that use symbolic execution have two distinct stages. First, select a path. 

Second, symbolically execute the selected path. Ideally, a symbolic execution testing system 

should incorporate a path selection strategy in which path selection and symbolic execution 

take place together. Such co-operative processing allows the expressions produced during 

symbolic execution to be utilised in path selection in an attempt to select only feasible paths.
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Symbolic execution cannot proceed beyond a loop unless the number of iterations is known. 

A common strategy for placing loops on paths is to create three paths: one that contains zero 

iterations of the loop; a second that contains one iteration; and a third containing two 

iterations. The idea behind this strategy is that zero, one and two iterations coincide with three 

classes of loop error and so each should be tested. Consider the following loop:

perform until x = y 
compute X = X + 1 
display no advancing 

end-perform
Assume that x and y are input variables and that earlier processing has guaranteed that x is

less than or equal to y. Three paths would be selected where the following predicates are

conjoined to the path condition.

Path Number of Predicates conjoined
Number iterations to Path Condition
1 0 X = y
2 1 x < y ,  x + l = y
3 2 x < y ,  x + l < y ,  x + 2 = y

These three paths would provide reasonable coverage of the loop.

Consider the following code which produces the Fibonacci series. The program accepts three 

values; the first two act as commencing values and the third as the number of terms to be 

displayed.

1 accept last this A
2 move 2 to N
3 display last
4 display this
5 perform until N >= A
6 compute next = last + this
7 move this to last
8 move next to this
9 display next
10 add 1 to N
11 end-perform
The important feature of this program for symbolic execution is that the number of iterations
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of the loop is controlled by the input variable A. To demonstrate the impact of this feature 

consider the following symbolic execution of the program where the symbolic expressions for 

the output variables and the state of the PC are given in the right-hand column.

1 accept last this A A: a, last : 1, t
2 move 2 to N N: 2
3 display last Output 1
4 display this Output t
5 [ N >= A ] PC: 2 >= A
6 compute next = last + this next : 1 + t
7 move this to last last : t
8 move next to this this : 1 + t
9 display next Output 1 + t
10 add 1 to N N: 3
11 end-perform
5 [ N >= A ] PC: 3 >= A
6 compute next = last + this next : 1 + 2t
7 move this to last last : 1 + t
8 move next to this this : 1 + 2t
9 display next Output 1 + 2t
10 add 1 to N N: 4
11 end-perform
5 [ N >= A ] PC: 4 >= A
6 compute next = last + this next : 21 + 3t
7 move this to last last : 1 + 2t
8 move next to this this : 21 + 3t
9 display next Output 21 + 3t
10 add 1 to N N: 5
11 end-perform
5 C N >= A ] PC: 5 >= A
6 compute next = last + this next : 31 + 5t
7 move this to last last : 21 + 3t
8 move next to this this : 31 + 5t
9 display next Output 31 + 5t
10 add 1 to N N: 6
11 end-perform
5 [ N >= A ] PC: 6 >= A
6 compute next = last + this next : 51 + 8t
7 move this to last last : 31 + 5t
8 move next to this this : 51 + 8t
9 display next Output 51 + 8t
10 add 1 to N N: 7
11 end-perform

this: t

There is no complex recurrence relation to solve here; it is a simple matter to determine that 

the expression representing the number of iterations is: 

a -  2

More complicated loop recurrence relations pose a more severe test for symbolic execution.
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Ramamoorthy, Ho and Chen [Rama76] note that, in general, solving such recurrence relations 

is not a simple task. Cheatham [Chea79] reports that a technique for solving the more 

common recurrence relations has been developed. A symbolic expression to describe the 

number of iterations is produced.

3.9.2 Module calls

The term ‘module calT is used here to refer to the invocation of any out-of-line code. This 

includes sub-programs that are compiled separately from the invoking program, internal sub

routines, procedures and functions. The dilemma concerning module calls is whether to treat 

them using the macro-expansion approach [Boye75], the lemma approach [Chea79, Hant76] 

or using an approach which regards each call as an I/O boundary.

For example, in a COBOL program, when an out-of-line PERFORM is encountered during 

the symbolic execution of a path the execution may proceed by executing into the performed 

procedure. This is macro-expansion. Each time the performed paragraph is invoked the 

symbolic execution will be repeated, starting anew at each invocation. The lemma approach 

would symbolically execute a module once, and then use the results produced each time the 

module is invoked. The adoption of an 1 / 0  boundary would cause new values to be assigned 

to the returned parameters.

A reasonable approach might be to employ macro expansion for internal subroutines where 

global variables are used, such as the COBOL performed paragraph, and to use the lemma
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approach where only parameters are passed. When external routines are called the parameters 

passed to the invoked routine can be treated as output results and the returned values as input 

which are given new symbolic values. Each separately compiled program is thus evaluated 

independently. Parameters passed to and from invoked modules should be regarded as output 

and input variables respectively. This approach is in keeping with the aims of decomposition 

namely the division of problems into units of manageable proportions and cohesive functions.

3.9.3 Arravs

Arrays can be problematic for symbolic execution [Clar76, King76, Rama76, Howd77]. There 

is no difficulty for an expression such as:

move B to A(5)

because A(5) is unique in the same sense that B is unique. Both refer to a specific single 

element and this enables symbolic execution to proceed in the usual way. The difficulty arises 

when the subscript is an input variable, or is dependent upon at least one input variable, for 

example:

move B to A(I)

where I is an input variable. Symbolic execution cannot proceed in the usual way beyond this 

assignment, because the identification of the element within the array is not defined and is 

said to be an ambiguous array element.

One approach replaces array references with an n-way branching constmct containing one 

branch for each array element For example, where A is defined as an array with four
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elements:

move B to A(I)
is replaced by

evaluate I
1 move B to A (1)
2 move B to A (2)
3 move B to A (3)
4 move B to A (4)

end-evaluate
This approach increases the number of paths substantially even for small arrays. Where the 

number of elements in an array is large this approach is impractical.

Alternatively, when the PC is to be used to derive a test case the ambiguity can persist during 

symbolic execution and be resolved at creation of the test case. This approach needs special 

processing because path infeasibility cannot be assessed in the usual way.

3.9.4 Identifving infeasible paths

Of the 33 paths through the triangle program in figures 3.1 and 3.2 only 6 are feasible. 

Symbolic execution must be capable of determining when constraints on a path are 

contradictory and hence the path is infeasible.

Clarke and Richardson [ClarSl] describe two approaches to determining infeasibility: 

axiomatic and algebraic. The axiomatic technique makes use of a theorem proving system to 

determine whether the constraints are contradictory. This technique is not discussed further. 

The algebraic technique uses the simple conditions within the path condition as a set of 

constraints. An artificial objective function is created, for example, the sum of the variables
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present in the predicates. If this optimization problem can be solved then the path is feasible. 

The solution may be used as a test case to execute the path.

When no solution can be found an indication as to which constraints contribute to the 

infeasibility would be useful. This is not easily obtained because the algorithms employed do 

not readily identify the constraint which contributes most to the infeasibility.

A more informative approach might be to submit the first and second constraints on the path 

to the optimizer for solution. If this proves to be feasible then add the next constraint on the 

path and attempt to solve. This addition of constraints is repeated until either the path is 

complete or the constraints are infeasible. This approach identifies the constraint which first 

causes infeasibility.

The reverse approach could also be adopted by attempting to solve for the complete set of 

path constraints. If the path proves to be infeasible then the last constraint is removed and 

solution attempted for the remaining constraints. Continue removing constraints until a 

feasible solution is determined.

A binary division approach could be employed. First, attempt to find a solution for the 

complete path. If infeasible try a set of constraints for the top (first) half of the path. Continue 

halving the unknown set of constraints until the offending constraint is determined. This 

approach, if useful, is likely to be appropriate only for paths with a large number of
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predicates.

The most useful approach combines path selection and symbolic execution undertaking 

feasibility assessments after each branch selection is made. If the addition of the selected 

predicate causes infeasibility an alternative predicate is chosen and its feasibility reassessed.
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CHAPTER FOUR APPLICATIONS OF SYMBOLIC EXECUTION

The uses for the output from symbolic execution may be classified into: path domain 

checking; test data generation; assertion checking; and program reduction. Software 

maintenance can also benefit from symbolic execution when placing changes in a program 

and in aiding regression testing.

4.1 Path domain checking

When a path is executed with a single case it may result in:

(i) incorrect output due to one or more faults (universally incorrect);

(ii) correct output although a fault exists (coincidentally correct);

(iii) correct output and no faults exist (universally correct).

Distinguishing between a coincidentally correct output and a universally correct output 

requires more than execution of a path by a single case. The output from a symbolic 

execution is more general, as it represents all the cases that could execute the path. Individual 

case values may be substituted into the symbolic expression and evaluated by hand but this 

is laborious.

It may be worthwhile for the tester to select cases from the test case domain such that both

minimum and maximum values for the variables are used to evaluate the expression. For

example, consider the following variable declarations:
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grosspay pic 9(4)
taxfree pic 9(4)
percent pic 9(3)
netpay pic s9(4) sign leading separate.

Here grosspay, taxfree and percent are input variables and netpay is output. In addition to the 

picture declaration percent is constrained to the range 0 to 100. The program fragment

introduced at the beginning of Chapter 3 is used to determine the value of netpay. Minimum

and maximum values would be as follows:

Minimum grosspay = 0000
percent = 000 giving netpay = 0000
taxfree = 0000

Maximum grosspay = 9999
percent = 100 giving netpay = 9999
taxfree = 9999

Mixing minimum values for some variables with maximum values for other variables may 

also prove valuable eg:

grosspay = 0000
percent = 100 giving netpay = -9999
taxfree = 9999

This result appears to suggest a need for further constraints in the program such as:

grosspay >= taxfree 
to allow only the creation of positive netpay values.

4.2 Test data generation

The expression produced for each output variable when substituted with actual values in place 

of symbolic values effectively becomes a test case. During the process of path domain 

checking the task of selecting values in place of symbolic values is performed by hand. The 

tester’s knowledge of possible problem cases (heuristics) may be used to create more stressful 

cases. Alternatively the process may be automated by using an optimizer.
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The path condition is used as a set of constraints. The objective function may be any 

expression containing the variables present in the path condition. One possible strategy 

produces many test cases for each path. The symbolic expression for each output variable on 

a path is used in turn as an objective function. The optimizer is executed twice for each 

objective function, once to maximize it and once to minimize. This results in each path being 

executed twice as many times as there are output variables. For example, if a path outputs 

three variables then six cases would be generated.

Given that the functions are continuous this would be a useful set of cases increasing 

confidence in the likely outputs of all intermediate values.

Where the constraints are not easily solved techniques using random selection of values may 

be used [Rama76, HedlSl]. When using random selection there is a practical need to set a 

range of values from which to select. Failure to set such a range results in large number 

solutions which cause overflow on execution. Unfortunately, setting upper and lower bounds 

may remove a solution from consideration. If no solution is found with the range imposed 

then the bounds must be relaxed incrementally until a solution is discovered.

Hedley [HedlSl] discovered that the only predicates remaining unsolved due to an imposed 

range on the values were those which contained numeric constants. Through experimentation 

he set out to determine the closest bounds that would generally produce solutions. He found 

these to be plus and minus twice the largest absolute value found in the predicates.
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4.2.1 Partition analysis

Partition analysis is a technique that makes use of the output from symbolic execution to 

determine test data [RichSl]. It uses symbolic execution to identify sub-domains of the input 

data domain. Symbolic execution is performed on both the program and the specification. The 

resulting expressions are used to produce the sub-domains such that each sub-domain is 

treated identically by both the program and the specification. Where a part of the input 

domain cannot be allocated to such a sub-domain then either a structural or functional fault 

has been discovered in either the program or the specification. In the system described the 

specification is expressed in a manner close to program code. For this technique to prove 

practical, enhancements are required such that specifications can be expressed in a less 

program-like format.

4.3 Assertion checking

Assertions can range from a general, and hence usually complex, statement about say the 

contents of a table, to a simple statement about the value of a single variable. Simple 

assertions can be verified by symbolic execution but more complex assertions cannot be easily 

accommodated.

A simple assertion may be placed on any branch in a program. It need not affect the normal 

execution of the program but can be used during symbolic execution to assess the validity of 

the path. When symbolic execution along a path encounters an assertion it is treated in the 

same way as any other predicate. If its truth can be resolved then symbolic execution either
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halts due to infeasibility in the case of false, or is discarded in the case of true. If its truth is 

unresolved then it is conjoined on to the PC.

When the addition of assertions to a PC turns a feasible path into an infeasible path then the 

assertions have been violated. This indicates that an error is present in the path (or in the 

specification of the assertion).

The following straight-line form of a path contains assertions marked by ‘a*. Suppose that an 

error is present indicated by *e’.

1 move 0 to total
0  move -1 to counter move 0 to counter

2 a [total >= 0]
a [counter >=0]

accept score
move "continue" to action

3 [score < 1]
6 [score <>0]

move "stop" to action 
15 [action = "stop"]

a [average <= maxscore] 
a [average >= 0]

19 [counter > 0]
display "No values have been input"

24 [action = "stop"]
Symbolic execution proceeds in the usual way. On reaching branch 2 the PC is empty. The 

assertion ‘total >= 0’ can instantly be verified as true because total has just been set to 0. The 

assertion need not therefore be placed on the PC. The assertion ‘counter >= 0’ can also be 

verified but in this case it is false. Counter has previously been set to -1 in direct conflict 

with the assertion. Symbolic execution fails due to the failed assertion which arose because 

of the incorrect initialization of counter.
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Assume now that a path is undergoing symbolic execution and is reaching the end of branch 

16. The current expression for average is represented by:

(score{l) + score(2) + score{3}) / 3 

where score{n} represents the nth value input to score.

The assertion ‘average <= maxscore’ is now substituted with the expressions for average and 

maxscore giving:

(score(l) + score{2} + score{3}) / 3 <=7

The truth of this predicate cannot be evaluated so it is placed on the PC. If there is a solution 

to the final PC then the assertion is upheld. If there is no solution to the final PC even though 

the PC without the assertion is feasible then the assertion fails. However, placing an assertion 

on a path that is infeasible determines nothing about the validity of the assertion.

4.4 Program reduction

King describes how symbolic execution can be used to achieve program reduction [KingSl]. 

This is the act of taking a program and producing another program containing fewer 

statements. The result is "a simpler program consistent with the original but, operating over 

a smaller domain” [KingSl]. This is useful when reusing software where only a subset of the 

cases handled are required. A major step forward will have taken place in software 

engineering when the reuse of software is normal practice. Program reduction is a step 

towards this goal. This technique is not considered further.
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4.5 Software maintenance

Two problems facing the software maintainer are avoiding the introduction of unexecutable 

code and coping with the large volume of regression tests required.

In preparing program changes the maintainer often spends time on ascertaining the constraints 

which govern the variables at the proposed points of insertion of the new code. This effort 

is required to avoid the introduction of unexecutable code. The converse of this situation also 

arises. That is, unexecutable code is introduced because the maintainer is unaware of the 

prevailing constraints.

It is likely that many of the paths executed during regression testing are executed more than 

once in an attempt to overcome the risk of coincidental correctness camouflaging an error.

Symbolic execution can be used to reduce the likelihood of introducing unexecutable code, 

to speed up the process of determining the constraints on variables at a given point in a 

program and to reduce the volume of regression testing.

4.5.1 Modifications

When modifying software the impact of the changes can be categorised as either a domain 

change or a computation change. A domain change is caused by introducing a new selection 

statement or by changing an existing one. This creates new paths or changes the range of 

values that can execute some existing paths. Computation changes affect the outputs that
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result from executing a path. Computation changes often cause a different path to be followed 

for a given input case but these can be regarded as side-effects rather than as primary 

changes. In many instances new computations are introduced for specific domains. Ensuring 

that the intended domain and only the intended domain is affected by a new computation is 

a major part of the maintenance activity.

The areas of concern when modifying software can be classified as follows:

1. Are the given domains processed by the new code ?

2. Are all other domains not processed by the new code ?

3. Has the introduction of a selection statement introduced a new domain or has an

unnecessary selection statement been introduced ?

A Class 1 error occurs when only a subset of the intended domain is processed by the newly 

inserted code. Suppose some process, X, is to be undertaken for values of A in the range 

10-19 inclusive. In the following program fragment lines 15-18 have been inserted with this 

intention.

01 A pic 99
10 if A > 10
11 then
15 if A < 20
16 then
17 do X
18 end-if
31 end-if
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At line 11 A can take a value in the range 11-99 inclusive. At line 15 the range of values of 

A is reduced to 11-19 inclusive. As a result, A = 10 is not included in the domain being 

subjected to process X.

A Class 2 error occurs when a superset of the intended domain is processed by the newly 

inserted code. Consider again the process X which is again to be undertaken for values of A 

in the range 10-19 inclusive. In the following different program fragment lines 15-18 have 

been inserted with this intention.

01 A pic 99
10 if A > 9
11 then
15 if A < 21
16 then
17 do X
18 end-if
31 end-if

At line 11 A can take a value in the range 10-99 inclusive. At line 15 the range of values of 

A is reduced to 10-20 inclusive. As a result the domain A=10-19 is subjected to process X 

but, in addition, A=20 is also subjected to X.

Class 3 errors occur when a selection statement includes values that are excluded by previous 

selection statements thus creating branches that cannot be executed. For example consider the 

following program fragment:
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10 if A > 10
11 then
20 if A < 50
21 then
25 if A > 75
26 then
29 end-if
31 end-if
32 end-if

At line 21 the range of values that A could take is 11-49. The introduction of lines 25, 26,.. 

is superfluous because A must be less than 50 to reach this point, the additional condition of 

A > 75 has already been guaranteed to be false.

Class 4 errors occur when the truth of the condition in a selection statement has already been 

established by earlier selection statements. Consider again the example used above when 

discussing class 3 errors, except that line 25 is changed to A < 75. The selection at line 20 

has guaranteed that A < 50 is tme, so the test of A < 75 is superfluous as it will always be 

true.

4.5.2 Impact of module hierarchv on path infeasibilitv

Avoiding infeasible paths during software maintenance is a difficulty compounded by the 

impact of modules higher up the calling hierarchy. These superordinate modules determine 

the domains of the input parameters and so are integral to the problem of infeasible paths. 

When a conditional statement is inserted such that no feasible path is found for its branches 

the conditional predicates that contribute to the infeasibility may be found either locally, in 

the calling module or, in a module higher up the calling hierarchy.
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When faced with changing one module out of a large system of modules the maintainer faces 

an escalated form of the infeasible path problem. It is not sufficient to be able to place the 

modification on a path assessed as feasible in the module, if the constraints placed on that 

module by the calling modules are such that the new code cannot be executed. What is 

required is a means of assessing feasibility - both locally and for the wider chain of module 

invocations.

4.5.3 Regression testing

To avoid unintentional changes to existing parts of a program going unnoticed a rigorous 

testing phase is often undertaken. This is known as regression testing. Here a set of test cases 

are executed and the results compared to the results obtained from the same test cases run 

through the unmodified version of a system. If the new version has remained unaltered for 

these functions, the results for these cases from both versions of the program will match. Any 

differences indicate an unexpected change.

A large set of test cases may have been used to test the software when it was first developed. 

It is useful to identify a subset of these tests for regression testing. Work on selection of test 

cases for revalidation has been undertaken by: Fischer [Fisc77]; Yau and Kashimoto [Yau89]; 

and Hartman and Robson [Hart90].

Yau and Kashimoto’s approach first constructs a cause-effect graph for the newly constructed 

program and then divides the program’s input domain into several classes. These classes are
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used to generate test cases. After the program has been modified the input partitions are 

derived again and the original set of test cases searched for a subset of cases which provide 

coverage of each of the new partitions. Those partitions which cannot be covered require the 

generation of new cases. Both these new cases and the sub-set of the original cases are then 

executed with parallel symbolic execution. Symbolic execution is undertaken to provide 

debugging information.

This approach is reported to be successful with programs that undertake classification of 

input, such as determining whether three integers represent either an equilateral or isosceles 

or a scalene triangle, but is less successful for algorithmic programs such as sorting.

Fischer proposes the use of a 0-1 integer programming technique to determine the test case 

to be used for regression testing. The program is parsed and represented as three matrices: 

connectivity; reachability; and variable set/use. The first two represent the controlflow of the 

program and the third contains details of the dataflow. A fourth matrix - test case 

dependency - records the coverage of each test case. The objective of the approach is to 

determine the minimum number of test cases to provide coverage of the program.

Hartmann and Robson are attempting to extend Fischer’s method by including parameter 

information in the set/use matrix. They also intend to apply it to several languages and to 

develop tools to automate test case selection.
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Fisher’s approach, including the extensions proposed by Hartmann and Robson, presumes that 

the execution of a branch just once provides an adequate test. Unfortunately, adoption of this 

technique will not overcome the problem of coincidental correctness: a test case may yield 

the correct output for a case where another case causing execution of the same path would 

yield an erroneous result. To guard against the problem of coincidental correctness multiple 

path executions are necessary, but still not sufficient.

4.5.4 Avoiding infeasible modifications using svmbolic execution

The practice of treating module calls as an I-O boundary in symbolic execution is not helpful 

when infeasiblity is caused by conflicting constraints which are in different modules. 

Adoption of the macro-expansion approach to symbolic execution overcomes this problem. 

This could suffer from the path explosion problem, where there are many paths available. 

However, judicious use of a path selection strategy, such as coverage of a branch at least 

once, avoids this problem, and symbolic execution provides a useful means of assessing all 

three maintenance problems which are caused by domain and computation errors.

Errors where either a sub-set or super-set of the correct domain is processed are easily 

detected. Test cases can be generated at the minimum and maximum values for the variables 

in the newly inserted conditional statements. If these do not cater for the extremes of the 

domains to be covered, or include values not intended, then a domain error is identified, even 

without executing the generated test case.
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Situations where the introduction of a particular conditional statement would be superfluous 

can also be identified using symbolic execution. An assertion postulating the opposite of the 

intended condition is inserted at the point under consideration for the conditional statement, 

for example, in the program fragment describing class 3 modifications errors in Section 4.5.1, 

the assertion would be A <= 75. If this assertion is not upheld, then there is no need for the 

conditional statement on this path. However, the number of paths to be investigated before 

the conditional statement can confidently be dropped should not be underestimated.

4.5.5 Regression testing using svmbolic execution

Rather than execute all the original test cases the set of paths covered by these tests should 

be established. The result is a set of critical regression testing paths. Each of these critical 

paths can then be symbolically executed (just once) for both the old and new version of the 

program.

For each path, the path condition is compared between the two versions and the output 

expressions for each variable are also compared. When the path conditions do not match a 

domain error has been detected. When the path conditions match but one or more of the 

variable expressions do not, then a computation error has been identified. This technique is 

capable of replacing many conventional test executions by just one symbolic execution.
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CHAPTER FIVE EXISTING SYMBOLIC EXECUTION 

TESTING SYSTEMS

EXDAMS [Balz69] is a monitoring system constracted before the first symbolic execution 

systems. It requires the program being tested to be executed with data values. Whilst the 

program executes it is closely monitored and a history of the execution is stored. It provides 

a flexible approach to the examination of the execution history. An analysis of the source 

program is undertaken to provide a data table and model of the program. These are used in 

conjunction with the history to provide the user with a view of the program’s state at any 

point during the execution.

After EXDAMS, many of the software testing and debugging tools made use of symbolic 

execution. Some of these systems incorporate features similar to those provided by EXDAMS. 

There are now thirteen systems described in the literature whose authors state that use is made 

of symbolic execution. These are EFFIGY [King75, King76], SELECT [Boye75], ATTEST 

[Clar76a, Clar76b], CASEGEN [Rama76], DISSECT [Howd77, Howd78], ELI Symbolic 

Evaluator [Cheat79, Ploe79], SMOTL [Bice79], Interactive Programming System [Asir79], 

SADAT [Voge80], the FORTRAN Test-bed [Hedl81], IVTS [Tayl83], UNISEX [Kemm85] 

and SYMBAD [Coen90].

Additionally, MALPAS [Webb87, 0 ’Ne88] and SPADE [Carr86, 0 ’Ne89] are two 

commercially available systems for which there are no detailed descriptions in the academic 

literature. The few papers that do describe the systems outline the facilities provided but give 

no description of their inner workings. However, both MALPAS and SPADE appear to make
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use of symbolic execution.

The nature of the symbolic execution utilized in the fifteen systems varies from one system 

to the next. Some of the approaches may not even constitute symbolic execution.

5.1 Minimum features of a symbolic execution testing system

The minimum features that a system should exhibit before it can be considered to make use

of symbolic execution may be as follows:

* it produces a path condition for each path examined;

* it determines whether a path condition is feasible;

* for each output variable it produces an expression in terms of input variables and

constants.

Using these three features as criteria for rejection causes EXDAMS, DISSECT, ELI symbolic 

executor, SMOTL, SADAT, IVTS and UNISEX to be removed from the list of symbolic 

execution systems.

EXDAMS has never been claimed as a symbolic execution system. Paths are executed with 

actual data and no symbolic expressions are maintained. Hence, no feasibility checking can 

be undertaken.

The DISSECT system produces expressions for variables and a PC for each path specified.
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It fails to check the consistency of the predicates of the PC; this task is left for the user to 

undertake by hand.

The ELI symbolic evaluator does not create symbolic expressions for output variables nor 

does it determine path feasibility.

SMOTL does not create expressions for variables nor maintain a PC. Its path analysis is based 

on maintaining maximum and minimum values for each variable. It uses these values to check 

for predicate contradiction and hence path feasibility. This is not symbolic execution but, 

nevertheless, it achieves one of the results that can be produced by symbolic execution - the 

generation of test cases for a path. Other results achieved using symbolic execution, such as 

assertion checking, are derived from the expressions maintained for the path condition and 

each variable. SMOTL cannot achieve these results because the expressions are not 

maintained by the system. However, SMOTL does have a strategy for combining paths in an 

attempt to reduce the number required to cover all branches. This technique may be applicable 

in all path based testing systems, including those using symbolic execution.

SADAT does not attempt to determine path feasibility: it leaves this for the user to perform 

by hand. Expressions are not determined for output variables.

IVTS is still under development and it is the symbolic executor which is incomplete. As yet, 

the system does not determine path feasibility.
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UNISEX is intended to use an expression simplifier and a theorem prover to assess path 

feasibility. In some cases the expression simplifier can resolve a PC to either true or false. 

When this cannot be achieved the resulting expression will be passed to the theorem prover. 

The theorem prover has not yet been built. Currently the PC is output for the user to assess 

by hand.

MALPAS and SPADE are two commercially available validation systems which both stem 

from work sponsored by the Ministry of Defence. The systems appear to share some features 

which is a result of their common origin. There are a few papers in the literature describing 

these systems [Carr86, Webb87, 0 ’Ne88, 0 ’Ne89] but there are no published papers 

describing their inner workings and the problems encountered in their development. In 

addition to the summary papers publicity material is readily available. The following 

descriptions are based on both of these sources.

MALPAS (MALvem Program Analysis Suite) transforms the source program into 

intermediate form and determines the number of paths through the program. This is 

straightforward in the simple example shown but it is not clear how this would work for a 

more practical program containing loops and an infinite number of paths.

A static analysis is undertaken to spot anomalies such as two writes without an intervening 

assignment. All the input variables which determine the value of each output variable on each 

path are identified together with a list of the predicates at each node which must hold for the
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path to be executed.

Finally, the system determines which of the paths are feasible and which infeasible. No

description is given of how this is achieved but, given the data that is maintained to this

point, it looks likely that some form of symbolic execution is undertaken together with

feasibility checking of the resultant path condition. Results are displayed for each path in the

following form:

if path condition 
then

var-1 = expression-1
var-n = expression-n 

end-if
Assertions may be inserted into the source program which are checked against the path 

condition. This cannot always be achieved; in such a case the expression is output for the 

programmer to inspect. It is not stated how this assessment is made nor under what 

circumstances the assessment cannot be made.

SPADE (Southampton Program Analysis and Development Environment) produces an 

intermediate form known as the functional description language (FDL). At present translators 

exist for Pascal and INTEL-8080, and translators for Ada and Modula-2 are planned. The 

functional description language reader assesses the intermediate form for syntactic errors. This 

seems to be unnecessary as this duplicates processing undertaken by the language compiler. 

However, users can write FDL directly as a specification and the FDL reader is then used as 

the only syntax checker. Anomalies such as unreachable code and unused variables are 

identified as well as an analysis of module interfaces.

115



Chapter 5 Existing Symbolic Execution Testing Systems

It is not clear from the published material how paths are selected, but path conditions are 

established. Symbolic execution of a path is undertaken and the output is claimed to be 

‘useful’ for test data selection but it does not generate specific test cases. No details are given 

about the assessment of path infeasibility.

The proof checker is used as a documentation tool for proving the program. It contains tools 

for arithmetic and logical expression simplification and limited automatic deduction facilities. 

A data base of rules is maintained. The user guides the checker in search of a proof.

By excluding the systems which do not exhibit the three crucial criteria and those systems for 

which there is little detailed material in the literature, there remain seven systems: EFFIGY, 

SELECT, ATTEST, CASEGEN, the interactive programming system, the FORTRAN test-bed 

and SYMBAD. These systems can be considered symbolic execution testing systems.

5.2 Strengths and weaknesses of the symbolic execution testing systems 

The strengths that should be incorporated into future symbolic execution systems and the 

weaknesses and omissions that should be overcome are identified for each of the seven 

systems.

5.2.1 EFFIGY - An interactive svmbolic execution svstem

EFFIGY was the first system to make use of symbolic execution. It was designed to allow 

a program to be developed and tested gradually, making use of the symbolic execution facility
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as well as execution with actual data values. It is a development tool which can be used when 

testing either program fragments as they are written, or complete programs.

The interactive nature of the system is one of its strengths since it allows a degree of 

flexibility. When a path is being evaluated the user may insert actual values as well as 

symbolic values. This results in expressions for some variables containing a mixture of 

symbolic and actual values. A symbolic trace of a path can be obtained. This shows the state 

of specified variables line by line.

A powerful feature of EFFIGY is the use of assert statements which can be verified, based 

upon the symbolic representations of the variables and PC.

Perhaps the most important omission from the EFFIGY system, given that it is interactive, 

is the absence of a facility to provide a view of the fiowgraph or a coverage metric. It is 

possible that a user could terminate a session with EFFIGY having discovered many faults, 

corrected them, and been satisfied with the modifications but have omitted some branches of 

the program. It would be helpful if an indication of the extent to which the analysis has 

covered the fiowgraph was provided. No long term recording of coverage statistics appears 

to be maintained, though it is stated that an exhaustive ‘test manager’, of which no details are 

given, is a part of the system.

No strategy for path selection is incorporated into the system. The users must employ their
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own testing heuristics to create a strategy. The selection of the appropriate branch, when this 

is not determined by the state of the PC, is left for the user, so too, is any decision on the 

number of iterations to be made at each loop. Determining the feasibility of paths is achieved 

using a theorem prover.

There is no direct reference in the literature to how EFFIGY handles module calls. However, 

Hantler and King [Hant76] describe the lemma approach. Both of them worked on the 

construction of EFFIGY and it is likely that this is the method used in EFFIGY. Perhaps 

e f f ig y ’s major weakness is that it handles only a small subset of the language being 

analyzed.

The main weaknesses of EFFIGY can be summarized as:

* only a subset of the language can be used;

* no strategy for path selection;

* no output of coverage metrics.

5.2.2 SELECT - Svmbolic Execution Language to Enable Comprehensive Testing 

SELECT [Boye75] was constructed at about the same time as the EFFIGY system. It attempts 

to provide similar facilities to EFFIGY and in addition creates values which can act as test 

cases. These values are generated as a by-product of evaluating path conditions. The system 

was built to process programs written in a subset of LISP. It is not clear at what class of 

application the system is aimed.
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SELECT produces 3 categories of output for each processed path:

* test data;

* simplified symbolic expressions for each program variable on a path;

* statement of correctness of user supplied assertions.

SELECT also identifies some infeasible program paths.

The system aims to be automatic and is claimed to have a path selection strategy where the 

aim is coverage of every branch. Paths are created by commencing at the start of the 

program and adding one branch at a time until a halt is reached. Each time a branch is added 

to the PC, it is passed to an inequality solver to determine path feasibility. Both linear and 

non-linear inequality solvers are employed. The solver maximizes an arbitrary objective 

function and the solution to the path condition of the whole path is used as a test case.

SELECT requires that, for loops which may be executed a variable number of times, the user 

specifies the number of iterations to be included in the path. The system updates the PC and 

variable expressions for each iteration of the loop.

Subroutines are tested in isolation until deemed satisfactory. Whenever a subroutine is 

invoked, the set of path conditions for that routine may be incorporated into the path which 

invokes it. This adds to the combinatorial explosion of the number of possible paths. Boyer 

suggests that a better approach might be to make use of input and output assertions for each
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subroutine [Boye75]. This would not increase the number of paths.

The ambiguous array reference problem, where arrays are indexed by input variables, is 

tackled by the introduction of virtual paths. This adds to the complexity of the fiowgraph by 

adding a branch for each element of the array.

The weaknesses of SELECT can be summarized as:

* only a subset of LISP can be used;

* approach to ambiguous array elements increases number of paths;

* use of macro-expansion increases number of paths.

5.2.3 ATTEST - Svstem to generate test data and svmbolicallv execute programs 

The prime objective of ATTEST is to generate test data for a path [Clar76a, Clar76b]. This 

is done using the conditions and assignments of the path to ensure that the data will force 

execution of that path. A secondary output, produced almost as a by-product, is a symbolic 

representation of the output variables of the path in terms of the input variables and constants. 

The system will sometimes inform the user if the path is infeasible and cannot therefore be 

executed because no such data set exists. The system cannot detect all infeasible paths. In 

particular, it cannot identify infeasibility where the system of constraints is non-linear. This 

is suiprising as one would expect FORTRAN programs to contain non-linear predicates.

ATTEST’s main strength is significant. It analyzes FORTRAN programs and, hence, was a
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step towards a widely usable symbolic execution testing system which can be used in either 

automatic or interactive mode.

The difficult task of selecting the paths for analysis is not tackled by the system, but left 

entirely to the user. Paths for analysis can be specified in two ways: statically or interactively. 

The static specification requires the whole path to be specified at once, whilst the interactive 

mode allows the user to select one branch at a time as each conditional statement is reached.

When a constraint makes the path infeasible the user is informed and the analysis proceeds 

to the next path. When the end of a path is reached and it is feasible then the final solution 

obtained is a test case that will cause execution of the path.

The system attempts to discover where array indexes stray out of bounds using two temporary 

constraints. One specifies that the upper bound must be exceeded and the other that the lower 

bound must not be achieved. For example, consider an array A(5..10). Constraints of index<5 

and index>10 are used. When either of these temporary constraints is conjoined on to the path 

condition the constraint should prove contradictory if the path will not allow the index to 

stray out of bounds.

When ambiguous array elements are encountered the symbolic execution halts.

No path selection is undertaken by the system. The user must input the paths which are to be
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evaluated. When path constraints are checked for feasibility they are passed only to a linear 

inequality solver. However, the system analyses FORTRAN programs which might be 

expected to contain non-linear constraints. Without user intervention to check for linear 

constraints, path feasibility checking may be unreliable.

The processing of module calls uses macro-expansion. This does not cause a path explosion 

problem for the system because no recording of path coverage appears to be undertaken. It 

merely increases the length of the path. There is no facility for insertion and verification of 

assertions.

The weaknesses of ATTEST can be summarized as:

* cannot detect infeasibility of all paths;

* no path selection;

* symbolic execution halts on encountering ambiguous array elements;

* no recording of test coverage;

* no facility for assertion checking.
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5.2.4 CASEGEN - Automated program test data generator

CASEGEN generates test data and, like ATTEST, analyses FORTRAN programs [Rama?6]. 

The system operates entirely in batch mode and consists of four components:

* a FORTRAN source code processor;

*  a path generator;

* a path constraint generator;

* a test data generator.

The FORTRAN source code processor analyses the source and generates a data base 

consisting of a fiowgraph, symbol table and an internal representation of the source code. 

The path generator uses the database to produce a set of paths to cover all branches. 

The authors do not discuss the path selection strategy, except to state that loops are executed 

a fixed number of times. For each path the path constraint generator produces the path 

condition. Some of the paths generated may be infeasible. The test data generator aims to 

create values for the input variables that satisfy the set of inequalities for each path, hence 

creating a test case for each path. The sets of inequalities in the path condition are solved 

using linear programming, integer programming, mixed programming and non-linear 

programming techniques as appropriate. A procedure based on systematic trial and error and 

random number generation is also used. This use of several types of optimizer makes this 

system superior to ATTEST in terms of feasibility checking. Nevertheless, it is error-prone. 

The numbers (26,7,7) were generated for the sides of an isosceles triangle [Rama76].

The builders of CASEGEN acknowledge the difficult aspects of symbolic execution.
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The ambiguous array reference is retained during symbolic execution and is resolved during 

test data generation. Whilst the builders acknowledge the difficulties of handling module 

calls, they do not make clear what approach has been adopted in CASEGEN. Output of the 

variable expressions and PC are not provided and there are no facilities for insertion and 

evaluation of assertions.

The weaknesses of CASEGEN can be summarized as:

* no output of path condition;

* no output of expressions for variables;

* does not process assertions.

5.2.5 Interactive programming svstem

The Interactive Programming System [Asir79] is a collection of integrated software support 

tools for the design, development and maintenance of large computer programs. It was built 

as a general software development tool for a language available on a small computer: 

MINIPL/1. It is a pity that a full version of a widely available language was not used. There

is no statement in the literature concerning the success of the system in the field but it was

built in conjunction with Olivetti and was destined for commercial use.

The interactive part of the system is concerned with the direction of the symbolic execution. 

Its strengths centre around the state recording and review facilities. Whenever a conditional 

statement is encountered the user is required to select the branch to be pursued. The state of
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the PC and variables at each conditional statement are recorded. The user may return to any 

previously encountered conditional statement and examine the states of PC and variables.

Assertions may be introduced into the program. The system will determine the consistency 

between the assertion and the path condition. The flexibility provided by the interactive nature 

of the system is used to overcome the absence of a path selection strategy. Whilst arrays and 

calls are handled the mechanisms employed are not made clear.

The weaknesses of the Interactive Programming System can be summarized as:

* only a small subset of input language;

* no path selection;

* not published how arrays and modules are handled.

5.2.6 FORTRAN test-bed

The test-bed [HedlSl, Henn83] undertakes static and dynamic analysis of FORTRAN 

programs and the construction of paths. It also generates test cases which will cause the 

execution of the paths. It is the path construction and test case generation that are of concern 

here as these make use of symbolic execution.

The test-bed makes use of the LCSAJ [Henn76]. An LCSAJ (linear code sequence and jump) 

is a series of statements ending with a transfer of control out of the linear code sequence. 

Paths can be viewed as a series of LCSAJs. Determining whether each LCSAJ is feasible can
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be the first step in determining feasibility of a path. Should a single LCSAJ be infeasible then 

any path of which it is a component is infeasible. A path whose LCSAJs are all feasible, is 

not necessarily feasible. Two LCSAJs together may give rise to infeasibility. Gradually 

LCSAJs may be added together until either the addition of an LCSAJ results in the creation 

of an infeasible path or the path is complete and feasible. The path selection strategy does not 

deal with loop iterations but leaves this for the user to specify.

The FORTRAN test-bed determines the feasibility of an LCSAJ or a series of LCSAJs by 

employing symbolic execution. The system will solve sets of linear inequalities, provided by 

the path condition, to produce test data. The system makes use of random number generation 

to solve non-linear inequalities. This approach is similar to that employed by CASEGEN. The 

FORTRAN test-bed has an additional feature which makes use of a function to establish 

bounds for the random number generation. It is based on the constants in the inequalities. In 

a series of tests the system solved and generated test data for paths that covered all but 2.7% 

of LCSAJs.

Most module calls are handled by macro-expansion. This increases the number of paths 

available for consideration. Functions, however, are treated as input statements and new 

symbolic values are provided. It is not clear why different strategies are employed for 

function calls and other calls. Treating both as I/O interfaces would maintain the boundary 

identified during design.

126



Chapter 5 Existing Symbolic Execution Testing Systems

The test-bed does not cater for the inclusion of assertions.

The system analyses FORTRAN programs and, with a few minor exceptions, this is ANSI 

standard FORTRAN. Symbolic execution is used as one technique employed by a software 

testing system that provides a variety of testing facilities such as static analysis through to test 

case generation. The test-bed is a commercially used system and cannot be regarded as just 

a researcher’s experimental system.

The weaknesses of the FORTRAN-testbed can be summarized as:

* does not process assertions.

5.2.7 SYMBAD - SYMBolic executor of sequential ADa programs 

This is the most recent system to emerge, development having taken place in parallel with 

the work on SYM-BOL, described in part two. SYMBAD [Coen90] processes Ada units with 

the exception of tasks, the mechanism for defining parallel processes.

The first stage is translation into an intermediate form which is common LISP rather than a 

S YMBAD-specific form. The next stage is a combined path selection and symbolic execution. 

When a branch point in the program is encountered the current path condition is examined 

by a theorem prover to determine whether the encountered branch condition is true, false or 

undetermined. When true or false symbolic execution continues down the relevant branch. 

When undetermined, the user selects the branch to be followed and the appropriate condition
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is conjoined to the path condition. Symbolic execution continues down the chosen branch.

Assertions are checked by the system. They are embedded within the source code as 

comments and are checked against the path condition when they are encountered during the 

symbolic execution.

The authors claim to have incorporated a new method of processing arrays which overcomes 

the difficulty of ambiguous array references. An array is represented by an ordered set of 

pairs, where each pair contains details of an assignment encountered on the path. The first 

item in the pair is the value of the index, the second is the value assigned to that element. 

Consider the variable ‘A’ declared as follows:

A : array (1..max) of integer
and the following program fragment:

8 get(J);
9 A(J) := 5;

10 A(J+1):= 7;
11 if A(4) > 1

When variable ‘A’ is declared it is given the pair:

A : (any, undef)
indicating that all elements of the array are undefined. At line 8 ‘J’ is arbitrarily assigned a

symbolic value:

J : J01
At line 9 ‘A’ has a second pair added to its set:

A : (any, undef) (J@l, 5)
and after line 10:
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A : (any, undef) (J01, 5) (J01+1, 7)
Line 11 is unresolved because the value of J0i is symbolic so the user must choose a branch,

say the true branch. The predicate must now be placed on the path condition. By searching

the set of pairs belonging to ‘A’ it can be seen that one of the following must be true for

A(4) > 1 to be tme:

J01 = 4
J01 + 1 = 4

The PC cannot sensibly contain both of these predicates as they are in direct contradiction so 

one must be chosen, but which one. This is not discussed by the authors, which is unfortunate 

because this is the heart of the array problem. Eventually, a choice must be made and this 

means selecting an actual value.

This method appears to be similar to earlier methods which deferred resolution of ambiguous 

array references until test data generation. In those systems paths were not assessed for 

feasibility so this posed no problem. Here, path feasibility is assessed, so a decision must be 

made. The method does have the benefit of maintaining information until a branch point, 

which requires the resolution of the ambiguity, is reached. However, experience suggests that 

such branches follow closely after the occurrence of the ambiguous array reference and so 

there may be only a small benefit to be gained from maintaining the ordered set of pairs.

No description is given of how module calls are processed. The system does not generate test 

cases. The path condition is output and the user must solve this by hand to create an 

appropriate test case for the path.
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The weaknesses of SYMBAD can be summarized as:

* no test cases generated.

5.3 The ideal symbolic execution testing system

The notion of an ideal system ignores the practical considerations of construction. A system 

that delivers the features of an ideal system but which, for example, takes a long time to 

process, is clearly not ideal. Requirements of an ideal system are likely to be contradictory 

and a practical system must be a compromise between the conflicting requirements. 

Nevertheless, it is useful to set out an optimist’s system against which existing and potential 

systems may be compared.

5.3.1 Input

The primary input to such a system is the source program which may contain assertions. 

Further inputs will be required in response to the results obtained:

* a specification of paths to be evaluated;

* changes to assertions;

* a simple mechanism for the input of the expected results for generated test data 

either as a range of values or a single value.
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5.3.2 Output

The power of a symbolic execution testing system is determined by the variety and utility of 

the information provided. This should include:

* diagrammatic representation of the program flow-graph;

* paths (list of constituent statements);

* PC and an indication of feasibility or the constraint which turns the path infeasible;

* expressions for output and intermediate variables;

* statements on truth of each assertion;

* test data;

* results of execution;

* comparison of results v expectation;

* statement on coverage obtained in the testing already undertaken.

The utility of the output may be enhanced by providing a variety of viewing modes:

* a display of specified variables or PC on specified paths at specified points;

* a trace through the symbolic execution of a path at various speeds;

* a trace through the execution of user provided test cases;

* a trace through both symbolic and test case execution simultaneously;

* request a coverage report at any stage of testing.

5.3.3 Path selection

Current methods of path selection employ only simple strategies such as: take the left branch 

first, generate the shortest path. These strategies have a common target, that of achieving a
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particular coverage metric such as all statements or all branches or all LCSAJs are executed 

at least once. Each of these strategies is prey to the problem of selecting infeasible paths. 

Having identified a set of paths which cover say, all branches, some of the selected paths will 

be found to be infeasible. This leaves the problem of identifying feasible paths which include 

the noncovered branches from the infeasible paths. This strategy does not consider the 

effectiveness of the paths selected and whether the paths are in some way more useful or 

interesting than other paths.

An alternative approach may be to attempt to identify paths and associated test cases that are, 

in some way, representative of a large set of cases. The ideal symbolic execution testing 

system should incorporate a path selection strategy in which the expressions produced by the 

symbolic execution are utilised in an attempt to identify ‘interesting’ paths.

The ideal system also requires novel solutions to the problems presented by loops, arrays and 

module calls.

5.3.4 A multi-language svmbolic execution svstem

Researchers have reflected on the possibility of producing a general symbolic execution 

testing system which may be used regardless of the language in which the source program 

is written. Such a system should exhibit two necessary features. First, there is a need for a 

translator from each source language into the single intermediate representation processed by 

the evaluator. The intermediate representation must, therefore, cater for all features of the set
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of source languages. Second, output messages from the execution system should be 

meaningful to the user. For example, when path infeasibility has been detected by the system 

the output should clearly identify the path and the predicate which turned the PC infeasible. 

The most instructive format for this output is where it refers to the source program submitted 

to the system. To achieve this requires the maintenance of references to the original source 

program for look-up before the output of messages.

An alternative attainable target may be a symbolic execution testing system that analyses 

programs written in a widely used language. For example, no symbolic execution system has 

been built for a commercial data processing language such as COBOL. Whatever the 

language, it should also handle the main features of that language. Adherence to a widely 

adopted standard, such as an ANSI standard, would be beneficial.

5.4 Ideal, existing and new symbolic execution systems

Tables 5.1, 5.2 and 5.3 summarize the features of the ideal and the seven systems described 

above.

The first system to be built that satisfied the minimum criteria for a symbolic execution 

system was EFFIGY. It is also EFFIGY that appears closest to the ideal system. All 

subsequent systems were, in some senses, a step backwards from the standard set by EFFIGY.
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System Author Date

Ideal
system

Language Language 
built in analyzed
Widely Many
available widely 

available 
languages

Input

Source
program,
assertions

Output

Path, PC, Point 
becomes infeas 
Output variable 
expressions. 
Truth of 
assertions. 
Coverage 
details.
Test data. 
Active/idle 
domains

EFFIGY King 1975 not
stated

Simple Assertions, Symbolic values
PL/1 Display Truth of

assertions
locations

SELECT Boyer 1975 LISP subset
LISP

Source
program.
Assertions

Not stated

CASEGEN Ramamoorthy 1976 FORTRAN FORTRAN Source 
program

Path,
Test cases

ATTEST Clarke 1976 FORTRAN FORTRAN Paths Symbolic 
expressions. 
Test cases

IPS Asirelli 1979 PL/1 Subset Source Symbolic
PL/1 program, expressions,

Assertions, Path cond
Branch
selections

State of 
assertions

FORTRAN Hedley 1981 ALGOL 68
Test-bed FORTRAN

FORTRAN Source
program

Paths,
Test cases

SYMBAD Coen-Parisi 1990 C and 
LISP

sequential Source 
ada units program.

Assertions
Symbolic 
expressions. 
Path cond 
State of 
assertions

Table 5.1 Existing symbolic execution systems compared
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System Automatic/ 
Interactive

Ideal Automatic
system and

interactive

Path
selection
Uses
symbolic 
expressions 
to aid in 
selection

Path
feasibility
Linear and 
non-linear. 
Optional: 
every branch, 
user request, 
or whole path

Assertion
testing
Yes

EFFIGY Interactive User
selected

Every branch 
Theorem prover

Yes

SELECT Automatic All paths! Every branch 
Algebraic 
linear and 
non-linear

Yes

CASEGEN Automatic Minimal set 
cover all 
branches

Every branch
Algebraic
linear
non-linear
random

No

ATTEST Automatic
and

interactive
None Every branch 

Algebraic 
only linear

No

IPS Interactive User
control

When requested 
by user. 
Theorem prover

Yes

FORTRAN Automatic Not
test-bed stated

Every branch 
Algebraic 
linear and 
random

No

SYMBAD Interactive User
selected

Every branch 
linear
theorem prover

Table 5.2 Existing symbolic execution systems compared

Yes
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System Call
Handling

Loop
Handling

Array
Handling

File
Handling

String
Handling

Ideal
system

User choice 
between 
macro-expan 
and I/O 
boundary

0 , 1 , 2
iterations 
plus minimum 
to give branch 
coverage 
plus user 
override

Maintain 
symbolic 
expressions 
with no 
path
explosion

EFFIGY I/O boundary User selects 1-dim

Maintain 
symbolic 
expressions 
by file 
output files 
of test 
cases and 
expected 
results
No

Maintain 
symbolic 
exprns 
for each 
charctr, 
assess 
feasblty 
string 

constants
No

SELECT Macro-expan User specify Yes
max no of 
iterations

No No

CASEGEN Not stated Fixed number Yes No No

ATTEST Macro-expan Fixed max no only
of iterations constant 

indexes
No No

IPS Not stated User selects Not known No No

FORTRAN Macro-expan, 
test-bed functions as 

I/O boundary
User specifies Maintains 
number of symbolic
iterations expressions

No No

SYMBAD Not Stated User selects Yes No No

Table 5.3 Existing symbolic execution systems compared
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The only major weaknesses of EFFIGY when compared to later systems are its failure to 

adopt a widespread language and its inability to devise test cases to satisfy the path condition. 

The authors do not state the language in which it is written but more important is the fact that 

it handles only a simple subset of PL/1. If the other systems were assessed in terms of their 

ability to handle similarly simple language subsets there is a possibility that they may appear 

at least as impressive as EFFIGY.

In a bid to make them more useful many of the subsequent systems handle larger language 

subsets and more popular languages. This has been achieved at the expense of a reduction in 

the capabilities of the systems. The two systems that are closest to EFFIGY in capability yet 

handle an almost complete and popular language are the FORTRAN test-bed and SYMBAD. 

If the FORTRAN testbed were to incorporate a mechanism for the specification of assertions 

then this would become closer to the ideal system than EFFIGY. SYMBAD and EFFIGY both 

require a means of generating test cases to satisfy the path condition to improve upon the 

FORTRAN testbed.

Assertions could of course be written as normal source code. This would mean that following 

testing the program would be in need of modification to remove them. It could be argued that 

permanent assertions with appropriate error messages could provide a powerful run-time 

semantic monitor.

The notion of the ‘best’ symbolic execution system is a useful one. It may be used as the
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benchmark when assessing new systems. Unfortunately, it is difficult to determine which is 

the most useful system as there is no clearly outstanding system. EFFIGY perhaps comes the 

closest but a few additional requirements should be added to provide a useful benchmark.

If a new system provides the features provided by EFFIGY and processes a commonly used 

language and generates test cases then it would be a significant advance. The minimum 

features necessary to be comparable with this ‘EFFIGY-plus’ system are:

* input of source code containing assertions;

* interactive selection of paths;

* output of (a) symbolic values,

(b) truth of assertions,

(c) statement on path feasibility,

(d) test cases.

Additional features necessary to justify the creation of a new system:

* widely used language for a class of programs not currently accommodated;

* path selection strategy for automatic systems.

It is the development of a path selection strategy that is fundamental to the advancement of 

all forms of path-based testing including the use of symbolic execution. Any tool that helps 

the user in selecting paths or includes an improved strategy for automatic path selection will 

be a contribution to research in path-based testing.
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This chapter has two purposes. First, it summarizes the weaknesses described in the earlier 

chapters concerning the use of symbolic execution as a testing technique and the weaknesses 

of the tools that have been constructed to support its application. Second, it establishes a set 

of research aims which will be addressed in part two of the thesis.

6.1 Weaknesses in existing research

The weaknesses of existing research may be divided into two categories. The first category 

contains the general problems identified for symbolic execution. The second category 

concerns the weaknesses of the tools built to support symbolic execution.

6.1.1 General problems of svmbolic execution

There are four problem areas which are well documented in the literature concerning the 

application of symbolic execution. These are: path selection and the evaluation of loops; a 

dilemma over how to process module calls; the evaluation of array references dependent on 

input values and the checking of path feasibility. There are three further problems concerning 

the application of numerical optimizers for checking feasibility which are not documented in 

the literature. These are: formulating predicates of the form a o b  as a constraint; passing 

strings to an optimizer; and recognizing conflicting constraints when constraints contain both 

records and fields within records.

Current methods of path selection employ only simple strategies such as take the true branch 

first or generate the shortest path. These strategies have a common target, that of achieving
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a particular coverage metric such as all statements or all branches are executed at least once. 

Each of these strategies is prey to the problem of selecting infeasible paths. Having identified 

a set of paths which cover say, all branches, some of the selected paths will be found to be 

infeasible. This leaves the problem of identifying feasible paths which include the noncovered 

branches from the infeasible paths.

Some systems that use symbolic execution have two distinct stages. First, select a path. 

Second, symbolically execute the selected path. Ideally, a symbolic execution testing system 

should incorporate a path selection strategy in which the use of path selection and symbolic 

execution is coordinated. Clarke, in the summary of a review paper [Clar85], suggests that 

"path selection and symbolic execution have a symbiotic relationship. Symbolic execution is 

used to guide the selection of paths, which are then symbolically executed. Thus, adaptive 

systems, where path selection and symbolic execution dynamically interact, should be 

considered". Clarke goes on to conclude "for the most part, current research is addressing the 

issues of verification, path selection, test data selection, debugging, optimization and 

development as independent topics. It is clear, however, that these topics are closely related 

and eventually should be integrated into a software development environment".

When considering modules the literature overemphasises the dilemma of choice between 

macro-expansion and the lemma approach. Macro-expansion increases the size of the program 

being examined but provides a more embracing coverage of the software. When maintaining 

a software system macro-expansion is a particularly useful feature as it allows the impact of
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a change to be assessed, not just locally, but also throughout the system. When developing 

a new system the emphasis for symbolic execution may well be on the testing of small well 

bounded test units. The choice should be seen as a benefit to be valued rather than as a 

problem to be overcome.

Arrays are problematic because a static technique, symbolic execution, requires information, 

array subscripts, which is often determined dynamically at run-time. Current research sees this 

as an almost insurmountable difficulty. One solution proposes to introduce an n-way branch 

when an ambiguous array reference is encountered, where n is the number of elements in the 

array. This has the effect of increasing the number of branches significantly and, when branch 

coverage is being pursued, dramatically increases the number of test cases required such that 

at least one test case is required for each array element.

Symbolic execution must be capable of determining when constraints on a path are 

contradictory and hence the path is infeasible. This is usually reported as a problem for 

symbolic execution but it may more accurately be regarded as a feature of path selection. 

Further, it may be argued that symbolic execution is a part of a technique of assessing path 

feasibility rather than path infeasibility posing a problem for symbolic execution.

A common approach to assessing path feasibility is to formulate the path condition into an 

optimization problem. This requires that predicates from the path condition are formulated as 

constraints suitable for input to optimization software. Predicates of the following forms: a=b;

141



Chapter 6 Research Agenda

a<b; a<=b; a>b and a>=b are all easily formulated into suitable constraints. However, 

formulation is not straightforward for predicates of the form a o b . This predicate cannot be 

passed to an optimizer because of the compound nature of the constraint. Both of the simple 

constraints a<b and a>b cannot be included in the same system of constraints because they 

are mutually exclusive and hence, together, they are infeasible.

A second problem facing constraint formulation is the occurrence of strings within predicates. 

A string cannot be passed to an optimizer because numeric inputs are required.

The occurrence of records in predicates also poses a problem for feasibility checking. Suppose 

one constraint stipulates equality of two records and that a second constraint stipulates the 

inequality of two variables. When the two variables are fields within the records present in 

the first constraint there is a contradiction between these constraints. Unfortunately, the 

optimizer will not be able to recognize the contradiction unless the relationship between 

record and fields is made explicit.

The latter three problems outlined above are not described in the literature and are addressed 

in more detail in Part Two.

6.1.2 Weaknesses of specific svmbolic execution tools

One of the most glaring weaknesses in the set of existing symbolic execution tools is the 

absence of a system for commercial data processing languages such as COBOL. Only
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Howden has referred to the symbolic execution of COBOL programs in his evaluation of 

several testing techniques [Howd78b]. His experiment undertook the symbolic execution of 

a COBOL program by hand. No researcher has given detailed consideration as to whether this 

class of software is suitable for symbolic execution or identified particular problems it may 

possess which would need to be overcome for its successful application.

As a result of this omission there are several features typical of this software class which are 

not considered in the literature:

* file handling;

* records in infeasibility checking;

* strings in infeasibility checking;

* high-level string processing constructs.

The literature contains descriptions of thirteen systems that claim to employ symbolic 

execution. The greatest weakness that these systems exhibit is that six of them do not provide 

all of the following basic features of a symbolic execution testing system:

* maintain for each variable an expression in terms of input variables and constants;

* produce a path condition for each path examined;

* determine whether a path condition is feasible.

These three features are fundamental to any tool that is intended to facilitate the application 

of symbolic execution.

The seven systems that include all three of the basic features have other weaknesses and
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omissions but there are none common to all seven systems. Three of the six systems, 

ATTEST, CASEGEN and the FORTRAN test-bed, do not deal with assertions. It may well 

be coincidence, but all three are systems for analyzing FORTRAN programs. EFFIGY, 

SELECT and the Interactive Programming System process only a small sub-set of the target 

language. Four systems have no path selection strategy. ATTEST requires that paths be input 

to the system. This is a tedious task. EFFIGY, the Interactive Programming System and 

SYMBAD cater only for user selection of paths. Both EFFIGY and ATTEST fail to provide 

any indication of coverage which is a significant weakness in EFFIGY as the path selection 

is undertaken interactively. Ambiguous array references are problematic for two systems. 

ATTEST simply halts when they are encountered. SELECT generates a branch point with as 

many exit points as there are elements in the array; thus increasing the number of branches 

to be covered. SYMBAD maintains a history of the ambiguous array reference. It is not clear 

how the mechanism handles a branch-point that includes such a reference. CASEGEN 

maintains the ambiguity until the test data generation when the causal input variables are 

given values.

Other weaknesses apply to individual systems. ATTEST detects infeasibility only for systems 

of linear predicates. Detection of infeasibility in non-linear systems is left to the user. This 

is surprising for a FORTRAN analyzer as one would expect the software to contain non-linear 

predicates. SELECT is claimed to be an automatic system yet the user must supply the 

number of times that loops are to be iterated. CASEGEN does not output the expressions for 

variables and the path condition. This is unfortunate as they may be useful when debugging.
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6.2 Research aims

The primary aim of the research is to demonstrate, or otherwise, that symbolic execution can 

be usefully applied to commercial data processing software. COBOL is considered 

representative of this class. The creation of a tool to support the application of a technique 

is a powerful demonstration that the technique can be applied. The aim is to produce a 

prototype COBOL symbolic execution testing system. The creation of a full system requires 

many person-years effort and is not a realistic target.

For a COBOL program the system should provide the following features:

* maintain for each variable an expression in terms of input variables and constants;

* produce a path condition for each path examined;

* determine whether a path condition is feasible;

* incorporate a strategy for automatic path selection;

* allow and facilitate user path selection;

* provide coverage metrics during user path selection;

* cater for ambiguous array references;

* assess path feasibility as each predicate is conjoined to the path condition;

* use the expressions generated by symbolic execution to reduce the selection of 

infeasible paths;

* verify assertions placed in the source program;

* allow user choice on: macro-expansion versus treating a module call as an 

input/output boundary.
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The research aims can be summarized as:

1. Identify the problems facing the application of symbolic execution to commercial data

processing software in particular to COBOL.

2. Propose means of overcoming the problems in creating a COBOL symbolic execution

testing system.

3. Devise an approach to path selection that:

a. selects more useful paths than existing symbolic execution systems;

b. utilises the results of symbolic execution in a bid to reduce the likelihood of 

selecting infeasible paths.

4. Identify problems facing the use of a linear programming routine to assess the 

feasibility of paths and to overcome these problems demonstrating the practicality of 

the technique in a COBOL system.

5. Demonstrate that these proposals are practicable by constmcting a prototype symbolic

execution testing system for COBOL. It is not considered possible within the time- 

scale of a Ph.D. to build a full system.

6. Evaluate the symbolic execution testing system for COBOL.

7. Identify further work necessary to turn the prototype into a full working system and 

to identify areas in need of further research.
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CHAPTER SEVEN SYM BOL: A SYMBOLIC EXECUTION 

TESTING SYSTEM FOR COBOL

This chapter provides an overview of the facilities provided by the SYM BOL system. 

Chapters eight through eleven describe particular components of the system. Each of these 

chapters describes the problems presented by COBOL and the means used to overcome them. 

Some of the potential features that could be introduced in later versions of the system are 

described in chapter 12.

7.1 Environment

The SYM-BOL system is written almost exclusively in COBOL85 consisting of 

approximately 15,000 lines of source code. Some of the string processing might be more 

easily implemented in a language such as LISP. However, the bulk of the code in the system 

is concerned with housekeeping activities for which COBOL is more than adequate. Further, 

recent additions to COBOL in the 1985 standard have enhanced its string processing 

capabilities as well as generally bringing the language more up-to-date.

The system runs on a Microvax 3800 under VMS 5.3. The system is stand-alone with the 

exception of testing for path feasibility which uses the NAG-library routine E04MBF, which 

is a linear optimizer, to solve systems of linear constraints provided by the path condition. 

The feasibility checker is written in FORTRAN. Figure 7.1 shows the system architecture.
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Figure 7.1 Architecture of the SYM BOL system
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7.2 Input

A large sub-set of standard COBOL can be used. The main restrictions are against indexed 

files, the string manipulation verbs and reference modification. However, a strategy for 

dealing with string manipulation has been developed and is to be included in a later version 

of the system. This strategy is described in chapter 12. A detailed list of the restrictions 

placed on the input source program is given in Appendix B.

The primary input to the system is the source program which may contain assertions. Further 

inputs will be required in response to the results obtained such as changes to assertions and 

selection of paths to be evaluated.

7.3 Output

* The paths which have been generated;

* Path Conditions plus indication of feasibility including truth of assertions;

* Symbolic expressions for variables;

* Files of test cases ready for execution;

* An indication of branch coverage.

7.4 User strategies

It is intended that the SYM BOL system can be used in a variety of ways. First, it can select 

a set of paths and generate test cases to cause their execution. Second, it can generate test 

cases for paths supplied to the system. Third, it can be used as a debugging tool to help locate
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errors detected by testing. Fourth, it can be used to search out a feasible path for a branch not 

covered by the testing undertaken so far. Some of these capabilities are not fully 

implemented, where this is the case it is stated in the following descriptions.

7.4.1 Path selection and test data generation

Path selection and test data generation are the main uses of the SYM BOL system. It can be 

used to generate paths automatically or, perhaps more usefully, to assist the tester in selecting 

paths to be tested. Whichever mode of path selection is adopted symbolic execution is 

undertaken in parallel with the path selection. This allows the results of the symbolic 

execution to be used to help select the next branch for the path.

In the early versions of SYM BOL feasibility checking was undertaken only once when the 

path was complete. This was because the NAG library and associated feasibility checking 

routines were developed on a Prime 9955 whilst the rest of the system was developed on a 

micro-VAX. The feasibility checker has been transferred on to the micro-VAX and the user 

may select the frequency of feasibility checking. It may now take place every time a 

predicate is conjoined to the path condition or just on completion of the path. There is no 

practical difficulty in undertaking frequent feasibility checking as most feasibility assessment 

appears to be determined after only one or two iterations of the optimizer. Further work is 

required to establish the generality of this result.

With immediate detection of infeasibility on branch selection the system forces the user or
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the automatic path selector instantly to make an alternative branch selection. On completion 

of a feasible path the solution is retained as a test case. The case is stored and may later be 

transformed into records in the appropriate files ready for test execution of the program.

7.4.2 Test case generation for user supplied paths

Where a particular path has been identified as being of interest, the SYM BOL system can 

be used to assess its feasibility and automatically generate test data that causes its execution. 

For each path the system extracts the path predicates and the assignment statements. The 

statements on the path are then symbolically executed to produce a path condition and 

expressions for each of the output variables. The path condition is NOT checked for 

feasibility as each predicate is added but is invoked only once when the PC is complete 

resulting in faster feasibility checking. When a solution is found the path is feasible and the 

solution may be used as a test case. The solution is placed as records in the appropriate files 

making the test execution of the program a simple task. The initial path extraction mechanism 

allowing input of source program line numbers is not yet implemented and must therefore be 

undertaken using the ‘user path selection’ mechanism of the system.

7.4.3 Debugging tool

During testing the user often constructs functional test cases from the knowledge of what the 

software is expected to do. The program is then executed with the test cases using dynamic 

analysis monitoring facilities which provide an execution history of the test cases allowing 

various coverage metrics to be assessed. Additional test cases may then be devised to increase
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the level of coverage. The program is executed with the new test cases. This cycle is repeated 

until the coverage cannot be increased.

When the cause of an error case is easily identified, corrections are made and testing repeated. 

However, when the cause is not easily pinpointed the SYM BOL system may be used. 

The path exercised by the test case which revealed the error is symbolically executed. After 

the execution of each statement the user is provided with diagnostic output showing the 

symbolic value of each variable. This information is much more useful than the trace table 

provided in most COBOL compilation systems because it provides visibility of the expression 

that yields the erroneous result.

7.4.4 Branch-path location

During the testing process there may be some difficulty in manually deriving test data to 

execute some branches. Branches which are not covered by previous tests need to be located 

on a feasible path if they are to be executed. Finding such a feasible path may not always be 

straightforward primarily because of the care that needs to be taken in undertaking the search 

by hand. The system can be used to help in this task by allowing commencement from an 

existing feasible path.

The strategy is to start with the feasible path closest to the branch that is to be executed and 

to divert this path to the branch to be included. Automating a repeated search based on 

existing feasible paths is a relatively difficult process because the number of paths that could
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be searched is large and there are no obvious search reduction strategies. The first version of 

the system does not include this feature but a simple mechanism which allows a feasible path 

to be used as a starting point but does not include a means of repeatedly searching until no 

more feasible paths are available is to be included in a second version of the system.

7.4.5 SYM-BOL. ‘ideal’ and EEblGY compared

EFFIGY was identified in chapter 5 as a suitable benchmark for assessing future symbolic 

execution testing systems. The EFFIGY system provides the following features:

* input of source code containing assertions;

* interactive selection of paths;

* output of (a) symbolic values,

(b) truth of assertions,

(c) statement on path feasibility.

SYMBOL provides all of these features. Additionally, SYM-BOL processes programs written 

in COBOL, a language more widely used than PL/1, the language processed by EFFIGY. The 

SYM-BOL system caters for most COBOL features with the exception of indexed files and 

the string handling verbs. This is in contrast with EFFIGY which processes a comparatively 

small subset of PL/1. Appendix B contains full lists of allowed and barred features. A method 

of processing the string handling verbs has been devised but as yet this has not been 

implemented. This is described in Chapter 12.
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Tables 7.1a&b, 7.2a&b and 7.3a&b show an extended version of tables 5.1, 5.2 and 5.3. The 

new tables include the SYM BOL system, the seven systems that satisfy the minimum criteria 

and the other systems that claim some use of symbolic execution. The systems have been 

classified in terms of how well they meet the criteria established for the ideal system. This 

is highly subjective requiring the assessment of the significance of each of the criteria as well 

as of how well each system meets these criteria.

Two significant factors not listed in the tables are the contribution to research and the 

practicality of the tool. For example, EFFIGY has the edge over the FORTRAN testbed in 

terms of contribution to research. EFFIGY includes all the features expected of a symbolic 

execution testing system, with the exception of test case generation, whereas the FORTRAN 

testbed does not cater for assertions nor does it incorporate a path selection strategy or 

provide output of variable expressions and the path condition at each branch point. On the 

other hand, EFFIGY is not such a generally useful tool as it can be applied only to a limited 

language subset, whereas the FORTRAN testbed can process the full language specification 

and it is a commercial product demonstrating the practicality of the tool and its techniques.

SYM BOL includes all of the features included in EFFIGY. It analyses a language and a class 

of programs previously ignored by symbolic execution research. However, it is a prototype 

that is far from robust and in need of much further work before it could become a commercial 

product. Attempting to rank these three systems is thus difficult. Tables 7.1a&b, 7.2a&b and 

7.3a&b classify all the systems into ranked bands. The systems in each band are deemed 

equally meritorious even though they may show quite different characteristics.
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System Author Date Language 
built in

Language
analyzed

Input Output

Ideal
system

Widely
available

Many
widely

available
languages

Source
program,
assertions

Path, PC, Point 
becomes infeas 
Output variable 
expressions. 
Truth of 
assertions. 
Coverage 
Test data. 
Active/idle 
domains

LEVEL ONE
EFFIGY King 1975 not

stated
Simple
PL/1

Source
program,
assertions

Symbolic vais. 
Truth of 
assertions

IPS Asirelli 1979 PL/1 Subset Source 
PL/1 program,

assertions.
Symbolic 
expressions. 
Path condition. 
Truth of 
assertions

FORTRAN Hedley 
Test-bed

1981 ALGOL 68 
FORTRAN

FORTRAN Source
program,
paths

Test cases.
Infeasible
paths

SYMBAD Coen-Parisi
1990

C and 
LISP

Ada
sequential 
units only

Source
program,
assertions

Symbolic 
expressions. 
Path condition. 
State of 
assertions

SYM-BOL Coward 1991 COBOL COBOL Source 
excluding: program, 
indexed assertions 
files,
string verbs
reference
modification

Path, PC, point
becomes infeas
Variable
expressions.
Truth of
Coverage
Test cases

LEVEL TWO
SELECT Boyer 1975 LISP subset

LISP
Source
program.
Assertions

Not stated

CASEGEN Ramamoorthy 1976 FORTRAN FORTRAN Source
program

Paths,
Test cases

ATTEST Clarke 1976 FORTRAN FORTRAN Paths Symbolic 
expressions. 
Test cases

Table 7.1a Symbolic Execution Systems Compared
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System Author Date Language 
built in

Language
analyzed

Input Output

LEVEL THREE
SMOTL Bicevskis 1979 Unknown SHOD Source

program
Minimal set of 
test cases 
giving branch 
coverage

LEVEL FOUR
DISSECT Howden 1977 LISP FORTRAN Source

program,
DISSECT
commands

Path in straight 
line form.
Path condition, 
Var expressions. 
Anomalies

SADAT Voges 1980 Pl/1 FORTRAN Source
program
SADAT

commands

Path conditions 
for set of 
paths to cover 
all branches, 
some may be 
infeasible

IVTS Taylor 1983 Pascal HAL/S Source
program

Anomalies,
Path conditions

UNISEX Kemmerer 1985 YACC,
LISP

Pascal
excludes :
files,
pointers,
boolean
operators

Source
program
containing
assertions

Reformatted 
source, PC, 
Truth of 
assertions

LEVEL FIVE
ELI Cheatham 1979 unknown ELI

subset
Source
program

Intermediate
representation

Table 7.1b Symbolic Execution Systems Compared
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System Automatic/
Interactive

Path
selection

Path
feasibility

Assertion
testing

Ideal
system

Automatic
and

interactive
Uses symbolic 
expressions to 
aid in selection

Linear and 
non-linear

Yes

LEVEL ONE
EFFIGY Interactive User selected Every branch. 

Theorem prover
Yes

IPS Interactive User control Every branch. 
Theorem prover

Yes

FORTRAN
test-bed

Automatic Not stated Every branch.
Algebraic
linear and random

No

SYMBAD Interactive User selected Every branch, 
theorem prover, 
linear

Yes

SYM-BOL Automatic
and

interactive
User or automatic. 
Uses symbolic 
expressions 
to aid in 
selection

Every branch. 
Algebraic linear, 
detects non-linear

Yes

LEVEL TWO
SELECT Automatic All paths Every branch 

Algebraic linear 
and non-linear

Yes

CASEGEN Automatic Minimal set cover 
all branches

Every branch 
Algebraic linear 
non-linear and 
random

No

ATTEST Automatic
and

interactive
None Every branch 

Algebraic 
only linear

No

Table 7.2a Symbolic Execution Systems Compared
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System Automatic/ Path
Interactive selection

Path
feasibility

Assertion
testing

LEVEL THREE 
SMOTL Automatic Connection of 

sub-paths. 
Reduction 
strategy

Assessed from min 
& max values of 
variables

No

LEVEL FOUR
DISSECT Batch User selects User by hand No

SADAT Batch User selects User by hand No

IVTS Interactive User selects User by hand Yes

UNISEX Automatic
and

interactive
True branch first 
or user selects

User by hand Yes

LEVEL FIVE
ELI Automatic Unknown Not undertaken No

Table 7.2b Symbolic Execution Systems Compared
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System Call
Handling

Loop
Handling

Array
Handling

File
Handling

String
Handling

Ideal User choice 
system between

macro-expan 
and I / o  
boundary

0,1,2 Maintain
iterations symbolic
plus minimum expressions 
to give branch with no 
coverage path

explosion

Maintain
symbolic

Maintain
symbolic

expressions expressions 
by file, for each
Output files chare, 
of test cases Assess 
and expected feas 
results string

constants

LEVEL ONE
EFFIGY I/O boundary User selects 1-dim No No

IPS Not stated User selects Not known No No

FORTRAN
test-bed

Macro-expan, 
functions as 
I/O boundary

User specifies 
number of 
iterations

Maintains
symbolic
expressions

No No

SYMBAD Not stated User selects Yes No No

SYM-BOL Macro-expan 
and I/O 
boundary

User selects 
or minimum 
number for 
coverage

Uses actual 
value

Maintain Assesses 
symbolic feasibility 
expressions for path 
by file, conditions 
Output containing 
files of string 
test cases constants 
+ expected 
results

LEVEL TWO
SELECT Macro-expan User specify 

max no of 
iterations

Yes No No

CASEGEN Not stated Fixed number Yes No No

ATTEST Macro-expan Fixed max no 
of iterations

only
constant
indexes

No No

Table 7.3a Symbolic Execution Systems Compared
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System Call
Handling

Loop
Handling

Array
Handling

File
Handling

String
Handling

LEVEL THREE
SMOTL Unknown minimum

iterations
Not a problem 
no symbolic 
expressions

Yes No

LEVEL FOUR
DISSECT Not stated User selects Virtual paths, 

or maintain 
ambiguity, or 
actual values

No No

SADAT Not stated Not stated Not stated Not stated No

IVTS Not stated Not stated Not stated Not stated No

UNISEX I/O boundary
user

0,1 and 
selects

Virtual paths Excluded No

LEVEL FIVE
ELI I/O boundary Solves

some
recurrence
relations

Unknown No No

Table 7.3b Symbolic Execution Systems Compared
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Chapter 7 SYM-BOL: A Symbolic Execution Testing System

When SYM-BOL is compared with the seven systems that satisfy the three minimum criteria 

for a symbolic execution system it stands up well. The top two bands in the tables contain 

the seven systems that satisfy the three minimum criteria for a symbolic execution system 

together with SYM BOL. SYM BOL is placed in the top band along with EFFIGY, the 

FORTRAN testbed, IPS and SYMBAD, ahead of SELECT, CASEGEN and ATTEST which 

are placed in the second band. When SYM BOL is compared with all thirteen of the systems 

claiming to undertake symbolic execution it appears favourably and is a significant 

contribution to research in the field. The following brief discussion compares SYM-BOL 

against only the seven systems that satisfy the minimum criteria and ignores the systems that 

fail to meet the minimum criteria except where they contain a useful feature not included in 

the seven systems.

Path selection in SYM-BOL can be carried out either by user selection or automatically. This 

is in contrast to ATTEST and the FORTRAN testbed which report no mechanism for path 

selection other than the input of paths. The remaining systems provide either automatic or 

user path selection but not both.

When the user is selecting paths SYM BOL aids the selection by displaying the current 

expressions for each variable in the branch predicates. This helps the user avoid the selection 

of obviously infeasible paths. Also displayed is a branch coverage measure to help the user 

select branches not covered by a path. This is not provided by the other systems which allow 

user selection of paths. IPS and EFFIGY do however allow the display of variable expressions
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at each node.

When the SYM BOL system is used to automatically generate paths the branch coverage 

measures and variable expressions are used in a bid to select feasible paths containing 

previously uncovered branches. In addition, when faced with otherwise equal choices between 

branches the path selection chooses the branch that gives the greatest domain coverage. 

At present this domain maximizing selection is rather crude but it is planned to be developed 

in a later version. No other symbolic execution testing system incorporates such a strategy. 

The basis of the approach is that used in SMOTL to determine path feasibility. Minimum and 

maximum values are maintained for each variable. The branch that provides the greatest 

distance between the minimum and maximum values is the one selected when in all other 

respects the alternative branches are equally appropriate.

A powerful feature of SYM-BOL’s path selection facilities is the inter-relationship between 

the symbolic execution, which creates variable expressions, and the selection of branches for 

a path. The benefit from this is a reduction in the selection of infeasible paths. Only EFFIGY 

and the IPS provide variable expressions to help the user in making the selection. ATTEST 

and the FORTRAN testbed have no path selection strategy specified paths being an input to 

the system. SELECT and CASEGEN aim for branch coverage whilst path selection in 

EFFIGY, IPS and SYMBAD is solely user driven.

First indications in using SYM BOL are that the most useful mode is the user selection as this
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overcomes the branch selection problem of what might be termed ‘busy-bottlenecks’. Here, 

a small number of branches must be executed many times to allow all the branches beyond 

these points to be executed at least once. Busy-bottlenecks are easily identified and handled 

by the user but no method is incorporated within the automatic mode of SYM BOL, nor any 

other automatic system, to deal with this problematic, yet common, situation.

When compared to the ideal system described in Chapter 5, SYM BOL fails to meet the ideal 

criteria because it can process only COBOL programs and there are some restrictions within 

the COBOL language. It deals with ambiguous array references by substituting an actual value 

in place of the input variable index. This is far from satisfactory but is a practical way of 

overcoming a difficulty which is caused by the need for a run-time value during a static 

analysis. SYM BOL does, however, meet many of the ideal system’s requirements. It allows 

both automatic and interactive use, the source program may contain assertions which can be 

verified and all of the required outputs with the exception of an idle/active domain report are 

provided. SYM BOL also uses the products of symbolic execution to aid path selection in 

choosing the next branch. This is preferable to making a random branch choice and then 

testing for feasibility repeatedly until a feasible branch is selected.
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INTRODUCTION TO CHAPTERS EIGHT TO ELEVEN

The next four chapters describe aspects of the functioning of the SYM BOL system. Where 

a useful feature has been designed but not implemented this is stated in the text.

Chapter eight describes how the system processes assertions placed in the source program. 

The assertions need not be deleted from the final program. If so desired they may be 

transparent from the compiler. Alternatively, they can be included in the final executable 

code.

Chapter nine describes a series of translations which are made to the COBOL source program. 

Several stages of translation into simpler standard forms are employed. The final version of 

the ‘source’ program is then translated into the intermediate form.

Chapter ten explains the approach to path selection and symbolic execution. Early systems 

undertook path selection and symbolic execution in isolation. By synchronizing the two 

processes the results of symbolic execution are used to help make sensible path selection 

choices. SYM BOL uses this co-ordinated approach to path selection in both automatic and 

user path selection modes.

Chapter eleven describes why the NAG library linear optimizer E04MBF is suitable for path 

feasibility checking and how it is used. Two problems, concerning alphanumeric literals 

(string constants) and implied constraints in record structures, are outlined together with the 

means of overcoming them.
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CHAPTER EIGHT ASSERTIONS

Assertions are used in the axiomatic approach to program proving. This approach requires that 

the program validator is able to make statements about the values of variables at various 

points in the software. Such a statement about what a variable should contain is an assertion.

8.1 Introduction

To prove that the program statements between two points are correct it must be shown that 

given that the initial assertions are trae then the statements up to the end point cause the final 

assertions to be true. Such a demonstration will have proved partial correctness. Complete 

correcmess requires that it can be shown that the program halts and hence there is no endless 

loop. To prove a program partially correct requires at least two sets of assertions, one at the 

beginning and one at the end of the program.

Symbolic execution can contribute towards this form of program proving [Hant76]. Assertions 

at any point in a program are conjoined onto the path condition. If the path condition 

containing the assertions is feasible then the assertions are upheld. An alternative approach 

is to negate the assertions before conjoining to the path condition. If the path condition is 

feasible then the assertions are not upheld. The SYM-BOL system adopts the former 

approach.

The issue of complete correctness versus partial correctness is not such a major one for 

symbolic execution because the assessment of correctness is applied to a path. Each path has 

a terminating point. When an infinite loop exists in the program then the only paths that pass
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through the loop wiU be infeasible. Inability to find a feasible path through a loop would 

suggest that the program is not completely correct.

This chapter describes the assertion checking facilities available in SYM-BOL.

8.2 Specifying assertions in SYM-BOL

Assertions may be included in the source program at any point. The format adopted for their 

specification is as follows:

*assert
* condition-1
* condition—n 
*end-assert

For example in a program processing salaries the initial and final assertions might be as 

follows:

*initial assertions 
*assert
* (gross > -1) and
* (gross < 10000) and
* (tax-code > -1) and
* (tax-code < 10000)
*end-assert
*final assertions 
*assert* ((state = ”e") or (state = "n")) and
* ((tax < gross) or (tax = gross)) and
* ((ni < gross) or (ni = gross)) and
* ((tax >0) or (tax = 0)) and
* ((ni > 0) or (ni = 0))
*end-assert

Note that the assertions are written as comment statements so that normal compilation, linking 

and execution, are unaffected by their presence. By utilizing the assertion processing option 

in the SYM-BOL system assertions are transformed into equivalent ‘evaluate’ statements as 

follows:
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*initial assertions 
*assert

evaluate true
when gross > -1 continue

end-evaluate 
evaluate true

when gross < 10000 continue
end-evaluate 
evaluate true

when tax-code > -1 continue
end-evaluate 
evaluate true

when tax-code > 1000 continue
end-evaluate 

*end-assert
*final assertions 
*assert

evaluate true
when state = ”e" continue
when state = ”n” continue

end-evaluate
evaluate true

when tax < gross continue
when tax = gross continue

end-evaluate
evaluate true

when ni < gross continue
when ni = gross continue

end-evaluate
evaluate true

when tax > 0 continue
when tax = 0 continue

end-evaluate
evaluate true

when ni > 0 continue
when ni = 0 continue

end-evaluate
*end-assert

The action of compilation now checks the syntax of both the assertions and the rest of the 

program. Note that the imperative statement in this form of the assertions is ‘continue’, no 

action is taken. When the program contains this version of the assertions the program still 

executes in the usual way and provides the same results.

Assertions can be used to provide a ‘dynamic semantic monitor’ by negating the assertions 

and changing the resulting ‘continue’ statements into error messages which report when an 

assertion violation has occurred.
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Identification Division.
Program-Id. P9a. 
Environment Division. 
Data Division.
Working-Storage Section
01 ni-details.

02 ni-rate pic 99v99.
01 tax-details.

02 tax-free pic 9(4)v99.
02 tax-rate pic 99v9.
02 taxable pic 9(5)v99.

Linkage section.
01 input-parameters.

02 gross pic 9(5)v99.
02 tax-code pic 9(4). 

pic X .02 ni-class
02 frequency pic X .

88 weekly value "w".
8 8 monthly value "m".

01 output-parameters.
02 state pic X .

88 err value "e".
88 no-error value "n".

02 tax pic 9(4)v99.
02 ni pic 9(3)v99.

Procedure division using input-parameters
the-program.
*initial assertions Ai 
*assert
* (gross > -1) and
* (gross < 10000) and
* (tax-code > -1) and
* (tax-code < 10000) and
* ((ni-class = "a”) or (ni-class = "b") or (ni—class = "c")) and
* ((frequency = "w") or (frequency = "m"))
*end-assert
*initialize

move "n" to state.
*set the ni rate

evaluate true 
when ni-class 
when ni-class 
when ni-class 
when other

a" move 0.05 to ni-rate
b" move 0.10 to ni-rate
c" move 0.15 to ni-rate

move 0.0 to ni-rate
move "e" to state
display "ni class error"

end-evaluate
*A1
*assert
* ((ni-rate >0) or (ni-rate = 0)) and
* (ni-rate < 0.2)
*end-assert

Figure 8.1 Program containing assertions
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*set tax free
if state not = "e" 
then

if monthly 
then

corrpute tax-free = tax-code * 1 0 / 1 2  end-compute 
end-if 
if weekly 
then

compute tax-free = tax-code * 1 0 / 5 2  end-compute 
end-if
if not monthly and not weekly 
then
move 0 to tax-free 
move "e" to state 
display "error in pay period" 

end-if 
end-if

*A2
*assert
* ((tax-free =0) or (tax-free > 0)) and
* (tax-free < taxcode)
*end-assert
*set tax rate

if state not = "e" 
then

compute taxable = gross - tax-free end-compute
if taxable < 10000
then

move 0.3 to tax-rate 
else

if taxable < 20000 
then
move 0.4 to tax-rate 

else
move 0.5 to tax-rate 

end-if 
end-if

*A3
*assert
* ((taxable < gross) or (taxable = gross)) and
* (tax-rate > 0) and
* (tax-rate < 1)
*end-assert
* calculate deductions

compute ni = ni-rate * gross end-compute 
compute tax = tax-rate * taxable end-compute 

end-if 
*final assertions Af 
*assert* ( (state = "e") or (state = "n")) and* ((tax < gross) or (tax = gross)) and* ((ni < gross) or (ni = gross)) and* ((tax > 0) or (tax = 0)) and* ((ni > 0) or (ni = 0))
*end--assert

exit program.
end program P9a.

Figure 8.1 Program containing assertions (continued)
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ni-class = "a' notCa" or "b" or "c")= c

A1

status = "e' not = " e'

frequency = "m' not = "m"

frequency = ' w” not = "w"

frequency not = "m" 
frequency not = "w'

frequency = ”m" or 
frequency = "w"

A2
status = "e' not = "e

taxable 
<  10000

taxable 
not < 10000

taxable 
<  20000

taxable 
not < 20000

A3

AF

Figure 8.2 Flowgraph of program containing assertions
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8.3 Assertions and general proofs

When a path containing assertions is found to be feasible the assertions are deemed proven. 

Unfortunately, the proof is not general because it applies only to the path examined. The same 

assertions may occur on other paths yet may not be upheld. To obtain a general proof requires 

the symbolic execution of all paths between the two points. If these points are the start and 

end of the program this is usually impossible due to the existence of a large, and often 

infinite, number of paths. This is the perennial path-based testing weakness. To minimize this 

effect the number of points at which assertions are placed in a program should be increased. 

The closer the two points between which the proof is attempted the fewer the number of 

partial-paths that exist between them.

A proof is attempted for all partial-paths between every consecutive pair of sets of assertions. 

With the exception of the initial and final assertions each set of assertions is used as both 

initial and final assertions in assessing feasibility of partial-paths.

Consider the program in figure 8.1. Notice that it has three sets of intermediate assertions as 

well as initial and final assertions. Figure 8.2 shows a flowgraph of the program in figure 8.1. 

There are 144 paths through this program. If only initial and final assertions were included 

all 144 paths would need to be symbolically executed for a proof to have been achieved for 

the program. The inclusion of intermediate assertions reduces this number significantly as 

follows:
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Assertion Number of
Pairs Partial-paths
Ai - Al 4
Al - A2 9
A2 - A3 3
A2-- Af 1
A3 - Af 1

18
All intermediate assertions are used as both initial and final assertions thus ensuring 

connection of all paths from the beginning to the end of the program. All assertion to 

assertion partial-paths must be symbolically executed and the final assertions verified correct. 

Consider the assertion points A1 and A2. There are nine partial-paths between these assertion 

point pairs. All nine partial-paths are symbolically executed and deemed correct. A similar 

verification is undertaken for assertion point pairs A2-A3, A2-Af and Ai-Al. Because the 

assertions at A1 are used as final assertions in verifying Ai-Al we can be certain that the 

program is correct at point Al. Assertions at A1 are also used as initial assertions in verifying 

A1-A2. This pairing is deemed correct given that Al is correct. We already know that Al is 

correct from the previous verification stage. This process is repeated for all adjacent assertion 

point pairs. The result is that all pairs of consecutive assertions are verified and thus, given 

that the initial assertions are true, then the program will always satisfy the final assertions.

Looping introduces the problem of termination. Assertions are placed immediately before and 

immediately after the loop. The difficulty is that there is often a large, even infinite, number 

of possible iterations. A common approach is to consider a maximum of two iterations 

together with just one iteration and in the case of a pre-condition loop a zero iteration. On 

each iteration all possible partial-paths through the loop are verified. For the case containing
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two iterations this would appear to require the consideration of the square of the number of 

partial paths through the loop. This can be avoided by placing assertions at the beginning of 

the loop yet inside the loop and at the end inside the loop. Each iteration of the loop now has 

a set of initial and final assertions. By making these assertions identical the verification of the 

final assertions establishes the truth of the initial assertions for the next iteration. In principle 

two iterations are sufficient to verify the loop.

The key to this approach is that all modified variables on a partial-path must be the subject 

of strict assertions. An omission will invalidate the verification; so too will weak assertions 

that are easily satisfied. Provided there are sufficient strict, well placed, sets of assertions in 

a program symbolic execution is a powerful verification tool.

The SYM BOL system allows the inclusion of assertions at any point in a program. By 

selecting the assertion option they are transformed into equivalent COBOL statements. As 

path selection proceeds assertions are conjoined to the path condition and at feasibility 

checking are verified. When feasibility checking is requested at every branch it is known 

immediately which predicate, whether program code or assertion, caused infeasibility. At 

present the system does not cater for assertion-point to assertion-point verification.
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8.4 General assertions

The assertions discussed so far are of a simple type such as:

a > b
It is often possible and desirable to express far more wide-ranging assertions than ones stating 

a relationship between two simple variables. For example the assertion: 

for all i where i in 1 to max : a[i] > 0
stipulates that aU elements of the array ‘a’ contain values greater than zero. This can be

expressed as a series of simple assertions of the form:

a[l] > 0 
a[2] > 0 
etc.

It is clearly impractical to expect users of SYM-BOL to write such assertions in such a long 

specific form so a translation from general to specific forms is required as a function in the 

system.

A similar strategy is to be adopted for assertions about files. For example:

for all i where i in 1 to max - 1 : file.key[i] < file.key[i + 1]
asserts that the file is in ascending order on the field ‘key’.

Programs containing assertions about many large arrays and files will be faced with a large 

number of simple assertions resulting in optimization problems with a large number of 

variables. In comparison with complex optimization problems these are quite straightforward 

but the concern for a symbolic executor is the response time for feasibility checking. This is
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not likely to be a problem but further work is required to establish the bounds for acceptable 

run-time of the system. The current version of SYM-BOL does not cater for general 

assertions.

8.5 Summary

Three of the seven existing systems, ATTEST, the FORTRAN testbed and CASEGEN, do not 

cater for the verification of assertions. Four of the systems assess path feasibility using 

optimization techniques the other three use theorem provers. Only SELECT uses optimization 

techniques for feasibility checking and verifies assertions.

Creation of the SYM BOL prototype increases to two the number of systems which use 

optimization techniques to assess path feasibility and provide assertion verification, though 

this is not a particularly significant combination. Assertions are encoded as comments within 

the source program. This allows normal compilation and execution to be unaffected by their 

presence, yet they are a permanent feature of the program documentation. A simple 

transformation of the assertions into equivalent COBOL statements suitable for inclusion on 

the path condition, allows a simple means of verifying the assertions. Only MALPAS and 

SYMBAD maintain assertions as permanent features of the source program by specifying 

assertions as comments.
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CHAPTER NINE TRANSFORMING A SOURCE PROGRAM INTO 

INTERMEDIATE FORM

Symbolic execution is usually achieved by translating the source program into an intermediate 

representation which is designed to be more appropriate than the source program for 

extracting and symbolically executing a path.

The creation of an intermediate form can be achieved in two ways. First, it can be created by 

direct translation from the source program. This requires a complex translator. Second, the 

source program can undergo several steps of translation into simpler or standard forms in the 

source language. The final version of the ‘source’ program is then translated into the 

intermediate form by a comparatively simple translator. The SYM BOL system uses the 

second of these two approaches.

This chapter describes a series of translations which are made to the COBOL source program. 

These translations can be grouped into: alphanumeric literals; condition names; assignment 

constructs; and branching constructs. A discussion of alphanumeric literals is postponed until 

chapter 11 where it appears as part of the discussion on formulating path conditions as LP 

problems.

9.1 Condition names

A condition name is a high-level means of expressing a conditional expression. Consider the 

following variable declarations:
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01 birthday pic x.
88 birthday-past value ”p".
88 birthday-today value "t".
88 birthday-later value ”1".

A conditional statement using a condition name would be of the form:

if birthday-today 
then...

if birthday = "t" 
then...

set birthday-today to true

This is equivalent to:

Similarly, 

is equivalent to:
move "t" to birthday.

To enable conditional statements containing condition names to be treated in the same way

as other conditions the simplest approach is to substitute the condition name with the full

lower-level condition which it represents and to transform ‘set’ statements into equivalent

‘move’ statements.

9.2 Assignment constructs

These can be categorized into: string processing; simple assignments; arithmetic constructs; 

input statements; and module invocation.

9.2.1 String processing

Simple string manipulation, such as assigning a string to a variable, is earned out using the 

‘move’ construct. COBOL provides the verbs: ‘inspect’; ‘string’; and ‘unstring’ together with 

reference modification to provide more sophisticated facilities for string manipulation. These 

more sophisticated facilities are not currently handled by the SYM-BOL system. However, 

the system does include the use of strings in conditional expressions which are handled in a
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novel way described later in chapter 11. The system also includes the use of simple string 

assignments using the ‘move’ verb. The problems presented by the more sophisticated string 

manipulation and the means of catering for these in symbolic execution are discussed in 

chapter 12.

9.2.2 Simple assignments

The COBOL verbs: ‘move’; and ‘set’ are the facilities provided in COBOL for assigning the 

contents of one variable to another. ‘Move’ is adopted as the standard form. The ‘set’ 

construct is used for the same purposes as ‘move’ except that it can be used to act only on 

index variables and level-88 condition names. Where it is used on index variables the 

declaration will need to be modified as well as the set statement if it is to be transformed into 

a move statement. For example consider the following:

01 table.
03 row occurs 100 indexed row-index.

05 fieldl pic x.
05 field2 pic x.

set row-index to 1
To transform the set statement into a move statement also requires the creation of row-index 

as an independent data item. The resulting transformation is as follows.

01 table.
03 row occurs 100.

05 fieldl pic x.
05 field2 pic x.

01 row-index pic 999.
move 1 to row-index
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9.2.3 Arithmetic constructs

The COBOL verbs: ‘add’; ‘subtract’; ‘multiply’; ‘divide’; ‘compute’; ‘set’; and arguably 

"perform varying’ are provided in COBOL for evaluating arithmetic expressions and assigning 

the result to a variable. All of these can be expressed using ‘compute’. For example consider:

1. add a to b
is transformed to:

compute a = a + b
2. perform varying a from 1 by 1 until a = 10

continue
end-perform

is transformed to:

move 1 to a 
perform until a = 10 

continue
compute a = a + 1 

end—perform

9.2.4 Input statements

‘Accept’; and ‘read’ are the facilities provided in COBOL for input of data into variables. 

‘Accept’ is used to set input variables interactively and ‘read’ is used to extract data from 

files. No standard form is adopted for this group. During symbolic execution both ‘read’ and 

‘accept’ cause the assignment of a new symbolic value.

9.2.5 Module invocation

The COBOL verb: ‘call’; is the means of invoking a sub-program. The verb ‘sort’ could also 

be included in this class. Although it is a COBOL provided facility ‘sort’ behaves in much 

the same way as ‘call’. Invoking ‘sort’ requires the passing of a file and the return of a new 

file.
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When treating a module call as an output-input statement the returned results are given new 

symbolic values. ‘Call’ can be treated as an output-input statement or as a ‘perform’ causing 

symbolic execution to continue into the called routine. ‘Sort’ is always treated as an output- 

input statement

9.3 Branching constructs

The transformations made to branching constructs are necessary to facilitate the creation of 

a path condition and its subsequent feasibility checking. Path conditions are made up of a set 

of conjoined predicates taken from the conditions at each branch point on a path. When the 

condition is a simple two-way selection either the predicate expressed in the condition (the 

true branch) or the negation of the predicate expressed in the condition (the false branch) is 

conjoined to the path condition. The predicates that make up the path condition are used to 

form a set of constraints in a linear programming (LP) problem which is submitted to an 

optimizer.

9.3.1 Simple conditions

It is a simple matter to formulate simple equalities into a constraint appropriate for submission 

to an optimizer. However, it is a little more difficult to formulate the negated condition into 

suitable constraints.
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Consider the condition: if a = b

The predicate for the tme branch is: a = b.

The predicate for the false branch is: a o  b.

The predicate for the true branch can be passed to an optimizer but the predicate for the false

branch cannot. The only way of passing a negated condition to the optimizer is to express it 

as a compound condition: a < b or a > b. However, if both of these constraints are passed to 

the optimizer then the problem will not be solvable due to a contradiction in the constraints. 

Each of the predicate components are implicitly separate branches.

One way of overcoming this difficulty is to transform all apparently two-way selections into 

three-way selections, each branch representing one of the three possible predicates that can 

be passed as a constraint to the optimizer. For example:

if a = b evaluate true
then when a < b s2

si when a = b si
else can be expressed as: when a > b s2

s2 end-evaluate
end-if

Each of the three constraints a < b, a = b, a > b, can be successfully passed to an optimizer 

as a constraint on a path condition.

9.3.2 Compound conditions

Where the predicates contain boolean operators forming compound conditions a similar 

problem arises to the one facing the false branch of a simple condition. There is no difficulty 

when a branch predicate contains only the boolean operator AND. Here, the component
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conditions of the compound condition are treated as individual predicates and constitute two 

or more constraints. However, the negation of this compound condition cannot be passed as 

a constraint. Consider the conditional statement:

if a = b and c = d 
then 

si 
else 

s2 
end-if

The true branch predicate:

a = b and c = d
can be conjoined to the path condition and passed to the optimizer as two constraints:

1 a = b,
2 c = d.

The false branch predicate:

not (a = b and c = d)
which can be expressed as:

a <> b or c <> d
cannot be passed as a constraint. One approach is to decompose the compound condition to

produce nested if statements which in turn can be transformed into evaluate statements

containing appropriate constraints. For example:

if a = b evaluate true
then when a = b

if c = d evaluate true
then when c > d s2

si can be expressed as when c < d s2
else when c = d si

s2 end-evaluate
end-if when a > b s2

else when a < b s2
s2 end-evaluate

end-if
An alternative approach is to use a single evaluate statement which is, essentially, a form of 

truth table:
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evaluate true also true
when a<b also c<d s2
when a=b also c<d s2
when a>b also c<d s2
when a<b also c=d s2
when a=b also c=d si
when a>b also c=d s2
when a<b also c>d s2
when a=b also c>d s2
when a>b also c>d s2

end-evaluate
Each of the WHEN clauses forms part of a path condition which can be passed to an 

optimizer as a system of constraints. There is no need for further negation of conditions to 

take place as all possible conditions are explicitly specified in the newly constructed evaluate 

statement(s).

An alternative to transformation into nested simple conditions and truth tables requires the 

maintenance of several path conditions for each path. The precise number of path conditions 

varies with the number of OR operators. At the point on the path where a compound 

condition containing OR is encountered the maintenance of two or more path conditions is 

commenced. The first PC contains the simple condition before the OR operator, the second 

PC contains the simple condition after the OR operator. This approach has the benefit that 

it maintains the structure of the program that was created by the programmer. Having multiple 

PCs for each path increases the number of PCs that are to be checked for feasibility. This is 

no worse than creating additional paths by expanding the compound conditions. However, 

there is an overhead in applying this technique. The symbolic execution component of the 

testing system must maintain the connections between the multiple PCs and their paths. 

Whereas the use of compound condition expansion needs no such mechanism and a dynamic 

analysis coverage monitor can be used to assess the impact of the testing.
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The SYM BOL system is designed to use compound condition expansion to deal with 

conditions containing the OR logical operator.

9.3.3 WHEN OTHER exit from multi-branch conditionals 

Consider the following program fragment:

evaluate true
when X = a si
when X = b s2
when other s3 

end-evaluate
The predicates for the first two cases are straightforward: x = a, x = b. The third case is more

complex being: x o  a and x <> b. This compound condition is transformed in a manner

similar to that described above for compound conditions. The following shows an appropriate 

transformation:

evaluate true
when X = a si
when X = b s2
when X < a

evaluate true
when X < b s3
when X > b s3

end-evaluate 
when X > a

evaluate true
when X < b s3
when X > b s3

end-evaluate 
end-evaluate

When the conditions in the multi-branch constmct contain constants the transformation can 

be to a simpler form. Consider the following program fragment:

evaluate true
when X = "a” si
when X = ”c” s2
when other s3

end-evaluate
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The following shows its simpler transformation:

evaluate true
when X = "a" si
when X = "c" s2
when X < ”a” s3
when X > "a” and x < ”c" s3
when X > "c" s3

end-evaluate
This transformation requires all missing domains to be included in the list of alternatives. This 

is easily achieved by arranging the constants in sort sequence allowing easy specification of 

the domain constraints. It may be that some of the derived domains are empty. Consider the 

following declaration:

01 X  pic X .

Now consider the domain defined as:

when X > "a” and x < "b"
This is empty and can be deleted.

9.3.4 Iterations 

Iterations of the form:

perform test before until a = b 
si

end-perform
give rise to conditions which provide constraints for inclusion on the PC. This may be 

achieved by transforming into the following form.

1 iterl.
2
3 evaluate true
4 when a<b continue
5 when a=b go end-iterl
6 when a>b continue
7 end-evaluate
8 si
9 go iterl.

10 end-iterl.

190



Chapter 9 Transforming a Source Program into Intermediate Form

Should the loop be of the form:

perform test after until a = b, 
the statements at line 8 are moved to line 2. Where the condition is a compound condition

the transformation is of the same form but in this case has two evaluate statements. For

example:

X .

perform x test after 
until a = b or c = d 

si.
s2
s3.

is transformed into:

iterl.
perform x 
evaluate true 

when a = b 
when a < b 
when a > b 

end-evaluate

evaluate true 
when c = d 
when c < d 
when c > d 

end-evaluate 
go iterl. 

end-iterl. 
si.

X .

go end-iterl
continue
continue

go end-iterl
continue
continue

s2
s3.

9.3.5 Compute - on size error - not on size error

Many statements contain branches which can be converted to the evaluate standard form. For 

example, in the following program fragment, by using the picture declaration of variable ‘a’ 

to provide the maximum value allowed for ‘a’ the ‘size error’ clauses can be replaced.

a pic 99. 
b pic 99. 
c pic 99. 
compute a = b + c 

size error si
not size error s2 

end-compute

a pic 99. 
b pic 99. 
c pic 99. 
compute a = b + c 
evaluate true 

when b + c < 99
when b + c = 99
when b + c > 99

end-evaluate

s2
s2
si
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9.3.6 Read - at end - not at end

Input and output statements also contain branching. Consider the following program fragment:

data division, 
file section.
fd fa-in record varying depending wa-length.
01 fa-rec pic x(50).
working-storage section.
01 wa-length pic 9(5) comp.
01 wa-in pic x(50).
procedure division, 
theprogram.

read fa-in into wa-in 
end si
not end s2 

end-read 
s3

To transform this into the evaluate standard form requires the use of declarative sections to 

remove the ‘end’ and ‘not end’ clauses. Statements in the declarative sections are not 

conjoined onto the path condition. The transformed program fragment is as follows:

data division, 
file section.
fd fa-in record varying depending wa-length.
01 fa-rec pic x(50).
working-storage section.
01 wa-length pic 9(5) comp.
01 wa-in pic x(50).
01 end-of-file pic s9(9) comp value external rms$_eof.
procedure division, 
declaratives. 
dv-fa-in section.

use after standard exception procedure on fa-in. 
end declaratives, 
theprogram.

read fa-in into wa-in 
evaluate true

when rms-sts of fa-in = end-of-file si
when rms-sts of fa-in < end-of-file s2
when rms-sts of fa-in > end-of-file s2

end-evaluate 
s3
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9.4 Test data generation

The solution to a path condition provides a test case that will cause execution of the path. The 

test case is of one of three forms: file only input; interactive only input; both file and 

interactive input.

For test cases that are wholly read from files the system generates the necessary files 

containing the data values produced during feasibility checking. The program is simply 

executed and no further user intervention is required.

When the test case is wholly input interactively by the user the test cases are placed in file 

inOOO.dat. The file contains, in the order of input, the variable name and its data value. 

At present this file is listed and used as a note pad when executing the program. It is planned 

to construct a test harness for interactive input which will cause execution without user input 

so that testing will be undertaken in a uniform manner regardless of the nature of the input 

mechanism. Testing the quality of the human-machine interface is not under consideration 

here so the loss of its visibility is not of concern.

For hybrid file and interactive input test cases both the necessary files and inOOO.dat are 

created. During execution the user inputs the interactive inputs and the rest are read from the 

files as usual. Again, the planned test harness will streamline this testing treating interactive 

input simply as input firom another file.
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9.5 Intermediate form

The developer of the software under test is not required to examine the transformed source 

program. It is an intermediate representation used during path selection and symbolic 

execution. However, both forms can be compiled and executed and will produce equivalent 

results.

This approach has the advantage of allowing the creation of a comparatively simple translator 

from source program to intermediate form which is useful for a prototype development 

allowing easy incremental inclusion of language constmcts.

9.6 Summary

The creation of an intermediate form can be achieved either by direct translation from the 

source program or by several steps of translation from the source into simpler or standard 

forms in the source language. The final version of the ‘source’ program is then translated into 

the intermediate form. The SYM BOL system uses the second of these two approaches. 

COBOL has a wide variety of both assignment and branching statements. The core of the 

translation strategy is the use of three standard forms, one each for arithmetic, input and 

branching statements.

The first-stage intermediate form is a COBOL program with dramatically reduced statement 

variety. This form can be compiled and run giving identical results to the original program. 

This is then translated into the final stage intermediate form similar to that found in other
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systems. This two stage approach has the benefit for a prototype system of allowing the 

development of a stable COBOL-to-intermediate-form translator whilst allowing easy 

inclusion of an additional COBOL feature by the introduction of a new routine in the first- 

stage translator which just translates the new COBOL feature into the standard form.

Most of the earlier systems do not undertake the translation into intermediate form in the two 

staged manner employed by SYM BOL. Introducing additional language features is thus likely 

to be a little more difficult in these systems though not a significant problem. The SPADE 

system is an exception translating the source program into an intermediate form that could 

be described as a specification language. This form must be further translated into a form 

suitable for path extraction and symbolic execution. It has the advantage of providing a 

common intermediate form for many program languages; thus development of a tool for 

another language is eased at the expense of some additional translation for each language. 

The approach used in SPADE has the further disadvantage of providing output that refers to 

the specification language which is further from the source program than is the COBOL 

standard form from its source program.

195



196



CHAPTER TEN PATH SELECTION AND SYMBOLIC EXECUTION

The problem of determining what input data is required to execute a path is in some ways 

more difficult for COBOL-based systems intended for commercial file processing than for 

systems based on other languages such as FORTRAN, intended for numerical algorithms. The 

reason for this is that when a symbolic executor is used in a commercial data processing 

environment a path requires the reading of records from files. This means that a test case 

becomes a set of files of records rather than just several numerical values. On the other hand, 

the path conditions may be simpler than for numerical algorithms which can contain complex 

predicates.

In a commercial file processing program a single path can give almost complete branch 

coverage and will cause the processing of many records firom several files. There will be 

many symbolic values generated during symbolic execution of such a path and the ordering 

of these values is critical to the execution of the path.

Appendix A contains a detailed example of the use of the SYM BOL system to test a 

straightforward sequential update program. Only three paths are required to achieve complete 

branch coverage. Two of these paths cater for the cases of empty files. The bulk of the 

processing is covered by one path which reads records from a master file and a transaction 

file and writes records to a new master file and an error listing file. The path that covers the 

majority of branches requires five records within the master file and five records in the 

transaction file. The relationship between the records within each of the files is as important 

as the relationship between (the records in) the two files.
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10.1 Path selection and symbolic execution

The term ‘path selection’ is adopted in favour of the more common ‘path generation’. 

‘Selection’ implies a degree of care not suggested by ‘generation’ which implies an almost 

random choice.

10.1.1 Path selection version 1

In the early stage of development the only method of path selection in the SYM BOL system 

was a simple user selection at each branch point. The user is presented with the alternative 

branch predicates and makes a selection. The appropriate predicate is placed on the straight- 

line form of the path followed by the statements on the branch. This is repeated for each 

branch in turn until an exit is reached.

The straight-line form of the path is now symbolically executed using forward expansion to 

produce variable expressions and the path condition. The completed path condition is checked 

for feasibility. Whilst this method worked it became clear that many of the causes of 

infeasible paths could be avoided if the user had visibility of the expressions for the variables 

in the predicates being considered. To achieve this visibility symbolic execution must be 

performed in step with path selection rather than at the culmination of path selection.

10.1.2 Path selection version 2

At each branch point the predicates for each branch are displayed together with the current 

expression for each variable in the predicates. The user can now see that some of the
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predicates are clearly infeasible. For example:

Node 006 on Path 002
1 002 J = I
2 000 J > I
3 001 J < I
Current expression for J 
A601 + 5
Current expression for I 
A0O1

In this case it is clear that branches 1 and 3 are infeasible and branch 2 is feasible. An 

additional aid is the provision of the branch coverage count, 002, 000, 001 in the example. 

If all the branches were feasible the user may choose to select branch 2 as it has not yet been 

covered.

Where the expressions are too complicated for the user to make a quick judgement on the 

feasibility by inspection a branch may be chosen based on the branch coverage, or even at 

random. The system then assesses its feasibility. When an infeasible choice is made the 

expressions are redisplayed and an alternative branch is chosen. This is repeated until a 

feasible branch is identified.

In some cases the expressions are constants. For example:

Node 007 on Path 002
1 002 X = Z
2 000 X > Z
3 001 X < Z
Current expression for X 
5
Current expression for Z 
5
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Here the only feasible branch is branch 1. The system now makes this choice without 

presenting it to the user. The predicate is not conjoined to the path condition as it is true and 

therefore redundant.

10.2 Automatic path selection

By utilizing the current expressions for the variables and the branch coverage data an 

automatic path selector has been created. First, predicates which are obviously infeasible are 

removed from consideration. Second, the branch coverage value is used to select the least 

covered of the remaining branches. However, this strategy is flawed. Many of the uncovered 

parts of a program may require passage through a well exercised branch before they can be 

reached. For this form of automatic path selection to be successful the forward expansion 

approach must be partly abandoned and replaced by a strategy that commences at an 

uncovered branch. Path selection now works forward from this point in the usual way and 

backward to the beginning of the program. This ‘uncovered-branch-out’ approach has not 

been implemented in the SYM BOL system partly because it requires the addition of a 

backward substitution symbolic executor and partly because there is another promising 

alternative for automatic path selection based on domains. However, the uncovered-branch-out 

approach to branch selection is planned to be added to a later version because there are 

always some branches which are difficult to place on a feasible path and this strategy will be 

of value in attempting to place them on a feasible path.

Over the past few years, researchers have been considering the problem of what constitutes
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a good test. This work has resulted in the use of domains as a means of creating test cases 

[Whit85]. Where a test case can be considered to represent a large set of possible test cases 

then it can be seen as a better test case than one which is representative of only a small 

number of possible cases. The SYM BOL system is designed to incorporate a path selection 

strategy in which the expressions produced by the symbolic execution are utilised in an 

attempt to identify ‘interesting’ paths. For example, a path which constrains variables less 

than another path is potentially more important to the tester because a larger domain has been 

examined. The basis of the strategy is to maximize the coverage of each variable’s domain.

10.2.1 Active and idle domains

Consider the COBOL variable declared as follows:

01 A PIC S999.
This declaration specifies the domain of the variable. It may take on values from -999 to 999

and the domain of A may be expressed as:

Domain of A -1000 < A < 1000 
For a particular path the PC is:

PC -10 < A < 25
It is clear that the domain of the variable A on the path is constrained to a small subset of

the domain of variable A. This may be termed the active domain of variable A. The non

covered parts of the domain, which may be termed the idle domain of variable A, may be 

represented by the following:

-1000 < A < -9
24 < A < 1000.

If further paths exist which would transfer all or part of an idle variable domain to an active
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variable domain they should be included in the test set. There is a risk that this strategy will 

produce a large number of paths. Thus, the strategy of the path selector will need to 

incorporate a means of choosing branches that minimize the size of idle variable domains.

A path that minimizes the idle domain for one variable is unlikely to have the same effect on 

all other input variables on the same path. A compromise here may be to determine both the 

sum of the minimum values of the input variables and the sum of the maximum values of the 

input variables covered so far at each conditional statement. The branch that provides the 

greatest range between minimum and maximum sums of input variables is the branch selected 

for inclusion on the path being generated.

Once complete branch coverage has been achieved the variable ranges would be examined 

for idleness. Further paths may be selected to reduce the size of idle domains. A final 

refinement requires that the set of paths is now reduced, where possible, to decrease the 

number of paths without decreasing coverage nor increasing idleness. The first version of the 

SYM BOL system uses only a simple domain coverage strategy when selecting paths and 

does not attempt to minimise the idle domain sizes once the paths have been created.

10.3 User v automatic path selection

Indications so far suggest that the goal of automatic path selection is difficult to achieve if 

good selection decisions are to be made. A skilled (and even a not so skilled) software tester 

will devise better tests than the automatic selection approaches described here and elsewhere.
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The difficulty facing the tester when selecting paths and creating test cases is an 

administrative one. For example, it is difficult to: keep track of expressions for variables and 

path conditions, determine path feasibility, generate test cases to satisfy the path condition, 

create the files of test cases and execute interactive programs with the intended inputs. The 

most useful software testing tools will be the ones that give the greatest support to the tester 

rather than the ones that are intended to replace the tester. The SYM BOL system can be used 

in either capacity but the supporting role looks the more promising.

10.4 Summary

In some of the earlier systems (ATTEST, CASEGEN, FORTRAN testbed) path selection and 

symbolic execution are undertaken in isolation. First, a path or set of paths is identified. 

Second, the paths are symbolically executed to produce a path condition. As each branch 

predicate is conjoined to the path condition the newly created partial path condition is passed 

to either a theorem prover or an optimizer to assess whether the path is feasible. This 

approach is useful as it identifies the point at which the path becomes infeasible and allows 

the selection of an alternative branch without the need for recommencing the path selection 

from the entry point. But, what it lacks is the ability to avoid selecting the branch that causes 

infeasibility in the first place. A simple inspection is often sufficient to show that a branch 

predicate would cause infeasibility.

The SYM BOL system integrates path selection and symbolic execution allowing the current 

variable expressions and the branch coverage measures to be used in path selection. This
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helps achieve branch coverage and reduces the selection of infeasible paths. Both EFFIGY 

and IPS also provide output of the path condition and variable expressions allowing the user 

to avoid selection of obviously infeasible paths.

SYM-BOL provides both user and automatic path selection modes, the integrated path 

selection and symbolic execution being used in both modes of operation. First indications are 

that the most useful mode is the user selection as this overcomes the branch selection problem 

of what may be called ‘busy bottlenecks’. Here, a small number of branches must be executed 

many times to allow all the branches beyond these points to be executed at least once. Busy 

bottlenecks are easily identified and handled by the user but no method is incorporated within 

the automatic mode of SYM BOL, nor any other automatic system, to deal with this situation. 

Interestingly, neither EFFIGY nor IPS provide automatic path selection.
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CHAPTER ELEVEN DETERMINING PATH FEASIBILITY AND 

TEST DATA GENERATION

The identification of feasible and infeasible paths is central to the path-based approach to 

testing. There are two approaches to determining infeasibility: axiomatic and algebraic 

[ClarSl].

The axiomatic technique makes use of a theorem proving system to determine whether the 

constraints are contradictory [Mann73]. The algebraic technique uses the simple conditions 

within the path condition as a set of constraints which the system attempts to solve. The 

COBOL symbolic execution testing system uses the algebraic technique.

When using the algebraic approach an artificial objective function is created, for example, the 

sum of the variables present in the predicates. An optimizer is then used in an attempt to 

minimise the objective function subject to the constraints. The objective function selected does 

not appear to affect whether a solution can be found only the nature of the solution. Non

linear sets of constraints for a path are problematic as there is no assurance that a solution can 

be found even though the constraints are not in conflict. Linear systems of constraints do not 

pose this problem and output from a linear optimizer will be in one of two forms:

1. A solution, in which case the path is feasible. The solution may be used as a test case 

to execute the path.

2. A message indicating that the constraints are contradictory the path is infeasible.

White and Sahay [Whit85] coin the phrase ‘linearly domained program’ to identify the class
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of programs amenable to the use of linear optimizers for feasibility checking. White and 

Cohen [WhitSO] have identified Commercial Data Processing software as a class of software 

for which non-linear constraints are unlikely to pose a problem.

White and Cohen report that in a study of 50 COBOL programs from data processing 

applications the most important result was that only one predicate out of the 1225 tabulated 

was non-linear. They go on to conclude: "we believe the sample is large enough to indicate 

that non-linear predicate interpretations are rarely encountered in data processing 

applications." This may be because Commercial Data Processing rarely requires squaring, 

cubing and higher order functions.

In an analysis of COBOL programs [Alja79] the ADD statement accounted for 73.5% of all 

arithmetic statements. The verb that facilitates squaring and cubing is COMPUTE. In the 

study COMPUTE accounted for only 3.2% of all arithmetic statements. Unfortunately, no 

analysis of the use of the COMPUTE verb was given but it seems reasonable to assume that 

only a small proportion of the arithmetic statements contained squaring, cubing or higher 

order functions. If this is general then the occurrence of non-linear predicates is likely to be 

negligible.

White and Cohen concluded: "It is clear that any testing strategy restricted to linear predicates 

is still viable in many areas of programming practice". Systems, such as symbolic executors, 

which can determine infeasibility by using linear optimizers will be useful for a large number
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of programs and in particular for Commercial Data Processing applications.

11.1 The problem of the alphanumeric literal and the linear optimizer

Formulating the path predicates into a problem suitable for a linear optimizer is a relatively 

straightforward matter for numerical programs where predicates tend to consist only of 

operators, numeric variables and numeric constants. Commercial Data Processing software on 

the other hand contains an additional class of predicate component - the alphanumeric. 

Constraints that contain only numeric variables, numeric constants and alphanumeric variables 

but not alphanumeric literals can be processed by a numerical optimizer treating all variables 

as numeric. The solution will not necessarily be a natural test case but its feasibility will have 

been assessed. The problematic path condition is the one that contains alphanumeric literals 

which cannot sensibly be passed to an optimizer which requires numeric data.

Two alternative approaches to overcoming this problem are:

1. For each alphanumeric literal in a predicate create a numeric token. Pass the numeric

token, along with the variables and constants, to the optimizer.

2. Separate the predicates of the path condition into two categories: those containing 

alphanumeric literals and variables and those not containing alphanumerics. Formulate 

the numeric predicates into an optimization problem and pass to an optimizer. The 

alphanumeric predicates are now evaluated by a specially written routine.

Both of these approaches rely on the fact that predicates containing alphanumeric variables
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are independent of the predicates containing numeric variables. This is clearly true as it is 

meaningless to compare an alphanumeric variable with a numeric variable. Of course, the 

value of an alphanumeric variable may at some stage determine the value of a numeric 

variable such as a condition based on an alphanumeric variable where one branch modifies 

a numeric variable but this is taken in to account by the symbolic execution of the path.

Consider the following fragment of code:

1 begin-example.
2 accept STl
3 accept ST2
4 accept A
5 if A > 15
6 then
7 compute C = C + 1
8 else
9 if STl = "X"

10 then
11 compute B = B +
12 else
13 compute B = B +
14 end-if
15 end-if
16 if A < 10
17 then
18 compute D = D + 1
19 end-if
20 if ST2 = "Y"
21 then
22 compute C = C + 2
23 end-if
24 if STl = ST2
25 then
26 compute D = B + C
27 end-if
28 stop run.
29 end program example,

There are many paths through this program fragment. Consider the following path: 1, 2, 3, 

4, 5, 8, 9, 10, 11, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28. The statements on this 

path and its evolving path condition as it is symbolically executed by forward expansion are
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as follows:

statement Path Condition
2 accept STl
3 accept ST2
4 accept A
5 [not A > 15] not A > 15
9 [STl = "X"] not A > 15, STl = "X"

11 compute B = B+2
16 [not A < 10] not A > 15, STl = "X", not A < 10
20 [ST2 = "Y"] not a > 15, STl = "X", not A < 10, ST2 = "Y"
22 compute 0 = 0 + 2
24 [STl = ST2] not A > 15, STl = "X", not A < 10, ST2 = "Y", STl = ST2
26 compute D = B + 0

11.1.1 Alternative 1 The numeric token approach

Substitute "X" by 1 and "Y" by 2 giving the new set of constraints:

not A > 15, STl = 1, not A < 10, ST2 = 2, STl = ST2 
All the path constraints are now submitted to the numerical optimizer where the problem

cannot be solved hence the path is infeasible.

Suppose now that the condition on line 24 had read: if STl > ST2. The constraints would 

now be:

not A > 15, STl = "X", not A < 10, ST2 = ”Y" and STl > ST2 
Substitute "X" by 5 and "Y" by 2 giving the new set of constraints:

not A > 15, STl = 5, not A < 10, ST2 = 2 and STl > ST2

This is solvable yet the path is infeasible. The introduction of a simple rule overcomes the 

difficulty: numerical tokens must give the same sort sequence as the literals they represent. 

Applying this rule would mean that tokens to represent "X" and "Y" must reflect the 

relationship "X" < "Y", the tokens 5 and 2 violate this principle. Changing the values to say, 

4 and 6 respectively, overcomes the problem giving constraints of:
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not A > 15, STl = 4, not A < 10, ST2 = 6 and STl > ST2 
which is infeasible.

11.1.2 Alternative 2 The alphanumeric constraint solver

Separate the path constraints into two classes.

numeric alphanumeric
N1 not A > 15 A1 STl = "X”
N2 not A < 10 A2 ST2 = "Y"

A3 STl = ST2
The numeric constraints are input to a numerical optimizer and yield a solution. The right 

hand sides of A1 and A2 are substituted into A3 giving:

A4 "X” = "Y"
Clearly this expression is contradictory. The path is thus infeasible.

The case above is trivial. The approach is useful only if it is practical for larger sets of

constraints. Consider the following set of constraints:

1. ANl > 'X'
2. AN2 < 'Y'
3. AN3 = 'Z'
4. ANl > AN2
5. AN3 = AN4
6. AN4 = AN2

For each equality containing a variable on one side of the equality substitute the expression 

on the other side into all other constraints containing the variable. Duplicate constraints should 

not be introduced. Several passes through the constraints should be made until no new 

constraints can be created. The substitution should terminate as soon as a contradictory 

constraint is produced.
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3 . in 5. gives 7. 'Z' = AN4
5. in 6. a. AN3 = AN2
6. in 2 . 9. AN4 < 'Y'
6. in 4 . 1 0 . A N l > AN4
3 . in 8. 1 1 . 'Z' = AN2
5. in 9. 1 2 . AN3 < 'Y'
5. in 1 0 . 1 3 . A N l > AN3
7. in 9. 1 4 . 'Z' < 'Y'

Constraint 14. is contradictory so the path is infeasible.

On completion of repeated substitution from equalities contradictions may not have been 

detected although they are present. Substitution from inequalities must be undertaken e.g.

1. ANl > 'X'
2. AN2 < 'X'
3. ANl < AN2

1. in 2. gives 4. AN2 < ANl
3. in 4. 5. AN2 < AN2

Constraint 5. is contradictory so the path is infeasible.

Many substitutions may be necessary before feasibility is assured. An assessment of the 

maximum number of substitutions possible shows the potential size of the problem.

The number of variables and literals (operands) determines the maximum number of 

constraints. For two operands there are four possible constraints: <, >, = and o .  Where 

constraints consist solely of two operands then the maximum number of constraints possible 

is given by:

Max Con = (N(N-l)/2)*4 = 2N(N-1) where N is the number of operands.
The maximum number of substitutions is given by:

Max Sub = M(M-l)/2 where M is the number of constraints.
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By substituting Max Con into M the maximum number of substitutions is:

Max Sub = 2N(N-1) (2N(N-1)-1)/2 
= N(N-l)(2N(N-1)-1)
= 2N**4 - 4N**3 + N**2 + N where N is the number of operands.

Experience suggests that most condition statements containing alphanumeric literals contain 

the operators = and o ,  but rarely, < and >. This reduces the number of substitutions but does 

not affect the rate of increase.

Where either side of an inequality may contain expressions of more than one operand the 

maximum number of substitutions rises even faster.

The creation of a strategy to solve this problem faces the same difficulties as the solution of 

Linear Programming problems with the additional difficulty of not being able to manipulate 

the constraints in a straightforward fashion.

The construction of a special routine to deal with alphanumeric literals appears to be 

impractical. Further research into the nature of path constraints would be needed to establish 

that the number of:

1. operands present in the conditions of most paths is small;

2. substitutions required are small in comparison with the potential number.
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Worley [Worl88], in a response to a paper by the author [Cowa88a], provides an almost 

linear-time algorithm for undertaking the required substitutions. However, he concludes 

"unfortunately, neither Coward’s algorithm nor this one circumvents the major difficulty... the 

general problem is NP-complete. Thus, there is no good algorithm for handling the general 

case". Alternative 2 has been rejected.

Alternative 1 using numeric tokens is the approach implemented in the SYM-BOL system and 

it appears to work in practice.

11.2 Record and Group Items

A further requirement that must be satisfied to enable the use of linear optimizers for 

assessing path feasibility concerns the comparison of records with different component 

structures. Consider the following record declarations.

01 A.
02 B pic XXX.
02 C pic XX.

01 D.
02 E pic X.
02 F pic XX.
02 G pic XX.

Suppose a path has constraints:

A = D, C not = G.
When attempting to solve these constraints the solver must be supplied with the relationship 

between A and C and between D and G. This can be achieved by submitting only elementary 

items to the solver. In this case the constraints would be:

B + C = E + F + G ,  C not = G.
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This is still inadequate. Components that are individually compared need to be isolated giving 

constraints of:

B = E + F ,  C =  G, C not = G .
This is adequate to identify the contradiction.

11.3 Formulating LP constraints

Each of the WHEN clauses in the evaluate statement consists of a simple condition. Each 

simple condition is of one of the forms: A = B, A < B, A > B. In optimization problems 

it is usual to reformat such constraints as follows:

A = B reformat to A - B = 0

The optimizer used by the author for development work requires constraints to be expressed 

with both lower and upper bounds.

Thus A = B would be expressed as: 0 <= A - B <= 0

Inequalities are expressed in a similar manner.

To express X < 0 as X <= ? a negative number close to zero is used: -l.OE-21.

To express X > 0 as X => ? a positive number close to zero is used: + l.OE-21.

Where there is no lower or upper bound extremely small or extremely large values are used: 

-l.OE+21, +1.0E+21. The inequalities would be reformatted as follows:

A < B would be: —l.OE+21 <= A — B <= -l.OE-21
A > B would be: +1.0E-21 <= A - B <= +1.0E+21

or alternatively: -l.OE+21 <= B - A <= -l.OE-21
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Variable declarations provide implicit constraints.

Suppose that variable A is declared as follows: A pic 9.

This would be formulated as a general constraint: 0 <= A <= 9

The optimizer used for development work does not make the input of an objective function 

mandatory. Where it is omitted the first feasible solution is returned, ideal for the purpose of 

feasibility checking. For a routine that requires an objective function any expression involving 

all the variables on the path condition will suffice, say the sum of these variables.

11.4 An example

Consider the program in figure 11.1. Applying the transformations described above to this 

program yields the program in figure 11.2.

Consider a path through the program in figure 11.2 with the following path condition:

101 + J01 > K01, J61 + K01 > 101, K01 + 101 >J01, 101 = J01, J01 = K01,
K01 = 101,
102 + J02 > K02, J02 + K02 > 102, NOT K02 + 102 >J02.

This path reads two records, the string "Equilateral" is displayed after the first, "Not a

Triangle" after the second. (Note that 101 represents the first value read into i ,  102 the 

second value etc.) This path condition together with the variable declarations can be expressed 

as the following LP problem:
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Identification Division.
Program-id. triangle.
Environment Division.
Input-Output Section.
File-Control.

select fa-in assign to "tri.dat".
Data Division.
File Section.
fd fa-in record varying depending wa-length. 
01 fa-input pic x(3).
Working-Storage Section.
01 wa-in. 

03 I pic 9.
03 J pic 9.
03 K pic 9.

01 wa-length pic 9 comp
01 wa-eof pic X .
01 tri-match pic 9.
Procedure Division, 
begin-triangle.

open input fa-in 
read fa-in into wa-in 

end
move ”y" to wa-eof 

not end
move "n" to wa-eof 

end-read
perform test before until wa-eof = ”y"

if I + J > K and J + K > I and K + I > J 
then
move 0 to tri-match
if I = J
then

compute tri-match = tri-match + 1 
end-if 
if J = K 
then

compute tri—match = tri-match + 1 
end-if 
if K = I 
then

compute tri-match = tri-match + 1 
end-if
evaluate true

when tri—match = 0 display "Scalene"
when tri-match = 1 display "Isosceles"
when tri-match = 3 display "Equilateral"
when other display "Error"

end-evaluate 
else

display "Not a Triangle" 
end-if
read fa-in into wa-in 
end

move "y" to wa-eof 
end-read 

end-perform 
close fa-in 
stop run.

e n d  p r o g r a m  t r i a n g l e .  Figure 11.1 Triangle program.
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Identification Division.
Program-id. triangle.
Environment Division.
Input-Output Section.
File-Control.

select fa-in assign to "tri.dat".
Data Division.
File Section.
fd fa-in record varying depending wa-length. 
01 fa-input pic x(3).
Working-Storage Section.
01 wa-in.

03 I pic 9.
03 J pic 9.
03 K pic 9.

01 wa-length pic 9 (
01 wa-eof pic X
01 tri-match pic 9.
01 end-of-file pic s9pic s9(9) comp value external rms$_eof, 
Procedure Division, 
declaratives. 
dv-fa-in section.

use after standard exception procedure on fa-in. 
end declaratives, 
themain section, 
begin-triangle.

open input fa-in 
read fa-in into wa-in 
evaluate true

when rms-sts of fa-in = end-of-file 
move "y" to wa-eof 

when rms-sts of fa-in > end-of-file 
move "n" to wa-eof 

when rms-sts of fa-in < end-of-file 
move "n" to wa-eof 

end-evaluate. 
iterl.

evaluate true
when wa-eof < "y" 

continue 
when wa-eof = "y" 

go end-iterl 
when wa-eof > "y" 

continue 
end-evaluate

Figure 11.2 Transformed triangle program.
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evaluate true 
when I + J > K 

evaluate true 
when J + K > I 

evaluate true 
when K + I > J

move 0 to tri-match 
evaluate true 

when I = J 
compute tri-match = tri-match + 1 

end-evaluate 
evaluate true 

when J = K
compute tri-match = tri-match + 1 

end-evaluate 
evaluate true 

when K = I
compute tri-match = tri-match + 1 

end-evaluate 
evaluate true

when tri-match = 0 
when tri-match - 1 
when tri-match = 3  
when tri-match = 2 
when tri-match > 3 

end-evaluate 
when K + I <= J

display "Not a Triangle" 
end-evaluate 

when J + K <= I
display "Not a Triangle" 

end-evaluate 
when I + J <= K

display "Not a Triangle" 
end-evaluate 
read fa-in into wa-in 
evaluate true

when rms-sts of fa-in = end-of-file 
move "y" to wa-eof 

when rms-sts of fa-in > end-of-file 
continue

when rms-sts of fa-in < end-of-file 
continue 

end-evaluate 
go iterl. 

end-iterl.
close fa-in 
stop run. 

end program triangle.

display "Scalene" 
display "Isosceles" 
display "Equilateral’ 
display "Error" 
display "Error"

Figure 11.2 Transformed triangle program (continued)
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Objective function 
General constraints

None
0 <= lei <= 9 
0 <= J61 <= 9 
0 <= K61 <= 9 
0 <= 102 <= 9 
0 <= J02 <= 9 
0 <= K02 <= 9

Specific constraints +1.0E-21 
+1.0E-21 
+1.0E-21 
0 < =  101  
0 <= J01 
0 <= K01 
+1.0E-21 
+1.0E-21 
-l.OE+21

< =  101  +  
<= J01 + 
<= K01 +
- J01 <=
- K01 <=
- 101 <= 
< =  102 + 
<= J02 + 
<= K02 +

J01
K01
101
0
0
0
J02
K02
102

K01 <= +1.0E+21 
101 <= +1.0E+21 
J01 <= +1.0E+21

K02 <= +1.0E+21 
102 <= +1.0E+21 
J02 <= 0

The initial point which is thought to be feasible can be assumed to be values of zero for each 

variable.

The output is a feasible solution, for example:

101 = 1, J01 = 1, K01 = 1, 102 = 0, J02 = 1, K02 = 0.
Because a feasible point is identified there are no contradictory constraints, the path is

therefore feasible. The values that represent the feasible point can be used as a test case which

will cause execution of the identified path.

11.5 Summary

COBOL programs rarely, if ever, contain non-linear path conditions so it is appropriate to use 

a linear programming routine to assess path feasibility. SYM BOL uses the NAG-library 

linear optimizer E04MBF. An advantage of this optimizer is that it can be used to return the 

first feasible solution rather than an optimal solution, thus reducing the time to assess 

feasibility. The use of optimizers is not in itself new. What is new is their application to 

COBOL programs which bring two problems not previously described in the literature.
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The first problem is the existence of alphanumeric literals (string constants) on the path 

condition. Linear programming optimizers require numerics not strings. The solution adopted 

in SYM-BOL requires the substitution of numeric tokens in place of the alphanumeric literals 

in such a way that the sort sequence of the original strings is reflected in the sequence of the 

numeric tokens.

The second problem concerns record and group data items. Consider the following record 

declarations:

01 Al.
03 A2 pic X .
03 A3 pic X .

01 Bl.
03 B2 pic X .
03 B3 pic X .

A predicate containing the variable Al, implicity references the variables A2 and A3. For 

example, the predicate Al = Bl contains the two implied predicates: A2 = B2 and A3 = B3. 

Where a path condition contains the predicates Al = B l and A2 > B2 then the implied 

predicates are significant. It is only by considering the implied predicates that the path 

infeasibility, caused by A2 = B2 and A2 > B2, will be identified. A symbolic execution 

testing system must, therefore, automatically include all implied predicates or, alternatively, 

process all variables as a series of characters. The second of these two approaches is 

discussed in Chapter 12.

There is a third problem which concerns acceptable classes of constraints. Linear 

programming optimizers cannot process constraints of the form A < >  B, only constraints of 

the forms A < = B and A > = B are generally acceptable to such routines. This problem is
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not described in the literature. Branches with such constraints are replaced by two branches 

A < B, down one branch, and A > B down the other. Not only does this solution overcome 

the problematic branch predicate but it can also be used to force improved boundary testing. 

For example, consider the following statement where ‘a’ and *b* are unsigned numerics: if 

a = b. This statement should be tested with cases: a = b, a + l = b and a - 1 = b.

To achieve good boundary testing the transformation incorporated in the first-stage translation 

into standard form creates the branches: a = b, a > b and a < b. By minimizing the objective 

function, a + b, for each branch the following three sets of values for a and b will be 

produced: 0,0; 0,1 and 1,0. These values represent good boundary tests.

The literature does not discuss the problems of assessing the feasibility of path conditions 

containing alphanumeric literals, implicit constraints created by group items and records and 

constraints of the form A < > B. None of the earlier systems cater for these situations.

SYM BOL is thus novel in catering for all of them.
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CHAPTER TWELVE REDEFINITION, REFERENCE 

MODIFICATION AND STRING HANDLING VERBS

COBOL has a facility for redefinition of data structures such that an item of data may be 

referenced in a variety of ways. At the most simple a variable may be referenced by several 

identifiers. More complex redefinition repackages variables such that some characters 

referenced by a first variable are grouped with other characters of a second variable to 

constitute a third variable. Reference modification allows the referencing of sub-strings within 

a string variable without the need for previous definition of an identifier to correspond to the 

substring. The verbs STRING, UNSTRING and INSPECT provide the more sophisticated 

means within the language for string manipulation.

All of these features have implications for symbolic execution. These features of the language 

are not processed by the current SYM BOL system. This chapter proposes a means of 

including them within the system.

12.1 Redefines and reference modification

Inclusion of these features in the SYM-BOL system requires the maintenance of expressions 

for individual characters rather than variables. Consider the following record declarations:

01 rl.
02 z pic X.
02 rowl.

03 a pic x(6).
03 b pic x(4).

02 row2 redefines rowl.
03 j pic x(4).
03 k pic x(6).

01 r2.
02 X pic x(6).
02 y pic x(4).
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Consider now the following assignment statement:

move k to X 

this is equivalent to:

move rowl(5:6) to x 
Consider now another assignment statement:

move b to y 

this is equivalent to:

move row2(7:4) to y 

which is also equivalent to:

move k (3:4) to y
One means of creating a unified approach to this variety of means of accessing a series of 

characters is to maintain symbolic expressions for each character. Every character is 

referenced using the record name and an appropriate offset subscript and string length. For 

example, move b to y 

would be transformed to:

move rl(8:4) to r2(7:4)

which is processed as a series of individual move statements as follows:

move rl(8:l) to r2(7:l) 
move rl ( 9:1) to r2 ( 8 :1) 
move rl(10:l) to r2(9:l) 
move rl(ll:l) to r2(10:l)

Where a value is accepted into a variable, for example,

accept b

the variable is given a symbolic value say: 

bSOl
Where this is then assigned by a move statement such as: 

move b to y
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the symbolic value is maintained in the destination value character by character as follows:

r2(7:l) 
r2(8:l) 
r 2 (9:1) 
r2(10:l)

b0Ol(l:l)
b0Ol(2:l)
b0Ol(3:l)
b0Ol(4:l)

Consider the following series of statements based on the declarations above:

1 accept a
2 accept b
3 move k to x

Line 1 causes the following symbolic values to be assigned:

rl(2:1) 
rl(3:l) 
rl(4:l) 
rl(5:l) 
rl(6:l) 
rl(7:l)

a0Ol (1 
3001(2 
3001(3 
a0Ol (4 
3001 (5 
a0Ol(6

Line 2 causes the following symbolic values to be assigned:

rl(8:l) = b0Ol(l:l)
rl(9:l) = b0Ol(2:l)
rl(10:l) = b0Ol(3:l) 
rl(ll:l) = b0Ol(4:l)

Line 3 causes the following symbolic values to be assigned:

r2(l 1) = 3001(5 1
r2(2 1) = 3001 (6 1
r2(3 1) = b0Ol(l 1
r2(4 1) = b0Ol(2 1
r2(5 1) = b0Ol(3 1
r2(6 1) = b0Ol(4 1

The virtue of this verbose solution is that it maintains all the necessary detail for symbolic 

execution of redefined and reference modified variables. Records (variables declared at the 

01 level) can also be redefined. This can be handled by treating all record declarations as one 

large super-record of which each defined record is a component. The current version of the 

SYM-BOL system determines the appropriate offset within this super-record and is thus 

partially prepared for the necessary modifications to incorporate character by character 

referencing of symbolic values.
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12.2 String, Unstring and Inspect

Of all the COBOL features these three verbs pose the greatest difficulty for symbolic 

execution. Consider the following record declarations and procedural fragment.

01 source-string pic x(10).
01 string-record.

02 delim pic x.
02 dest-string pic x(10).
02 point pic 99.

1 move " f "  to delim
2 move "abcdefghij" to source-string
3 move 1 to point
4 unstring source-string
5 delimited delim
6 into dest-string
7 pointer point
8 end-unstring

After execution of this program fragment the variables contain the following values:

source-string "abcdefghij" 
delim "f"
dest-string "abcde" 
point 7

Symbolic execution of this program fragment could mimic the execution and produce the 

same results. Suppose now that line 1 is changed to:

accept delim
There are 10 possible outcomes dependent on the value input to ‘delim’. The values of ‘point’ 

and ‘dest-string’ after execution with the input shown for ‘delim’ are as follows:

delim point dest-string
t 11
a 2
b 3 "a
c 4 "ab
d 5 "abc
e 6 "abed
f 7 "abcde
g 8 "abcdef
h 9 "abcdefg
i 10 "abcdefgh
j 11 "abcdefghi
k 11
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To express this symbolically requires either a new notation or a transformation for the string 

verb. The latter looks more promising. Consider the following which is a transformed version 

of the program fragment above: 

move 1 to point
perform until point = 11 or source-string(point : 1) = delim 

add 1 to point 
end-perform 
evaluate true 

when point = 11
move space to dest-string 

when point = 1
move space to dest-string 
add 1 to point 

when point > 1 and point < 11
move source-string(1:point - 1) to dest-string 
add 1 to point 

end-evaluate
This will be further transformed to replace ‘perform’ and ‘add’ by the standard forms.

A major effect of this transformation of the string verb is that path selection is now charged 

with the responsibility of deciding on where, if at all, the delimiter is to be found within the 

source string. Deciding on when to exit from the loop implicitly decides where the delimiting 

string is to be located. This is a satisfactory solution as a reasonable number of important 

boundary positions can be selected without the need for exhaustive coverage. This is in 

keeping with the path-based approach to testing. The above example caters for a single 

delimiter of only one character but the principle holds for multiple delimiters of size greater 

than one character.

Similar transformations are required for ‘string’ and ‘inspect’.
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12.3 Summary

The issue of string handling in symbolic execution is not discussed in the literature and no 

existing system appears to cater for string handling. Two facilities are provided in COBOL 

for string handling: reference modification and the string handling verbs.

Reference modification provides the ability to reference specific ranges of characters 

regardless of the grouping of characters determined by variable declarations. This mns 

contrary to the axiomatic principle of symbolic execution where symbolic expressions are 

maintained for each variable and no other unit of storage such as individual characters. 

However, there is no reason to suppose that symbolic execution cannot be extended to 

maintain symbolic expressions for individual characters. The means of achieving this are 

outlined earlier in the chapter.

The string handling verbs provide powerful string processing functions. One approach is to 

treat them as I/O boundaries and create new symbolic expressions noting the output 

expression. The insights and ingenuity of the user may be employed at this point by placing 

additional constraints on the new symbolic expression - in effect dynamically creating 

assertions. A second alternative is to transform the string handling verbs into a series of more 

elementary constructs each of which is more amenable to symbolic execution. A third 

approach uses the constructs from the second alternative to derive a set of predefined paths 

through the expanded construct. A PC and a set of variable expressions is produced for each 

path. Each of these paths is now treated as a possible branch when undertaking the symbolic
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execution. All of these approaches are novel ones for symbolically executing string handling 

functions. ^

The whole issue of transforming high-level constructs into lower-level forms suitable for 

symbolic execution raises an interesting question about the role of symbolic execution in 

higher level languages. Does symbolic execution have a role in testing software written in a 

4GL ? This issue is briefly addressed in the concluding remarks of the final chapter (13).
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CHAPTER THIRTEEN SUMMARY AND FURTHER WORK

13.1 Research aims

The research aims (reproduced from the front of the thesis) were:

1. Undertake a literature survey to review the existing symbolic execution testing systems

and establish their strengths and weaknesses.

2. Identify the problems facing the application of symbolic execution to commercial 

data processing software in particular to COBOL. This has not previously been 

undertaken by another researcher.

3. Propose means of overcoming the problems in creating a COBOL symbolic execution

testing system.

4. Devise an approach to path selection that:

a. selects more useful paths than existing symbolic execution systems;

b. utilises the results of symbolic execution in a bid to reduce the likelihood of 

selecting infeasible paths. Existing systems do not do this.

5. Identify problems facing the use of a linear programming routine to assess the 

feasibility of paths and to overcome these problems demonstrating the practicality of 

the technique in a COBOL system.

6. Demonstrate that these proposals are practicable by constructing a prototype symbolic

execution testing system for COBOL. No such system currently exists for COBOL 

or any other commercial data processing language. It is not considered possible within 

the time-scale of a Ph.D. to build a full system.

7. Identify further work necessary to turn the prototype into a full working system and 

to identify areas in need of further research.

Each of these aims is considered in turn.
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13.1.1 Existing symbolic execution testing systems

The associated published paper [Cowa88b] provides the only published review of existing 

symbolic execution systems. No system has previously been built to execute symbolically 

commercial data processing software. Of the systems that have been built many omit an 

assertion processing feature and many leave path selection entirely to the user without making 

use of the results of symbolic execution up to the branch under consideration. This is caused 

by these systems treating path selection and symbolic execution as independent activities, 

symbolic execution being undertaken after the whole path has been identified.

13.1.2 Problems of applying symbolic execution

There are several general problems facing its application. These include:

* ambiguous array references;

* path explosion when symbolically executing into called sub-programs;

* loop processing.

There are further problems more specific to the application of symbolic execution to COBOL. 

These include:

* large size of language, in particular large variety of branching constructs;

* several files of many records constitute a single test case for a path;

* mixture of interactive user input and reading of file data in a single test case;

* presence of strings in predicates to be solved when assessing path feasibility;

* redefinition of record structures and reference modification;

* string processing using string handling verbs.
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The SYM BOL system caters for most of these problems. Exceptions are redefinition, 

reference modification and the string handling verbs. Proposals for amending the system to 

cope with these features have been devised.

13.1.3 Large construct variety in COBOL

The large size of the language has been overcome by defining a core set of COBOL features. 

A set of standard forms has been established, one for each of: assignment; branching; and 

arithmetic calculations. By constructing a translator as the first part of the SYM-BOL system, 

a COBOL program using a wide range of COBOL features is transformed into an equivalent 

COBOL program containing only the standard forms.

The symbolic execution component of SYM BOL processes only the standard forms. This has 

two main benefits. First, development of the SYM BOL system could be carried out without 

concern for all the features of COBOL yet the system would process a working COBOL 

program. More COBOL features can be processed by adding translation functions to the first 

stage translator without the need to change the symbolic executor. Second, future changes to 

COBOL will require additions and changes only to the first-stage translator unless there are 

fundamental changes to the language. This is unlikely as COBOL has a long history of slow 

(perhaps too slow) change and most old features are supported in later language standards. 

Other systems make a single step translation into intermediate form. In the event of the 

addition of a new language construct or a modification to an existing language feature the 

whole translation software will be subject to modification.
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13.1.4 Path selection

Both automatic and user path selection mechanisms are included in the system. The automatic 

selector uses a combination of current variable expressions, branch coverage and variable 

domain coverage criteria to choose the next branch to be added to the path. The aim of the 

strategy is to achieve selection of feasible paths, coverage of each branch and the production 

of paths that cover large variable domains.

Both automatic and user path selectors utilize the benefits of undertaking path selection and 

symbolic execution together. The result is avoidance of selection of infeasible paths caused 

by branch predicates being infeasible based upon their current expressions. Immediate 

feasibility checking of the path condition once a branch has been added also prevents the 

creation of infeasible paths as an alternative branch can be selected as soon as the path 

condition becomes infeasible. This co-ordinated approach to path selection and symbolic 

execution is a significant advance on many of the earlier systems which treated the two 

processes separately one after the other. As a result, the creation of infeasible paths is 

reduced.

13.1.5 Using linear programming for feasibility checking

Fortunately, COBOL programs rarely exhibit non-linear predicates; thus linear programming 

optimizers are appropriate for feasibility checking. Predicates containing string constants are 

a problem as a string cannot be passed to a numeric optimizer. This has been overcome by 

replacing string constants by numeric tokens. The substitution has only one rule. The original
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sort sequence of all such substituted strings must be maintained. This transformation is 

sufficient to allow the successful use of a linear optimizer for feasibility checking. Previous 

research has not identified strings as a problem for feasibility checking using linear 

optimizers.

13.1.6 Practicality of a COBOL symbolic execution testing svstem 

The SYM-BOL system is not a complete system exhibiting all the desired features. 

Nevertheless, it is at such a stage of development that it provides all the expected features of 

symbolic execution such as:

* creates a path condition for a path;

* creates expressions for output variables;

* determines path feasibility;

* creates test data for a path;

* verifies simple assertions.

The system also includes some new features summarized earlier in this chapter:

* symbolically executes COBOL programs;

* assesses feasibility of path conditions containing strings;

* co-ordinates path selection and symbolic execution so reducing the number of

infeasible paths generated;

* displays branch coverage at each branch selection;

* maintains details of inter-relationships of records in files.
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There are some problems and impractical aspects of a COBOL symbolic execution testing 

system. The main ones are:

* presence of constructs of a high level of abstraction such as sort, inspect...;

* presence of string handling facilities making the maintenance of variable 

expressions rather cumbersome.

These are not insurmountable. A more pertinent question is whether the means of overcoming 

the impracticalities outweigh the benefits to be gained. The maintenance of the relationship 

between records in different files is at the heart of testing commercial data processing 

software. SYM-BOL keeps track of these aspects and whilst, in practice, it is not a trivial 

matter it is not conceptually difficult. The benefits are the documentation of the testing 

activity which is a valuable benefit not outweighed by the need to maintain the information. 

The major weaknesses of SYM-BOL are primarily those of symbolic execution in general 

rather than of symbolic execution applied to COBOL. Symbolic execution is in some ways 

more useful when applied to COBOL programs because it can keep track of the error prone 

task of record interrelationships, a feature not required by other classes of software.

13.2 Strengths of the SYM-BOL system

Predicates containing string constants cannot normally be passed to a numeric optimizer as 

part of a system of constraints representing the path condition. An effective technique has 

been devised to allow substitution of these string constants with numeric tokens.
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Path generation and symbolic execution are undertaken together. This allows the intermediate 

results from the symbolic execution to help in path selection and reduces the risk of selecting 

infeasible paths.

During path selection branch coverage is maintained allowing selection of uncovered branches 

in preference to already covered branches.

Commercial data processing software exhibits multiple input and output files. The system 

maintains symbolic values for each field in each record in each input file and expressions for 

each field in each record in each output file.

In addition to generating feasible path conditions the system also devises test data to cause 

execution of the path. This is organised into data files such that the program under test oan 

simply be executed without the need for user intervention to create the test files.

13.3 Weaknesses of the SYM-BOL system

In its current prototype form SYM-BOL exhibits a number of weaknesses.

First, the number of COBOL constructs that may be used in the source program is restricted. 

Some of the accepted constructs are accepted only in limited forms. It is however debatable 

as to whether this is a weakness of the SYM BOL system or of the COBOL language itself.
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Second, validation of the input source program for non-acceptable constructs and the quality 

of diagnostic messages is weak.

Third, the system does not record the state of the path condition and variables at each branch 

point. This is necessary when the system is to provide replay and retrace facilities such as 

those provided by EXDAMS [Balz69]. However, this was not established as a fundamental 

requirement of the system and it would not be a difficult omission to rectify.

Fourth, the analysis of the intermediate form for path selection and symbolic execution is 

based on the transformed ‘source’ program rather than the original source program. Whilst 

this has some advantages it also means that the user is presented with information that is not 

necessarily congruent with the source program submitted to the system. This would not be 

a problem if the information was cross-referenced to the original source program but at 

present no cross-referencing is undertaken.

Fifth, the user interface is rather crude, driven from a menu in teletype mode, with, as a 

result, poor screen handling.

Sixth, because the system was constructed as a prototype it suffers from: excessively modified 

modules in need of rewriting; modules that contain only minor differences from other 

modules; inelegant algorithms which could be improved significantly.
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Finally, perhaps COBOL is not regarded as one of the best languages for building software 

tools. However, many of the alternatives had major weaknesses such as not easily supporting 

the implementation of data hiding within modules. COBOL posed no such problems and is 

quite suitable for much of the housekeeping processing that is required.

13.4 Further work on the SYM-BOL system

At present a large subset of the COBOL language is acceptable as input to the SYM BOL 

system. To increase this to the point where all COBOL programs conforming to the 1985 

standard can be submitted to the SYM BOL system a number of enhancements need to be 

made:

* validation and filtering of excluded features;

* allowing all variations of ‘perform’;

* simplification of complex expressions;

* expansion of working storage capacity;

* transform all forms of evaluate to the evaluate standard form;

* maintain the state of the PC and variables at each branch point allowing retrace 

and replay.

These are comparatively minor upgrades to the current system.

239



Chapter 13 Summary and Further Work

More major work includes catering for:

* relative and indexed files;

* record redefinition;

* the string processing verbs and reference modification.

Arguably, the perennial symbolic execution problem of ambiguous array references could be 

added to the list but this seems unhelpful as there seems to be a consensus opinion among 

many researchers which regards this requirement for the availability of dynamic execution 

data values by a static analysis strategy as insurmountable in any sensible way.

Following improvements to the SYM-BOL system research into the use of the system in 

practice is required. This could be an extensive research project in itself.

First, general assessment of the usefulness of the tool in practice should be undertaken to 

determine which facilities and information are useful, which redundant and which missing 

from the system. One could argue that this should have been established in the early stages 

of the research but as with all problem solving activities there is a need for review and 

reassessment.

Second, an analysis of the two modes of path selection, automatic and user, should be made. 

Over the duration of this research the author has gradually changed his view. At the outset 

he had blind faith in the notion of a fully automated path and test case generator. Now he
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accepts that only some of the user’s useful heuristics can be sensibly incorporated into an 

automated testing system. Further, the more useful tools will be the ones that best support 

the user, in preference to those that attempt to replace the user. This requires further 

investigation.

Third, an empirical investigation into the number of loop iterations needed to achieve given 

levels of coverage is required. A hypothesis for testing could be that only one path is required 

through a typical commercial data processing program to achieve total branch coverage. The 

level and nature of the deviation from this premise are of interest.

Fourth, undertake an investigation to determine the situations which would benefit and those 

which would suffer from symbolically executing modules using macro-expansion or creation 

of an I/O boundary. Identification of situations which would benefit from the application of 

both techniques would also be of interest.

Fifth, evaluate the practicality of developing a set of standard assertions for inclusion in file 

processing software.

Sixth, establish standard forms for high-level constructs such as ‘sort’ and ‘unstring’, and 

establish key paths through the standard form for inclusion on the PC.
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13.5 Symbolic Execution of the General Features of Programming Languages

The theory of programming languages provides a set of general program features. Figure 13.1 

contains an illustrative, though not necessarily complete, list of such features. Not all of these 

features are to be found in all languages. Nevertheless, when assessing the usefulness of a 

technique it is helpful to consider it in terms of the general features of programming 

languages rather than to limit the discussion to one particular language. The final sections of 

this thesis briefly consider the usefulness of symbolic execution when applied to programs 

in general and also the effectiveness of the SYM-BOL system for COBOL programs.

Figure 13.1 lists the general features of programming languages and shows whether symbolic 

execution in general, and the SYM-BOL system in particular, deal effectively with them. The 

list is split into two parts. The first contains the elementary features involving declaring, 

initializing and reassigning values to variables plus the basic flow of control mechanisms and 

simple VO. The second part contains the more difficult areas of procedural decomposition and 

data structuring. It is clear that the part one features are effectively handled by symbolic 

execution .The effectiveness of symbolic execution in dealing with the part two features is 

not quite so clear cut and is worthy of further discussion. SYM-BOL caters for nearly all of 

the part one and many of the part two language features that are implemented in COBOL. 

This provision is superior to most of the other symbolic execution tools.
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PART ONE - ELEMENTARY FEATURES 
names, references and values 
synonyms
typing, declarations and initializations
assignment
expressions
lazy evaluation of logical expressions 
keyboard, screen and printer I/O 
secondary storage I/O, files 
flow of control constructs 

sequence
unconditional non-returning transfer of control 
selection

2-way branch 
n-way branch 

iteration
fixed number of iterations 
pre-condition loop 
post-condition loop

PART TWO - DECOMPOSITIONAL FEATURES 
module call

global-only call 
parameterless call 
parameter-global call 
parameter-only call 
function 
procedure 
parameter passing 

call by value 
call by reference 
call by name 

recursion 
parallelism 

data structuring 
strings 
arrays
files (direct access) 
records
files (sequential)
dynamic structures and pointer references 
sets

Symbolic SYM-BOL 
execution in 

in general particular
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y 
D 
D 
D

D
D
D
Y
Y 
D 
D

Y Effectively handled 
N Not handled
D Effectiveness not clear cut- discussed in section 13.5 
N/A not applicable — COBOL does not support the feature

Figure 13.1 Ability of symbolic execution to cope with the general
features of programming languages and provision in SYM-BOL

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y

Y 
N 
N
Y
N/A
Y
Y
Y
N/A
N/A
N/A
D
D
N
Y
Y
N/A
N/A
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13.5.1 Module Calls

A module call is any invocation of out-of-line code. At the point where control is passed to 

the out-of-line code there is a choice over whether to use macro-expansion or the lemma 

approach. This does not cause a difficulty but merely presents a choice of approaches. By 

considering the position of the variable declarations for variables used in both the calling 

program and the called routine a spectrum of module calls can be identified ranging from the 

global-only to the parameter-only.

The simplest module call may be termed a ‘global-only call’. Here, the variables declared in 

the calling program are the only variables used in the module i.e. only global variables are 

in use. Symbolic execution in general and also the SYM BOL system can sensibly deal with 

these routines, the PC and variable expressions are updated in the usual way.

The next module call can be described as the ‘parameterless call’. Here data is passed 

between called and calling programs by using global variables, but local variables may also 

be in use within the module. When the same identifier is used for both local and global 

variables symbolic execution must be careful to modify only expressions for local variables. 

Other than this, the use of local variables does not cause a complication for symbolic 

execution. The SYM BOL system does not cater for this form of module call.

The worst module to execute symbolically is what can be termed the ‘parameter-global call. 

This type of call passes parameters but also produces side effects in global variables. As a 

result it suffers the same difficulty as the parameterless call but in addition some results are
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returned by a parameter mechanism. Care must be taken to avoid amending both local and 

parameter expresions for variables with the same identifier in both module and calling 

program. Symbolic execution can cope with this type of module but the SYM BOL system 

has not been designed to cater for such module calls.

The neatest module to execute symbolically is the parameter-only module caU. Here, the 

source data received from and the results returned to the calling program are passed only by 

parameter passing mechanisms. Symbolic execution of the module can be undertaken 

independently of or in concert with the calling modules. The SYM-BOL system has been 

designed to process such module calls.

13.5.1.1 Parameter Passing

When a module is invoked the actual parameters provided in the calling program must be 

supplied to the formal parameters in the module. Barron [Barr77] identifies three main means 

of passing parameters: 

call by value; 

call by reference; 

call by name.

Pratt [Prat84] identifies more categories of parameter passing but these do not need any 

additional techniques above those required by the three mechanisms listed above.

A ‘call by value’ simply supplies a copy of the value in the actual parameter to the formal
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parameter. Symbolic execution processes this call by simply copying the expression for the 

actual parameter to the expression for the formal parameter. This has been implemented in 

SYMBOL.

A ‘call by reference’ supplies a reference (or address) of the actual parameter to the formal 

parameter. Any change to the formal parameter is a change to the actual parameter as the 

actual and formal parameter identifiers are in effect synonyms for the same storage location. 

Symbolic execution can handle this in two ways.

First, it can treat the call in much the same way as for call by value, i.e. the expression for 

the actual parameter is copied to the expression for the formal parameter. In addition the 

evaluation of the actual parameter is pushed onto a call stack. Immediately on return of 

control to the calling program the actual parameter is popped from the stack and the 

expression for the formal parameter is copied to the expression of the actual parameter.

Second, the actual and formal parameters can be treated as though they were synonyms. 

Whenever a change is made to a formal parameter it is the expression for the actual parameter 

which is modified.

As both of these approaches mirror established means of implementing call by reference and 

their effect is equivalent there is no reason to choose one approach over the other. SYM BOL 

is designed to handle call by reference by the second approach using the same mechanism
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that handles simple variable redefinition.

A ‘call by name’ defers the evaluation of actual parameters until they are used. It is the called 

module that determines when, if ever, they are evaluated. The effect is as though the actual 

parameter is substituted in place of every occurence of the formal parameter in the called 

module before execution of the module commences. A simple example of the effect of call 

by name compared to call by reference is given by Pratt [Prat84]. Consider the program 

fragment in figures 13.2a and 13.2b based on Pratt’s example.

In figure 3.2a the effect of calling module r by reference is to pass the address of m and c(2) 

into the formal parameters i and j respectively. When module r is executed the final values 

for i and j are 3 and 9 respectively and these are held in the actual parameters m and c(2). 

On return to the main program the values in m and c(m) are displayed giving 3 and 7 on the 

screen, the latter value being unchanged by the call.

In figure 13.2b the same program as the one in figure 13.2a is executed; the only difference 

between the programs is the parameter passing mechanism which is changed to call by name. 

(Note that this is not legal COBOL and is given only for illustrative purposes.) This time 

when module r is called the name of the actual parameters are passed to the formal 

parameters; thus variables i and j take the values ‘m’ and ‘c(m)’ respectively. These 

expressions, consisting of single variable names, are evaluated afresh as they occur in the 

called module during its execution.
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identification division, 
program-id. callbyreference, 
data division, 
working-storage section.
01 X pic 9.
01 m pic 9.
01 filler.

03 c occurs 9 pic 9. 
procedure division, 
paral.

move 9 to c(l) 
move 8 to c(2) 
move 7 to c(3) 
move 2 to m
call "r" using reference m

reference c(m)
display m c(m) 
stop run.

out : m = ''m
c (m) = ^c(2) 

display 3 7
in: m = 3  

c(2) = 9

in: 1 = m 
j = "0(2)

2 out : i = "m = 3  
8 j = "c(2)= 9

identification division, 
program-id. r. 
data division, 
linkage section.
01 i pic 9.
01 j pic 9.
procedure division using i j. 
para2.

add 1 to i i = 3
add 1 to j i = 9
exit program, 

end program r.
end program callbyreference.

Figure 13.2a The Effect of Call By Reference

When the instruction ‘add 1 to i’ is encountered it is treated as though the variable i had been 

textually substituted by the actual parameter, m, giving a new value of m = 2 + 1 = 3. This 

behaves in the same way as call by reference. Execution of the next line ‘add 1 to j ’ is treated 

as though it read ‘add 1 to c(m)’. This is now evaluated for the first time so that c(3) = 7 + 

1 = 8. This result is quite different from call by reference. On return to the main program the 

values 3 and 8 will be displayed.
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identification division, 
program-id. callbyname. 
data division, 
working-storage section.
01 X pic 9.
01 m pic 9.
01 filler.

03 c occurs 9 pic 9. 
procedure division, 
paral.

move 9 to c(l)
move 8 to c(2)
move 7 to c(3)
move 2 to m
call "r" using name m

name c (m)
display m c (m) 
stop run.

identification division, 
program-id. r. 
data division, 
linkage section.
01 i pic 9.
01 j pic 9.
procedure division using i j 
para2.

add 1 to i 
add 1 to j 
exit program, 

end program r.
end program callbyname.

c(l) = 
c (2) = 
c (3) = 
m = 

out : m = 
c (m) =

7
8 
7 
2

' m '
'c (m) 

display 3 8

in: 1
j

i
j

'c (m) '

in: m = 3  
c(3) = 8

out : i
j

m = 2  + 1 = 3
c(3) = 7  + 1 = 8

Figure 13.2b The Effect of Call By Name

Symbolic execution of call by name is achieved by passing the name of the parameter rather 

than by passing the expression that represents the current evaluation of the parameter name. 

During execution of the called module whenever a formal parameter is encountered it is 

substituted by the parameter name. Thereafter symbolic execution continues as usual.

A further means of parameter passing is ‘call by value and pass back’, alternatively known 

as ‘call by value/result’. This is implemented in much the same way as ‘call by value’. On
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invocation the contents of the actual parameters are copied into the formal parameters. On exit 

the contents of the formal parameters are copied back into the actual parameters. This appears 

to achieve the same results as ‘call by reference’ but the two methods are not semantically 

equivalent. Myers [Myer78] gives an example to demonstrate that the four means of 

parameter passing discussed above can yield four different results. When implementing a 

symbolic execution tool care must be taken to ensure that the semantic differences between 

the various parameter passing mechanisms are maintained.

In short there are three fundamental parameter passing mechanisms illustrated by the 

following:

call "r" using value c(m) value passed 8 

call "r" using reference c(m) value passed c(2)

call "r" using name c(m) value passed c(m)

All of these are easily symbolically executed in the normal way. The value ‘8’ can be 

instantly included in an expression. The value c(2) is replaced by its ciurent expression which 

is then incorporated into in an expression. The value ‘c(m)’ undergoes two substitutions prior 

to inclusion in an expression. First, substitute ‘m’ by its current expression. Second, substitute 

the whole of the resulting expression by its current expression. Now it is ready for final 

inclusion in an expression. All of these steps are part of general symbolic execution and so 

none of the three parameter passing mechanisms poses a difficulty for symbolic execution.
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13.5.1.2 Recursion

"The only difference between a recursive call and an ordinary call is that the recursive call 

creates a second activation of the subprogram during the lifetime of the first activation" 

[Prat84]. Compilers cope with this difference by the use of a central stack to store the 

activation records. Symbolic execution can cope with recursion in much the same way. When 

a recursive call is made the current activation containing the expressions for all variables is 

pushed onto the central stack. Parameter passing is handled in the usual way as described in 

the previous section. On exit form the recursively called module the central stack is popped 

and the activation yielded replaces the current activation.

Recursion is not supported by COBOL and is, therefore not a feature of SYM BOL.

13.5.1.3 Parallelism

There are two approaches to executing symbolically concurrent modules: the interleaving and 

the isolation approaches [Dill88].

The interleaving approach merely combines the concurrent modules to form a larger 

sequential module. This suffers from a combinatorial explosion of paths which grows 

exponentially with the number of modules. In addition there are difficulties in demonstrating 

that the form of interleaving chosen does not overlook a potential behaviour.

The isolation approach symbolically executes the concurrent modules independently then
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attempts to show that the concurrent modules cooperate and do not suffer from deadlock. 

Entry assertions for a module specify the constraints on global constants i.e. the nature of the 

environment. Exit assertions specify the relationship between a module’s local variables on 

termination. Global invariants specify the relationship between variables in different modules. 

Path conditions are generated for each module to demonstrate its local correctness. Path 

conditions used in demonstrating local correctness together with global invariants on the local 

paths are combined to produce verification conditions. If the verification conditions are 

feasible then the global invariants are upheld and cooperation between parallel modules is 

demonstrated.

Demonstrating the absence of deadlock requires the creation of an assertion that countenances 

deadlock. Dillon [Dill88] lists three such syntactic features. These can be used to generate a 

blocking assertion. If a path containing a blocking assertion is not contradictory then it is prey 

to deadlock.

Concurrent execution of modules is not provided in COBOL and so this feature is not 

provided in SYM BOL.

13.5.2 Data Structuring

Discussion so far in Section 13.5 has concentrated on symbolic execution’s ability to cater 

for the features of procedural decomposition provided by programminmg languages. Data 

structuring also provides problems worthy of consideration. Symbolic execution of atomic

252



Chapter 13 Summary and Further Work

data items is reasonably straightforward but compound data items, which are aggregates of 

simple items, require more sophisticated handling. Sometimes, the aggregates are manipulated 

as a whole, on other occasions reference to the individual components is required.

Barron [Barr77] classifies data aggregates into two as follows:

Arrays: are aggregates in which the components are identifed by their position within

the aggregate.

Structures: are aggregates in which the components are identifed by name.

This classification appears to omit a category for files and dynamic data structures which 

make use of pointers. A further category, ‘sequence’, may be defined.

Sequences: are aggregates in which the components are not identifed but are retrieved 

simply in the order of storage.

Unfortunately, this still leaves sets unclassified. The fact that a set contains unordered items 

conflicts with the members of the sequence class where order is important. Sets therefore 

constitute a class of their own.

Sets: are aggregates in which the components are not identifed and are not retrieved

by use of the order of storage.

13.5.2.1 Arrays

Arrays, strings and direct access files can all be placed in Barron’s array class.
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The well known problem of symbolic execution of arrays is the ambiguous array reference. 

Here, the index is dependent on one or more input variables. As a result it is not resolved 

which element is to be the destination for an assignment or which element is to be compared 

in a condition test.

Strings can be processed in two ways. First, they can be processed as a whole and as such 

can be symbolically executed provided the techniques such as those described in this thesis 

are employed to deal with difficulties faced in feasibility checking. Second, strings can be 

processed as though they are an array of characters. In this situation their symbolic execution 

is subject to the same difficulties as arrays in general.

Records held within direct access files, like elements within arrays and characters within 

strings, are identified by their position within the file. The key field may be subjected to a 

hash function to yield the location within the file of the desired record but this merely 

constitutes a ‘coded’ identification by position. Again, as with arrays, if during symbolic 

execution the expression for the desired key is dependent on input variables then ambiguous 

references result.

Overall, Barron’s array class is problematic for symbolic execution for just the reason that 

constitutes the rule of membership of the class. Identification by position, cannot easily be 

handled when the position is dependent upon input variables.
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13.5.2.2 Structures

Many languages use the term ‘record’ to refer to structures. Here component items are 

identified by name. Symbolic execution has no problem in performing the basic processing 

of items identified by name. The only difficulty that arises is in feasibility checking.

A record structure comprises several elementary items. Each item may be the subject of a 

component constraint on a path condition. The whole record may also be the subject of one 

or more constraints. There is a risk that conflicting constraints may go undetected because the 

relationship between a whole record and its component items is not apparent to the feasibility 

checker. This can be overcome by breaking down constaints containing whole records into 

several constraints on its components. Any contradictions will now be apparent during 

feasibility checking.

13.5.2.3 Sequences

This classification includes sequential files and dynamic data structures which make use of 

pointers. The main feature of this class is that items are retrieved simply in the order of 

storage. The problem for symbolic execution is to maintain information about the sequence 

of the items.

Sequential files can be handled quite simply. Each time a record is read a position counter 

is incremented. Each symbolic value introduced as result of this read is tagged with the
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position counter. Account must be taken of the position counter tag when generating files of 

test cases ready for execution in order to achieve the correct ordering of records in the file.

When a file is opened symbolic execution notes the opening and the access mode. Should 

a read be attempted on an unopened file or on a file opened only for output symbolic 

execution will detect this. Similarly, symbolic execution will detect attempts to write to 

unopened files or files opened only for input. The end of file test can also be handled by 

symbolic execution by, if necessary because the language does not provide for such an item, 

creating a data item to indicate whether the file is open or closed.

The pointer used in maintaining dynamic data structures is simply an address for the storage 

location of the item. Any list or sequence that is implemented using pointers can also be 

implemented using a static mechanism such as an array and replacing the pointer by an 

integer subscript.

Symbolic execution can make use of this alternative implementation by using it as model for 

dynamic sequences. A relative pointer (subscript) can be maintained based on the starting 

position of the sequence. Symbolic execution merely increments the relative position each 

time progression to the next item takes place. The expression for the pointer is used only to 

indicate the position in the sequence for the purpose of generation of test data. As the pointer 

value is inaccessible within the program no information is lost by adopting this approach.
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The only difficulty with the relative-position-pointer approach occurs when items are deleted 

from the sequence. There appears to be two possible approaches. First, the whole set of 

pointer expressions must be appropriately adjusted each time a deletion takes place. Second, 

the set of pointer expressions are left intact and the details of the deletion noted. Immediately 

prior to the generation of test data or feasibility assessment the pointer expressions must be 

adjusted. Both of these approaches are unweidly for large sequences. However, it is unlikely 

that symbolic execution would be used in the creation of large sequences for validation and 

verification purposes so in practice this is unlikely to pose a significant problem.

13.5.2.4 Sets

There are two categories of operation on a set. First, a set can be tested for emptiness or to 

determine whether an item is a member of the set. Second, the contents of a set can be 

modified by: insert; delete; union; intersection; and difference operations.

When symbolic execution makes a membership test on a set the two possibilities of true and 

false can be instantly assessed by searching the list of values (expressions) that constitute the 

list. If a matching expression is found then the predicate is true and the constraint can be 

ignored. If no matching expression is found then it either indicates that the search argument 

is not in the set or that the matching expression is not in a recognizable form or that the 

match cannot be be resolved because of the presence of symbolic values for input variables. 

In this case the expression being sought is to be conjoined to the PC. This is problematic 

because no straightforward constraint(s) can be found to represent such a predicate when the
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set may contain anything other than a limited number of values.

When symbolic execution encounters an empty test on a set the truth can be resolved simply 

so long as the number of items in the set has been maintained. In essence this requires the 

symbolic executor to simulate the implementation of the set constructs. This is similar to the 

methods required for handling other high-level constructs.

A list of the symbolic expressions that constitute the items in the set can be maintained by 

the symbolic executor. There is no difficulty in symbolically executing operations that require 

only the addition of new items so insert and union can be handled successfully. But, again 

as with testing for set membership, recognition of the expression that represents an item to 

be deleted is a problem. Thus delete, intersection and difference cannot be guaranteed to be 

symbolically executed correctly.

13.6 Concluding Remarks

There are two important questions to be answered at this stage. First, can symbolic execution 

be usefully applied to programming languages in general ? Second, can symbolic execution 

be applied to commercial data processing software in particular to COBOL programs.

All the elementary features of programming languages can be handled by symbolic execution. 

Of the more sophisticated decompositional features many can be handled in a straightforward
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manner. The more advanced features of module calling such as call by name, recursion and 

parallelism can be handled with the introduction of additional supporting mechanisms not 

developed when the technique was first muted some 15 or so years ago.

The one stumbling block for symbolic execution is the array. However, the adoption of the 

viewpoint that sees determining a value for an ambiguous array reference as a matter for path 

selection allows the technique to progress and provide useful results otherwise unobtainable.

Whether symbolic execution can be applied to commercial data processing software and in 

particular to COBOL programs requires the answer to address the following:

* general problems of symbolic execution that apply to COBOL programs;

* specific problems that COBOL brings to symbolic execution;

* unsurmounted problems and their level of detraction from the usefulness of the

technique.

The literature describes two main problems facing the general application of symbolic 

execution. These are:

* ambiguous array references;

* path selection especially loops and module calls.

Earlier it was suggested that ambiguous array references can be handled as another aspect of 

path selection. By choosing a particular index value a virtual path is selected. This could be 

accomplished by inserting an n-way branch, where n is the number of elements in the array,
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into the program at the point where an ambiguous array reference occurs. Resolving 

ambiguous array references in practice then becomes a matter of path selection. This view 

reduces all the general problems to one of path selection.

The notion of path selection as a problem for symbolic execution has stood for some time and 

needs challenging. Path selection is a part of the structural approach to testing software. 

Symbolic execution is a technique that creates expressions for variables and isolates the 

conditions that must be true to cause execution of a particular path. These results are useful 

when testing software. The goal is to carefully test the software not merely to undertake 

symbolic execution for its own sake. Whether symbolic execution is used or not, path 

selection is fundamental to the structural approach to testing. A major problem of path

selection is the avoidance of infeasible paths. Symbolic execution can be used to assess path

feasibility. Symbolic execution may more properly be viewed as a technique for aiding path 

selection rather than the more usual view that path selection is a hindrance to symbolic 

execution.

The specific problems that COBOL brings to symbolic execution revolve around:

* high level of abstraction of many COBOL constructs;

* low level of data referencing possible in COBOL.

Assignments of the form: move a to b

are of a low level of abstraction when compared to the following:

inspect a tallying in b for all c
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Data references may be partitioned into two types. Consider the following data declarations

and three data references:

a pic x(10).
b pic x(5) occurs 10.

1. a
2. a (5:3)
3. b(6)

The first reference refers to all of the characters assigned to the identifier ‘a ’. References two 

and three refer to a subset of the characters assigned to identifiers ‘a’ and ‘b’, the fifth, sixth 

and seventh characters of ‘a’ and the sixth element of ‘b’ respectively.

13.6.1 High level constructs

At first sight there seems to be little to be gained from substituting high level constructs with 

more detailed equivalent code before symbolic execution. This amounts to macro-expansion 

of functions that are known to be correct which could alternatively be treated as an I / O  

boundary. On the other hand, the code that is substituted has a set of paths which, if fully 

explored, would give rise to a set of test cases which would test in some detail the output 

possibilities of the high level constmct. In the same way that symbolic execution systems 

should give the user a choice over whether to employ macro expansion or to use an I / O  

boundary for module calls, the same facility may also be provided for higher level constructs. 

It is not necessarily the module or the construct that is being assessed rather it is the use of 

the module or construct within the program that is on trial. Not only is this approach useful 

for COBOL but it also has application in the testing of higher level languages. The tester may 

be prompted to make choices about the nature of the data in a particular test case. This can 

be achieved using construct standard forms and path selection.
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13.6.2 Low level data referencing

The notion of the identifier as the lowest level data reference is inadequate to cater for string 

processing. By maintaining expressions for individual characters symbolic execution can cater 

for all features of COBOL programs. The use of data usages other than display, such as 

binary and computational, does not impact upon symbolic execution as the procedural part 

of the source program is unaffected by this hidden data representation.

13.7 Conclusion

It is clear that symbolic execution can be applied to COBOL programs and used to verify 

simple assertions and generate files of test cases ready for execution. Further research is 

needed to establish whether the effort required to use such a COBOL tool might be better 

spent in using an alternative approach to software testing. The SYM BOL prototype is a 

strong basis from which to undertake this research.
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Appendix A Testing a sequential update program using SYM BOL

The SYM BOL system displays two menus for selecting options within the system. These are 

shown below. In the following log of a session using SYM BOL the menus are not repeated 

each time they would be displayed but instead they are abbreviated to the menu headings.

MAIN MENU

0 - Quit
1 - Pre-process COBOL source
2 - Automatic Path Selection
3 - User Path Selection - Feasibility Every Branch
4 - User Path Selection - Feasibility End of Path
5 - Generate Files of Test Data
6 - Execute program under test
7 - Inspect Results Files
8 - Erase SYM-BOL Generated Files
Enter choice [0] :

INSPECTION OF RESULTS FILES MENU

0 — Quit
1 — se2cond.dat
2 - tok.dat
3 - * .cob
4 - pnod*.dat
5 — path*.dat
6 - *pc*.dat
7 - V * .dat
8 - Ip*.*
9 - t3*.*

10 - P5*.*
11 - free format
Enter choice [0]
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ZEU$ se p5 Invoke SYM-BOL to 
analyze p5.cob

SYM-BOL
COBOL SYMBOLIC EXECUTION TESTING SYSTEM 
Program under test : P5.C0B 
MAIN MENU

Enter choice [0] 

Enter choice [0]
INSPECTION OF RESULTS FILES MENU

Inspect Results Files 

*.cob

Directory $1$DIB1:[LCS.PD_COWARD.CSE]
P5.C0B;1
Total of 1 files.
Which file do you want to view? [exit] : pS.cob

Identification Division.
P rogram-id. p5.
* Loosely based on a program taken from Parkin
* 'COBOL for students' 2nd Ed, 1982
Environment Division.
Input-output Section.
File-control.

select fa-old-master assign to p5om.
select fb-trans assign to p5tr.
select fc-new-master assign to p5nm.
select fd-print-file assign to p5pr.

Data Division.
File Section.

The source program 
to be analyzed

fd fa-old-master record varying depending wa-length
01 fa-old-master--rec pic X (17) .
fd fb-trans record varying depending wb-length.
01 fb-trans-rec pic x(18) .
fd fc-new-master record varying depending wc-length
01 fc-new-master--rec pic x(17).
fd fd-print-file record varying depending wd-length
01 fd-print-rec pic x(132).
Working-Storage Section.
01 wa-old-master-rec.

02 wa-customer-no pic 9(6).
02 wa-customer-name pic x(10)
02 wa-credit-code pic x.

01 wa-length
01 wb-trans-rec.

02 wb-trans-type

comp pic 999 

pic X .
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01
01
01

01

88 insertion 
88 amendment 
88 deletion 

02 wb-trans-detail.
03 wb-customer-no 
03 wb-customer-name 
03 wb-credit-code 

wb-length comp
wc-length comp
wd-length comp

value 
value "a 
value "d”

« a  tt

pic 9(6). 
pic x(10) 
pic X .  
pic 999 
pic 999 
pic 999

value 18. 
value 17. 
value 132

wg-error-messages.
02 filler pic x(36)

value "insertion - record already on master" 
02 filler pic x(36)

value "no master record for this customer".
01 wg-messages redefines wg-error-messages

02 wg-message 
01 wg
01 wh-global-conditions.

01

01

01

0 1

pic x(36) 
occurs 2. 
pic 99.

02 wh-eof-old-mast-flag pic X .
88 not-eof-old-master value "f"
88 eof-old-master value "t".

02 wh-trans-eof-flag pic X .
88 not-eof-trans value "f".
88 eof-trans value "t".

wi--page-heading.
02 wi-page-heading-1.

03 filler pic x(13) value spaces.
03 filler pic x(42)

value "customer master file update - error report"
03 filler pic x(9) value " page".
03 wi-page-counter pic z9.

02 wi-page-heading-2.
03 filler pic x(31)

value "oust # cust name cred tr".
wj--error-line.
02 wj-customer-no pic 9(6) .
02 filler pic x(4) value spaces.
02 wj-customer-name pic x(10).
02 filler pic x(4) value spaces.
02 wj-credit-code pic X .
02 filler pic x(4) value spaces.
02 wj-trans-type pic X .
02 filler pic x(4) value spaces.
02 wj-message pic x(36) .
wk--report-footing.
02 filler pic x(13) value "end of report
wl--page.
02 wl-page-counter pic 99 value 1.
02 wl-line-counter pic 99 value 0.
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Procedure Division, 
al-update-customer-master.
' get first transaction record 

open input fb-trans 
move "f" to wh-trans-eof-flag 
read fb-trans into wb-trans-rec 
end

display "program error al - empty transaction file" 
display "customer master file update terminating" 
close fb-trans 
go stop-run 

end-read
=■ get first master record

open input fa-old-master 
move "f" to wh-eof-old-mast-flag 
perform b3-read-fa-old-master
initialize error report
open output fd-print-file
move wl-page-counter to wi-page-counter
write fd-print-rec from wi-page-heading-1 after advancing 1 
write fd-print-rec from wi-page-heading-2 after advancing 2 
compute wl-line-counter = wl-line-counter + 3

 ̂ open new master
open output fc-new-master
perform bl-process-trans until eof-trans
close fb-trans
perform b2-write-and-read-master until eof-old-master 
close fa-old-master fc-new-master
write fd-print-rec from wk—report—footing after advancing 2 
close fd-print-file 
go stop-run.

bl-process-trans.
perform b2-write-and-read-master

until eof-old-master or wa-customer-no not < wb-customer-no
process transaction record
if not-eof-old-master and wa-customer-no = wb-customer-no 
then

if amendment 
then

update old master
if wb-credit-code not = space
then

move wb-credit-code to wa-credit-code 
end-if
if wb-customer-name not = space 
then

move wb-customer-name to wa-customer-name 
end-if 

else
if deletion 
then

perform b3-read-fa-old-master 
else

move 1 to wg
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perform cl-generate-error-message 
end-if 

end-if 
else

if insertion 
then

write fc-new-master-rec from wb-trans-detail 
else
move 2 to wg
perform cl-generate-error-message 

end-if 
end-if
read fb-trans into wb-trans-rec 
end

move "t" to wh-trans-eof-flag 
end-read.

b2-write-and-read-master.
write fc-new-master-rec from wa-old-master-rec 
perform b3-read-fa-old-master.

b3-read-fa-old-master.
read fa-old-master into wa-old-master-rec 
end

move "t" to wh-eof-old-mast-flag 
end-read.

cl-generate-error-message. 
if wl-line-counter > 2 0  
then

compute wl-page-counter = wl-page-counter + 1 
move wl-page-counter to wi-page-counter 
write fd-print-rec from wi-page-heading-1 

after advancing page 
write fd-print-rec from wi-page-heading-2 

after advancing 2 
move 0 to wl-line-counter 

end-if
move wb-customer-no to wj-customer-no
move wb-customer-name to wj-customer-name
move wb-credit-code to wj-credit-code
move wb-trans-type to wj-trans-type
move wg-message (wg) to wj-message
write fd-print-rec from wj-error-line after advancing 2 
compute wl-line-counter = wl-line-counter + 2.

stop-run.
stop run.

end program p5.
Directory $1$DIB1:[LCS.PD_COWARD.CSE]
P5.C0B;1
Total of 1 files.
Which file do you want to view? [exit] : exit
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MAIN MENU
Enter choice [0]

Pre-processing of COBOL source
0 - Quit
1 - Include Assertions
2 - Exclude Assertions

Enter choice [0] : 2

Pre-processing of COBOL source Started 
Pre-processing of COBOL source O.K.

Enter choice [0]
MAIN MENU

INSPECTION OF RESULTS FILES MENU
Enter choice [0] : 1

Directory $1$DIB1:[LCS.PD_COWARD.CSE] 
SE2C0ND.DAT;1 
Total of 1 file.
Which file do you want to view? [exit] se2cond.dat

insertion
amendment
deletion
not-eof-old-master
eof-old-master
not-eof-trans
eof-trans

wb-trans-type
wb-trans-type
wb-t rans-type
wh-eof-old-mast-flag
wh-eof-old-mast-flag
wh-trans-eof-flag
wh-trans-eof-flag

_ f i j ^ n

=  " a "  

= "d"_ t i f i t

= "t"
=  ”  f  "

= "t"
Directory $1$DIB1:[LCS.PD_COWARD.CSE]
SE2C0ND.DAT;!
Total of 1 file.
Which file do you want to view? [exit] :

INSPECTION OF RESULTS FILES MENU
Enter choice [0] : 2
Directory $1$DIB1:[LCS.PD_COWARD.CSE]
TOK.DAT;1
Total of 1 file.
Which file do you want to view? [exit]

Pre-process COBOL 
source

Exclude Assertions

Inspect Results Files

se2cond.dat

condition names 
and full form

exit

tok.dat

tok.dat
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010 page 
020a
OSOcust # cust name cred tr 
040customer master file update - error report 
OSOcustomer master file update terminating 
060d
070end of report
080f
090i
lOOinsertion - record already on master 
llOno master record for this customer 
120program error al - empty transaction file 
130t
Directory $1$DIB1:[LCS.PD_COWARD.CSE]
T0K.DAT;1
Total of 1 file.
Which file do you want to view? [exit] :

strings and their 
numeric tokens

exit

INSPECTION OF RESULTS FILES MENU
Enter choice [0] : 3
Directory $1$DIB1:[LCS.PD_COWARD.CSE]
PS.COB;1 
SE10UT.C0B;1

RDIN.C0B;1
SE30UT.C0B;!

Total of 6 files.
Which file do you want to view? [exit]

RD0UT.C0B;1

se3out.cob
Identification Division.
Program-id. p5.
Loosely based on a program taken from Parkin 
'COBOL for students' 2nd Ed, 1982 
Environment Division.
Input-output Section.
File-control.

select fa-old-master assign to pSom. 
select fb-trans assign to pStr.
select fc-new-master assign to pSnm. 
select fd-print-file assign to pSpr.

Data Division.
File Section.
fd fa-old-master record varying depending wa-length.
01 fa-old-master-rec pic x (17).
fd fb-trans record varying depending wb-length.
01 fb-trans-rec pic x(18).
fd fc-new-master record varying depending wc-length.
01 fc-new-master-rec pic x(17).
fd fd-print-file record varying depending wd-length.
01 fd-print-rec pic x(132).
Working-Storage Section.
01 end-of-file comp pic s9(9) value external rms$_eof. 
01 wa-old-master-rec.

\cob

SE1IN.C0B;1

The pre-processed 
program
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01

01

01
01
01

01

01

01

02 wa-customer-no 
02 wa-customer-name 
02 wa-credit-code 
wa-length comp
wb-trans-rec.
02 wb-trans-type 

88 insertion 
8 8 amendment 
88 deletion 

02 wb-trans-detail.
03 wb-customer-no 
03 wb-customer-name 
03 wb-credit-code 

wb-length comp
wc-length comp
wd-length comp

pic 9(6). 
pic x(10) 
pic X .  
pic 999

pic X .  
value "i" 
value "a" 
value "d"
pic 9(6). 
pic x(10) 
pic X .  
pic 999 
pic 999 
pic 999

value 17.

value 18. 
value 17. 
value 132

wg-error-messages.
02 filler pic x(36)
value "insertion - record already on master'
02 filler pic x(36)
value "no master record for this customer".

01 wg-messages redefines wg-error-messages.
02 wg-message

01 wg
wh-global-conditions.
02 wh-eof-old-mast-flag 

88 not-eof-old-master 
88 eof-old-master 

02 wh-trans-eof-flag 
88 not-eof-trans 
88 eof-trans

pic x(36) 
occurs 2. 
pic 99.

pic X .  
value "f" 
value "t" 
pic X .  
value "f" 
value "t"

wi-page-heading.
02 wi-page-heading-1. 

03 filler 
03 filler

value spaces.

02

pic x(13) 
pic x(42)

value "customer master file update - error report". 
03 filler pic x(9) value " page".
03 wi-page-counter pic z9.
wi-page-heading-2.
03 filler pic x(31)
value "cust # cust name cred tr".

01

0 1

wj--error-line.
02 wj-customer-no pic 9(6) .
02 filler pic x(4) value spaces.
02 wj-customer-name pic x(10) •

02 filler pic X (4) value spaces.
02 wj-credit-code pic X .
02 filler pic x(4) value spaces.
02 wj-trans-type pic X .
02 filler pic x(4) value spaces.
02 wj-message pic x(36) •
wk--report-footing.
02 filler pic x(13) value "end
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01 wl-page.
02 wl-page-counter pic 99 value 1.
02 wl-line-counter pic 99 value 0.

Procedure Division, 
declaratives.
ds-fb-trans section.

use after standard exception procedure on 
fb-trans
ds-fa-old-master section,
use after standard exception procedure on 
fa-old-master 

end declaratives, 
main section.
al-update-customer-master.

get first transaction record
open input fb-trans
move "f" to wh-trans-eof-flag
read fb-trans into wb-trans-rec
evaluate true

when rms-sts of fb-trans = end-of-file
display "program error al - empty transaction file" 
display "customer master file update terminating" 
close fb-trans 
go stop-run

when rms-sts of fb-trans > end-of-file
continue

when rms-sts of fb-trans < end-of-file
continue 

end-evaluate
get first master record 
open input fa-old-master 
move "f" to wh-eof-old-mast-flag 
perform b3-read-fa-old-master
initialize error report
open output fd-print-file
move wl-page-counter to wi-page-counter
write fd-print-rec from wi-page-heading-1 after advancing 1 
write fd-print-rec from wi-page-heading-2 after advancing 2 
compute wl-line-counter = wl-line-counter + 3
open new master
open output fc-new-master
perform loop-1
close fb-trans
perform loop-2
close fa-old-master fc-new-master
write fd-print-rec from wk-report-footing after advancing 2 
close fd-print-file. 
go stop-run . 

bl-process-trans.
perform loop-3 

 ̂ process transaction record
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evaluate true 
when
wh-eof-old-mast-flag = "f"
evaluate true 
when
wa-customer-no = wb-customer-no
evaluate true 
when
wb-trans-type = "a"

evaluate true 
when
wb-credit-code = space
continue
when
wb-credit-code > space
move wb-credit-code to wa-credit-code 
when
wb-credit-code < space
move wb-credit-code to wa-credit-code 
end-evaluate
evaluate true 
when
wb-customer-name = space
continue
when
wb-customer-name > space
move wb-customer-name to wa-customer-name
when
wb-customer-name < space
move wb-customer-name to wa-customer-name
end-evaluate
when
wb-trans-type > "a"
evaluate true 
when
wb-trans-type = "d"
perform b3-read-fa-old-master 
when
wb-trans-type > "d"
move 1 to wg
perform cl-generate-error-message 
when
wb-trans-type < "d"
move 1 to wg
perform cl-generate-error-message
end-evaluate
when
wb-trans-type < "a"
evaluate true 
when
wb-trans-type = "d"
perform b3-read-fa-old-master
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when
wb-trans-type > "d"
move 1 to wg
perform cl-generate-error-message 
when
wb-trans-type < "d"
move 1 to wg
perform cl-generate-error-message
end-evaluate
end-evaluate
when
wa-customer-no > wb-customer-no
evaluate true 
when
wb-trans-type = "i"
write fc-new-master-rec from wb-trans-detail
when
wb-trans-type > "i"
move 2 to wg
perform cl-generate-error-message 
when
wb-trans-type < "i"
move 2 to wg
perform cl-generate-error-message
end-evaluate
when
wa-customer-no < wb-customer-no
evaluate true 
when
wb-trans-type = "i"
write fc-new-master-rec from wb-trans-detail
when
wb-trans-type > "i"
move 2 to wg
perform cl-generate-error-message 
when
wb-trans-type < "i"
move 2 to wg
perform cl-generate-error-message
end-evaluate
end-evaluate
when
wh-eof-old-mast-flag > "f"
evaluate true 
when
wb-trans-type = "i"
write fc-new-master-rec from wb-trans-detail
when
wb-trans-type > "i"
move 2 to wg
perform cl-generate-error-message 
when
wb-trans-type < "i"
move 2 to wg
perform cl-generate-error-message
end-evaluate
when
wh-eof-old-mast-flag < "f"
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evaluate true 
when
wb-trans-type = "i"
write fc-new-master-rec from wb-trans-detail
when
wb-trans-type > "i"
move 2 to wg
perform cl-generate-error-message 
when
wb-trans-type < "i"
move 2 to wg
perform cl-generate-error-message
end-evaluate
end-evaluate
read fb-trans into wb-trans-rec
evaluate true

when rms-sts of fb-trans = end-of-file
move "t" to wh-trans-eof-flag

when rms-sts of fb-trans > end-of-file
continue

when rms-sts of fb-trans < end-of-file
continue 

end-evaluate.
b2-write-and-read-master.

write fc-new-master-rec from wa-old-master-rec. 
perform b3-read-fa-old-master.

b3-read-fa-old-master.
read fa-old-master into wa-old-master-rec
evaluate truewhen rms-sts of fa-old-master = end-of-file

move "t" to wh-eof-old-mast-flag
when rms-sts of fa-old-master > end-of-file

continue
when rms-sts of fa-old-master < end-of-file

continue 
end-evaluate.

cl-generate-error-message.
evaluate true 
when
wl-line-counter = 2 0
continue
when
wl-line-counter > 20
compute wl-page-counter = wl-page-counter + 1 
move wl-page-counter to wi-page-counter 
write fd-print-rec from wi-page-heading-1 
after advancing page
write fd-print-rec from wi-page-heading-2
after advancing 2
move 0 to wl-line-counter
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when
wl-line-counter < 20
continue
end-evaluate

move wb-customer-no to wj-customer-no 
move wb-customer-name to wj-customer-name 
move wb-credit-code to wj-credit-code 
move wb-trans-type to wj-trans-type 
move wg-message (wg) to wj-message
write fd-print-rec from wj-error-line after advancing 2 
compute wl-line-counter = wl-line-counter + 2.

stop-run.
stop run.

loop-1.
evaluate true 
when
wh-trans-eof-flag = "t"
continue
when
wh-trans-eof-flag > "t"
perform bl-process-trans 
go loop-1 
when
wh-trans-eof-flag < ”t"
perform bl-process-trans 
go loop-1 
end-evaluate

loop-2.
evaluate true 
when
wh-eof-old-mast-flag = "t"
continue
when
wh-eof-old-mast-flag > "t"
perform b2-write-and-read-master 
go loop-2 
when
wh-eof-old-mast-flag < "t"
perform b2-write-and-read-master 
go loop-2 
end-evaluate

loop-3.
evaluate true 
when
wh-eof-old-mast-flag = "t”
continue
when
wh-eof-old-mast-flag > "t"
evaluate true 
when
wa-customer-no = wb-customer-no
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continue
when
wa-customer-no > wb-customer-no
continue
when
wa-customer-no < wb—customer—no
perform b2—write-and-read-master
go loop-3
end-evaluate
when
wh-eof-old-mast-flag < "t"
evaluate true 
when
wa-customer-no = wb-customer-no
continue
when
wa-customer-no > wb-customer-no
continue
when
wa-customer-no < wb-customer-no
perform b2-write-and-read-master
go loop-3
end-evaluate
end-evaluate

end program p5.

Directory $1$DIB1;[LCS.PD_COWARD.CSE]
PS.COB;1 RDIN.COB;! RDOUT.COB;! SE1IN.C0B;1
SE10UT.C0B;1 SE30UT.C0B;!
Total of 6 files.
Which file do you want to view? [exit] : exit

INSPECTION OF RESULTS FILES MENU

Enter choice [0] ; exit
MAIN MENU

Enter choice [0] : 3 User Path Selection
- Feasibility every

User Path Selection (Feasibility Every Branch) Started branch 
CLEAR previous paths [C]
RETAIN previous paths [R]
Enter choice [R] : c
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

296



Appendix A Testing a Sequential Update Program using SYM BOL

Node number 001 on Path number001
1 000 fb-trans

= end-of-file
2 000 fb-trans

> end-of-file
3 000 fb-trans

< end-of-file 
Current expression for fb-trans 
fb-trans601
Current expression for end-of-file 
rms$_eof
Select a branch number : 1 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
End of path 001
Writing pc001.dat
Writing path001.dat
Writing pnod001.dat
Writing va001.dat
Select another path Y or N ? [Y] : y
CLEAR previous paths [C]
RETAIN previous paths [R]
Enter choice [R] : r ************************************************************ 
Node number 001 on Path number002
1 001 fb-trans

= end-of-file
2 000 fb-trans

> end-of-file
3 000 fb-trans

< end-of-file 
Current expression for fb-trans 
fb-trans601
Current expression for end-of-file 
irms$_eof
Select a branch number : 3 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues ************************************************************ 
Node number 002 on Path number002
1 000 fa-old-master

= end-of-file
2 000 fa-old-master

> end-of-file
3 000 fa-old-master

< end-of-file
Current expression for fa-old-master 
fa-old-master0Ol
Current expression for end-of-file 
rms$_eof
Select a branch number : 1 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Node number 003 on Path number0021 000 wh—trans—eof—f lag Throughout the rest of the
= "t" log nodes with ’no user

2 000 wh—trans—eof—flag choice’ are reduced to
> "t" two lines

3 000 wh-trans-eof-flag
< "t"

Current expression for wh-trans-eof-flag
II £ 1 1

Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 004 on Path number002
Branch 1 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 005 on Path number002
Branch 2 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 006 on Path number002
1 000 wb-trans-type

=  " i "

2 000 wb-trans-type
> "i"

3 000 wb-trans-type
< "i"

Current expression for wb-trans-type
wb-trans-type601
Select a branch number : 1
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 007 on Path number002
1 000 fb-trans

= end-of-file
2 000 fb-trans

> end-of-file
3 000 fb-trans

< end-of-file
Current expression for fb-trans 
fb-trans@02
Current expression for end-of-file 
rms $_eof
Select a branch number : 1 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 008 on Path number002
Branch 1 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 009 on Path number002
Branch 1 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

End of path 002
Writing pc002.dat
Writing path002.dat
Writing pnod002.dat
Writing va002.dat
and output file fd—print-rec002 .dat
and output file fc-new-master-rec002.dat

298



Appendix A Testing a Sequential Update Program using SYM BOL

Select another path Y or N ? [Y] : y
CLEAR previous paths [C]
RETAIN previous paths [R]
Enter choice [R] : r 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 001 on Path numberOOS
1 001 fb-trans

= end-of-file
2 000 fb-trans

> end-of-file
3 001 fb-trans

< end-of-file 
Current expression for fb-trans 
fb-trans601
Current expression for end-of-file 
rms$_eof
Select a branch number : 3 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 002 on Path number003
1 001 fa-old-master

= end-of-file
2 000 fa-old-master

> end-of-file
3 000 fa-old-master

< end-of-file
Current expression for fa-old-master 
fa-old-master@01
Current expression for end-of-file 
rms$_eof
Select a branch number : 3 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 003 on Path number003
Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 004 on Path number003
Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 005 on Path number003
1 000 wa-customer-no

= wb-customer-no
2 000 wa-customer-no

> wb-customer-no
3 000 wa-customer-no

< wb-customer-no
Current expression for wa-customer-no 
wa-customer-no601
Current expression for wb-customer-no
wb-customer-no@01
Select a branch number : 3
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Node number 006 on Path number003
1 001 fa-old-master

= end-of-file
2 000 fa-old-master

> end-of-file
3 001 fa-old-master

< end-of-file
Current expression for fa—old-master 
fa-old-master@02
Current expression for end-of-file 
rms $_eof
Select a branch number : 3 
Checking feasibility of Partial Path
P a r t i a l  P a t h  i s  F e a s i b l e  -  S y m b o l i c  E x e c u t i o n  c o n t i n u e s  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 007 on Path number003
Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 008 on P a t h  number003
1 000 wa-customer-no

= wb-customer-no
2 000 wa-customer-no

> w b - c u s t o m e r - n o
3 001 wa-customer-no

< wb-customer-no
Current expression for wa-customer-no 
wa-customer-no6 02
Current expression for wb-customer-no
wb—customer-no0Ol
Select a branch number : 1
C h e c k i n g  f e a s i b i l i t y  o f  P a r t i a l  P a t h
P a r t i a l  P a t h  i s  F e a s i b l e  -  S y m b o l i c  E x e c u t i o n  c o n t i n u e s  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 009 on Path number003
Branch 1 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 010 on Path number003
1 000 wa-customer-no

= wb-customer-no
2 000 wa-customer-no

> wb-customer-no
3 000 wa-customer-no

< wb-customer-no
Current expression for wa-customer-no 
wa—customer—no0 02
Current expression for wb-customer-no
wb—customer-no0Ol
Select a branch number : 3
C h e c k i n g  f e a s i b i l i t y  o f  P a r t i a l  P a t hPartial Path is INfeasible -removing last predicate conjoined to PC 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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When systMn detects infeasible 
path user is forced to select 
an alternative branch at the 
node before {Egression.

Node number 010 on Path numberOOS
1 000 wa-customer-no

= wb-customer-no
2 000 wa-customer-no

> wb-customer-no
3 000 wa-customer-no

< wb-customer-no 
Current expression for wa-customer-no 
wa-customer-no@ 02
Current expression for wb-customer-no
wb-customer-no@01
Select a branch number : 1
Checking feasibility of Partial Path
Partial Path is Feasible — Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number Oil on Path number003
1 000 wb-trans-type

=  ” a ”
2 000 wb—trans-type

> "a"
3 000 wb-trans-type

< "a"
Current expression for wb-trans-type
wb-trans-type@01
Select a branch number : 2
Checking feasibility of Partial Path
Partial Path is Feasible — Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 012 on Path number003
1 000 wb-trans-type

= »'d”
2 000 wb-trans-type

> "d"
3 000 wb-trans-type

< "d"
Current expression for wb-trans-type
wb-t rans-type@01
Select a branch number : 1
Checking feasibility of Partial Path
Partial Path is Feasible — Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 013 on Path number003
1 001 fa—old—master

= end-of-file
2 000 fa-old-master

> end-of-file
3 002 fa-old-master

< end-of-file
Current expression for fa-old-master 
fa-old-master@03
Current expression for end-of-file 
rms$_eof
Select a branch number : 3 
Checking feasibility of Partial Path
Partial Path is Feasible — Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Node number 014 on Path numberOOS
1 001 fb-trans

= end-of-file
2 000 fb-trans

> end-of-file
3 000 fb-trans

< end-of-file 
Current expression for fb-trans 
fb-trans@02
Current expression for end-of-file 
rms $_eof
Select a branch number : 3 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 015 on Path number003
Branch 3 is only feasible branch no user choice recjuired 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 016 on Path number003
Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 017 on Path number003
1 001 wa-customer-no

= wb-customer-no
2 000 wa-customer-no

> wb-customer-no
3 001 wa-customer-no

< wb-customer-no
Current expression for wa-customer-no 
wa-customer-no0 03
Current expression for wb-customer-no
wb-customer-no0O2
Select a branch number : 2
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 018 on Path number003
Branch 1 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 019 on Path number003
1 001 wa-customer-no

= wb-customer-no
2 000 wa-customer-no

> wb-customer-no
3 000 wa-customer-no

< wb-customer-no
Current expression for wa-customer-no 
wa-customer-no0 0 3
Current expression for wb-customer-no
wb-customer-no0O2
Select a branch number : 2
Checking feasibility of Partial PathPartial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Node number 020 on Path numberOOS
1 000 wb-t rans-type=
2 000 wb-trans-type> f l

3 000 wb-trans-type
<

Current expression for wb-trans-type
wb-trans-type602
Select a branch number : 3
Checking feasibility of Partial Path
Partial Path is Feasible — Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 021 on Path numberOOS
1 000 wl—line-counter

=  20
2 000 wl—line-counter

> 20
3 000 wl-line-counter

< 20
Current expression for wl-line-counter 
3
Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 022 on Path numberOOS
1 001 fb-trans

= end-of-file
2 000 fb-trans

> end-of-file
3 001 fb-trans

< end-of-file 
Current expression for fb-trans 
fb-trans0O3
Current expression for end-of-file 
rms$_eof
Select a branch number : 3 
Checking feasibility of Partial Path
Partial Path is Feasible — Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 023 on Path numberOOS
Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 024 on Path numberOOS
Branch 3 is only feasible branch no user choice required ************************************************************ 
Node number 025 on Path numberOOS
1 001 wa-customer-no

= wb-customer-no
2 001 wa-customer-no

> wb-customer-no
3 001 wa-customer-no

< wb-customer-no
Current expression for wa-customer-no 
wa-customer-no0O3
Current expression for wb-customer-no
wb-customer-no0O3
Select a branch number : 1
Checking feasibility of Partial Path
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Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 026 on Path numberOOS
Branch 1 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 027 on Path numberOOS
1 001 wa-customer-no

= wb-customer-no
2 001 wa-customer-no

> wb-customer-no
3 000 wa-customer-no

< wb-customer-no
Current expression for wa-customer-no 
wa-customer-no@03
Current expression for wb-customer-no
wb-customer-no@03
Select a branch number : 1
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 028 on Path numberOOS
1 000 wb-trans-type

= "a"
2 001 wb-trans-type

> "a"
3 000 wb-trans-type

< "a"
Current expression for wb-trans-type
wb-trans-type@03
Select a branch number : 1
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 029 on Path numberOOS
1 000 wb-credit—code

= space
2 000 wb-credit-code

> space
3 000 wb-credit-code

< space
Current expression for wb-credit-code
wb-credit-code003
Select a branch number : 2
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 030 on Path numberOOS
1 000 wb-customer-name

= space
2 000 wb-customer-name

> space
3 000 wb-customer-name

< space
Current expression for wb-customer-name
wb-customer-name0O3
Select a branch number : 2
Checking feasibility of Partial Path
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Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 031 on Path numberOOS
1 001 fb-trans

= end-of-file
2 000 fb-trans

> end-of-file
3 002 fb-trans

< end-of-file 
Current expression for fb-trans 
fb-trans@04
Current expression for end-of-file 
rms$_eof
Select a branch number : 1 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 032 on Path numberOOS
Branch 1 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 033 on Path numberOOS
Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 034 on Path numberOOS
1 001 fa-old-master

= end-of-file
2 000 fa-old-master

> end-of-file
3 003 fa-old-master

< end-of-file
Current expression for fa-old-master 
fa-old-master@04
Current expression for end-of-file 
rms$_eof
Select a branch number : 3 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 035 on Path numberOOS
Branch 3 is only feasible branch no user choice required 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 036 on Path numberOOS
1 001 fa-old-master

= end-of-file
2 000 fa-old-master

> end-of-file
3 004 fa-old-master

< end-of-file
Current expression for fa-old-master 
fa-old-master@05
Current expression for end-of-file 
rms$_eof
Select a branch number : 1 
Checking feasibility of Partial Path
Partial Path is Feasible - Symbolic Execution continues 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Node number 037 on Path numberOOS
Branch 1 is only feasible branch no user choice required
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End of path 003
Writing
Writing
Writing
Writing
and output file 
and output file

pc003.dat 
pathOOS.dat 
pnod003.dat 
va003.dat
fd-print-rec003 .dat
fc-new-master-rec003.dat

Select another path Y or N ? [Y] : n
User Path (Feasibility Every Branch) O.K.

MAIN MENU
Enter choice [0] 

Enter choice [0]

Inspect Results Files
INSPECTION OF RESULTS FILES MENU 

6 *pc*.dat

Directory $1$DIB1:[LCS.PD_COWARD.CSE]
PC001.DAT;1 
SPC002.DAT;3 
TPC003.DAT;23

PC002.DAT;3 
SPC003.DAT;23

Total of 81 files.
Which file do you want to view? [exit] 

022
fb-trans@01 - ntis$_eof 
fa-old-master0Ol - rms$_eof 
wa—customer-no0Ol — wb-customer-no0Ol 
fa-old-master0O2 - rms$_eof 
wa-customer-no0O2 - wb—customer-no0Ol 
wa-customer-no0O2 - wb-customer-no0Ol 
wb-t rans-type 001 
wb-trans-type0Ol 
fa-old-master0O3 - rms$_eof 
fb-trans0O2 - rms$_eof 
wa-customer-no0O3 — wb—customer-no0O2 
wa—customer-no0O3 — wb—customer-no0O2 
wb-trans-type0O2 
fb-trans0O3 - rras$_eof 
wa-customer-no0O3 - wb-customer-no0O3 
wa-customer-no0O3 - wb-customer-no0O3 
wb-trans-type0O3 
wb-credit-code0O3 — space 
wb-customer-name0O3 - space 
fb-trans0O4 - rms$_eof 
fa-old-master0O4 - rms$_eof 
fa-old-master0O5 - rms$_eof
Directory $1$DIB1:[LCS.PD_COWARD.CSE]
PC001.DAT;1 
SPC002.DAT;3 
TPC003.DAT;23

PC002.DAT;3 
SPC003.DAT;23

PC003.DAT;23 
TPC001.DAT;1

spc003.dat

SPC001.DAT;1 
TPC002.DAT;3

path condition for path 
003 with numeric token

< 0
< 0
< 0
< 0
= 0

0
> 020 "a"
= 060 "d"
< 0
< 0
> 0
> 0
< 090 tt
< 0

0
= 0
= 020 "a"
> 0
> 0
= 0
< 0

0

PC003.DAT; 23 SPCOOl .DAT;1
TPC001.DAT;1 TPC002 .DAT;3

Total of 81 files.
Which file do you want to view? [exit] exit
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INSPECTION OF RESULTS FILES MENU
Enter choice [0] v*.dat

Directory $1$DIB1:[LCS.PD COWARD.CSE]
VA000.DAT;1 
wool. DAT; 1

VA001.DAT;1 
W002.DAT; 1

Total of 7 files.
Which file do you want to view? [exit]

VA002.DAT;1 
W O  03. DAT; 1

va003.dat

VA003.DAT;1

Variable table

062
In Occ p Siz Val

01fa-old-master 05 001 f 000 Variable table after symbolic
Olfa-old-master-rec 00 001 X 017 execution of path 003.
01fb-trans 04 001 f 000 In: number of inputs on path
Olfb-trans-rec 00 001 X 018 Occ: num of elements in array
Olfc-new-master 00 001 f 000 P: picture type
Olfc-new-master-rec 00 001 X 017 Siz: number of characters
Olfd-print-file 00 001 f 000 Val: symbolic value at end of
Olfd-print-rec 00 001 X 132 path 003
Olend—of—file 00 001 s 009 rms$_eof
Olwa-old-master-rec 05 001 X 017
02wa-customer-no 05 001 9 006
02wa-customer-name 05 001 X 010 wb-customer-name@ 0 3
02wa-credit-code 05 001 X 001 wb-credit-code@03
Olwa-length 00 001 9 003 17
Olwb-trans-rec 04 001 X 018
02wb-trans-type 04 001 X 001
88insertion 00 001 000 it£ti
88amendment 00 001 000 "a"
88deletion 00 001 000 "d"
02wb-trans-detail 04 001 X 017
03wb-customer-no 04 001 9 006
03wb-customer-name 04 001 X 010
03wb-credit-code 04 001 X 001
Olwb-length 00 001 9 003 18
Olwc-length 00 001 9 003 17
Olwd-length 00 001 9 003 132
Olwg-error-messages 00 001 X 072
02filler 00 001 X 036 "insertion - record already on master"
02filler 00 001 X 036 "no master record for this customer"
Olwg-messages 00 001 X 072
02wg-message 00 002 X 036
Olwg 00 001 9 002 2
Olwh-global-condition 00 001 X 002
02wh-eof-old-mast-flag00 001 X 001 "t "
88not-eof-old-master 00 001 000 t l £ I I

88eof-old-master 00 001 000 *'t "
02wh-trans-eof-flag 00 001 X 001 ”t "
88not-eof-trans 00 001 000 I t  £ 1 1

88eof-trans 00 001 000 "t"
Olwi-page-heading 00 001 X 097
02wi-page-heading-l 00 001 X 066
03filler 00 001 X 013 spaces
03filler 00 001 X 042 "customer master file update - error rep
03filler 00 001 X 009 " page"
03wi-page-counter 00 001 z 002 1
02wi-page-heading-2 00 001 X 031
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03filler 00 001 X 031 "cust # cust name
Olwj-error-line 00 001 X 070
02wj-customer-no 00 001 9 006 wb-customer-no@ 02
02filler 00 001 X 004 spaces
02wj-customer-name 00 001 X 010 wb-customer-name@02
02filler 00 001 X 004 spaces
02wj—credit-code 00 001 X 001 wb—credit-code@ 02
02filler 00 001 X 004 spaces
02wj-trans-type 00 001 X 001 wb-t rans-type 002
02filler 00 001 X 004 spaces
02wj-message 00 001 X 036 wg-message[2]
Olwk-report-footing 00 001 X 013
02filler 00 001 X 013 "end of report"
Olwl-page 00 001 X 004
02wl-page-counter 00 001 9 002
02wl-line-counter 00 001 9 002

cred tr’

Directory $1$DIB1:[LCS.PD_COWARD.CSE]
VA000.DAT;1 VA001.DAT;1 VA002.DAT;1
wool. DAT; 1 W O  02. DAT ;1 W003.DAT; 1
Total of 7 files.
Which file do you want to view? [exit] : vv003.dat

fb-trans0 01 0.93E+01 9.3 not eof
rms $_eof 0.12E+02 12 eof
fa-old-master0Ol 0.93E+01 9.3 not eof
wa-customer-no0Ol 0.93E+01 9.3 000009
wb-customer-no0Ol O.lOE+02 10 000010
fa-old-master0O2 0.93E+01 9.3 not eof
wa-customer-no0O2 0.10E+02 10 000010
wb-trans-type0Ol 0.60E+02 60 "d"
fa-old-master0O3 0.93E+01 9.3 not eof
fb-trans0O2 0.93E+01 9.3 not eof
wa-customer-no0O3 O.llE+02 11 000011
wb-customer-no0O2 0.87E+01 8.7 000008
wb-t rans-type 002 0.10E+02 10
fb-trans0O3 0.93E+01 9.3 not eof
wb-customer-no0O3 O.llE+02 11 000011
wb-t rans-type0 0 3 0.20E+02 20 "a"
wb-credit-code0 0 3 O.llE+02 11
space 0.87E+01 8.7 space
wb—customer-name0O3 O.llE+02 11 " z z z :
fb-trans0O4 0.12E+02 12 eof
fa-old-master0O4 0.93E+01 9.3 not eof
fa-old-master0O5 0.12E+02 12 eof
Directory $1$DIB1 :[LCS.PD_COWARD .CSE]
VA000.DAT;1 VA001.DAT;1 VA002.DAT;1
wool. DAT; 1 W O  02. DAT ;1 W003.DAT; 1
Total of 7 files.
Which file do you want to view? [exit] :

VA003.DAT;!

Input Variable 
Values

VA003.DAT;!

exit
INSPECTION OF RESULTS FILES MENU

Enter choice [0] exit
MAIN MENU
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Enter choice [0] : 5

Test File Generation Started
There are Paths 001 to 003
Enter path number [exit] : 003
Writing p5om.dat
Writing p5tr.dat
File generation coitplete for path 003
There are Paths 001 to 003
Enter path number [exit] :
Test File Generation O.K.

MAIN MENU
Enter choice [0] : 7

G en^te files of 
test data

fa-old-master
fb-trans

exit

Inspect Results Files

INSPECTION OF RESULTS FILES MENU
Enter choice [0] : 11
Free Format - no directory listing
Which file do you want to view? [exit] : p5om.dat

000009aaaaaaaaaab 
OOOOlOccccccccccd 
OOOOlleeeeeeeeeef 
000012 ggggggggggh
Free Format — no directory listing
Which file do you want to view? [exit] : p5tr.dat

Free Format 

fa-old-mastei003

fb-trans003

dOOOOlOiiiiiiiiiij 
OOOOOSkkkkkkkkkkl 
aOOOOll zzzzz

Free Format - no directory listing 
Which file do you want to view? [exit]

MAIN MENU
Enter choice [0] 
Compiling PS.cob 
Linking PS.obj 
Running P5.exe

MAIN MENU
Enter choice [0] : 11
Free Format — no directory listing
Which file do you want to view? [exit] : p5nm.dat

000009aaaaaaaaaab 
000011 zzzzzf
000012ggggggggggh
Free Format - no directory listing
Which file do you want to view? [exit] : p5pr.dat

System has generated 
a file with records 
out of sequence.

exit

Execute Program 
Under Test

Free Format 

fc-new-mastei003

fd-print-file003
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customer master file update - error report page 1
cust # cust name cred tr
000008 kkkkkkkkkk 1 no master record for this customer
end of report
F r e e  F o r m a t  -  n o  d i r e c t o r y  l i s t i n g
W h ic h  file do you want to view? [exit] : exit

MAIN MENU

E n t e r  c h o i c e  [0] : exit

COBOL SYMBOLIC EXECUTION TESTIN G  SYSTEM TERMINATED 

ZEU$
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APPENDIX B SYM-BOL-COBOL: COBOL SUBSET VALID 
FOR INPUT TO SYM BOL

Allowed COBOL Currently Disallowed COBOL

Sequential files
record description entries 

redefines 
occurs

level-88 condition-names

DATA DIVISION
Indexed files
linage clause 
redefines

PROCEDURE DIVISION
Procedure Division 
Procedure Division using 
paragraphs sections (likely to be marked for

deletion in next standard)

Input-output
accept, display 
open, close 
read, write start, rewrite, delete

merge
release
return
sort

call

Assignment
compute

move

compute size error 
add
subtract
multiply
divide
set
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Flow of control
evaluate true 
when 
when

end-evaluate

if simple-condition
then
else
end-if
condition-name

nested if statements
continue
go
perform procedure
perform until simple-condition 

statement
end-perform
nested perform statements 
exit program 
stop run

Sophisticated string handling

evaluate true also true 
when 
when

end-evaluate
evaluate condition 

when true 
when false 

end-evaluate
if compound-condition
then
else
end-if
class condition 

e.g. var numeric

perform procedure varying 
perform n times

string, unstring
inspect
search
reference modification 
e.g. var(start : length)
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